
Under review for RLC 2025, to be published in RLJ
∣∣ Cover Page

Sampling from Energy-based Policies using Diffusion
Anonymous authors

Paper under double-blind review

Keywords: Energy-based policies, Boltzmann policies, diffusion models.

Summary
Energy-based policies offer a flexible framework for modeling complex, multimodal be-

haviors in reinforcement learning (RL). In maximum entropy RL, the optimal policy is a Boltz-
mann distribution derived from the soft Q-function, but direct sampling from this distribution
in continuous action spaces is computationally intractable. As a result, existing methods typi-
cally use simpler parametric distributions, like Gaussians, for policy representation — limiting
their ability to capture the full complexity of multimodal action distributions. In this paper, we
introduce a diffusion-based approach for sampling from energy-based policies, where the nega-
tive Q-function defines the energy function. Based on this approach, we propose an actor-critic
method called Diffusion Q-Sampling (DQS) that enables more expressive policy representa-
tions, allowing stable learning in diverse environments. We show that our approach enhances
sample efficiency in continuous control tasks and captures multimodal behaviors, addressing
key limitations of existing methods.

Contribution(s)
1. We develop a novel actor-critic reinforcement learning algorithm such that the policy sam-

ples actions from the Boltzmann distribution of the Q-function. We achieve this by using
a diffusion model to parameterize the policy that explicitly learns the score function of the
target Boltzmann density.
Context: Boltzmann policies are a popular choice in discrete action spaces. However, sam-
pling from these policies in continuous action spaces is generally intractable. Prior work
(Psenka et al., 2023) used Langevin sampling to address this challenge. Other applications
of diffusion models (Wang et al., 2024) backpropagate the gradient through the entire dif-
fusion chain to maximize Q-values. To the best of our knowledge, our method is the first to
use diffusion models to explicitly sample from Boltzmann policies.

2. Experiments on continuous control tasks demonstrate improved sample efficiency of our
method compared to relevant baselines.
Context: We observe higher returns with fewer number of environment interactions (com-
pared to our baselines) on a majority of tasks.

3. We demonstrate that our proposed method can learn multimodal behaviors in maze naviga-
tion tasks.
Context: Our setup consists of a maze with two possible goals. Multimodality in this con-
text refers to the ability of an agent to reach both goals from some initial state, and discover
multiple paths (if they exist) to a goal. We qualitatively examine the trajectories of a trained
agent and compare them with respect to goal coverage and diversity of paths.

Sampling from Energy-based Policies using Diffusion

Sampling from Energy-based Policies using Diffusion

Anonymous authors
Paper under double-blind review

Abstract
Energy-based policies offer a flexible framework for modeling complex, multimodal1
behaviors in reinforcement learning (RL). In maximum entropy RL, the optimal policy2
is a Boltzmann distribution derived from the soft Q-function, but direct sampling from3
this distribution in continuous action spaces is computationally intractable. As a result,4
existing methods typically use simpler parametric distributions, like Gaussians, for pol-5
icy representation — limiting their ability to capture the full complexity of multimodal6
action distributions. In this paper, we introduce a diffusion-based approach for sampling7
from energy-based policies, where the negative Q-function defines the energy function.8
Based on this approach, we propose an actor-critic method called Diffusion Q-Sampling9
(DQS) that enables more expressive policy representations, allowing stable learning in10
diverse environments. We show that our approach enhances sample efficiency in con-11
tinuous control tasks and captures multimodal behaviors, addressing key limitations of12
existing methods.13

1 Introduction14

Deep reinforcement learning (RL) is a powerful paradigm for learning complex behaviors in diverse15
domains, from strategy-oriented games (Silver et al., 2016; Berner et al., 2019; Schrittwieser et al.,16
2020) to fine-grained control in robotics (Kober et al., 2013; Sünderhauf et al., 2018; Wu et al.,17
2023). In the RL framework, an agent learns to make decisions by interacting with an environment18
and receiving feedback in the form of reward. The agent aims to learn a policy that maximizes the19
cumulative sum of rewards over time by exploring actions and exploiting known information about20
the environment’s dynamics.21

The parameterization of the policy is a crucial design choice for any RL algorithm. Under the con-22
ventional notion of optimality, under full observability, there always exists an optimal deterministic23
policy that maximizes the long-term (discounted) return (Sutton & Barto, 2018). However, this is24
only true when the agent has explored sufficiently and has nothing to learn about the environment.25
Exploration requires a stochastic policy, to experiment with different potentially rewarding actions.26
Moreover, even in the exploitation phase, there may be more than one way of performing a task and27
we might be interested in mastering all of them. This diversification is motivated by the robustness28
of the resulting stochastic policy to environment changes; if certain pathways for achieving a task29
become infeasible due to a change of the dynamics or reward, some may remain feasible, and the30
agent has an easier time in adapting to this change by exploiting and improving the viable options.31
This argument also suggests that such policies can also serve as effective initialization for fine-tuning32
on specific tasks.33

While exploration, diversity and robustness motivate stochastic policies, representing such policies34
in continuous action spaces remains challenging. As a result, stochasticity is often introduced by35
noise injection (Lillicrap et al., 2015b) or using an arbitrary parametric family (Schulman et al.,36
2015) which lacks expressivity. Orthogonal to the difficulty of representing such policies is their37
training objective; policies are often optimized to maximize the Q-function, and stochasticity is38
introduced to encourage exploration as an afterthought. However, our argument for stochasticity39

1

Under review for RLC 2025, to be published in RLJ 2025

Figure 1: Illustration comparing Gaussian and Boltzmann policies.

favours multi-modal policies; instead of learning the single best way to solve a task, we want to40
learn all reasonably good ways to solve the task.41

We address both of these issues by explicitly sampling from energy-based policies of the form,42

π(a | s) ∝ exp(Qπ(s, a)).

This is also known as the Boltzmann distribution of the Q-function. The optimal policy in the max-43
imum entropy RL framework is also known to be of this form, except it uses the soft Q-function44
(Haarnoja et al., 2017). Such a policy has several benefits. First, it offers a principled way to bal-45
ance exploration and exploitation for continuous action spaces. By sampling from this distribution,46
the policy still prioritizes actions with high Q-values but also has a non-zero probability of sampling47
sub-optimal actions. While the use of Boltzmann policies is common in the discrete setting, it is48
challenging in continuous spaces; this sampling problem is often tackled with Markov Chain Monte49
Carlo (MCMC) techniques, which can be computationally expensive and suffer from exponential50
mixing time. Second, this formulation naturally incorporates multimodal behavior, since the policy51
can sample one of multiple viable actions at any given state. However, such policies are generally52
intractable to sample from in continuous action spaces, requiring approximations in policy parame-53
terization often at the cost of expressivity.54

Diffusion models offer a potential solution to the policy parameterization problem since they are55
expressive and can produce high-quality samples from complex distributions. Indeed, they have been56
extensively applied to solve sequential decision-making tasks, especially in offline settings where57
they can model multimodal datasets from suboptimal policies or diverse human demonstrations. A58
few studies have applied these models in the online setting, focusing on deriving training objectives59
for policy optimization via diffusion. Yang et al. (2023) uses the gradient of the Q-function to refine60
actions sampled from a diffusion policy, however, the exact form of the policy is unspecified and it61
is unknown what distribution the diffusion models sample from. Psenka et al. (2023) samples from62
the Boltzmann distribution of the Q-function using Langevin dynamics, which may suffer from63
insufficient mode coverage in high dimensions. Wang et al. (2024) uses diffusion policy within the64
maximum entropy framework, where the entropy is approximated using a mixture of Gaussians. In65
contrast, our approach directly samples from exp(Qπ(s, a)) by constructing a diffusion process that66
estimates the score of this target Boltzmann density at different noise scales.67

Our contributions in this work are as follows:68

• We propose a novel actor-critic algorithm for sequential decision-making using diffusion models69
for sampling from energy-based policies.70

• We demonstrate that our proposed method is more sample efficient compared to recent methods71
in continuous control tasks72

• We demonstrate the effectiveness of our approach for learning multimodal behaviors in maze73
navigation tasks.74

2

Sampling from Energy-based Policies using Diffusion

2 Related Work75

Our work is related to two distinct sub-areas of reinforcement learning: the relatively new and76
actively explored line of work on applying diffusion models in the RL setting, and the classical77
maximum entropy RL framework.78

Diffusion models in RL. Early work on applying diffusion models for RL was focused on behav-79
ior cloning in the offline setting (Chi et al., 2023). This setting more closely matches the original80
purpose of diffusion models - to match a distribution to a given dataset. Janner et al. (2022); Ajay81
et al. use a diffusion model trained on the offline data for trajectory optimization, while Reuss et al.82
(2023); Jain & Ravanbakhsh (2024) apply diffusion models to offline goal-reaching tasks by addi-83
tionally conditioning the score function on the goal. Within the behavior cloning setting, there is84
some existing work on learning a stochastic state dynamics model using diffusion (Li et al., 2022).85

Beyond behavior cloning, offline RL methods incorporate elements from Q-learning to learn a value86
function from the offline dataset and leverage the learned Q-function to improve the diffusion policy.87
A large body of work exists in this sub-field, where the most common approach is to parameterize88
the policy using a diffusion model and propose different training objectives to train the diffusion89
policy. Wang et al.; Kang et al. (2024) add a Q-function maximizing term to the diffusion training90
objective, and Hansen-Estruch et al. (2023) use an actor-critic framework based on a diffusion policy91
and Implicit Q-learning (Kostrikov et al., 2021). Lu et al. (2023) take an energy-guidance approach,92
where they frame the problem as using the Q-function to guide the behavior cloning policy to high93
reward trajectories.94

The application of diffusion models has been relatively less explored in the online setting (Ding &95
Jin, 2023). DIPO (Yang et al., 2023) modifies actions in the replay buffer based on the gradient of96
the Q-function, then trains a diffusion model on the modified actions. QSM (Psenka et al., 2023)97
directly trains a neural network to match the gradient of the Q-function, then uses Langevin diffusion98
for sampling. In contrast, our method models the policy as a Boltzmann distribution using a diffusion99
model that can represent complex distributions.100

Maximum entropy RL. In contrast to standard RL, where the goal is to maximize expected re-101
turns, in the maximum entropy RL framework, the value function is augmented by Shannon entropy102
of the policy. Ziebart et al. (2008) applied such an approach in the context of inverse reinforcement103
learning and Haarnoja et al. (2017) generalized this approach by presenting soft Q-learning to learn104
energy-based policies. A follow-up work, Haarnoja et al. (2018a), presented the well-known soft105
actor-critic (SAC) algorithm. This line of work proposes to learn a soft value function by adding the106
entropy of the policy to the reward. The optimal policy within this framework is a Boltzmann distri-107
bution, where actions are sampled based on the exponentiated soft Q-values. Some recent methods108
use diffusion models within the this framework such as DACER (Wang et al., 2024), which uses a109
diffusion policy to represent a maximum entropy policy and estimates the entropy using a mixture110
of Gaussians.111

A separate but related line of work on generative flow networks (GFlowNets), originally defined in112
the discrete case (Bengio et al., 2021; 2023), learns a policy that samples terminal states proportional113
to the Boltzmann density corresponding to some energy function. They have been extended to114
the continuous setting (Lahlou et al., 2023) and under certain assumptions, they are equivalent to115
maximum entropy RL (Tiapkin et al., 2024; Deleu et al.). They can effectively sample from the target116
distribution using off-policy exploration, however, they encounter challenges in credit assignment117
and exploration efficiency (Malkin et al., 2022; Madan et al., 2023; Rector-Brooks et al., 2023; Shen118
et al., 2023). Our approach is distinct as we sample the action at each step from the Boltzmann119
density of the Q-function, instead of the terminal states based on the reward.120

3

Under review for RLC 2025, to be published in RLJ 2025

3 Preliminaries121

3.1 Reinforcement Learning122

We consider an infinite-horizon Markov Decision Process (MDP) denoted by the tuple123
(S,A,P, r, γ), where the state space S and action spaceA are continuous. P : S ×A×S → [0, 1]124
denotes the transition probability of the next state st+1 ∈ S given the current state st ∈ S and125
action at ∈ A. The reward function r : S × A → is assumed to be bounded r(s,a) ∈ [rmin, rmax].126
γ ∈ (0, 1] is the discount factor.127

A policy π : S → A produces an action for every state s ∈ S. In the standard RL128
framework, the objective is to learn a policy that maximizes the expected sum of rewards129 ∑

t Eat∼π(·|st),st+1∼P(·|st,at) [r(st, at)].130

Actor-critic is a commonly used framework to learn such policies. It consists of optimizing a policy131
(the actor) to choose actions that maximize the action value function, also called the Q-function132
(the critic). The Q-function is defined as the sum of expected future rewards starting from a given133
state-action pair, and thereafter following some policy π,134

Qπ(s, a) = Eπ

[∞∑
k=t

r(sk, ak) | st = s, at = a

]
.

The optimal policy is defined as the policy that maximizes the sum of rewards along a trajectory,135

π∗ =π Eπ

[∞∑
t=0

r(st, at)

]

3.2 Diffusion Models136

Denoising Diffusion. Denoising diffusion (Dinh et al., 2016; Ho et al., 2020; Song et al., 2021)137
refers to a class of generative models which relies on a stochastic process which progressively trans-138
forms the target data distribution to a Gaussian distribution. The time-reversal of this diffusion139
process gives the generative process which can be used to transform noise into samples from the140
target data distribution.141

The forward noising process is a stochastic differential equation,142

dxτ = −α(τ)xτdτ + g(τ)dwτ (1)

where wτ denotes Brownian motion. In this paper, we consider the Variance Exploding (VE) SDE143
where the decay rate, α, is set to α(τ) = 0. This noising process starts with samples from the target144
density x0 ∼ p0 and progressively adds noise to them over a diffusion time interval τ ∈ [0, 1].145
The marginal probability distribution at time τ is denoted by pτ and is the convolution of the target146
density p0 with a normal distribution with a time-dependent variance, σ2

τ . For the VE setting we147
consider, these marginal distributions are given by,148

pτ (xτ) =

∫ τ

0

p0(x0)N (xτ ;x0, σ
2
τ)dx0 (2)

where the variance is related to the diffusion coefficient, g(τ) via σ2
τ =

∫ τ

0
g(ξ)2dξ.149

The generative process corresponding to the corresponding to 1 is an SDE with Brownian motion150
w̄τ , given by:151

dxτ = [−α(τ)xτ − g(τ)2∇ log pτ (xτ)]dτ + g(τ)dw̄τ (3)

Therefore, to be able to generate data, we need to estimate the score of the intermediate distributions,152
∇ log pτ (xτ).153

4

Sampling from Energy-based Policies using Diffusion

Iterated Denoising Energy Matching. Recently, Akhound-Sadegh et al. (2024) proposed an al-154
gorithm known as iDEM (Iterated Denoising Energy Matching) for sampling from a Boltzmann-type155
target distribution, p0(x) ∝ exp(−E(x)), where E denotes the energy. iDEM is a diffusion-based156
neural sampler, which estimates the diffusion score, ∇ log pτ using a Monte Carlo estimator. Given157
the VE diffusion path defined above, iDEM rewrites the score of the marginal densities as,158

∇ log pτ =

∫
∇ exp(−E(x0))N (xτ ;x0, σ

2
τ)dx0∫

exp(−E(x0))N (xτ ;x0, σ2
τ)dx0

=
Ex̃∼N (xτ ,σ2

τ)

[
∇ exp(−E(x)

]
Ex̃∼N (xτ ,σ2

τ
)
[
exp(−E(x)

] (4)

Rearranging the equation above leads to the K-sample Monte-Carlo estimator of the score, given159
by,160

Sk(xτ , τ) = ∇ log

K∑
i=1

exp
(
− E(x̃(i))

)
, x̃(i) ∼ N (xτ , σ

2
τ) (5)

A score-network, fϕ is trained to regress to the MC estimator, SK . The network is trained using161
a bi-level iterative scheme: (1) in the outer-loop a replay buffer is populated with samples that are162
generated using the model and (2) in the inner-loop the network is regressed Sk(xτ , τ) where xτ are163
noised samples from the replay buffer.164

4 Diffusion Q-Sampling165

Our objective is to learn general policies of the form π(a | s) ∝ exp(−E(s,a)), where E represents166
an energy function which specifies the desirability of state-action pairs. By setting the Q-function,167
Q(s,a) as the negative energy, we get what is known as the Boltzmann policy,168

π(a | s;T) =
exp(1

T Q(s,a))∫
a
exp(1

T Q(s,a))da
. (6)

Choosing such a policy gives us a principled way to balance exploration and exploitation. Specif-169
ically, by scaling the energy function with a temperature parameter T and annealing it to zero, we170
get a policy that initially explores to collect more information about the environment and over time171
exploits the knowledge it has gained.172

We propose an off-policy actor-critic algorithm, which we call Diffusion Q-Sampling (DQS), based173
on the above formulation. Being an off-policy method means DQS can reuse past interactions with174
the environment by storing them in a replay buffer D, improving sample efficiency.175

Let Qθ denote the Q-function and πϕ a parametric policy, where θ, ϕ represent the parameters of a176
neural network. The Q-function is learned using standard temporal difference learning,177

J(θ) = E(st,at)∼D

[(
Qθ(st,at)− Q̂(st,at)

)2
]
, (7)

where178

Q̂(st,at) = r(st,at) + γ Est+1∼P,at+1∼πϕ
[Qθ̄(st+1,at+1)]

The target Q-values, Q̂, make use of a target Q-network denoted by Qθ̄, where the parameters θ̄179
are usually an exponentially moving average of the Q-network parameters θ. Also, in practice, the180
expectation over next states st+1 is estimated using only a single sample.181

We parameterize the policy using a diffusion process and use iDEM (Akhound-Sadegh et al., 2024)182
to sample actions from the target density π(·|st) ∝ exp(Qθ(st,at)).183

5

Under review for RLC 2025, to be published in RLJ 2025

Algorithm 1: Diffusion Q-Sampling (DQS)

Initialize: Initialize Q-function parameters θ, policy parameters ϕ, target network θ̄ ← θ,
replay buffer D

for each iteration do
// Environment Interaction
for each environment step do

Observe state st and sample action at via reverse diffusion using fϕ
Execute at, observe reward rt and next state st+1

Store transition (st,at, rt, st+1) in D
end
// Parameter Updates
for each gradient step do

Sample minibatch B = {(st,at, rt, st+1)} from D
// Update Q-function parameters θ

Compute target Q-values: Q̂t = rt + γQθ̄(st+1,at+1), at+1 ∼ πϕ(st+1)

Update θ by minimizing: J(θ) = 1
|B|

∑
B

(
Qθ(st,at)− Q̂t

)2

// Update policy parameters ϕ
for each (st,at) in B do

Sample diffusion time τ ∼ U [0, 1]
Sample noisy action at,τ ∼ N (at, σ

2
τ I)

Sample {ã(i)t }Ki=1, where ã
(i)
t ∼ N (at,τ , σ

2
τ I)

Estimate score: St = ∇at,τ
log

∑K
i=1 exp

(
Qθ(st, ã

(i)
t)

)
Update ϕ by minimizing: J(ϕ) = ∥fϕ(st,at,τ , τ)− St∥2

end
// Update target network
Update θ̄ ← η θ + (1− η) θ̄

end
end

Forward process. Given (st,at) ∈ S × A, we progressively add Gaussian noise to the action184
following some noise schedule. Let at,τ denote the noisy action at diffusion step τ ∈ [0, 1], such185
that,186

at,0 = at; at,τ ∼ N (at, σ
2
τI).

We choose a geometric noise schedule στ = σmin

(
σmax
σmin

)τ

, where σmin and σmax are hyperparame-187

ters. We found it sufficient to set σmin = 10−5 and σmax = 1.0 for all our experiments.188

Reverse process. Given noisy action samples, we iteratively denoise them using a learned score189
function to produce a sample from the target action distribution π(·|st) ∝ exp(Qπ(st, ·)). We train190
a neural network, fϕ to match iDEM’s K-sample Monte Carlo estimator of the score, defined in191
Equation (5), by setting the negative Q-function as the energy function. The score function takes as192
input the noisy action and diffusion time, while also being conditioned on the current state. The loss193
function is given by:194

J(ϕ) = E(st,at)∼D,τ∼U [0,1],

at,τ∼N (at,σ
2
τ I)

 fϕ(st,at,τ , τ)−∇ log

K∑
i=1

exp(Qθ(st, ã
(i)
t))

2
 , (8)

where ã
(i)
t ∼ N (at,τ , σ

2
τI).195

6

Sampling from Energy-based Policies using Diffusion

Summarizing, to sample an action at for the current state st such that πϕ(at|st) ∝ exp(Qπϕ(st,at)),196
we first sample noise from the prior (corresponding to diffusion time τ = 1) at,1 ∼ N (0, σ2

1). We197
then use Equation (3) in the VE setting (i.e. α(τ) = 0) by using the trained score function fϕ in198
place of ∇ log pτ to iteratively denoise samples produce the action sample at. The full algorithm is199
presented in Algorithm 1.200

Temperature. We can incorporate the temperature parameter T from Equation (6) within our201
framework by simply scaling the Q-function in Equation (8) and regressing to the estimated score202
of the temperature-scaled Boltzmann distribution. To enable the score network to model this tem-203
perature scaling accurately, we additionally condition fϕ on the current temperature. Generally,204
the temperature is set to a high value initially, and is annealed over time such that at t → ∞, we205
have T → 0. In practice, the temperature is annealed to a sufficiently small value for large time206
steps. This ensures that the policy explores initially and as it collects more information about the207
environment, starts exploiting more and more as time passes.208

5 Experiments209

We perform experiments to answer the following major questions:210

• Does DQS offer improved sample efficiency in continuous control tasks?211

• Can DQS learn multimodal behaviors, i.e., learn multiple ways to solve a task?212

Baselines. We test our method against a number of relevant methods. This includes classical RL213
algorithms such as (1) Soft Actor-Critic (SAC) (Haarnoja et al., 2018a), a maximum entropy RL214
method that is widely used for continuous state-action spaces; (2) Deep Deterministic Policy Gradi-215
ents (DDPG) (Lillicrap et al., 2015a) which uses a deterministic policy and directly backpropagates216
gradients through the Q-function; (3) Proximal Policy Optimization (PPO) (Schulman et al., 2017),217
an on-policy policy gradient algorithm that uses a clipped objective for stable updates; and (4) Twin218
Delayed DDPG (TD3) (Fujimoto et al., 2018), an off-policy actor-critic method that mitigates over-219
estimation bias by training two critics and delaying policy updates.220

We also compare against some recent diffusion-based RL algorithms, including (5) Q-Score Match-221
ing (QSM) (Psenka et al., 2023), a diffusion-based approach that trains a score function to match the222
gradient of the Q-function and uses this score function to sample actions; (6) Diffusion Actor-Critic223
with Entropy Regulator (DACER) (Wang et al., 2024), which uses a diffusion-based maximum en-224
tropy policy along with Gaussian mixture models to estimate entropy; and (7) Diffusion Policy225
(DIPO) (Yang et al., 2023) which samples actions from a diffusion policy and performs gradient226
ascent using Q-functions to improve the actions.227

All methods were trained with 250k environment interactions and one network update per environ-228
ment step. For a fair comparison, all policy/score networks are MLPs with two hidden layers of229
dimension 256 each, and the learning rate for all networks is 3×10−4. We tune hyperparameters for230
each baseline and select the one that gives overall best performance across tasks. We apply the dou-231
ble Q-learning trick in our implementation, a commonly used technique, where two Q-networks are232
trained independently and their minimum value is used for policy evaluation to avoid overestimation233
bias.234

5.1 Continuous Control Tasks235

We evaluate the performance of DQS on several continuous control tasks via the DeepMind Control236
Suite. We choose eight tasks from different domains to cover tasks of varying complexity and237
dynamics. These tasks typically involve controlling the torques applied at the joints of robots to238
reach a specific configuration or location, or for locomotion.239

7

Under review for RLC 2025, to be published in RLJ 2025

Figure 2: Domains from DeepMind Control Suite considered in our experiments - cheetah, finger,
fish, reacher, hopper, quadruped and walker.

0.0 0.5 1.0 1.5 2.0 2.5
×10

5

0

100

200

300

400

500

600

700

E
pi

so
de

 R
ew

ar
d

cheetah-run

0.0 0.5 1.0 1.5 2.0 2.5
×10

5

0

200

400

600

800

finger-spin

0.0 0.5 1.0 1.5 2.0 2.5
×10

5

0

100

200

300

400

500

600

700

800
finger-turn_hard

0.0 0.5 1.0 1.5 2.0 2.5
×10

5

50

100

150

200

250

300

350

fish-swim

0.0 0.5 1.0 1.5 2.0 2.5
Timesteps ×10

5

0

200

400

600

800

1000

E
pi

so
de

 R
ew

ar
d

reacher-hard

0.0 0.5 1.0 1.5 2.0 2.5
Timesteps ×10

5

0

20

40

60

80

100

120

140

160

hopper-hop

0.0 0.5 1.0 1.5 2.0 2.5
Timesteps ×10

5

0

100

200

300

400

500

600

quadruped-run

0.0 0.5 1.0 1.5 2.0 2.5
Timesteps ×10

5

0

100

200

300

400

500

600

700

walker-run

DQS SAC DDPG PPO TD3

Figure 3: Experimental results for classic RL algorithms on 8 tasks from different domains from
the DeepMind Control Suite. Each result is averaged over 100 evaluation episodes across 10 seeds,
with the shaded regions showing minimum and maximum values. For PPO, the x-axis represents
the number of network updates.

Table 1: Mean episode returns for 100 evaluation episodes for classic RL algorithms, averaged over
10 seeds. The highest values in each row within one standard deviation are highlighted in bold.

Task DQS (Ours) SAC DDPG PPO TD3

10
0k

st
ep

s

cheetah-run 492.61 ±30.99 216.88 ±18.51 214.02 ±64.55 273.52 ±101.92 193.63 ±68.43

finger-spin 826.00 ±6.24 681.72 ±68.96 0.36 ±0.64 577.47 ±25.96 661.70 ±61.30

finger-turn_hard 253.72 ±104.84 200.02 ±85.60 58.58 ±119.76 91.15 ±120.00 124.59 ±32.54

fish-swim 224.27 ±38.96 69.31 ±11.95 87.40 ±53.15 83.86 ±29.02 77.88 ±7.69

hopper-hop 0.33 ±0.35 0.01 ±0.02 1.36 ±2.62 0.50 ±0.99 5.34 ±7.47

quadruped-run 199.26 ±32.79 127.94 ±32.06 220.66 ±159.40 188.86 ±85.45 191.11 ±21.99

reacher-hard 914.15 ±18.28 52.76 ±50.88 107.20 ±124.32 19.63 ±46.40 437.10 ±138.98

walker-run 547.39 ±32.58 226.52 ±37.38 386.05 ±98.73 285.89 ±25.10 359.85 ±158.52

10
0k

st
ep

s

cheetah-run 683.64 ±18.51 588.91 ±84.52 514.91 ±61.35 362.27 ±145.64 592.13 ±49.08

finger-spin 835.00 ±61.36 854.04 ±31.92 1.10 ±1.12 620.32 ±31.55 835.45 ±71.52

finger-turn_hard 361.46 ±179.32 169.58 ±141.64 80.48 ±80.64 82.34 ±78.69 319.80 ±75.90

fish-swim 221.67 ±42.59 111.09 ±35.72 69.33 ±21.20 88.13 ±39.20 106.06 ±21.31

hopper-hop 0.66 ±0.08 56.47 ±61.47 49.10 ±44.49 2.00 ±4.71 21.91 ±12.10

quadruped-run 277.63 ±66.45 308.61 ±216.94 292.94 ±110.62 219.69 ±86.76 381.84 ±82.94

reacher-hard 974.05 ±1.64 666.12 ±230.56 288.54 ±350.28 31.21 ±88.40 883.55 ±54.84

walker-run 679.17 ±38.63 569.28 ±50.41 525.64 ±113.60 553.79 ±26.28 548.09 ±131.90

Since we are interested in evaluating the data efficiency of DQS, we limit the number of environment240
interactions to 250k steps. Figure 3 shows the performance of various classic methods on these241
different tasks. On most tasks, DQS performs on par or outperforms the baseline methods. In242
particular, on five out of the eight tasks considered (cheetah-run, finger-spin, fish-swim, reacher-hard243
and walker-run) DQS reaches higher reward much faster than competing methods, demonstrating244
improved exploration. From the numerical results in Table 1, we see that DQS particularly shines in245

8

Sampling from Energy-based Policies using Diffusion

0.0 0.5 1.0 1.5 2.0 2.5
×10

5

0

100

200

300

400

500

600

700

E
pi

so
de

 R
ew

ar
d

cheetah-run

0.0 0.5 1.0 1.5 2.0 2.5
×10

5

0

200

400

600

800

finger-spin

0.0 0.5 1.0 1.5 2.0 2.5
×10

5

0

200

400

600

800

finger-turn_hard

0.0 0.5 1.0 1.5 2.0 2.5
×10

5

50

100

150

200

250

300

350

fish-swim

0.0 0.5 1.0 1.5 2.0 2.5
Timesteps ×10

5

0

200

400

600

800

1000

E
pi

so
de

 R
ew

ar
d

reacher-hard

0.0 0.5 1.0 1.5 2.0 2.5
Timesteps ×10

5

0

20

40

60

80

100

hopper-hop

0.0 0.5 1.0 1.5 2.0 2.5
Timesteps ×10

5

0

100

200

300

400

500

600

700
quadruped-run

0.0 0.5 1.0 1.5 2.0 2.5
Timesteps ×10

5

0

100

200

300

400

500

600

700

walker-run

DQS QSM DACER DIPO

Figure 4: Experimental results for diffusion-based RL algorithms on 8 tasks from different domains
from the DeepMind Control Suite. Each result is averaged over 100 evaluation episodes across 10
seeds, with the shaded regions showing minimum and maximum values.

Table 2: Mean episode returns for 100 evaluation episodes for diffusion-based RL methods, averaged
over 10 seeds. The highest values in each row within one standard deviation are highlighted in bold.

Task DQS (Ours) QSM DACER DIPO

10
0k

st
ep

s

cheetah-run 492.61 ±30.99 313.34 ±55.38 221.14 ±33.26 338.93 ±37.90

finger-spin 826.00 ±6.24 757.15 ±59.20 366.06 ±44.68 670.22 ±71.68

finger-turn_hard 253.72 ±104.84 108.12 ±100.52 36.04 ±37.44 57.84 ±48.80

fish-swim 224.27 ±38.96 81.73 ±18.83 78.20 ±14.72 72.12 ±3.86

hopper-hop 0.33 ±0.35 0.04 ±0.01 0.48 ±0.52 0.41 ±0.59

quadruped-run 199.26 ±32.79 163.60 ±32.42 221.39 ±72.44 164.08 ±5.37

reacher-hard 914.15 ±18.28 557.12 ±178.20 358.48 ±303.20 766.20 ±53.16

walker-run 547.39 ±32.58 413.53 ±47.69 195.30 ±43.95 252.88 ±134.23

25
0k

st
ep

s

cheetah-run 683.64 ±18.51 607.16 ±36.45 599.64 ±123.50 650.98 ±71.03

finger-spin 835.00 ±61.36 874.52 ±19.38 486.66 ±67.52 830.36 ±27.16

finger-turn_hard 361.46 ±179.32 297.66 ±90.00 142.66 ±47.16 113.32 ±85.20

fish-swim 221.67 ±42.59 204.20 ±38.65 158.82 ±37.19 129.76 ±23.50

hopper-hop 0.66 ±0.08 40.97 ±38.86 24.01 ±26.32 0.00 ±0.01

quadruped-run 277.63 ±66.45 293.12 ±141.69 466.77 ±169.98 126.09 ±75.00

reacher-hard 974.05 ±1.64 887.26 ±54.04 821.88 ±134.16 894.88 ±79.32

walker-run 679.17 ±38.63 605.98 ±52.12 602.12 ±61.36 518.49 ±162.78

very low environment interaction budgets. When all agents are limited to 100k environment steps,246
DQS is much more performant than other methods. Note that for PPO, the step number represents247
the number of network updates.248

We perform a similar analysis in Figure 4 and Table 2, where we compare the performance of DQS249
with more recent diffusion-based RL methods. We describe these approaches in more detail in Sec-250
tion 2. We observe a similar trend as the previous set of experiments, where QSM achieves higher251
returns quicker than other methods on a majority of tasks, which is especially marked when con-252
sidering performance at 100k environment steps. This improved sample efficiency could possibly a253
result of better ability to handle exploration and exploitation, owing to the use of a Boltzmann pol-254
icy that samples high Q-value actions while maintaining some probability of sampling exploratory255
actions.256

9

Under review for RLC 2025, to be published in RLJ 2025

(a) DQS (ours) (b) SAC (c) QSM

(d) DACER (e) DIPO

Figure 5: Trajectories for 100 evaluation episodes after 250k training steps.

We use a single fixed temperature of T = 0.05 across tasks. Note that SAC and DACER use257
automatic temperature tuning which allows them to influence the policy entropy over the course of258
training. The performance of DQS may be further improved by fine-tuning the temperature schedule259
on each individual task.260

5.2 Goal Reaching Maze Navigation261

We use a custom maze environment to evaluate the ability of our method to reach multiple goals.262
The agent is tasked with manipulating a ball to reach some unknown goal position in the maze. The263
state consists of the ball’s (x, y) position and the velocity vector. The action is the force vector264
applied to the ball.265

The initial state of the ball is at the center of the maze, with some noise added for variability. We266
define two potential goal states for the ball - the top left and the bottom right corners respectively.267
The negative Euclidean distance between the desired goal and the achieved state gives the reward268
function.269

For DQS, we used temperature annealing with an initial temperature of T = 10, which is decayed270
exponentially with the number of training steps to a value of T = 1 after 250k steps. SAC uses au-271
tomatic temperature tuning (Haarnoja et al., 2018b), where the entropy co-efficient is automatically272
tuned using gradient descent to maintain the desired level of entropy.273

Figure 5 plots the trajectories of the ball over 100 evaluation episodes after 250k training steps.274
As seen in Figure 5a, DQS learns to reach both goals, owing to the proposed sampling approach275
which can effectively capture multimodal behavior. Moreover, it discovers both paths to reach the276
top left goal. In contrast, SAC (Figure 5b), QSM (Figure 5c), and DIPO (Figure 5e) can only reach277
one of the goals. Since SAC models the policy using a Gaussian, there is little variability between278
different trajectories. QSM produces slightly more varied behavior, since it uses Langevin sampling279
to sample actions, but ultimately fails to learn distinct behaviors. DIPO, on the other hand, managers280

10

Sampling from Energy-based Policies using Diffusion

to learn distinct paths to reach the same goal. DACER in Figure 5d discovers the second mode but281
is heavily skewed towards one mode.282

6 Discussion283

In this work, we showcase the benefits of using energy-based policies as an expressive class of poli-284
cies for deep reinforcement learning. Such policies arise in different RL frameworks, but their285
application has been limited in continuous action spaces owing to the difficulty of sampling in286
this setting. We alleviate this problem using a diffusion-based sampling algorithm, Diffusion Q-287
Sampling (DQS,) can sample multimodal behaviors and improve sample efficiency, possibly owing288
to better handling of the exploration-exploitation trade off.289

While diffusion methods offer high expressivity, they often come with increased computation. This290
is particularly true in the online RL setting, where using a diffusion policy means that each envi-291
ronment step requires multiple function evaluations to sample from the diffusion model. There is a292
growing body of work on efficient SDE samplers (Jolicoeur-Martineau et al., 2021), which aim to293
reduce the number of function evaluations required to obtain diffusion-based samples while main-294
taining high accuracy. Incorporating such techniques with Boltzmann policies can greatly reduce295
the computational cost, especially in high-dimensional state-action spaces.296

A crucial aspect of energy-based policies is the temperature parameter, which defines the shape of297
the sampling distribution. Our method enables annealing of the temperature from some starting298
value to lower values, as is typically done when applying Boltzmann policies in deep RL. However,299
this temperature schedule has to be manually tuned. Haarnoja et al. (2018b) proposes an automatic300
temperature tuning method for SAC, which maintains the temperature so that the entropy of the301
current policy is close to some target entropy. While such an approach could be applied to DQS in302
principle, it is computationally expensive to compute the likelihoods of samples under a diffusion303
model.304

Finally, as we argued in the introduction, Boltzmann policies based on their own value function are305
attractive choices for pre-training of RL agents for later fine-tuning and multi-task settings. We hope306
to investigate this exciting potential in the future.307

References308

Anurag Ajay, Yilun Du, Abhi Gupta, Joshua B Tenenbaum, Tommi S Jaakkola, and Pulkit Agrawal.309
Is conditional generative modeling all you need for decision making? In The Eleventh Interna-310
tional Conference on Learning Representations.311

Tara Akhound-Sadegh, Jarrid Rector-Brooks, Avishek Joey Bose, Sarthak Mittal, Pablo Lemos,312
Cheng-Hao Liu, Marcin Sendera, Siamak Ravanbakhsh, Gauthier Gidel, Yoshua Bengio, Nikolay313
Malkin, and Alexander Tong. Iterated denoising energy matching for sampling from boltzmann314
densities. 2024.315

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow316
network based generative models for non-iterative diverse candidate generation. Advances in317
Neural Information Processing Systems, 34:27381–27394, 2021.318

Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J Hu, Mo Tiwari, and Emmanuel Bengio.319
Gflownet foundations. The Journal of Machine Learning Research, 24(1):10006–10060, 2023.320

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Dębiak, Christy321
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large322
scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.323

Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and Shu-324
ran Song. Diffusion policy: Visuomotor policy learning via action diffusion. arXiv preprint325
arXiv:2303.04137, 2023.326

11

Under review for RLC 2025, to be published in RLJ 2025

Tristan Deleu, Padideh Nouri, Nikolay Malkin, Doina Precup, and Yoshua Bengio. Discrete proba-327
bilistic inference as control in multi-path environments. In The 40th Conference on Uncertainty328
in Artificial Intelligence.329

Zihan Ding and Chi Jin. Consistency models as a rich and efficient policy class for reinforcement330
learning. In The Twelfth International Conference on Learning Representations, 2023.331

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. arXiv332
preprint arXiv:1605.08803, 2016.333

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-334
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.335

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with336
deep energy-based policies. In International conference on machine learning, pp. 1352–1361.337
PMLR, 2017.338

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy339
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-340
ence on machine learning, pp. 1861–1870. PMLR, 2018a.341

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash342
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and appli-343
cations. arXiv preprint arXiv:1812.05905, 2018b.344

Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.345
Idql: Implicit q-learning as an actor-critic method with diffusion policies. arXiv preprint346
arXiv:2304.10573, 2023.347

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in348
neural information processing systems, 33:6840–6851, 2020.349

Vineet Jain and Siamak Ravanbakhsh. Learning to reach goals via diffusion. In Forty-first Interna-350
tional Conference on Machine Learning, 2024.351

Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Planning with diffusion for352
flexible behavior synthesis. In International Conference on Machine Learning, pp. 9902–9915.353
PMLR, 2022.354

Alexia Jolicoeur-Martineau, Ke Li, Rémi Piché-Taillefer, Tal Kachman, and Ioannis Mitliagkas.355
Gotta go fast when generating data with score-based models. arXiv preprint arXiv:2105.14080,356
2021.357

Bingyi Kang, Xiao Ma, Chao Du, Tianyu Pang, and Shuicheng Yan. Efficient diffusion policies for358
offline reinforcement learning. Advances in Neural Information Processing Systems, 36, 2024.359

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,360
2014.361

Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey. The362
International Journal of Robotics Research, 32(11):1238–1274, 2013.363

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-364
learning. arXiv preprint arXiv:2110.06169, 2021.365

Salem Lahlou, Tristan Deleu, Pablo Lemos, Dinghuai Zhang, Alexandra Volokhova, Alex366
Hernández-Garcıa, Léna Néhale Ezzine, Yoshua Bengio, and Nikolay Malkin. A theory of con-367
tinuous generative flow networks. In International Conference on Machine Learning, pp. 18269–368
18300. PMLR, 2023.369

12

Sampling from Energy-based Policies using Diffusion

Gene Li, Junbo Li, Anmol Kabra, Nati Srebro, Zhaoran Wang, and Zhuoran Yang. Exponential370
family model-based reinforcement learning via score matching. Advances in Neural Information371
Processing Systems, 35:28474–28487, 2022.372

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,373
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv374
preprint arXiv:1509.02971, 2015a.375

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Manfred Otto Heess, Tom Erez,376
Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learn-377
ing. CoRR, abs/1509.02971, 2015b.378

Cheng Lu, Huayu Chen, Jianfei Chen, Hang Su, Chongxuan Li, and Jun Zhu. Contrastive energy379
prediction for exact energy-guided diffusion sampling in offline reinforcement learning. In Inter-380
national Conference on Machine Learning, pp. 22825–22855. PMLR, 2023.381

Kanika Madan, Jarrid Rector-Brooks, Maksym Korablyov, Emmanuel Bengio, Moksh Jain, An-382
drei Cristian Nica, Tom Bosc, Yoshua Bengio, and Nikolay Malkin. Learning gflownets from383
partial episodes for improved convergence and stability. In International Conference on Machine384
Learning, pp. 23467–23483. PMLR, 2023.385

Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory balance:386
Improved credit assignment in gflownets. Advances in Neural Information Processing Systems,387
35:5955–5967, 2022.388

Michael Psenka, Alejandro Escontrela, Pieter Abbeel, and Yi Ma. Learning a diffusion model policy389
from rewards via q-score matching. arXiv preprint arXiv:2312.11752, 2023.390

Jarrid Rector-Brooks, Kanika Madan, Moksh Jain, Maksym Korablyov, Cheng-Hao Liu, Sarath391
Chandar, Nikolay Malkin, and Yoshua Bengio. Thompson sampling for improved exploration in392
gflownets. arXiv preprint arXiv:2306.17693, 2023.393

Moritz Reuss, Maximilian Li, Xiaogang Jia, and Rudolf Lioutikov. Goal-conditioned imitation394
learning using score-based diffusion policies. arXiv preprint arXiv:2304.02532, 2023.395

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon396
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,397
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.398

John Schulman, Sergey Levine, P. Abbeel, Michael I. Jordan, and Philipp Moritz. Trust region399
policy optimization. ArXiv, abs/1502.05477, 2015.400

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy401
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.402

Max W Shen, Emmanuel Bengio, Ehsan Hajiramezanali, Andreas Loukas, Kyunghyun Cho, and403
Tommaso Biancalani. Towards understanding and improving gflownet training. In International404
Conference on Machine Learning, pp. 30956–30975. PMLR, 2023.405

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,406
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering407
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.408

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben409
Poole. Score-based generative modeling through stochastic differential equations. In Interna-410
tional Conference on Learning Representations (ICLR), 2021.411

Niko Sünderhauf, Oliver Brock, Walter Scheirer, Raia Hadsell, Dieter Fox, Jürgen Leitner, Ben412
Upcroft, Pieter Abbeel, Wolfram Burgard, Michael Milford, et al. The limits and potentials of413
deep learning for robotics. The International journal of robotics research, 37(4-5):405–420, 2018.414

13

Under review for RLC 2025, to be published in RLJ 2025

Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction. MIT Press, 2018.415

Daniil Tiapkin, Nikita Morozov, Alexey Naumov, and Dmitry P Vetrov. Generative flow networks416
as entropy-regularized rl. In International Conference on Artificial Intelligence and Statistics, pp.417
4213–4221. PMLR, 2024.418

Yinuo Wang, Likun Wang, Yuxuan Jiang, Wenjun Zou, Tong Liu, Xujie Song, Wenxuan Wang,419
Liming Xiao, Jiang Wu, Jingliang Duan, et al. Diffusion actor-critic with entropy regulator. arXiv420
preprint arXiv:2405.15177, 2024.421

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy422
class for offline reinforcement learning. In The Eleventh International Conference on Learning423
Representations.424

Philipp Wu, Alejandro Escontrela, Danijar Hafner, Pieter Abbeel, and Ken Goldberg. Daydreamer:425
World models for physical robot learning. In Conference on robot learning, pp. 2226–2240.426
PMLR, 2023.427

Long Yang, Zhixiong Huang, Fenghao Lei, Yucun Zhong, Yiming Yang, Cong Fang, Shiting Wen,428
Binbin Zhou, and Zhouchen Lin. Policy representation via diffusion probability model for rein-429
forcement learning. arXiv preprint arXiv:2305.13122, 2023.430

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse431
reinforcement learning. In Aaai, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.432

14

Sampling from Energy-based Policies using Diffusion

Supplementary Materials433

The following content was not necessarily subject to peer review.434
435

Implementation Details436

The score function is parameterized as an MLP with two hidden layers of 256 units each with the437
ReLU activation function, except for the final layer. The MLP has skip connections as is typical for438
denoising score functions. The input to the policy comprises the state, noised action, the diffusion439
time step, and the temperature. The diffusion time step and the temperature are encoded using sinu-440
soidal positional embeddings of 256 dimensions. The action is sampled following Equation (3) and441
the tanh(·) function is applied to the sampled action followed by multiplication with the maximum442
value of the action space to ensure the value is within the correct range. The Q-network is also an443
MLP with two hidden layers of 256 units each with the ReLU activation function, except for the444
final layer. We use two Q-networks for the double Q-learning technique, and take the minimum of445
the two values.446

The score function and the Q-network are trained for 250k environment steps with one mini-batch447
update per environment step. Optimization is performed using the Adam optimizer (Kingma, 2014)448
with a learning rate of 3× 10−4 and a batch size of 256.449

Table 3: Hyperparameters.

Parameter Value

Number of hidden layers 2
Number of hidden units per layer 256
Sinusoidal embedding dimension 256
Activation function ReLU
Optimizer Adam
Learning rate 3 · 10−4

Number of samples ber minibatch 256
Replay buffer size 250000
Discount factor 0.99
Gradient updates per step 1
Target smoothing co-efficient 0.005
Target update period 1
Seed training steps 104

σmin 0.00001
σmax 1
Number of Monte Carlo samples 1000
Number of integration steps 1000

15

