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Abstract. Modern deep neural network models are known to erroneously
classify out-of-distribution (OOD) test data into one of the in-distribution
(ID) training classes with high confidence. This can have disastrous con-
sequences for safety-critical applications. A popular mitigation strategy
is to train a separate classifier that can detect such OOD samples at test
time. In most practical settings OOD examples are not known at train
time, and hence a key question is: how to augment the ID data with
synthetic OOD samples for training such an OOD detector? In this paper,
we propose a novel Compounded Corruption (CnC) technique for the
OOD data augmentation. One of the major advantages of CnC is that
it does not require any hold-out data apart from training set. Further,
unlike current state-of-the-art (SOTA) techniques, CnC does not require
backpropagation or ensembling at the test time, making our method
much faster at inference. Our extensive comparison with 20 methods from
the major conferences in last 4 years show that a model trained using
CnC based data augmentation, significantly outperforms SOTA, both in
terms of OOD detection accuracy as well as inference time. We include a
detailed post-hoc analysis to investigate the reasons for the success of
our method and identify higher relative entropy and diversity of CnC
samples as probable causes. Theoretical insights via a piece-wise decom-
position analysis on a two-dimensional dataset to reveal (visually and
quantitatively) that our approach leads to a tighter boundary around ID
classes, leading to better detection of OOD samples.

Keywords: OOD detection · Open Set recognition · Data augmentation

1 Introduction

Deep neural network (DNN) models generalize well when the test data is indepen-
dent and identically distributed (IID) with respect to training data [42]. However,
the condition is difficult to enforce in the real world due to distributional drifts,
covariate shift, and/or adversarial perturbations. A reliable system based on a
DNN model must be able to detect an OOD sample, and either abstain from making
any decision on such samples, or flag them for human intervention. We assume
that the in-distribution (ID) samples belong to one of the K known classes, and
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club all OOD samples into a new class called a reject/OOD class. We do not attempt
to identify which specific class (unseen label) the unknown sample belongs to.
Our goal is to build a classifier to accurately detect OOD samples as the (K +1)th

OOD class, with an objective to reject samples belonging to any novel class.
Most techniques for OOD detection assume the availability of validation samples

from the OOD set for tuning model hyper-parameters [33,31,2,19]. Based on the
samples, the techniques either update the model weights so as to predict lower
scores for the OOD samples, or try to learn correlation between activations and
the output score vector [31]. Such approaches have limited utility as in most
practical scenarios, either the OOD samples are not available, or cover a tiny
fraction of OOD sample space. Yet, other class of techniques learn the threshold
on the uncertainty of the output score using deep ensembling [28] or MC dropout
[9]. Understandably, OOD detection capability of these techniques suffer when the
samples from a different OOD domain are presented.

The other popular class of OOD detectors do not use representative samples
from OOD domain, but generate them synthetically [17,36,37]. The synthetic
samples can be used to train any of the earlier mentioned SOTA models in lieu
of the real OOD samples. This obviates the need for any domain specific OOD
validation set. Such methods typically use natural corruptions (e.g. blur, noise,
and geometric transformations etc.) or adversarial perturbations to generate
samples near decision boundary of a classifier. This class also have limited
accuracy on real OOD datasets, as the synthetic images generated in such a way
are visually similar/semantically similar to the ID samples, and the behavior of
a DNN when shown natural OOD images much farther (in terms of ℓ2 distance in
RGB space) from the ID samples still remains unknown.

Recent theoretical works towards estimating or minimizing open set loss
recommend training with OOD samples covering as much of the probable input
space as possible. For example, [24] show that a piece-wise DNN model shatters
the input space into a polyhedral complex, and prove that empirical risk of a
DNN model in a region of input space scales inversely with the density of training
samples lying inside the polytope corresponding to the region. Similarly, [8] show
that under an unknown OOD distribution, the best way to minimize the open
set loss is by choosing OOD samples uniformly from the support set in the input
space. Encouraged by such theoretical results, we propose a data augmentation
technique which does not focus on generating samples visually similar to the ID
samples but synthesizing OOD samples in two key regions of the input space: (i)
finely distributed at the boundary of ID classes, and (ii) coarsely distributed in
the inter-ID sample space (See Sec. 3.3 for details). We list the key contributions:

1. We propose a novel data augmentation strategy, Compounded Corruptions
(CnC) for OOD detection. Unlike contemporary techniques [12,19,31,33] the
proposed approach does not need a separate OOD train or validation dataset.

2. Unlike SOTA techniques which detect OOD samples by lowering the confidence
of ID classes [1,18,31,35], we classify OOD samples into a separate reject class.
We show empirically that our approach leads to clearer separation between
ID and OOD samples in the embedding space (Fig. 4).
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3. Our method does not require any input pre-processing at the test time, or
a second forward pass with perturbation/noise. This makes it significantly
faster in inference as compared to the other SOTA methods [22,33].

4. Visualization and analysis of our results indicate that finer granularity of
the polyhedral complex around the ID regions learnt by a model is a good
indicator of performance of a OOD data augmentation technique. Based on
our analysis, we also recommend higher entropy and diversity of generated
OOD samples as good predictors for OOD detection performance.

2 Related Work

Our approach is a hyper-parameter-free OOD detection technique, which does not
need access to a validation OOD dataset. We review contemporary works below.

Hyper-parameter tuning using OOD data This class comprises of OOD detection
methods that fine-tune hyper-parameters on a validation set. ODIN [33] utilizes
temperature scaling with input perturbations using the OOD validation dataset
to tune hyper-parameters for calibrating the neural networks. However, hyper-
parameters tuned with one OOD dataset may not generalize to other datasets.
Lee et al.[31] propose training a logistic regression detector on the Mahalanobis
distance vectors calculated between test images’ feature representations and class
conditional Gaussian distribution at each layer.

Retraining a model using OOD data G-ODIN [22] decompose confidence score
along with modified input pre-processing for detecting OOD, whereas ATOM [2]
essentially makes a model robust to the small perturbations, and hard negative
mining for OOD samples. MOOD [34] introduce multi-level OOD detection based
on the complexity of input data, and exploit simpler classifier for faster OOD
inference.

Using a pre-trained model’s score for OOD detection Hendrycks and Gimpel [18]
use maximum confidence scores from a softmax output to detect OOD. Liu et
al.[35] use energy as a scoring function for OOD detection without tuning hyper-
parameters. Shastry and Oore [41] leverage pth-order Gram matrices to identify
anomalies between activity patterns and the predicted class. Blundell et al.[1]
focus on a closed world assumption which forces a DNN to choose from one of
the ID classes, even for the OOD data. OpenMax estimates the probability of an
input being from an unknown class using a Weibull distribution. G-OpenMax[10]
explicitly model OOD samples and report findings on small datasets like MNIST.

OOD detection using uncertainty estimation OOD samples can be rejected by
thresholding on the uncertainty measure. Graves et al.[11], Wen et al.[46] pro-
pose anomaly detection based on stochastic Bayesian inference. Gal et al.[9]
propose MC-dropout to measure uncertainty of a model using multiple inferences.
Deep Ensembles [28] use multiple networks trained independently to improve
uncertainty estimation.
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Data augmentation for OOD detection This line of research augments the training
set to improve OOD detection. Data augmentations like flipping and cropping gen-
erate samples that can be easily classified by a pre-trained classifier. Generative
techniques based on VAEs, and GANs try to synthesize data samples near the
decision boundary [7,30,32,39,47,45,40]. Other data augmentation strategies do
not directly target OOD detection, but domain generalization: SaliencyMix [44],
CutOut[6], GridMask[3], AugMix [20], RandomErase [52], PuzzleMix [26], Ran-
dAugment [4], SuperMix [5]. Mixup [51] generates new data through convex
combination of training samples and labels to improve DNN generalization. Cut-
Mix [48] which generates samples by replacing an image region with a patch from
another training image. The approach is not directly suitable for OOD detection,
as the generated samples lie on the line joining the training samples, and may
not cover the large input space[24,8].

3 Proposed Approach

Sample CnC generated OOD imagesSample ID classes

(a) (b)

Proxy 
OOD data

In Distribution data

K 
classes 

(ID)

(K+1)th 
class
(OOD)

PBCC Corruptions

Compounded Corruptions

Neural
Network

Training 
data 

Fig. 1. Creating augmented data samples using Compounded Corruptions (CnC). Pane
(a) shows block diagram of the training procedure: first we take a patch based convex
combination (PBCC) of patches chosen from image pair belonging to

(
K
2

)
labels; second,

we apply corruptions on the data points obtained using PBCC. This proxy OOD data
is then used to train a (K + 1) way classifier, where, first K classes correspond to
the ID classes and (K + 1)th class contains synthesized OOD samples corresponding to
reject/OOD class. Pane (b) shows CnC synthesized sample images from cat and dog
classes. Intuitively, CnC gives two knobs for generating OOD samples: a coarse exploration
ability through linear combination of two ID classes achieved through PBCC operation,
and a finer warping capability through corruption of these images. The order of the
two operations (PBCC before corruption) is important, as we show later.

3.1 Problem Formulation

We consider a training set, Dtrain
in , consisting of N training samples: (xn, yn)

N
n=1,

where samples are drawn independently from a probability distribution: PX,Y .
Here, X ∈ X is a random variable defined in the image space, and Y ∈ Y =
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{1, . . . ,K} represents its label. Traditionally, a classifier fθ : X → Y is trained
on in-distribution samples drawn from a marginal distribution PX of X derived
from the joint distribution PX,Y . Let θ refers to model parameters and QX be
another distinct data distribution defined on the image space X . During testing
phase, input images are drawn from a conditional mixture distribution MX|Z
where Z ∈ {0, 1}, such that MX|Z=0 = PX , and MX|Z=1 = QX . We define all
QX ≁ PX as OOD distributions, and Z is a latent (binary) variable to denote ID
if Z = 0 and OOD if Z = 1.

One possible approach to detecting an OOD sample is if confidence of fθ
for a given input is low for all elements of Y. However, we use an alternative
approach where we learn to map OOD samples generated using our technique to
an additional label (K + 1). Given any two ID samples x1, x2 ∼ PX , we generate
the synthetic data using the CnC operation C(x1, x2) : X × X → X . We then
define an extended label set Y+ = {1, . . . ,K + 1}, and train a classifier f+

θ over
Y+. The goal is to train f+

θ to implicitly build an estimate Ẑ of Z, such that the
output of f+

θ is (K + 1) if Ẑ = 1, and one of the elements of Y if Ẑ = 0.

a) Training Data b) PBCC c) Corr d) CnC

Fig. 2. Intuition with an illustrative plot of OOD synthesis on a toy dataset with four ID
classes. Each sample is in R2. Consider p1 = (x1, y1), and p2 = (x2, y2) to be the two
input samples belonging to distinct classes 1 and 2, then p3 = (x3, y3) is the geometric
convex combination of p1 and p2 such that: p3 = λp1 + (1 − λ)p2 , 0 ≤ λ ≤ 1. (a)
training data corresponding to 4 distinct classes; Synthesised OOD points are in red; (b)
PBCC generates OOD points through a convex combination of ID points from different
classes in

(
4
2

)
ways, whereas corruptions depicted in (c) can generate OOD points around

each cluster. Observe that points generated by CnC spans wider OOD space including
inter-ID-cluster area and outside the convex hull of ID points.

3.2 Synthetic OOD Data Generation

Our synthetic sample generation strategy consists of following two steps.

Step 1: Patch Based Convex Combination (PBCC) We generate synthetic samples
by convex combination of two input images. Let x ∈ RW×H×C , and y denote
a training image and its label respectively. Here, W,H,C denote width, height,
channels of the image respectively. A new sample, x̃, is generated by a convex
combination of two training samples (xA, yA), and (xB , yB):

x̃ = M⊙ xA + (1−M)⊙ xB . (1)
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Here, xA and xB do not belong to a same class (yA ̸= yB), and M ∈ {0, 1}W×H

denotes a rectangular binary mask that indicates which region to drop, or use
from the two images. 1 is a binary mask filled with ones, and ⊙ is element-wise
multiplication. To sample M, we first sample the bounding box coordinates
B = (rx, ry, rw, rh), indicating the top-left coordinates, and width, and height
of the box. The region B in xA is cut-out and filled in with the patch cropped
from B of xB. The coordinates of B is uniformly sampled according to: rx ∼
U(0,W ), rw = W

√
1− λ and similarly, ry ∼ U(0, H), rh = H

√
1− λ. Here,

λ ∈ [0, 1] denotes the crop area ratio, and is fixed at different values for generating
random samples. The cropping mask M is generated by filling zeros within the
bounding box B and ones outside. We generate the samples by choosing each pair
of labels in

(
K
2

)
ways, and then randomly selecting input images corresponding

to the chosen labels. This generates OOD samples spread across various inter-class
regions in the embedding space. For ablation on range of λ to ensure that a large
number of OOD samples are generated outside the ID clusters see supplementary.
We label all generated samples as that of the (K + 1)th reject class.

PBCC and CutMix [48]: Note that PBCC and CutMix[48] both rely on the
same basic operation convex combination of images, but for two very different
objectives. Whereas, CutMix uses the combination step to guide a model to
attend on less discriminative parts of objects e.g. leg as opposed to head of a
person letting the network generalize better on object detection. On the other
hand, we use PBCC as a first step for OOD data generation, where the operation
generates samples in a large OOD space between a pair of classes in

(
K
2

)
ways.

PBCC Shortcomings: Note that PBCC performs a convex combination of
the two ID images belonging to two distinct classes. Hence, unlike adversarial
perturbations, it is able to generate sample points far from the ID points in the
RGB space. However, still it can generate samples from only within the convex
hull of the ID points corresponding to all classes.Thus, as we show in our ablation
studies, sample generated using this step alone are insufficient to train a good
OOD detector. Below we show how to improve upon the shortcoming of PBCC.

Step 2: Compounded Corruptions We aim to address the above shortcomings
by using corruptions on top of PBCC generated samples, thus increasing the
sample density in inter-class regions as well as generating samples outside the
convex hull. We reason that such compounded corruptions increase the spread
of the augmented data to a much wider region. Thus, a reasoning based on
“per sample" generalisation error bound from [24]:[Fig. 1, Equation 11] could
be utilized for our problem. [24] constructs an input-dependent generalization
error bound by analysing the subfunction membership of each input, and show
that generalisation error bound improves with smoother training sample density
(as defined by number of samples in each region). Intuitively, corruptions over
PBCC produces a smoother approximation of ID classes with a finer fit at the
ID class boundary. A detailed analysis is given in Fig. 3.3. To give an intuitive
understanding, Fig 2 shows visualizations of the generated OOD samples in red
using a 4 class toy dataset in two dimensions.



OOD Sample Detection using Compounded Corruptions 7

Hendrycks et al. [17] benchmark robustness of a DNN using 15 algorithmically
generated image corruptions that mimic natural corruptions. Each corruption
severity ranges from 1 to 5 based on the intensity of corruption, where 5 is most
severe. The corruptions can be seen as perturbing a sample point in its local
neighborhood, while remaining in the support space of the probability distribution
of valid images. We apply these corruptions on the samples generated using PBCC
step described earlier. Together, PBCC, and corruptions, allow us to generate
a synthetic sample far from, and outside the convex hull of ID samples. At the
same time, unlike pure random noise images, the process maintains plausibility
of the generated samples. Specifically we apply following corruptions: Gaussian
noise, Snow, Fog, Contrast, Shot noise/Poisson noise, Elastic transform, JPEG
compression, and blur such as Defocus, Motion etc.

Fig. 1 gives a pictorial overview of the overall proposed scheme with a few
OOD image samples generated by our approach. CnC formulates the problem as
(K+1) class classification which improves the model representation of underlying
distribution, and at the same time improves DNN calibration as seen in Sec. 5.2.
Please see Suppl. for the precise steps of our algorithm.

Fig. 3. Visualization of trained classifiers as a result of OOD augmentation. A ReLU
type DNN is trained on the two-dimensional half-moon data set shown in (a). The
shattered neural networks [16] show that CnC has the tightest fit around the ID regions,
as measured by the area of the (white colored) polytopes in which no training ID
point is observed but a network predicts a point in that region as ID. The measured
areas for such polytopes are (b)Vanilla training without data augmentation:5.65,
(c)PBCC: 8.20, (d) Corruption:0.40, (e)r-CnC: 5.66, (f)CnC: 0.37. Note: [24] state
that the more densely supported a polytope is by the training set, the more reliable
the network is in that region. Hence, the samples declared ID in the regions where
no ID sample is observed may actually be OOD with high probability. We observe that
PBCC/r-CnC/Vanilla, all predict ID in many such polytopes. Note: r-CnC we reverse
the order of PBCC and corruptions Best viewed at 200%

3.3 CnC Analysis via Polyhedral Decomposition of Input Space

While we validate the improved performance of CnC in Sec. 5, in this section
we seek to provide a plausible explanation for the CnC’s performance. We
draw inspiration from theoretical support provided in recent work by [24] who
formally derive and empirically test prediction unreliability for ReLU based
neural networks.
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Consider a ReLU network with n inputs and m neurons in total. [24] show
that parameters of a trained model partition the input space into a polyhedral
complex (PC) consisting of individual convex polytopes (also called activation
regions in [24]). See Fig. 3 for an example with a 2D input space. Each possible
input corresponds to a unique state (active or inactive) of each of the m ReLU
neurons, and the interior of each polytope corresponds to a unique combination
of states of all m neurons. Thus a trained network behaves linearly in the interior
of corresponding polytopes. Each edge in the PC corresponds to the state flip of
a single neuron (active to inactive, or vice versa).

For the purpose of classification based on the final layer activation, a key
corollary from [24] is that the decision boundary between two classes must be
a straight line within a polytope, and can only turn at the vertices. This is an
immediate consequence of the observation that the decision boundary is the locus
along which the two highest activations (most probable labels) in the output layer
remain equal to each other. This implies that smaller polytopes near the decision
boundary are needed for finer control over the boundary between training samples
from different classes. Note also that the authors in [24]:[equation (11)] infer that
(paraphrased) “the more a subfunction (polytope) is surrounded by samples with
accurate predictions, the lower its empirical error and bound on generalization
gap, and thus the lower its expected error bound”.

The key question from OOD detection perspective is, how do we force a network
to create tighter polytopes at the ID class decision boundaries? We believe the
answer is to distribute a large number of the augmented samples (over which
we have control) with contrasting OOD and ID labels all around each ID region,
forcing the decision boundary to form a tight bounding surface. At the same time,
we must also retain a good fraction of the augmented samples in the open space
between ID classes, which can be covered by relatively large polytopes (recall that
the maximum number of polytopes is bounded by the number of neurons, and
thus small polytopes in one region may need to be traded off by larger polytopes
in another region). Neglecting the inter-ID space entirely would run the risk of
creating very large polytopes in this region, which increases the empirical error
bound ([24]:[equation (5) and (11), large subfunctions have low probability mass
and hence higher error bound. Refer Supplementary for further details.]. CnC lets
us achieve this dual objective by using compounding to sample the space between
ID classes, and corruption to pepper the immediate neighborhoods around ID
classes (especially for λ values near 0 and 1).

In Fig. 3, we show polyhedral complex corresponding to the DNN models
trained on two-dimensional half-moon dataset [16,25], and OOD samples generated
using various techniques. The first plot shows the input space with training
samples from two ID classes (green and yellow semicircles). The learnt polytope
structure for vanilla uses a neural network of size [2, 32, 32, 2], while the remaining
three plots use [2, 32, 32, 3] (with an additional reject/OOD class).

Recall from Fig. 2 that PBCC produces samples sparsely between the ID
classes, but not around the ID class boundaries. Pure corruptions produce samples
only near and on ID classes, but not in the inter-ID space. On the other hand, CnC
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produces samples both near the ID boundaries as well as in the inter-ID space. In
Fig. 3, we define any polytope that is fully or partially (decision boundary crosses
through it) classified as ID, as an “ID classified polytope” and mark it in white
color. Visually, we can see that the white polytopes occupy a smaller total area
when we compare Vanilla to CnC, with the actual values noted in the caption.
This indicates that the CnC produces the tightest approximation of ID classes in
our example, which in turn leads to better OOD detection. Though we show for
two-dimensional data, we posit that the same generalizes to higher dimensional
input data as well, and is the reason for success of CnC based OOD detection.

CnC and Robustness to Adversarial Attacks: Note that, small polytopes in
the input space partitioned by a DNN may also provide better safety against
black box adversarial attacks as suggested by [16,25]. This is because the black
box adversarial attacks extrapolate the gradients based upon a particular test
sample. Since the linearity of the output, and thus the gradients is only valid
inside a polytope, smaller polytopes near the ID or in the OOD region makes it
difficult for an adversary to extrapolate an output to a large region. However,
since adversarial robustness is not the focus of this paper, we do not further
explore this direction.

3.4 Training Procedure

We train a (K + 1) class classifier network f+
θ , where first K classes correspond

to the multi-classification ID classes, and the (K + 1)th class label indicates the
OOD class. Our training objective takes the form:

L = minimize
θ

E(x,y)∼Dtrain
in

[LCE(x, y; f
+
θ (x))]

+α · E(x,y)∼Dcorr
pbcc

[LCE(x,K + 1; f+
θ (x))], (2)

where LCE is the cross entropy loss, f+
θ (x) denotes the softmax output of neural

network for an input sample x. We use α = 1 in our experiments based on the
ablation study reported in the supplementary material. For above experiments
setup we set the ratio of IID:OOD training points as 1 : 1.

3.5 Inference

After training, we obtain a trained model F+. We use F+(x)[K + 1] as the OOD
score of x during testing, and define an OOD detector D(x) as:

D(x) =

{
0, if F+(x)[K + 1] > δ

1, if F+(x)[K + 1] ≤ δ
(3)

where, D(x) = 0 indicates an OOD prediction, and D(x) = 1 implies an ID sample
prediction. δ is a threshold such that TPR, i.e., fraction of ID images correctly
classified as ID is 95%. For images which are characterized as ID by D(x), the
labels are given as:.

ŷ = argmax
i∈1,...,K

F+(x)i (4)
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4 Dataset and Evaluation Methodology

In-Distribution Datasets: For ID samples, we use SVHN (10 classes) [38], CIFAR-
10 (10 classes), CIFAR-100 (100 classes)[27] containing images of size 32× 32. We
also use TinyImageNet (200 classes) [29] containing images of resolution 64× 64
images. Out-of-Distribution Datasets: For comparison, we use the following
OOD datasets: TinyImageNet-crop (TINc), TinyImageNet-resize (TINr), LSUN-
crop (LSUNc), LSUN-resize (LSUNr), iSUN, SVHN. Evaluation Metrics: We
compare the performance of various approaches using TNR@TPR95, AUROC
and Detection Error. See Suppl. for description on evaluation metrics.

Dtrain
in Method

TNR@TPR95 AUROC DetErr ID Acc.
↑↑↑ ↑↑↑ ↓↓↓ ↑↑↑

C
IF

A
R

-1
0

D
en

se
N

et
-B

C

MSP (ICLR’17) [18] 56.1 93.5 12.3 95.3
ODIN (ICLR’18)[33] 92.4 98.4 5.8 95.3
Maha(NeurIPS’18)[31] 83.9 93.5 10.2 95.3
Gen-ODIN (CVPR’20)[22] 94.0 98.8 5.4 94.1
Gram Matrices(ICML’20)[41] 96.4 99.3 3.6 95.3
ATOM(ECML’21) [2] 98.3 99.2 1.2 94.5
CnC(Proposed) 98.4 ± 0.8 99.5 ± 1.2 2.7 ± 0.2 94.7

C
IF

A
R

-1
00

D
en

se
N

et
-B

C

MSP (ICLR’17) [18] 21.7 75.2 31.4 77.8
ODIN (ICLR’18)[33] 61.7 90.6 16.7 77.8
Gen-ODIN (CVPR’20)[22] 86.5 97.4 8.0 74.6
Maha (NeurIPS’18)[31] 68.3 92.8 13.4 77.8
Gram Matrices(ICML’20)[41] 88.8 97.3 7.3 77.8
ATOM(ECML’21)[2] 67.7 93 5.6 75.9
CnC(Proposed) 97.1 ± 1.4 98.5 ± 0.4 4.6 ± 0.6 76.8

T
IN

R
N

50 MSP (ICLR’17) [18] 53.15 85.3 22.1 57.0
ODIN (ICLR’18)[33] 68.5 93.7 12.3 57.0
CnC(Proposed) 97.8 ± 0.8 99.6 ± 0.2 2.1 ± 0.2 60.5

C
-1

0
W

R
N OE (ICLR’19) [19] 93.23 98.64 5.32 94.8

EBO (NeurIPS’20)[35] 96.7 99.0 3.83 95.2
CnC(Proposed) 96.2 ± 1.5 99.02 ± 0.1 4.5 ± 0.8 94.3

C
-1

00
W

R
N OE (ICLR’19) [19] 47.35 86.02 21.24 75.6

EBO (NeurIPS’20)[35] 54.0 86.65 19.7 75.7
CnC(Proposed) 97.6 ± 0.9 99.5 ± 0.1 2.2 ± 0.3 75.1

Table 1. Comparison of competing OOD detectors. TIN: TinyImageNet, and RN50:
ResNet50, WRN : WideResNet-40-2 Values are averaged over all OOD benchmark datasets.
We give individual dataset-wise results in the supplementary. Note that ATOM[2], and
OE [19] require large image datasets like 80-Million Tiny Images [43] as representative
of OOD samples. However, CnC synthesises its own OOD dataset using the ID training
data. CnC models were trained using the same configuration as defined by OE [19] and
EBO [35] paper, with the exception that CnC did not use any external auxiliary OOD
dataset like [43] in training. CnC reasults are averaged on 3 evaluation runs.
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Data Augmentation Methods TNR (95% TPR) AUROC Detection Err
↑↑↑ ↑↑↑ ↓↓↓

Mixup (ICLR’18) [51] 60.6 90.9 15.5
CutOut (arXiV’17) [6] 80.8 94.8 10
CutMix (ICCV’19) [48] 83.2 92.7 8.6
GridMask (arXiV’20) [3] 50.3 79.1 23.6
SaliencyMix (ICLR’21) [44] 85.3 95.7 8.0
AugMix (ICLR’20) [20] 81.3 94.6 11.2
RandomErase (AAAI’20) [52] 41.9 68.1 24.2
Corruptions (ICLR’19) [17] 98.0 99.4 2.8
PuzzleMix (ICML’20) [26] 66.8 84.1 15.2
RandAugment (NeurIPS’20) [4] 89.5 97.9 4.7
Fmix (ICLR’21) [13] 73 90.3 12.6
Standard Gaussian Noise 71.5 93.2 11.7
CnC(Proposed) 98.4 ± 0.8 99.5 ± 1.2 2.7 ± 0.2

Table 2. Comparison with other synthetic data generation methods. We consider
CIFAR10 as ID. The values are averaged over all OOD benchmarks. We have used
DenseNet[23] as the architecture for all methods trained for (K + 1) class classification.
Samples obtained through the listed data augmentation schemes were assumed to be of
(K + 1)th class. Observe that CnC has superior OOD detection performance. We report
average and standard deviation of CnC trained models computed over 3 runs.

5 Experiments and Results

To show that our data augmentation is effective across different feature extractors,
we train using both DenseNet-BC [23] and ResNet-34 [14]. DenseNet has 100
layers with growth rate of 12. WideResNet [49] models have the same training
configuration as [35].

5.1 Comparison with State-of-the-art

OOD Detection Performance: Tab. 1 shows comparison of CnC with recent
state-of-the-art. The numbers indicate averaged OOD detection performance on
6 datasets as mentioned in Sec. 4 (TinyImagenet, TinyImageNet-crop (TINc),
TinyImageNet-resize (TINr), LSUN-crop (LSUNc), LSUN-resize (LSUNr), iSUN,
SVHN) with more details included in the supplementary. We would like to
emphasize that CnC does not need any validation OOD data for fine-tuning. But
ODIN [33] and Mahalanobis [31] require OOD data for fine-tuning the hyper-
parameters; the hyper-parameters for ODIN and Mahalanobis methods [33,31]
are set by validating on 1K images randomly sampled from the test set Dtest

in .
Tab. 1 clearly shows that CnC outperforms the existing methods.

Comparison with Other Data Generation Methods : Tab. 2 shows how CnC fairs
against recent OOD data generation methods. In each case we train a (K +1) way
classier where first K classes correspond to ID and (K + 1)th class comprised
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of OOD data generated by corresponding method. As seen from the table, CnC
outperforms the recent data augmentation schemes.

5.2 Other Benefits of CnC

Method TNR@0.95TPR AUROC DetErr
MSP (ICLR’17) [18] 24.4 80.1 26.5
ODIN (ICLR”18) [33] 46.0 88.6 18.9
Gen-ODIN (CVPR’20) [22] 45.0 88.7 18.8
Mahalanobis (NeurIPS’18) [31] 14.0 56.2 41.6
Gram Matrices (ICML’20) [41] 35.0 81.5 25.8
CnC (Proposed) 60.0 91.6 15.7

Table 3. Detecting domain shift using CnC. A model trained with CnC data on
CIFAR-100 as the ID using DenseNet-BC [23] feature extractor can successfully detect
the domain shift when observing ImageNet-R at the test time.

Detecting Domain Shift as OOD: We analyze if a model trained with CnC aug-
mented data can detect non-semantic domain shift, i.e. images with the same
label but different distribution. For the experiments we use a model trained using
CIFAR-100 as ID, and ImageNet-O/ImageNet-R/Corrupted-ImageNet [21] as the
OOD. While testing, we downsample the images from ImageNet-O, ImageNet-R and
TinyImageNet-C to a size of 32× 32. Tab. 3 shows results on ImageNet-R OOD
dataset. We outperform the next best technique by 14% on TNR@0.95TPR, 2.9%
in AUROC, 3.1% in detection error. See supplementary for results on ImageNet-O
and Corrupted ImageNet.

Model Calibration Another benefit of training with CnC is model calibration on
ID data as well. A classifier is said to be calibrated if the confidence probabilities
matches the empirical frequency of correctness [12,15], hence a crucial to measure
of trust in classification models. Tables in the supplementary show the calibration
error for a model trained on CIFAR-10, and CIFAR-100 as the ID data, with
CnC samples as the (K + 1)th class. Note that the calibration error is measured
only for the ID test samples. We compare the error for a similar model, trained
using only ID train data, and calibrated using temperature scaling (TS) [12].

Time Efficiency For applications demanding real-time performance, it is crucial
to have low latency in systems using DNN for inference. Supplementary reports
the competative performance of our method.

5.3 Ablation Studies

Rationale for Design choice of K vs. (K+1) Classifier We empirically verify
having a separate class helps in better optimization/learning during training a
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Method
TNR@

AUROC DetErr
Mean Mean

0.95TPR Diversity Entropy
↑↑↑ ↑↑↑ ↓↓↓ ↑↑↑ ↑↑↑

PBCC 93.7 98.6 6.2 2.30 0.33
Corruptions 95.5 97.4 3.5 2.68 0.38
CnC 98.3 99.6 2.6 3.40 0.80

Table 4. Using entropy/diversity of synthesized data to predict quality of OOD detection.
Please refer to text for more details.

model using CnC augmentation. Fig. 4 shows the advantages of using a (K + 1)
way classifier as compared to standard K class training with better ID-OOD
separation. Supplementary material details the advantage of CnC with ACET
[16] (CVPR’19) for uncertainty quantification on a half-moon dataset.

Recommendation for a Good OOD detector We performed detailed comparison
of various configurations of our technique to understand the quantitative scores
which can predict the quality of an OOD detector. For the experiment we keep the
input images used same across configs, PBCC and corruptions applied are also
fixed to remove any kind of randomness. We use ResNet34 as feature extractor
for all methods. CIFAR-10 is used as ID dataset and TinyImageNet-crop as
OOD dataset. We observe that the quality of OOD detection improves as the
diversity, and entropy of the synthesized data increases (Tab 4). Here, entropy
is computed as the average entropy of the predicted probability vectors by the
K class model for the synthesized data. We adapt data diversity from Zhang et
al.[50] to measure diversity of OOD data. Refer supplementary for Algorithm for
diversity computation.

Fig. 4. We show sample t-SNE plots for K Vs. (K + 1) classifiers, where CIFAR-10
is used as ID and SVHN is used as OOD (marked in red). The K-class classifier uses
temperature scaling (TS) [12], where T is tuned on SVHN test set. On the other
hand, the (K + 1) class classifier uses SVHN data for (K + 1)th class during training.
The visualization shows that the OOD data (marked in red) is better separated in a
(K + 1)-class classifier as compared to a K-class classifier
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Limitations of CnC data augmentation : Introduction of additional synthetic
data indeed increases training time. For eg., training a model with CnC data
on TinyImageNet dataset takes 10 mins. 23 secs./epoch, whereas without CnC
data it takes 5 mins 30 secs./epoch on the same Nvidia V100 GPU. Performance
gain the overhead of training time can be discounted as inference time remains
same. We assume the absence of adversarial intentions in this approach, Our
method fails when tested against L∞ norm bounded perturbed image. In future
we intend to look at OOD detection using CnC variants for non-visual domains.

6 Conclusions

We have introduced Compounded Corruptions(CnC), a novel data augmentation
technique for OOD detection in image classifiers. CnC outperforms all the SOTA OOD
detectors on standard benchmark datasets tested upon. The major benefit of CnC
over SOTA is absence of OOD exposure requirement for training or validation. We
also show additional results for robustness to distributional drift, and calibration
for CnC trained models. CnC requires just one inference pass at the test time,
and thus has much faster inference time compared to SOTA. Finally, we also
recommend high diversity and entropy of the synthesized data as good measures
to predict quality of OOD detection using it.
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