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Abstract

We introduce SpinSVAR, a novel method for esti-
mating a (linear) structural vector autoregression
(SVAR) from time-series data under a sparse input
assumption. Unlike prior approaches using Gaus-
sian noise, we model the input as independent and
identically distributed (i.i.d.) Laplacian variables,
enforcing sparsity and yielding a maximum likeli-
hood estimator (MLE) based on least absolute er-
ror regression. We provide theoretical consistency
guarantees for the MLE under mild assumptions.
SpinSVAR is efficient: it can leverage GPU accel-
eration to scale to thousands of nodes. On synthetic
data with Laplacian or Bernoulli-uniform inputs,
SpinSVAR outperforms state-of-the-art methods
in accuracy and runtime. When applied to S&P
500 data, it clusters stocks by sectors and identi-
fies significant structural shocks linked to major
price movements, demonstrating the viability of
our sparse input assumption.

1 INTRODUCTION

Time series arise in numerous applications where multi-
dimensional observations are recorded at regular intervals,
such as meteorology [Yang et al., 2022], finance [Kleinberg,
2013, Jiang and Shimizu, 2023], and brain imaging [Smith
et al., 2011]. A fundamental challenge in analyzing time
series is causal discovery, which seeks to uncover causal
dependencies over time [Assaad et al., 2022b, Hasan et al.,
2023]. If causal effects occur faster than the data’s tempo-
ral resolution, they appear instantaneous and can be mod-
eled with a linear structural equation model (SEM) [Peters
et al., 2017]. When the resolution is higher, they appear as
lagged effects, typically captured by vector autoregression
(VAR) [Kilian, 2013]. Regardless of the model, recovering
true causal relationships requires additional assumptions,

such as the absence of latent confounders, identifiability
conditions, or access to interventions [Vowels et al., 2021],
which rarely hold in real-world settings. For instance, in fi-
nancial markets, it is nearly impossible to observe all hidden
confounders or directly intervene in stock prices. Instead of
identifying true causal effects, we focus on learning instanta-
neous and lagged dependencies through a (linear) structural
vector autoregression (SVAR), which unifies a linear SEM
and a VAR [Hyvärinen et al., 2010].

Structural vector autoregression Originally introduced
by Sims [1980], SVAR has been widely applied in econo-
metrics [Lütkepohl, 2005, Kilian, 2013] and serves as a
foundation for causal discovery in time-series data [Pamfil
et al., 2020]. SVAR models linear dependencies between
variables, distinguishing between instantaneous effects (oc-
curring within the same time step) and lagged effects (propa-
gating over time). The model naturally associates time-series
data with a directed acyclic graph (DAG), which encodes
how each time step is generated from previous ones. These
relationships collectively form the window graph, a DAG
that uniquely determines the SVAR parameters. SVAR fur-
ther imposes causal stationarity, meaning that the dependen-
cies remain constant over time [Assaad et al., 2022b].

Challenges and limitations Even when the goal is limited
to learning the DAG structure—without the added task of
identifying causally relevant edges, under the pure causal-
ity notion [Pearl, 2009]—inferring DAGs from time-series
data remains computationally challenging. This difficulty
arises from the complex temporal dependencies and the
high dimensionality typical of real-world datasets. From a
theoretical viewpoint, the problem generalizes DAG learn-
ing from static data, which is already known to be NP-
hard [Chickering et al., 2004]. Several methods have been
proposed to estimate the weighted window graph from time-
series data, including approaches specifically tailored for
SVAR [Hyvärinen et al., 2010]. However, many existing
methods suffer from critical limitations. Some approaches,
such as Granger causality-based methods, learn the sum-



mary graph that fails to incorporate time lags [Bussmann
et al., 2021], while others do not account for instanta-
neous dependencies [Khanna and Tan, 2019]. Most meth-
ods face computational challenges when applied to large
DAGs, making them impractical for graphs with thousands
of nodes [Cheng et al., 2024]. Structural shocks, i.e., the
input variables of an SVAR [Lanne et al., 2017a] at each
node, are often interpreted merely as noise variables in prior
work [Hyvärinen et al., 2010, Pamfil et al., 2020], limiting
their interpretability and potential insights into the under-
lying causal mechanisms. To address these challenges, we
introduce a novel, computationally efficient method that
enforces sparsity in the input of the SVAR.

SpinSVAR: Sparse input SVAR Hyvärinen et al. [2010]
model SVAR under a non-Gaussian noise assumption for
the inputs. We extend it by additionally enforcing sparsity
in the input, following Misiakos et al. [2023], and model
it as independent and identically distributed (i.i.d.) Lapla-
cian random variables. The Laplace distribution naturally
promotes sparsity [Jing et al., 2015] due to its sharp peak at
zero and heavy tails. Intuitively, this means that a few sig-
nificant independent events drive the observed data through
the SVAR structure. This contrasts with prior work, which
typically assumes zero-mean Gaussian input, either explic-
itly [Lachapelle et al., 2019] or implicitly via mean square
error-based optimization objectives [Pamfil et al., 2020, Sun
et al., 2023, Tank et al., 2021]. By incorporating this Lapla-
cian input model, we derive a maximum likelihood estimator
(MLE) based on least absolute error regression, leading to
SpinSVAR, a new method for efficient SVAR estimation
from time-series data. This framework provides both theo-
retical and empirical advantages.

Contributions Our main contributions are:

• We model sparse SVAR input as independent zero-
mean Laplacian variables, yielding an MLE formula-
tion for estimating SVAR parameters.

• We prove the consistency of this MLE under mild as-
sumptions on the window graph weights.

• We introduce SpinSVAR, a regularized MLE frame-
work enabling fast, and accurate SVAR estimation from
time-series data.

• In synthetic experiments with sparse SVAR input, gen-
erated via Laplacian or Bernoulli-uniform distribution
as in [Misiakos et al., 2023], SpinSVAR can learn an
associated DAG with up to several thousands of nodes
and outperforms various state-of-the-art methods.

• On real-world financial data from the S&P 500 in-
dex, we show that the sparse input assumption clusters
stocks by sector and identifies structural shocks re-
flecting significant changes in the stock prices due to
unexpected news.

For completeness, we provide detailed proofs, algorithmic
explanations, and additional experiments in the supplemen-
tary material; however, these are not required for under-
standing the main paper and are intended for readers seeking
deeper insights.

2 SVAR WITH SPARSE INPUT

We introduce notation, the needed background on SVARs,
the motivation for a sparsity assumption in the input and its
statistical modeling using the Laplace distribution.

Time-series data A multi-dimensional data vector xt,
measured at time point t ∈ 0, 1, . . . , T − 1 = [T ], is writ-
ten as xt = (xt,1, xt,2, . . . , xt,d) ∈ R1×d. A time series
consists of a sequence of such data vectors x0, . . . ,xT−1

recorded at consecutive time points. We assume these vec-
tors are stacked as rows in a matrix, representing the entire
time series, denoted as X ∈ RT×d. When multiple real-
izations of X are available, they are collected as slices of
a tensor X ∈ RN×T×d. These can obtained by dividing a
long time series into smaller segments of length T 1.

Example: stock market We consider an example of time-
series data from the stock market. We collect daily stock
values xt for a particular stock index (e.g., S&P 500) for,
say, 20 years. A time series for one year is denoted with the
matrix X and 20 years yield the data tensor X .

Model demonstration We impose a graph-based model
on the generation of time-series data and first illustrate it
with a simple example. Suppose that the vector xt at time t is
generated from the previous time step’s data xt−1 according
to the equation:

xt = xt−1B + st, (1)

where st represents the input variables, commonly referred
to as structural shocks [Kilian, 2013], but they have also
been described as root causes [Misiakos et al., 2023]. Given
st for all t, the data xt is fully determined by the matrix
B through (1). The model in (1) is an instance of vector
autoregression (VAR) [Kilian, 2013]. The (i, j) entry of the
matrix B ∈ Rd×d quantifies the influence of xt−1,i on xt,j .
This corresponds to the adjacency matrix of a directed graph
G = (V,B), where V is the set of nodes enumerated as
V = 1, 2, ..., d. The primary objective is to learn B from
time-series data {xt}t∈[T ]. The model in (1) is causally sta-
tionary, meaning that B remains constant across all time
steps. Additionally, it has a time lag of one, as each obser-
vation xt depends only on the previous time step xt−1 and
the newly introduced inputs st at time t.

1In practical scenarios this can affect independence between
time-series samples, which is a necessary assumption for our theo-
retical guarantees.



Example In the stock market example, the stocks
1, 2, . . . , 500 in the S&P 500 market index would represent
the nodes of a graph and B would encode the influences
between these stocks. The model then would imply that the
value xt,i of stock i on day t is determined by the stock
values xt−1 from day t − 1, combined with a structural
shock st,i representing an event occurring on day t.

Structural vector autoregression An SVAR [Lütkepohl,
2005, Pamfil et al., 2020] expands the VAR in (1) to the
general form with maximal time lag k. Namely, we assume
there exist adjacency matrices B0,B1, ...,Bk ∈ Rd×d and
st ∈ R1×d, such that xt = 0 for t < 0 and for t ∈ [T ] 2 :

xt = xtB0 + xt−1B1 + ...+ xt−kBk + st. (2)

The (i, j) entry of Bτ represents the influence of i to j af-
ter τ time steps (i.e., a lag of τ ) and st are the structural
shocks. B0 represents instantaneous dependencies, while
the B1, ...,Bk represent lagged dependencies. The SVAR
is causally stationary, since the Bτ do not depend on t. Fol-
lowing Pamfil et al. [2020] we assume that B0 corresponds
to a DAG, ensuring that the recurrence (2) is solvable for xt.

The instantaneous B0 and lagged B1, ...,Bk dependencies
are collected as block-rows in a matrix W ∈ Rd(k+1)×d

which forms the so-called window graph depicted with an
example in Fig. 1. Note that the window graph is a DAG
since the edges go only forward in time. The problem we
aim to solve is to infer W from time-series data under the
assumption that there are few significant structural shocks.
To achieve this, our approach imposes a sparsity assumption
on the input st.

Example In the previous stock market example, the matrix
B0 represents instantaneous influences within the same
day, while the other matrices Bτ capture influences across
different days. Since stock markets typically react almost
instantaneously to new information, one would expect most
dependencies to be reflected in B0.

Sparse input We denote with xt,past = (xt, ...,xt−k) ,
t ∈ [T ], the data at previous time steps of xt with lag up to
a chosen fixed k. Analogously, Xpast ∈ RT×d(k+1) contains
as rows the vectors xt,past, t ∈ [T ] and X past ∈ RN×T×d

contains N realizations of Xpast. With this notation, the
SVAR (2) can be written in the following matrix format:

X = XpastW + S ⇒ X = X pastW + S. (3)

Intuitively, the non-zero values in S represent unobserved
events that propagate through space (according to B0) and
also through time t (according to B1, ...,Bk) to generate
X via (3). In Fig. 1 we illustrate the data generation pro-
cess (3). In the upper part, the significant structural shocks
S are denoted in color, whereas white nodes correspond to
(approximately) zero values (noise).

2We provide a stability condition for (2) in App. A.1.
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Figure 1: Visualizing an SVAR (3) with sparse input S.
Out of 28 structural shocks in S only seven are significant
(positive or negative) and the rest are approximately zero.
The window graph W , composed of B0,B1,B2, generates
the observed dense time series X (bottom) via (3).

Example In our stock market example, the structural
shocks st would represent significant events (big news) that
trigger changes in the prices of the stocks at day t. Examples
include unexpected quarterly results, administrative changes
in the company, capital investment, launching a new prod-
uct, etc. It is intuitive that significant events happen rarely
and affect few stocks every day, and thus S is sparse. Later,
we confirm the sparse input assumption in experiments with
real-world financial time series.

Laplace distribution In practical applications, input spar-
sity can only be approximately satisfied. Therefore, we con-
sider a distribution for S that encourages sparsity formation.
A natural choice is the Laplace(0, β) distribution, which is
characterized by a sharp peak at 0 and heavy tails [Jing
et al., 2015]. Tibshirani [1996] introduced the classical
LASSO regression by adopting the Laplace prior, leading to
the well-known L1 regularizer that promotes sparsity. The
Laplace prior has also been used in Bayesian linear regres-
sion [Castillo et al., 2015], compressive sensing [Babacan
et al., 2009], sparse matrix factorization [Jing et al., 2015],
and sparse principal component analysis (PCA) [Guan and
Dy, 2009]. Based on this, we impose the following assump-
tion on S and derive its probability density function fS :

St,j ∼ Laplace(0, β) ⇔ fS(St,j |β) =
1

2β
e−

|St,j |
β , (4)

where the ground truth β parameter is denoted with β∗.
With (4) we impose the assumption that the input terms St,j

are i.i.d., which implies that there are no hidden confounders
in the data. Furthermore, we assume X contains N i.i.d.
realizations of X via (3).



3 LEARNING THE SVAR

In this section, we establish the identifiability of our setting,
derive the Laplacian MLE, prove its consistency, and formu-
late the proposed optimization framework, SpinSVAR.

Identifiability A fundamental question in causal discov-
ery is whether the graph structure is identifiable from the
data [Park, 2020]. Let W ∗ be the ground-truth window
graph, and fX(X |W , β) denote the probability density
function of the data, parameterized by (W , β). Identifia-
bility means that if fX(X |W , β) = fX(X |W ∗, β∗), then
necessarily W = W ∗. This ensures that the window graph
W ∗ is uniquely determined by the data distribution. Theo-
rem 3.1 establishes the identifiability of W and the parame-
ter β, which is a necessary condition for our consistency re-
sult. Note that, the identification result for the window graph
W can be directly derived from VARLiNGAM [Hyvärinen
et al., 2010], even though our proof is slightly different.
Moreover, the proof of the identifiability of the β parame-
ter of the Laplacian distribution is new and specific to our
setting.

Theorem 3.1. Consider the time-series model (3) with S
following a multivariate Laplace distribution (4) with β∗ >
1/NTd. Then the adjacency matrices B0,B1, ...,Bk ∈
Rd×d and β are identifiable from the time-series data X .

Proof sketch. We unroll W over time into a DAG and
rewrite (3) as a linear SEM, as explained in [Misi-
akos et al., 2024]. The identifiability then follows from
LiNGAM [Shimizu et al., 2006], since S follows a Lapla-
cian distribution. The window graph is identified by extract-
ing B0,B1, . . . ,Bk from the unrolled DAG. The parameter
β is identified using the monotonicity of the probability den-
sity function. A complete proof is provided in App. A.2.

Laplacian MLE The MLE is a fundamental statistical
method for estimating model parameters by maximizing the
likelihood function fX(X |W , β) given the observed data
X . Under the Laplacian noise model (4), the probability
density function of X is given by (see App. A.3 for details):

fX(X |W , β) =
|det (I −B0)|NT

(2β)NdT
e−∥X−X pastW ∥

1
/β .

(5)
The MLE seeks to find the optimal parameters by maximiz-
ing the likelihood function. Equivalently, we maximize the
log-likelihood function L (W , β;X ) = log fX (X |W , β):

L (W , β;X ) = NT log |det (I −B0)| −NTd log(2β)

− 1

β
∥X −X pastW ∥

1
. (6)

Thus, the MLE estimate Ŵ is given by:

Ŵ = argmax
W∈W

L (W , β;X ) . (7)

A desirable property of the MLE is that Ŵ → W ∗ as
N → ∞. In the infinite sample regime, the log-likelihood
function L (W , β;X ) corresponds to the population log-
likelihood defined as:

L (W , β) = EW ∗,β∗ [L (W , β;X )] , (8)

where L (W , β) represents the expected value of
L (W , β;X ) computed under the ground truth probability
density fX(X |W ∗, β∗). Under the assumption of identifia-
bility, the maximizer Ŵ of L (W , β) satisfies Ŵ = W ∗.
The following lemma formalizes this property, with a proof
provided in App. A.4.

Lemma 3.2. Assume that the ground truth parame-
ters (W ∗, β∗) are identifiable from the data distribution
fX (X|W ∗, β∗). Then, the population likelihood L (W , β)
has a unique maximum at (W ∗, β∗).

Lemma 3.2 implies that with infinite data, the log-likelihood
has a unique global maximizer at the ground truth W ∗.
However, since we only have a finite dataset, we re-
quire a stronger result for the empirical log-likelihood
L (W , β;X ).

Consistency of MLE We prove the consistency of the
MLE, which states that as the amount of data increases,
Ŵ converges in probability to W ∗. Formally, we show the
following result.

Theorem 3.3. The maximum log-likelihood estimator (7)
satisfies the conditions of Theorem 2.5 of Newey and Mc-
Fadden [1994] and thus is consistent under the following
assumptions:

• The space of window graphs is W ⊆ [−1, 1]d(k+1)×d

and B0 acyclic.

• β ∈ [a, b] is bounded, with a lower bound a > 1/NTd.

• The N time-series samples X i are i.i.d..

Proof sketch. The proof requires a compact search space
for W , which is satisfied by the given bounds on W and
β. Additionally, the set of acyclic matrices is closed, as
it can be expressed as the pre-image h−1({0}), where h
is a continuous function characterizing acyclicity [Zheng
et al., 2018]. Identifiability of W and β is ensured by The-
orem 3.1. Finally, the log-likelihood is continuous, and it
can be shown that supW∈W |L (W ;X )| has finite expec-
tation. Under these requirements, Theorem 2.5 of Newey
and McFadden [1994] then utilizes the uniform law of large
numbers to show that Ŵ converges in probability to W ∗.
A complete proof is provided in App. A.5.



Our method SpinSVAR Theorem 3.3 implies that Ŵ
in (7) converges in probability to W ∗ as N → ∞. Since
the parameter β is fixed but unknown, we estimate it by
maximizing the log-likelihood function (6). Following Ng
et al. [2020], we compute an estimate β̂ by solving:

∂L
∂β

= 0 ⇔ β̂ =
1

NTd
∥X −X pastW ∥

1
. (9)

This estimate is consistent in expectation. Indeed, it is true
that E

[
∥X −X pastW ∥

1

]
= E [∥S∥1] = NTdβ∗. Thus,

the log-likelihood maximization problem for approximating
W reduces to (see App. A.6 for details):

Ŵ = argmax
W∈W

L
(
W , β̂;X

)
(10)

= argmin
W∈W

log ∥X −X pastW ∥
1
− 1

d
log |det (I −B0)| .

However, directly minimizing (10) over the space of DAGs
is computationally inefficient. This would require enforcing
a hard DAG constraint to restrict W ∈ W , as in [Zheng
et al., 2018], where it is implemented via the augmented
Lagrangian method. Such an approach demands careful
fine-tuning and can lead to numerical instabilities, as demon-
strated by Ng et al. [2020]. To overcome these challenges,
following Ng et al. [2020], we relax the hard acyclicity
constraint and introduce a soft regularizer. This approach
maintains strong performance while improving efficiency,
as demonstrated in our experiments. The final optimization
problem for SpinSVAR is formulated as:

W̃ = argmin
W∈Rd(k+1)×d

log ∥X −X pastW ∥
1

(11)

− 1

d
log |det (I −B0)|+ λ1∥W ∥1 + λ2 · h (B0) .

The first term in (11) promotes sparsity in the structural
shocks, while the remaining terms encourage sparsity in the
window graph W and enforce acyclicity in B0, respectively.
The acyclicity regularizer h (B0) = eA⊙A − d, introduced
by Zheng et al. [2018], ensures that B0 satisfies the DAG
constraint. Notably, (11) is well-suited for GPU acceleration
using tensor operations, making it highly efficient in practice.
In our implementation, we represent W as the parameter
matrix of a (PyTorch) linear layer with (k + 1)d inputs and
d outputs. The precomputed X past serves as input, and the
linear layer’s output is subtracted from the observed data
X . The objective in (11) is then computed and optimized
using the Adam optimizer [Kingma and Ba, 2014]. More
implementation details can be found in App. C.

Since the proposed objective function is non-convex, it may
have multiple local optima, and there is no guarantee of
convergence to the global maximum. However, in practice,
our method performs well and often even recovers the edges
of W ∗ without error. This phenomenon, also observed in
GOLEM [Ng et al., 2020], motivates further theoretical
investigation.

Once Ŵ is obtained via (11), we approximate the input Ŝ:

Ŝ = X −X pastŴ . (12)

In recovering S from Ŝ, we are particularly interested in
identifying significant structural shocks. To this end, we
apply thresholding to filter out insignificant values in Ŝ.
In our experiments, this threshold is selected based on the
synthetic data generation process.

4 RELATED WORK

Time-series causal discovery Our work falls within the
category of continuous optimization methods but differs
in its assumption of sparsity in the input of the SVAR.
Closely related approaches include functional causal model-
based methods such as VARLiNGAM [Hyvärinen et al.,
2010], which estimates an SVAR, as well as TiMINO [Peters
et al., 2013] and NBCB [Assaad et al., 2021], which recover
only the summary graph that disregards time delays [Gong
et al., 2023]. In contrast, our method learns the full win-
dow graph. Other continuous optimization methods include
DYNOTEARS [Pamfil et al., 2020], NTS-NOTEARS [Sun
et al., 2023] for non-linear data, and iDYNO [Gao et al.,
2022] for interventional data. These methods optimize the
mean square error loss and do not impose sparsity on the
SVAR input. In our experiments, we compare against these
methods, as well as others that learn the window graph from
observational time-series data, selecting both methodologi-
cally relevant approaches and representative alternatives.

Different from our approach, constraint-based methods in-
fer edges using conditional independence tests. Examples
include PCMCI [Runge et al., 2019], tsFCI [Entner and
Hoyer, 2010], PCMCI+[Runge, 2020], LPCMCI [Gerhardus
and Runge, 2020], PC-GCE [Assaad et al., 2022a], and
SVAR-FCI [Malinsky and Spirtes, 2018]. Methods based
on Granger causality typically recover only the summary
graph. Notable examples include neural Granger causal-
ity [Tank et al., 2021], eSRU [Khanna and Tan, 2019],
GVAR [Marcinkevičs and Vogt, 2020], and convergent cross
mapping [Sugihara et al., 2012]. Another line of work lever-
aging neural networks includes TCDF [Nauta et al., 2019],
SCGL [Xu et al., 2019], neural graphical modeling [Bellot
et al., 2022], and amortized learning [Löwe et al., 2022].

Maximum likelihood estimator By modeling sparsity
with a Laplacian distribution, we derive an MLE objective
based on least absolute error loss, unlike prior causal dis-
covery methods [Ng et al., 2020, Pamfil et al., 2020, Nauta
et al., 2019], which use mean-square loss suited for Gaus-
sian noise. Peters and Bühlmann [2014] provide consistency
guarantees of the MLE for a linear SEM with equivariant
Gaussian errors and GranDAG [Lachapelle et al., 2019] ap-
plies it to nonlinear additive noise models. However, these
methods neither support time-series data nor enforce input



sparsity. For SVAR estimation, Hyvärinen et al. [2010] pro-
pose a generic MLE approach for non-Gaussian noise but
do not explicitly integrate it into their methodology. Other
MLE-based methods for SVAR [Lanne et al., 2017a, Fioren-
tini and Sentana, 2023, Maekawa and Nakanishi, 2023]
also remain generic and are not tailored to Laplacian or
sparse inputs. In particular, Lanne et al. [2017b] establish
MLE consistency under a different set of assumptions: their
model allows for a potentially cyclic B0 and does not incor-
porate regularization for sparsity or acyclicity. In contrast,
our approach explicitly enforces acyclicity to ensure iden-
tifiability of the SVAR parameters—a key requirement for
our consistency result. Therefore, our theoretical analysis is
distinct, specifically designed for linear SVAR models with
Laplacian-distributed inputs.

Least absolute error and sparsity The least absolute
error (LAE) loss arises as an MLE when assuming that
the SVAR input follows a Laplacian distribution Chai et al.
[2019], Li and Arce [2004], enforcing sparsity in the model.
LAE has been widely used as a regression objective across
various fields, including dynamical systems [Jiang et al.,
2023, He and Sun, 2024], due to its robustness against out-
liers compared to mean square error (MSE) loss [Pollard,
1991, Bassett Jr and Koenker, 1978, Kumar and Singh, 2015,
Narula et al., 1999]. Despite this, the only method that em-
ploys LAE regression to enforce sparsity in the input of a
linear SEM is SparseRC, proposed by Misiakos et al. [2023].
Misiakos et al. [2024] extended SparseRC to time-series
graph learning by unrolling the window graph into a DAG,
requiring the estimation of (dT )2 parameters—rendering it
computationally infeasible for our experiments. Our method
advances over SparseRC by formulating a Laplacian MLE
to enforce sparse input, providing both consistency guaran-
tees and improved computational efficiency in practice.

5 EXPERIMENTS

We compare SpinSVAR to prior state-of-the-art work on
learning the window graph W from time-series data. Our
experiments in this section cover synthetic and real data.
Additional experiments are in Appendix E.

Baselines We compare against functional causal model
methods VARLiNGAM, Directed VARLiNGAM [Hyväri-
nen et al., 2010], and the GPU-accelerated cuLiNGAM [Ak-
inwande and Kolter, 2024], continuous optimization
methods DYNOTEARS [Pamfil et al., 2020] and
SparseRC [Misiakos et al., 2023], non-linear approaches
NTS-NOTEARS [Sun et al., 2023] and TCDF [Nauta et al.,
2019] and constraint-based methods tsFCI [Entner and
Hoyer, 2010] and PCMCI [Runge et al., 2019]. Among
these, LiNGAM-based methods assume non-Gaussian
SVAR input, which yields the most competitive perfor-
mance but at the cost of higher computational complex-

ity. SparseRC enforces input sparsity but times out; thus,
we modify its setup to a smaller unrolled DAG (details in
App. B). The other baselines do not enforce input sparsity.
We compare the optimization objective and computational
complexity of the baselines and SpinSVAR in App. C.1. For
the implementations we use public repositories (App. E.12),
with hyperparameters tuned via grid search (App. E.10).

Metrics We evaluate the unweighted approximation of W
using the normalized Structural Hamming Distance (nSHD).
The Structural Hamming Distance (SHD), reported in Ap-
pendix E.2, counts the number of edge insertions, deletions,
and reversals required to transform the estimated graph into
the ground truth. The nSHD is then obtained via normaliza-
tion: dividing the SHD by the total number of edges in the
ground truth W . An nSHD above 0.5 is considered a failure
and is therefore not reported. The structural intervention
distance (SID) [Peters and Bühlmann, 2015] is omitted as
it times-out for DAGs with thousands of nodes. Additional
results in App. E.2 include precision (PREC), recall (REC),
area under ROC curve (AUROC), F1 score, and normalized
MSE (NMSE) for the weighted approximation of W . We
also assess the detection of significant input values S us-
ing SHD and NMSE for Ŝ. For all metrics, we report the
mean and standard deviation (shown as shade) in Fig. 2 over
five experiment repetitions. In the real-world stock market
dataset, where the ground truth is unknown, the evaluation
is purely empirical.

5.1 SYNTHETIC EXPERIMENTS

Data generation We generate data using the SVAR
model (3), following settings similar to [Pamfil et al., 2020]
for the SVAR window graph W and to [Misiakos et al.,
2023] for the sparse SVAR input S. First, we set the number
of nodes d, the length T of the time series, the number of
realizations N , and the maximum lag k of the SVAR (2).
For the window graph W , we generate directed random
Erdös-Renyi graphs for B0,B1, . . . ,Bk, where B0 is a
DAG with an average degree of 5, and B1, . . . ,Bk have
an average degree of 2. We consider a default time lag of
k = 2 and include an additional version with k = 5 in
App. E.4. The edges of W are assigned uniform random
weights from [−0.5,−0.1] ∪ [0.1, 0.5]. The upper bound
of 0.5 ensures that (3) is stable, and the generated data X
remain bounded in most cases (we discard X if its entries
become excessively large; see App. E.1 for details).

To impose sparsity in S, we consider two scenarios, using
a threshold of 0.1 to distinguish significant values from ap-
proximately zero values in S. First, we use the Laplacian
distribution (4) with β = 1

3 , where in expectation only 5%
of values are significant (magnitudes greater than 0.1; see
App. D). Second, we use a Bernoulli distribution to con-
trol the percentage of significant entries in S [Kalisch and
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Figure 2: Synthetic experiments. The first row shows nSHD (lower is better), the second row runtime. (a), (b) consider
N = 10 samples of time-series with T = 1000 and varying number d of nodes for both input distributions. (c), (d) consider
d = 500 nodes and varying number of samples N of time-series of length T = 1000. The label LiNGAMs refers to
VARLiNGAM and its two variations Directed VARLiNGAM and cuLiNGAM. Any non-reported point implies a time-out
(execution time > 10, 000s ≈ 2:45h).

Bühlman, 2007, Misiakos et al., 2023]: each entry is non-
zero with probability p = 5% (assigned uniform weights
from [−1,−0.1] ∪ [0.1, 1]) or zero otherwise. To create ap-
proximate sparsity, we add zero-mean Gaussian noise with a
standard deviation of 0.01 to S. We refer to this distribution
as Bernoulli-uniform or simply Bernoulli. In Appendix E.3,
we examine a third sparsity scenario, referred to as Gaussian
subsampling, in which the non-zero entries of the Bernoulli
variables are assigned values drawn from a normal distribu-
tion rather than uniform ones.

Results Fig. 2 presents the results of our synthetic ex-
periments for both sparsity scenarios of S (Laplace and
Bernoulli). Figs. 2a, 2b correspond to a fixed number of
samples, N = 10, with the number of nodes d ranging from
20 (180 edges) to 4000 (36,000 edges). In Figs. 2c, 2d, we
fix d = 500 and vary the samples N from 1 to 20. In all
cases, the time-series length is T = 1000. Baselines that are
omitted either perform worse or time out.

In Figs. 2a,2b, SpinSVAR achieves the best performance,
recovering W nearly perfectly for Bernoulli inputs and han-
dling up to 2000 nodes for Laplacian inputs while maintain-
ing the best runtime. Its computational complexity is supe-
rior to SparseRC, VARLiNGAM, and its variants, and com-
parable to DYNOTEARS (see App. C.1 for details). This ef-

ficiency stems from leveraging the sparse input assumption,
enabling faster convergence with fewer iterations. Baseline
methods such as PCMCI, tsFCI, TCDF, NTS-NOTEARS,
and DYNOTEARS perform poorly even on small graphs.
The latter three rely on MSE loss, which is better suited for
Gaussian inputs. SparseRC, which enforces sparsity via an
LAE loss, exhibits slight improvements but struggles with
larger graphs, timing out beyond 1000 nodes. The strongest
baseline methods are VARLiNGAM and its variants (jointly
labelled as LiNGAMs in Fig. 2). VARLiNGAM scales bet-
ter but performs slightly worse, running up to 1000 nodes
before timing out. The other LiNGAMs, namely Directed
VARLiNGAM and cuLiNGAM, also yield strong results but
already time out beyond 200 nodes. For large graphs with
Bernoulli input (Fig. 2b), VARLiNGAM remains competi-
tive but is approximately 100 times slower for d = 1000.

For varying N (Figs. 2c, 2d), SpinSVAR consistently ex-
cels in the Bernoulli case and improves as N increases in
the Laplace case. SparseRC performs poorly in both setups.
VARLiNGAM struggles with Laplacian input and requires
more samples than SpinSVAR in the Bernoulli setup. Ad-
ditional results for varying d at fixed N = 1 in App. E.2
confirm these trends.

Note that all baselines except DYNOTEARS are designed
for single time series input. For these methods, we concate-



Table 1: Normalized SHD for large DAGs (T = 1000).

SpinSVAR N = 1 2 4 8 16

d = 1000, S ∼ Laplace 0.927 0.118 0.041 0.012 0.003

d = 1000, S ∼ Bernoulli 0.000 0.000 0.000 0.000 0.000

d = 2000, S ∼ Laplace 1.000 0.958 0.116 0.036 0.010

d = 2000, S ∼ Bernoulli 0.001 0.000 0.000 0.000 0.000

d = 4000, S ∼ Laplace 1.010 0.995 0.908 0.125 0.034

d = 4000, S ∼ Bernoulli 0.005 0.001 0.000 0.000 0.000

VARLiNGAM N = 1 2 4 8 16

d = 1000, S ∼ Laplace − − − − −
d = 1000, S ∼ Bernoulli − − − 0.013 0.003

nate the N samples into one long sequence. We acknowl-
edge that this preprocessing step may affect their perfor-
mance—particularly for methods like VARLiNGAM. In
contrast, our method is explicitly designed to handle mul-
tiple time series jointly, leveraging the assumption that we
observe N i.i.d. time series samples. To enable a fairer com-
parison, we include additional experiments (App.E.2) where
N = 1 and T = 10000, matching the total number of ob-
servations in Figs.2a and 2b, as well as experiments with
N = 1 and T = 1000. These results further support our
current conclusions.

Larger graphs In Table 1 we evaluate VARLiNGAM and
SpinSVAR on graphs with up to d = 4000 nodes, varying
the number of samples. These were the only methods that
maintained reasonable performance without timing out at
d = 1000. VARLiNGAM struggles with increasing graph
sizes, timing out beyond d = 1000, and requiring signif-
icantly more samples for reasonable nSHD. In contrast,
SpinSVAR achieves strong results with fewer samples, par-
ticularly in the Bernoulli case. For Laplacian input, it re-
quires slightly more samples to match that performance.
Remarkably, SpinSVAR can nearly perfectly recover a win-
dow graph with 3× 4000 nodes (including time lags) and
16× 1000 time points in 6759s for Bernoulli input. In Ap-
pendix (E.6), we further report the nSHD performance of
SparseRC and the SHD in Table 4.

Time lag k In App. E.5, we present additional experi-
ments on the sensitivity of the time lag k, showing that
SpinSVAR performance remains unaffected as long as it
parametrizes a large enough time lag. In real-world datasets,
where the true value of k is unknown, we choose a large
enough k such that Bk is approximately zero, making it
highly unlikely that meaningful dependencies exist at even
higher lags.

5.2 APPLICATION: S&P 500 STOCK DATA

Dataset We consider stock values from the Standard and
Poor’s (S&P) 500 market index. We gather data from March
1st, 2019, to March 1st, 2024, focusing only on stocks
present in the index throughout this period, leaving d = 410
stocks as nodes. We collect daily closing values for each
stock, resulting in 1259 time points per stock. The data val-
ues are computed as normalized log-returns [Pamfil et al.,
2020], defined for stock i at day t as xt,i = log(yt+1,i/yt,i),
where yt,i is the closing value. We partition the time series
into shorter intervals of 50 days length to obtain time-series
data X of shape 25×50×410. Using these data, we learn a
window graph Ŵ that captures temporary relations between
stocks and the underlying input Ŝ that generates the data.

Learning stock relations We execute all baselines with
hyperparameters set according to a simulated experiment
shown in App. E.7. Fig. 3a shows the SpinSVAR estimate for
B̂0, representing instantaneous relations between stocks. A
similar figure is discovered by SparseRC, but other baselines
did not yield reasonable results with our chosen hyperpa-
rameters or those from the published papers (see App. E.9).
Below, we analyze this result and argue that the sparse input
assumption yields interpretable results for financial data.

For better visualization, we focus on the 45 highest-
weighted stocks in the S&P 500 index. In the execution
of SpinSVAR, we set a maximum time lag of k = 2, but the
method discovered that only B0 was significant. This aligns
with the efficient market hypothesis [Fama, 1970], which
states that stock prices fully reflect all available information,
making past data redundant. Fig. 3a can be interpreted well:
the edges of B̂0 roughly cluster stocks according to their
economic sectors. A few outliers arise due to major IT com-
panies being spread across multiple sectors. For example:
(i) MSFT influences GOOG and AMZN, (ii) META, AAPL,
and MSFT influence AMZN, and (iii) AMZN influences
GOOG and MSFT. Notably, the weights of B̂0 are positive,
indicating that these stocks positively influence each other:
when one increases or decreases, the others do so as well.

Learning the input From the window graph approxima-
tion Ŵ , we can estimate the input Ŝ using (12). Fig. 3b
presents this estimation for the same 45 stocks across 60
randomly chosen dates. As expected, significant input val-
ues (structural shocks) correspond to substantial changes
in stock prices. To investigate this further, we evaluated
all input values based on their alignment with stock price
changes. We say that the input st,i aligns with the change in
data if st,i (xt+1,i − (1 + st,i/2)xt,i) > 0. For example, if
st,i = 0.1 aligns with the data change, then xt+1,i is at least
1.05 times xt,i. Considering the most significant ≈ 1% of
the NTd = 512,500 input entries of Ŝ results in a threshold
of 0.07 and amounts to 4,656 significant structural shocks,
out of which 99.5% align with stock value changes. Thus,
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Figure 3: Real experiment on the S&P 500 stock market
index. (a) Discovered instantaneous relations B̂0 between
the 45 highest weighted stocks within S&P 500, grouped by
sectors (squares), and (b) the associated discovered struc-
tural shocks Ŝ for 60 days. In (a) the direction of influence
is from row to column.

whenever a structural shock occurs at day t, the stock price
at day t + 13 will increase if the value is positive (red) or
decrease if the value is negative (blue).

News and dividends We conjecture that structural shocks
primarily capture significant unexpected events. For in-
stance, META had a positive structural shock of +0.18 on
February 1, 2024 (Fig. 3b) and the same day it announced
that it would pay dividends for the first time [Reuters, 2024].
Similarly, NVDA experienced a +0.20 structural shock on
May 24, 2023, coinciding with an upward sales forecast
revision due to rising AI demand [Reuters, 2023]. In con-

3The structural shock effect happens on the next day as the
data we consider are the log returns of stock prices.

trast, significant, but expected, stock value changes like
dividends deducted on the ex-dividend date are unlikely
to generate structural shocks. Our dataset contains 3,796
dividend payments, yet only 36 coincided with a negative
structural shock, supporting this conjecture.

6 LIMITATIONS

SpinSVAR inherits limitations of structure learning based
on SVAR, which assumes a linear and causally stationary
model. The directed edges found are not necessarily true
causal relations; establishing those would require further
assumptions. We implicitly assume no undersampling: the
measurement frequency is at least as high as the causal ef-
fect frequency. This may affect the stock market experiment,
where we used daily measurements despite stock market ef-
fects occurring within split seconds. In addition, we assume
there are no missing values in the data and that measure-
ments on each node are taken at the same frequency. Also,
while we can learn DAGs with up to thousands of nodes,
very large graphs beyond that remain out of reach. In our the-
oretical results, we assume that all structural shocks are i.i.d.
Laplacian distributed. Extending our theory to allow for non-
identical or dependent shocks is left for future work. While
this is a limitation, our method remains applicable more
broadly to sparse inputs as we demonstrated for Bernoulli
inputs. Finally, our work is designed specifically for sparse
SVAR input. In App. E.7, E.8, we include experiments on a
simulated financial dataset and the Dream3 gene expression
dataset. While our method performs competitively, it is not
the best—potentially because the sparse input assumption
(or even linearity) is violated.

7 CONCLUSION

We proposed SpinSVAR, a novel method for estimating
SVARs from time-series data under the assumption of sparse
input. By modeling the input as i.i.d. Laplacian variables,
SpinSVAR is formulated as a maximum likelihood estima-
tor based on least absolute error regression. Our method is
supported by theoretical consistency guarantees and demon-
strates superior performance over the state-of-the-art in ex-
periments with synthetic and real-world financial datasets.
The results highlight the utility of the sparse input assump-
tion in uncovering interpretable structures and identifying
significant events in real-world time-series data. This work
opens avenues for future research in leveraging sparse input
SVARs for causal discovery in time series.
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ETHICS

SpinSVAR inherits the broader impact of other DAG learning methods from time series. From an ethical viewpoint, the
methodology is generic and poses no specific potential risk.

REPRODUCIBILITY

We acknowledge the importance of reproducibility and here we explain the actions that we took towards a more effortless
reproduction of our results.

Code We provide our code written in Python 3.9 as supplementary material and will make it available on github upon
acceptance. In the README.md file, we explain the Python environment installation, how the code can be executed,
and provide a Jupyter notebook demonstrating a synthetic experiment. More importantly, our code not only provides an
implementation of our method but rather the whole experimental pipeline, showing how the data are generated and how the
baselines are applied.

Data The sparse input SVAR data generation can be executed using our code or reproduced according to the parameters
explained in the experimental section of the main text and the details in Appendix E.1. For the simulated financial and the
S&P 500 data we provide in Appendix E.13 the sources to download them.

Methods We have explained in great detail in the main text the optimization problem solved by SpinSVAR and the adapted
version of SparseRC that we use for fair comparison, also explained in Appendix B. For the execution of all baselines, we
use publicly available repositories listed in E.12 with hyperparameters set as shown in E.10. Competitor methods can also
be executed using the provided code.

A MATHEMATICAL PROOFS AND COMPUTATIONS

In this section we provide all the proofs of technical results used in the manuscript.

A.1 SVAR STABILITY

Whenever a measurement can be taken in a system, stability in the measured data holds by definition. For example,
temperature measurements or stock price markets are never unbounded. To ensure that the same happens for synthetic data,
one needs to guarantee the stability of the data generation process. A few prior works mention stability [Gong et al., 2015,
Khanna and Tan, 2019, Bellot et al., 2022, Malinsky and Spirtes, 2018], and here we want to acknowledge its importance.

Equation (3) can be viewed as a discrete-time multi-input multi-output (MIMO) system [Skogestad and Postlethwaite, 2005],



in which the input is the structural shocks S and the output is the time-series data X . As the time-series length T in (2)
increases, the values of X can get arbitrarily large. We desire to find a range of weights for the matrices B0,B1, ...,Bk that
guarantees that our time-series data are bounded. In particular, we require a condition for the bounded-input bounded-output
(BIBO) stability of this system. This has been already considered by Lütkepohl [2005] (linear case, for non-linear refer
to [Saikkonen, 2001]). The proposed condition requires the roots of the reverse characteristic polynomial to have a modulus
less than 1. Here, we prove a practical and intuitive condition for stability as a derivation of the [Lütkepohl, 2005] result.

Transitive closure To begin, we introduce the definition of the weighted transitive closure of the unrolled DAG (43).

X̃ = X̃A+ S̃ ⇔ X̃ = S̃ (I −A)
−1

= S̃
(
I +A

)
, (13)

On the right hand (13) A = A+ ...+AdT−1 is the weighted transitive closure [Seifert et al., 2023] of the unrolled DAG A.

Stability of model (3) We will now prove Theorem A.1 that we are interested in. This provides a sufficient condition
under which the model (3) is BIBO stable. BIBO stability here means that if the input S is bounded, then so are the output
measurements X .

Theorem A.1. The model (3) is BIBO stable if for some (sub-multiplicative) matrix norm ∥ · ∥:

∥W ∥ < 1

Proof. If ∥W ∥ = λ < 1 then from the structure of A also ∥A∥ = ∥W ∥ = λ < 1. Therefore:

∥∥I +A
∥∥ =

∥∥I +A+ ...+AdT−1
∥∥ ≤

dT−1∑
t=0

∥A∥t ≤
dT−1∑
t=0

λt ≤
∞∑
t=0

λt =
1

1− λ
= M

Thus

lim
T→∞

∥X∥ = lim
T→∞

∥∥(I +A
)
S
∥∥

≤ lim
T→∞

∥∥I +A
∥∥ ∥S∥

≤ M ∥S∥

This implies that ∥X∥ is bounded for all T and the model (3) is BIBO stable.

Example Consider the induced L∞−norm as ∥A∥∞ = maxj
∑d

i=1 |aij |. The induced L∞−norm is sub-multiplicative
and thus Theorem A.1 can be utilized. In fact it can be proved that any induced vector norm is sub-multiplicative (Theorem
5.6.2 in [Horn and Johnson, 2012]). Then, condition ∥W ∥∞ < 1 translates to all outcoming weights (rows of the window
graph matrix) having the sum of absolute values less than 1.

For the sake of completeness, we provide a proof of the submultiplicativity property of the L∞−norm in Lemma A.2.

Lemma A.2. The induced L∞−norm is submultiplicative.

Proof. Consider any two square matrices A,B ∈ Rd×d. We need to show that ∥AB∥ ≤ ∥A∥ ∥B∥. Indeed,

∥AB∥ = max
i

d∑
j=1

∣∣∣∣∣
d∑

k=1

aikbkj

∣∣∣∣∣
≤ max

i

d∑
j=1

d∑
k=1

|aikbkj |

= max
i

d∑
k=1

d∑
j=1

|aik| |bkj |



= max
i

d∑
k=1

|aik|

 d∑
j=1

|bkj |


≤ max

i

d∑
k=1

|aik|

max
k

d∑
j=1

|bkj |


= max

i

d∑
k=1

|aik| ∥B∥

≤ ∥A∥ ∥B∥

Example The L∞−norm is particularly interesting for our scenario as the condition of Theorem A.1 provides an intuitive
interpretation for the weights. Consider our stock market example. Then the condition in A.1 means that for every stock
that affects a set of other stocks, each with some factor < 1, the total sum should be less than 1. Of course, this is only a
sufficient condition for the data to be bounded, but we believe that it is meaningful to consider that the influences between
stocks are of this form in reality. To understand better why the condition in A.1 provides bounded data, we can think about it
in the following way. When the L∞−norm is bounded, the total effect of a stock is divided into individual fractions that
affect other stocks and doesn’t get iteratively increased (which could be the case with sum L∞−norm > 1). Bounding the
sum of outcoming weights to 1 has also been considered in [Seifert et al., 2023, Misiakos et al., 2023] in the scenario of
pollution propagation in a river network.

We further include another submultiplicative property, that we later use on our proofs.

Lemma A.3. The L1−norm, defined as sum of absolut values of the entries of a matrix is submultiplicative.

Proof. Consider any two square matrices A,B ∈ Rd×d. We want to show that ∥AB∥1 ≤ ∥A∥1 ∥B∥1. Indeed,

∥AB∥1 =

d∑
i=1

d∑
j=1

∣∣∣∣∣
d∑

k=1

aikbkj

∣∣∣∣∣
≤

d∑
i=1

d∑
j=1

d∑
k=1

|aikbkj |

=

d∑
i=1

d∑
k=1

d∑
j=1

|aik| |bkj |

=

d∑
i=1

d∑
k=1

d∑
j=1

d∑
l=1

|aik|1k=l |blj |

≤
d∑

i=1

d∑
k=1

d∑
j=1

d∑
l=1

|aik| |blj |

=

(
d∑

i=1

d∑
k=1

|aik|

) d∑
j=1

d∑
l=1

|blj |


≤ ∥A∥1 ∥B∥1



A.2 IDENTIFIABILITY

Theorem A.4. Consider the time-series model (3) with S following a multivariate Laplace distribution as in (4) with
β ∈ [a, b] and a > 1

NTd . Then the matrices B0,B1, ...,Bk ∈ Rd×d and β are identifiable from the time-series data X .

Proof. Recall that the SVAR model in (2) is:

xt = xtB0 + xt−1B1 + · · ·+ xt−kBk + st

As we explain later in Appendix B we can rewrite the SVAR (2) as a linear SEM. We collect all observations xt for
t = 0, 1, . . . , T − 1 into a single row vector (one long time series) x̃ =

(
x0 x1 . . . xT−1

)
∈ R1×dT , which gives rise

to the "unrolled DAG equation":

(
x0 x1 . . . xT−1

)
=
(
x0 x1 . . . xT−1

)


B0 B1 . . . Bk . . . 0

0 B0 B1
. . . B1

... 0 B0
. . . Bk

. . . 0
. . . B1

...
...

. . . . . . B0 B1

0 . . . . . . 0 B0


+
(
s0 s1 . . . sT−1

)

Equivalently, we can write:

x̃ = x̃A+ s̃ (14)

Here, A is a directed acyclic graph matrix, since it is upper (block) triangular, and B0 is assumed to be acyclic. This is the
unrolled DAG representation (43).

Because s̃ contains i.i.d. and Laplace-distributed (i.e., non-Gaussian) components, the model 14 satisfies the assumptions of
LiNGAM [Shimizu et al., 2006]. Therefore, the matrix A is identifiable from the distribution of x̃. Moreover, identifiability
on A implies identifiability for the parameters B0,B1, ...,Bk of the window graph W , as desired.

Note that this result is not affected if our dataset contains more than 1 sample (N > 1), which only benefits the distribution
estimation. For N samples we have:

X = X pastW + S ⇔ X̃ = X̃A+ S̃. (15)

where X̃, S̃ ∈ RN×dT and A ∈ RdT×dT .

We will now establish identifiability of β using the monotonicity of the Laplacian probability distribution. Notice, iden-
tifiability on W means, that for any W ∈ W and any β ∈ [a, b], the equation fX(X |W , β) = fX(X |W ∗, β∗) gives
W = W ∗. This in turn implies that the parameter β is identifiable. Indeed:

fX(X |W ∗, β) = |det (I −B0)|NT 1

(2β)NTd
e−

∥X−XpastW
∗∥1

β (16)

The derivative with respect to β is:

∂fX
∂β

= |det (I −B0)|NT

(
1

β
−NTd

) ∥X −X pastW
∗∥

1

2NTdβNTd+1
e−

∥X−XpastW
∗∥1

β < 0 (17)

Therefore, fX is monotonically decreasing and thus bijective for β > 1
NTd . Therefore:

fX(X |W , β) = fX(X |W ∗, β∗)
LiNGAM
=====⇒ W = W ∗ and fX(X |W ∗, β) = fX(X |W ∗, β∗)

monotonicity
=======⇒ β = β∗ (18)

Thus, (W , β) are identifiable from the data X .



Remark A.5. In Section 5.1.1 in the VARLiNGAM paper [Hyvärinen et al., 2010], the way LiNGAM identifiability is
invoked in Step 3 of their argument is fundamentally different from our approach in (14). Specifically, Hyvärinen et al. [2010]
first perform standard autoregressive (AR) estimation, and then apply LiNGAM identifiability to the resulting residuals. In
contrast, our proof directly constructs a system of SVAR equations, leading to an unrolled DAG representation over time,
on which we then apply LiNGAM.

A.3 MLE COMPUTATION

Estimator computation Here we compute the MLE assuming that each entry of the structural shocks S ∈ Rd×T follows
independently a Laplace distribution Laplace (0, β). The multivariate probability density function of S is:

fC(S) =
∏
τ,j

1

2β
e−

|Sτ,j |
β (19)

Solving with respect to X equation (3) gives X = S(I −A)−1 where A ∈ RdT×dT is the unrolled DAG matrix of W
according to (43). Here, we didn’t change our notation, but X and S are supposed to represent 1× dT dimensional vectors.
For simplicity we will do this interchange in the following computations as it doesn’t affect the probability distribution.
Using this linear transformation the probability density function (pdf) of X , or likelihood of the data, becomes

fX(X|W , β) =
fC (X (I −A))∣∣∣det
(
(I −A)

−1
)∣∣∣

= |det (I −A)|
∏
τ,j

1

2β
e−

|Xτ,j−Xpastτ,:W:,j |
β

=
∣∣∣det (I −B0)

T
∣∣∣∏
τ,j

1

2β
e−

|Xτ,j−Xpastτ,:W:,j |
β

= |det (I −B0)|T
1

(2β)dT
e−

∥X−XpastW∥1
β

Therefore, for N realizations of X in the tensor X we have that:

fX(X |W , β) = |det (I −B0)|NT 1

(2β)NdT
e−

∥X−XpastW∥1
β , (20)

which in turn gives the log-likelihood for the data:

L (W , β;X ) = log fX (X |W , β)

= NT log |det (I −B0)| −NTd log(2β)− 1

β
∥X −X pastW ∥

1
. (21)

In what follows, for simplicity of notation we will skip the parameter β and will use L (W , β;X ) and L (W ;X ) inter-
changeably.

A.4 MLE CONSISTENCY BACKGROUND

We proceed by analyzing the prior theorems that we will use to prove our results. First, denote with L (W ) the population
log-likelihood [Lachapelle et al., 2019, Newey and McFadden, 1994], defined as:

L (W , β) = EW ∗,β∗ [L (W , β;X )] . (22)

Note that we use L (W , β;X ) and L (W ;X ) interchangeably, as well as L (W , β) and L (W ).

In essence, the population log-likelihood is the expected value of the log-likelihood function computed with the probability
density fX(X |W ∗, β∗) with parameters the ground truth window graph W ∗ and parameter β∗. This expected value is
computed over the distribution of X, parametrized assuming ground truth parameters W∗, β∗. Formally, we have:

L(W, β) = EW∗,β∗ [L(W, β;X)] =

∫
X∼PW∗,β∗ (X)

L(W, β;X)dX



Lemma A.6. Assume that the ground truth window graph W ∗ and parameter β∗ are identifiable from the data distribution.
This means, that for (W , β) ̸= (W ∗, β∗) it is true that fX (X |W , β) ̸= fX (X |W ∗, β∗). Then, the population likelihood
L (W , β) has unique maximum at the true window graph W ∗ and true β∗.

Proof. We show that L (W ∗, β∗) > L (W , β) for every (W , β) ̸= (W ∗, β∗). By simplifying our notation we have:

L (W ∗)− L (W ) = EW ∗ [L (W ∗;X )− L (W ;X )]

= EW ∗

[
− log

fX (X |W )

fX (X |W ∗)

]
> − logEW ∗

[
fX (X |W )

fX (X |W ∗)

]
= − log

∫
X∈RN×T×d

fX (X |W )

fX (X |W ∗)
fX (X |W ∗) dX

= − log

∫
X∈RN×T×d

fX (X |W ) dX

= − log 1 = 0

On the second line we used that fX(X |W )
fX(X |W ∗) is non-constant, so we can apply the strict Jensen inequality [Newey and

McFadden, 1994] E [a(Y )] > E [a(Y )] for a convex function a and non-constant random variable Y .

As a next result for our toolset to prove the MLE consistency, we include the uniform law of large numbers as stated
by Newey and McFadden [1994].

Lemma A.7 (Uniform Law of Large Numbers). Consider that the log-likelihood function L (W ;X ) , W ∈ W satisfy the
following conditions.

• The data X i are independent and identically distributed.

• W is a compact space.

• L (X i;W ) , W ∈ W is continuous at each W ∈ W with probability 1.

• There exists dominating function D(W ) such that |L (W ;X )| ≤ D (W ) and EW ∗ [D(W )] < ∞.

Then the population likelihood L (W ) and the empirical average log-likelihood converges uniformly in probability to it:

sup
W∈W

∣∣∣∣∣ 1n
n∑

i=1

L (X i;W )− L (W )

∣∣∣∣∣ p−→ 0 (23)

We now present Theorem A.8, which establishes the consistency of the maximum likelihood estimator (MLE). This theorem
is based on a set of sufficient assumptions for ensuring MLE consistency. For completeness, we include a detailed proof of
Theorem A.8, leveraging the uniform law of large numbers.

Theorem A.8. Consider that the average log-likelihood function Ln (W ) and population L (W ) satisfy the following
conditions for W ∈ W:

• W ∗ = argmaxW∈W L (W ) is identifiable from the data.

• W is a compact space.

• The data X i are independent and identically distributed.

• L (X i;W ) is continuous at each W ∈ W with probability 1.

• EW ∗ [supW∈W |L (W ;X )|] < ∞ .

Then, if the maximum of Ln (W ) = 1
n

∑n
i=1 L (X i;W ) is achieved at Ŵn then Ŵn converges uniformly to W ∗.



Proof. We repeat the proof of (Theorem 2.1, Newey and McFadden [1994]) for our scenario. From the identifiability
assumption, Lemma A.6 implies that W ∗ is the unique and global maximizer of L (W ). Also, if we set D(W ) =
supW∈W |L (W ;X )|, then the conditions of Lemma A.7 are satisfied and therefore Ln (W ) converges uniformly in
probability to L (W ). We will leverage the compactness of the space W to show that their maxima satisfy

Ŵn
p−→ W ∗ (24)

From the uniform convergence it follows that with probability approaching 1 for any ϵ (or ϵ/3 as we use next):

|Ln (W )− L (W )| < ϵ ⇔ L (W )− ϵ < Ln (W ) < L (W ) + ϵ, ∀W ∈ W. (25)

Since by definition Ln (W ) is a continuous function and W is compact it takes a maximum value at point Ŵn. Since
Ln

(
Ŵn

)
≥ Ln (W

∗) the maximum would satisfy for any ϵ > 0

Ln

(
Ŵn

)
> Ln (W

∗)− ϵ/3. (26)

This in combination with (25) would imply

L
(
Ŵn

)
> Ln

(
Ŵn

)
− ϵ/3 > Ln (W

∗)− 2ϵ/3 > L (W ∗)− ϵ. (27)

In essence we have proved that L
(
Ŵn

)
can get arbitrarily close to L (W ∗). This in turn gives that Ŵn approaches W ∗

with probability 1 as n → ∞. Indeed, if we consider any open interval I containing W ∗, then W ∩ Ic is compact and we
can compute

M = sup
W∈W∩Ic

L (W ) < L (W ∗) (28)

Note that by Lemma A.7 L (W ) is continuous, so the supremum is a finite value. If we choose ϵ = L (W ∗)−M then:

L
(
Ŵn

)
> L (W ∗)− ϵ = M (29)

Thus Ŵn ∈ I which concludes the proof.

A.5 MLE CONSISTENCY FOR DAGS

We will now show that the MLE computed at (21) satisfies the requirements of Theorem A.8 for consistency. Practically,
this result implies that as the amount of available data X increases, the maximizer Ŵ of the log-likelihood function
L (W , β;X ) converges to the maximizer W ∗ of the population likelihood L (W , β). To begin with we introduce the
following useful lemma. In essence, using the continuous characterization of acyclicity [Zheng et al., 2018] we show that
the space of bounded DAGs is also closed and thus compact.

Lemma A.9. The set of acyclic matrices A =
{
A ∈ [−1, 1]d×d|A is acyclic

}
is compact.

Proof. Note that Zheng et al. [2018] proved that

A is acyclic ⇔ h (A) = 0, (30)

where h (A) = eA⊙A − d is a continuous function. We proceed by showing that A is closed and bounded.

• Closed: [−1, 1]d×d is closed and since h (A) is continuous and {A is acyclic} = h−1({0}) implies that A is
closed [Sutherland, 2009].

• Bounded: A is bounded because A ⊂ [−1, 1]d×d which is bounded.

Therefore, since A ⊂ Rd×d is closed and bounded, A is compact [Sutherland, 2009].

Now using this Lemma we are ready to prove our consistency result.



Theorem A.10. The maximum log-likelihood estimator of (21) satisfies the conditions of Theorem A.8 and thus is consistent
under the following assumptions:

• The space of window graphs W ⊆ [−1, 1]d(k+1)×d is bounded and B0 is acyclic.

• The Laplacian parameter β ∈ [a, b] is bounded with lower bound a > 1
dT

1.

• The time-series samples X i are independent and identically distributed.

Proof. We check one-by-one the requirements of Theorem A.8.

First, the identifiability of the ground truth W ∗ and β∗ follows from Theorem A.2.

Also, (W , β) ∈ W × [a, b] = A × [−1, 1]dk×d × [a, b] which is compact because the space A of acyclic graphs B0 is
compact from Lemma A.9 and [−1, 1]dk×d and [a, b] are both closed and bounded and thus compact according to Sutherland
[2009].

Moreover, the log-likelihood

L (W , β;X ) = NT log |det (I −B0)| −NTd log(2β)− 1

β
∥X −X pastW ∥

1
(31)

is continuous at (W , β).

Finally, we need to show that E [supW∈W |L (W ;X )|] < ∞. For this we compute:

|L (W ;X )| = |log fX (X |W , β)|

=

∣∣∣∣NT log |det (I −B0)| −NTd log(2β)− 1

β
∥X −X pastW ∥

1

∣∣∣∣
=

∣∣∣∣−NTd log(2β)− 1

β
∥X −X pastW ∥

1

∣∣∣∣
≤ |NTd log(2b)|+

∣∣∣∣ 1β ∥X −X pastW ∥
1

∣∣∣∣
≤ C1 +

1

a
∥X −X pastW ∥

1

≤ C1 + C2 ∥X∥1

Here we used that B0 is acyclic and thus NT log |det (I −B0)| = 0. We assumed that β ∈ [a, b] is bounded. Also we used
that the (τ, j) entry of X −XpastW is Xτ,j −Xpastτ,:W:,j and

|Xτ,j −Xpastτ,:W:,j | < |Xτ,j |+ ∥Xpastτ,:∥1 ⇒∑
τ,j

|Xτ,j −Xpastτ,:W:,j | <
∑
τ,j

((k + 1)d+ 1) |Xτ,j | = ((k + 1)d+ 1) ∥X∥1 ,

which furthermore implies

∥X −X pastW ∥
1
=
∑
i

|X i −X i,pastW | <
∑
i

((k + 1)d+ 1) ∥X i∥1 = ((k + 1)d+ 1) ∥X∥1 = C2 ∥X∥1 , (32)

1This value in our experiment is at most 1
2·104 , so this is a mild assumption.



for some constant C2. Therefore:

EW ∗ [|L (W ;X )|] =
∫
X∈RT×d

|L (W ;X )| fX (X |W ∗, β∗) dX

<

∫
X∈RN×T×d

(C1 + C2 ∥X∥1) fX (X |W ∗, β∗) dX

=

∫
X∈RN×T×d

(C1 + C2 ∥X∥1) |det (I −B∗
0)|

NT 1

(2β∗)NdT
e−

∥X−XpastW
∗∥1

β∗ dX

=

∫
X∈RN×T×d

(C1 + C2 ∥X∥1)
1

(2β∗)NdT
e−

∥X−XpastW
∗∥1

β∗ |det (I −A∗)| dX

=

∫
S∈RN×T×d

(C1 + C2 ∥X∥1)
1

(2β∗)NdT
e−

∥S∥1
β∗ dS

= C1 + C2

∫
S∈RN×T×d

∥X∥1
1

(2β∗)NdT
e−

∥S∥1
β∗ dS

= C1 + C2

∫
S∈RN×T×d

∥∥∥S (I −A∗)
−1
∥∥∥
1

1

(2β∗)NdT
e−

∥S∥1
β∗ dS

Note that,
∥∥∥S (I −A∗)

−1
∥∥∥
1
=
∥∥S (I +A∗ + ...+ (A∗)dT

)∥∥
1
. From Lemma A.3 we have that∥∥∥S (I −A∗)

−1
∥∥∥
1
=
∥∥S (I +A∗ + ...+ (A∗)dT

)∥∥
1
≤ ∥S∥1

(
dT + ∥A∗∥1 + ...+ ∥(A∗)∥dT1

)
≤ ∥S∥1 · C3 (33)

Thus:

EW ∗ [|L (W ;X )|] < C1 + C2

∫
S∈RN×T×d

∥∥∥S (I −A∗)
−1
∥∥∥
1

1

(2β∗)NdT
e−

∥S∥1
β∗ dS

< C1 + C2C3

∫
S∈RN×T×d

∥S∥1
1

(2β∗)NdT
e−

∥S∥1
β∗ dS

= C1 + C2C3

∑
i,τ,j

∫
S∈RN×T×d

|Si,τ,j |
1

(2β∗)NdT
e−

∥S∥1
β∗ dS

= C1 + C2C3

∑
i,τ,j

∫
R
|Si,τ,j |

1

(2β∗)
e−

|Si,τ,j |
β∗ dSi,τ,j

= C1 + 2C2C3

∑
i,τ,j

∫
R≥0

|Si,τ,j |
1

(2β∗)
e−

|Si,τ,j |
β∗ dSi,τ,j

= C1 + 2C2C3

∑
i,τ,j

∫
R≥0

Si,τ,j
1

(2β∗)
e−

Si,τ,j
β∗ dSi,τ,j

= C1 + 2C2C3

∑
i,τ,j

{
−Si,τ,j

2
e−

Si,τ,j
β∗
∣∣∣∞
0

−
∫
R≥0

−1

2
e−

Si,τ,j
β∗ dSi,τ,j

}
= const < ∞.

Remark A.11. Note that LiNGAM identifiability is true in the entire space of real matrices Rd(k+1)×d [Shimizu et al.,
2006, Ng et al., 2020]. In other words for any W ∈ Rd(k+1)×d different from the ground truth DAG W ∗ the distribution
fX(X|W , β) induced by W is different from that of W ∗, namely fX(X|W ∗, β). The reason we restrict our search space
to be a DAG is to constrain the magnitude of the terms of the MLE that contain B0.

A.6 SPINSVAR OPTIMIZATION DERIVATION

Here we derive the optimization objective of SpinSVAR for approximating the ground truth window graph parameters of the
SVAR of (3), given that the SVAR input S entries are distributed independently according to Laplace(0, β∗). We consider



N realization of time series X collected in a tensor X ∈ RN×T×d. According to (21) the log-likelihood of the data X is

L (W , β;X ) = log fX (X |W , β) = log
∏

fX (Xi|W , β) (34)

=

N∑
i=1

log fX (Xi|W , β) (35)

= NT log |det (I −B0)| −NTd log(2β)− 1

β
∥X −X pastW ∥

1
(36)

To maximize the log-likelihood with respect to β we solve:

∂L
∂β

= 0 ⇔ −NTd

β
+

1

β2
∥X −X pastW ∥

1
= 0 ⇔ β =

1

NTd
∥X −X pastW ∥

1
. (37)

Note that if W = W ∗ this is a reasonable value for β as on expectation

Eβ∗
[
∥X −X pastW ∥

1

]
= Eβ∗ [∥S∥1] =

∑
i,τ,j

Eβ∗
[
∥Si,τ,j∥1

]
= NTdβ∗. (38)

Moreover,
∂2L
∂β2

= 0 ⇔ NTd

β2
− 2

β3
∥X −X pastW ∥

1
=

NTd

β3

(
β − 2

NTd
∥X −X pastW ∥

1

)
< 0. (39)

So, L (W , β;X ) is locally concave at β = 1
NTd ∥X −X pastW ∥

1
, which gives a local maximum. Similarly to Ng et al.

[2020], we profile out the parameter β using its approximation β̂ = 1
NTd ∥X −X pastW ∥

1
to formulate a log-likelihood

maximization problem for approximating W :

L
(
W , β̂;X

)
= NT log |det (I −B0)| −NTd log

(
∥X −X pastW ∥

1

)
+ const.

The window graph W ∗ is then be approximated as:

Ŵ = argmax
W∈W

L (W ;X ) = argmax
W∈W

{
NT log |det (I −B0)| −NTd log

(
∥X −X pastW ∥

1

)
+ const

}
= argmin

W∈W

{
d log

(
∥X −X pastW ∥

1

)
− log |det (I −B0)|

}
= argmin

W∈W
log ∥X −X pastW ∥

1
− 1

d
log |det (I −B0)| (40)

In practice, searching for the minimum of (40) over the space of DAGs is computationally inefficient. Following Ng et al.
[2020] we use the acyclicity as a soft constraint, i.e. a regularizer. This simplifies the optimization algorithm without
compromising performance, as will be shown in our experiments. The final optimization of SpinSVAR is the following.

W̃ = argmin
W∈Rd(k+1)×d

log ∥X −X pastW ∥
1
− 1

d
log |det (I −B0)|+ λ1 · ∥W ∥1 + λ2 · h (B0) . (41)

B APPLYING SPARSERC TO TIME-SERIES DATA

SparseRC [Misiakos et al., 2023] is designed to learn a DAG from static data. Misiakos et al. [2024] applied SparseRC to
learn graphs from time-series data by exploiting the structure of the unrolled DAG corresponding to the time series. For
long time series, such a formulation creates a huge DAG to be learned - ranging from 20 thousand to 1 million nodes in
our experiments. However, SparseRC can only be executed for ≈ 5000 nodes at maximum to terminate in a reasonable
time [Misiakos et al., 2023]. Thus it is impossible to be applied in our scenario in its prior form. For this reason, we propose
an alternative way to apply SparseRC, which however, comes with a cost in approximation performance.



SVAR as a Linear SEM To start with we show how an SVAR can be written as a linear structural equation model
(SEM), which is the analogous model for generating linear static DAG data. We consider a time series X generated with the
SVAR in (3) (noiseless for simplicity). Consider the single-row vector x = (x0,x1, ...,xT−1) ∈ R1×dT consisting of the
concatenation of the time-series vectors x0,x1, ...,xT−1 along the first dimension. Then (3) can also be encoded as:

x = xA+ s, (42)

where the structural shocks s here also have dimension 1 × dT . The matrix A is the adjacency matrix of a DAG with
a special structure called the unrolled DAG [Kim and Anderson, 2012], which occurs by repeating the window graph
corresponding to (2) for every time step t ∈ [T ]:

A =



B0 B1 . . . Bk . . . 0

0 B0 B1
. . .

...
...

. . . . . . . . . Bk

. . . . . .
...

0 . . . 0 B0 B1

0 0 . . . 0 B0


. (43)

This allows us to rewrite (3) as a linear structural equation model (SEM) [Shimizu et al., 2006]:

X̃ = X̃A+ S̃, (44)

where X̃ ∈ RN×dT consists of the N time series as rows and S̃ is defined similarly for the structural shocks. Since A is a
DAG, (44) represents a linear SEM.

Original SparseRC We now explain how SparseRC can be applied to learn the window graph from time series according
to Misiakos et al. [2024]. SparseRC can be used to learn A from (many samples of) x stacked as a matrix X̃ ∈ RN×dT ,
generated from a linear SEM (44). Its optimization objective aims to minimize the number of approximated non-zero
structural shocks S̃ in (44). This is expressed with the following discrete optimization problem

Â = argmin
A∈RdT×dT

∥∥∥X̃ − X̃A
∥∥∥
0
, s.t. A is acyclic. (45)

The window graph Ŵ can be then extracted from the first row of the approximated Â. SparseRC in practice uses a
continuous relaxation to solve optimization problem (45), but here we keep the discrete formulation for simplicity.

It can be seen that the DAG A consists of dT nodes. In our smallest experiment this equals to 20× 1000 = 20000 nodes,
which is already out of reach for SparseRC. In contrast, SpinSVAR requires to learn only (k + 1)× DAGs with d nodes
each. Thus, we necessarily need to formulate SparseRC differently to be able to compare against it.

Modified SparseRC The idea is to reduce the size of A by getting rid of the 0′s in (43). Specifically, instead of feeding
SparseRC X̃ we feed as input X past. The resulting algorithm aims to find an Â according to:

Â = argmin
A∈R(k+1)d×(k+1)d

∥X past −X pastA∥
0
, s.t. A is acyclic. (46)

To be compatible with the data-generating process, the following structure is assumed for A:

A =



B0 0 ... 0 0

B1 B0
. . . 0

... B1
. . . . . .

...

Bk−1
. . . B0 0

Bk Bk−1 . . . B1 B0,


(47)

The optimization objective (46) is different from ∥X −X pastW ∥
0

used from SpinSVAR and promotes a different convention
in the data generating process. In particular by setting S̃ = X past −X pastA the structural shock s̃t−j corresponding to the
position j of row t of xt,past = (xt,xt−1, ...,xt−j , ...,xt−k) of a sample i of X past would be:

s̃t−j = xt−j − xt−jB0 + xt−j−1B1 + ...+ xt−kBk−j ̸= st−j . (48)



This implies that the approximation of the structural shocks is not consistent with the data generation in (3), except when
j = 0. Thus, only the first column of A promotes the correct equations and the rest undermine the performance of SparseRC.
Resolving this discrepancy and keeping only the first column as trainable parameters is among the technical contributions of
our paper.

C SPINSVAR OPTIMIZATION AND COMPARISON WITH BASELINES

SpinSVAR Our implementation in PyTorch is outlined in Algorithm 1. It parametrizes the window graph matrix W using
a single PyTorch linear layer and optimizes the objective function (11) with the Adam optimizer. The overall computational
complexity of the algorithm is:

O
(
M · (NTd2k + d3)

)
, (49)

where M is the total number of epochs (up to 104).

The primary term in our objective, N
{
log ∥X − L (X )∥1 −

1
d log |det (I −B0)|

}
, represents a fundamental difference

from prior work on causal discovery in time series. Methods such as VAR-based optimization approaches [Pamfil et al.,
2020, Sun et al., 2023] typically rely on a mean-squared error loss supplemented by an L1 penalty to promote sparsity in the
DAG. In contrast, both the main term and the regularizer in our objective are L1 norms, promoting sparsity not only in the
DAG but also in the SVAR input. This design aligns with the assumption of sparse SVAR input. Potentially, L2 leads to
longer convergence times, which makes our algorithm terminate faster in the experiments.

Algorithm 1 SpinSVAR: DAG Learning from Time Series with Few structural shocks

Input: Time series data tensor X ∈ RN×T×d, λ1, λ2 regularization parameters and threshold ω.

Output: Weighted window graph Ŵ =

B0

...
Bk

 and structural shocks Ŝ.

1: Initialize:
2: A single linear layer L(input: d(k + 1), output: d) in PyTorch that represents Ŵ .
3: Tensor X past ∈ RN×T×d(k+1), where the (n, t) entry is the vector xt,past = (xt, xt−1, ..., xt−k) ∈ R1×d(k+1).
4: Iterate:
5: for each training epoch up to M = 104 do
6: Compute the loss:

N

{
log ∥X − L (X )∥1 −

1

d
log |det (I −B0)|

}
+ λ1∥W ∥1 + λ2h(B0),

where h(B) = tr
(
eB⊙B

)
− d .

7: Update the linear layer parameters Ŵ with Adam optimizer.
8: Stop early if the loss doesn’t improve for 40 epochs.
9: end for

10: Post-processing:
11: Set the entries wij of W with |wij | < ω to zero.
12: Compute the unweighted version U ∈ {0, 1}d(k+1)×d of W .
13: Compute the approximated structural shocks:

Ŝ = X −X pastŴ .

14: return Ŵ , Û , Ŝ

C.1 COMPARISON WITH BASELINES

SparseRC As we explained in the main text, the method from Misiakos et al. [2023] is infeasible to execute for
long time series data. In its original form, SparseRC has complexity O

(
M · (Nd2T 2 + d3T 3)

)
, where M is the total



number of iterations. SparseRC learns a dT × dT unrolled DAG, which for our smaller scenario, results in a DAG with
d× T = 20× 1000 = 20000 nodes that goes beyond its computational reach [Misiakos et al., 2023].

In Appendix B, we design a modified version of SparseRC that learns a (k + 1)d × (k + 1)d adjacency matrix, which
ultimately leads to a complexity of O

(
M · (NTd2k2 + d3k3)

)
. This adaptation can be executed in most scenarios but

comes at the cost of reduced model performance.

VARLiNGAM First, the method fits a VAR model to the data:

xt = B̃1xt−1 + ...+ B̃kxt−k + nt, (50)

and then performs Independent Component Analysis (ICA) to compute the self-dependencies matrix B0:

nt = (I −B0)nt + st. (51)

The resulting matrices are calculated as
Bτ = (I −B0)B̃τ .

The ICA step can be replaced with Direct LiNGAM [Shimizu et al., 2011], which guarantees convergence in a finite number
of steps (under certain assumptions). This variation leads to the method Directed VARLiNGAM. However, both approaches
have worse complexity compared to ours:

• For Direct LiNGAM: O
(
NTd2k +NTd3M2 + d4M3

)
, where M is the number of iterations of Direct LiNGAM.

• For ICA LiNGAM: O
(
NTd2k +NTd3 + d4

)
, which lacks convergence guarantees.

In the large-DAG regime, these algorithms are inevitably slower than ours.

cuLiNGAM Akinwande and Kolter [2024] accelerate Directed VARLiNGAM by implementing a parallelized version on
GPUs. While this method is faster than Directed VARLiNGAM, our experiments show that it still times out, likely due to
high convergence times.

DYNOTEARS Here, the mean-square error (MSE) is used, transforming the optimization into a quadratic problem:

1

2NT
∥X −X pastW ∥

2
+ λw∥W ∥1 +

ρ

2
h(B0)

2 + ah(B0), (52)

where the L2 norm in the first term doesn’t enforce sparsity on the structural shocks. As a result, this method experiences
longer convergence times and produces a poor approximation of the ground truth window graph.

TCDF This method fits convolutional neural networks (CNNs) to predict the time series at each node, based on the
time-series values of other nodes in previous time steps. The approximation is optimized using the MSE loss. However,
both the non-linearity of CNNs and the MSE loss do not align with our data generation process, which limits the method’s
effectiveness for our specific task.

NTS-NOTEARS Similar to TCDF, this method also uses CNNs and MSE loss to approximate the window graph. In
addition, the acyclicity regularizer from NOTEARS is applied. For similar reasons, we anticipate low performance in our
experiments with this method as well, due to the mismatch between the assumptions of the method and the characteristics of
our data.

tsFCI, PCMCI For the constraint-based baselines, there is no clear comparison in terms of optimization. These methods
rely on statistical independence tests to infer causal dependencies between nodes at different time points. Empirically,
however, these methods perform poorly, likely due to their inability to determine the causal direction for every edge they
discover.

D SPARSITY PROPERTIES OF LAPLACE DISTRIBUTION

A random variable X follows a Laplace distribution [Eltoft et al., 2006], denoted as Laplace(µ, β), if its probability density
function is given by:

fX(x|µ, β) = 1

2β
e−

|x−µ|
β . (53)



We now analyze why the Laplace distribution is better suited for modeling sparse vectors compared to the Gaussian
distribution. Specifically, we consider Laplacian noise variables centered at zero, setting µ = 0. Our motivation is that
Laplace-distributed variables are more likely to produce large outliers, whereas Gaussian-distributed variables tend to be
concentrated around zero.

To investigate sparsity, we consider three approaches for achieving approximately 5% sparsity. The first follows our
experimental procedure described in Section 5.1, which combines Bernoulli and uniform distributions. The second uses a
Gaussian distribution, and the third uses a Laplace distribution. Since strict sparsity cannot be achieved, 95% of the values
will be approximately zero.

We compare these distributions in terms of their sparsity-inducing properties by addressing the following question: How
much more significant are the nonzero values compared to the approximately zero ones? To do so, we define a threshold ω
that classifies values above ω as significant and those below ω as approximately zero.

For each scenario, we generate a random vector s with d entries (s1, . . . , sd) and consider a threshold of ω = 0.1.

Bernoulli & Uniform Each si is generated independently, and with probability 1− p = 0.95, it is set to zero. Otherwise,
with probability p = 0.05, it takes a uniform random value from the range [−0.4,−0.1] ∪ [0.1, 0.4]. The upper bound of 0.4
ensures that the maximum absolute value is comparable to that of the Laplace distribution, as described later. To each si, we
then add Gaussian noise with a standard deviation of 0.03. Since 99% of the Gaussian noise values lie within [−0.09, 0.09],
this noise does not significantly affect the sparsity structure. Thus, given ω = 0.1, approximately 95% of the entries in s
will have absolute values below ω, effectively maintaining sparsity.

Gaussian For a Gaussian-distributed variable, it is known that approximately 95% of values lie within [−2σ, 2σ]. To
achieve the required sparsity threshold ω = 0.1, we set the standard deviation to σ = 0.05.

Laplace For a Laplace-distributed variable X , the probability that its absolute value does not exceed ω is given by:

P (|X| ≤ ω) =

∫ ω

−ω

1

2β
e−

|x|
β dx

= 2

∫ ω

0

1

2β
e−

x
β dx

=

∫ ω

0

1

β
e−

x
β dx

= −e−
x
β

∣∣∣ω
0
= 1− e−

ω
β .

Setting β = ω/3 ensures that P (|X| ≤ ω) ≈ 0.95, thereby achieving the desired sparsity.

Empirical Evaluation With the distribution parameters set, we empirically evaluate the sparsity patterns of the generated
vectors. Our goal is to demonstrate that the Laplace distribution is better suited for generating sparse vectors compared to
the Gaussian. For each distribution listed in Table 2, we generate a vector s with d = 106 entries and compute the following
evaluation metrics:

• Sparsity fraction: The percentage of values with absolute values greater than ω.

• Maximum absolute value: maxi |ci|.
• Contrast ratio:

Contrast ratio =

1
M

∑
|ci|>ω |ci|
ω

, (54)

where M is the number of entries satisfying |ci| > ω.

• Signal-to-noise ratio (SNR):

SNR =

∑
|ci|>ω |ci|2∑
|ci|<ω |ci|2

. (55)

The computational results are shown in Table 2. Given the 5% sparsity constraint, the best performance is achieved
by the Bernoulli-Uniform method, which produces higher values with a maximum magnitude of 0.51 and exhibits a



superior contrast ratio and SNR, indicating better sparsity characteristics. The Laplace distribution achieves the second-best
performance.

Table 2: Empirical sparsity evaluation for different distributions.

Method Sparsity Maximum Absolute Value Contrast Ratio SNR

Bernoulli & Uniform 5.0% 0.51 2.50 3.40
Gauss N (0, 0.0512) 5.0% 0.25 1.19 0.38
Laplace

(
0, 1

3

)
5.0% 0.53 1.33 0.73

E ADDITIONAL EXPERIMENTS

In this section we include additional synthetic experiments and additional results regarding the simulated and real-world
financial datasets.

E.1 EMPIRICAL STABILITY OF TIME SERIES

According to Theorem A.1, the stability of the time-series data X requires that the weight matrices B0,B1, . . . ,Bk satisfy
an upper bound w such that:

(5 + 2 + 2)w = 9w < 1, or equivalently, w < 0.11. (56)

However, to allow for a greater variety of edge weights, we instead assign uniformly random weights from the range [0.1, 0.5].
In practice, X is typically observed to converge. If any generated dataset results in unbounded values—specifically, if the
average value of X exceeds 106 ·NdT—we discard the sample and repeat the data generation process.

E.2 ADDITIONAL SETUPS AND METRICS

In Figs. 4,5,6,7 we provide more experimental setups with the additional metrics SHD, precision (PREC), recall (REC), area
under ROC curve (AUROC), F1-score, the normalized mean square error (NMSE) and the SHD and NMSE on the input Ŝ
approximation. To define formally the last two metrics, if Ŵ and Ŝ are the approximations of the ground truth window
graph W and structural shocks S then:

NMSE =

∥∥∥Ŵ −W
∥∥∥
2

∥W ∥2
, S NMSE =

∥∥∥Ŝ − S
∥∥∥
2

∥S∥2
. (57)

In Fig.4 the computation of Ŝ NMSE is numerically unstable for all methods and is not reported.
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(b) N = 10, T = 1000

20 30 50 10
0

20
0

50
0

10
00

Nodes d

0.0

0.2

0.4

nS
H

D
20 30 50 10

0
20

0
50

0
10

00

Nodes d

0

500

1000

1500

2000

SH
D

20 30 50 10
0

20
0

50
0

10
00

Nodes d

0

20000

40000

60000

 S
H

D

20 30 50 10
0

20
0

50
0

10
00

Nodes d

0

500

1000

1500

T
im

e 
[s

]

(c) N = 1, T = 10000

SparseRC

SpinSVAR

1 2 3 5 10 20

Samples N
0

500

1000

1500

2000

SH
D

1 2 3 5 10 20

Samples N
0

20000

40000

60000

 S
H

D

1 2 3 5 10 20

Samples N
0

500

1000

1500

T
im

e 
[s

]

(d) d = 500, T = 1000

Figure 4: Performance on synthetic data (Laplacian distributed input): nSHD (↓), SHD (↓), structural shocks SHD (↓),
runtime and structural shocks NMSE (↓).(a), (b) correspond to N = 1 and N = 10 samples of time-series with T = 1000
and varying number of nodes. (c) corresponds to d = 500 nodes and varying samples N of time-series of length T = 1000.
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(a) N = 1, T = 1000
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(b) N = 10, T = 1000
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(c) N = 1, T = 10000
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(d) d = 500, T = 1000

Figure 5: Performance on synthetic data (Laplacian distributed input): Precision (PREC) (↑), Recall (REC) (↑), F1-score (↑),
AUROC (↑) and NMSE (↑). (a), (b) correspond to N = 1 and N = 10 samples of time-series with T = 1000 and varying
number of nodes. (c) corresponds to d = 500 nodes and varying samples N of time-series of length T = 1000.
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(a) N = 1, T = 1000
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(b) N = 10, T = 1000
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(c) N = 1, T = 10000
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(d) d = 500, T = 1000

Figure 6: Performance on synthetic data (Bernoulli distributed input).
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(a) N = 1, T = 1000
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(b) N = 10, T = 1000
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(c) N = 1, T = 10000
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(d) d = 500, T = 1000

Figure 7: Performance on synthetic data (Bernoulli distributed input).

E.3 OTHER FORMS OF SPARSITY: GAUSSIAN SUBSAMPLING

Here we examine a third sparsity scenario, referred to as Gaussian subsampling, in which the non-zero entries of the Bernoulli
variables are assigned values drawn from a normal distribution rather than uniform ones, as in the Bernoulli-uniform sparse
data generation.



SpinSVAR (Ours)

tsFCI

VARLiNGAM

NTS-NOTEARS

Directed VARLiNGAM

TCDF

cuLiNGAM

DYNOTEARS

PCMCI

SparseRC

20 30 50 10
0

20
0

50
0

10
00

Nodes d

0.0

0.2

0.4

nS
H

D

20 30 50 10
0

20
0

50
0

10
00

Nodes d

0.00

0.25

0.50

0.75

1.00

PR
EC

20 30 50 10
0

20
0

50
0

10
00

Nodes d

0

1000

2000

3000

4000

T
im

e 
[s

]

20 30 50 10
0

20
0

50
0

10
00

Nodes d

0

500

1000

1500

2000

SH
D

20 30 50 10
0

20
0

50
0

10
00

Nodes d

0.00

0.25

0.50

0.75

1.00

R
EC

20 30 50 10
0

20
0

50
0

10
00

Nodes d

0.6

0.8

1.0

A
U

RO
C

20 30 50 10
0

20
0

50
0

10
00

Nodes d

0

20000

40000

60000

 S
H

D

20 30 50 10
0

20
0

50
0

10
00

Nodes d

0.00

0.25

0.50

0.75

1.00

F1
-s

co
re

20 30 50 10
0

20
0

50
0

10
00

Nodes d

0

2

4

6
N

M
SE

Figure 8: Synthetic data X corresponding to input S generated with Gaussian subsampling. St,j ∼ N (0.5, 0.1) with
probability p = 0.05 and St,j = 0 with probability 1 − p. The number of samples is set to N = 1 and each time series
sample has length T = 1000. The plots show performance for varying number of nodes.

E.4 LARGER TIME LAG

In Figs. 9,10, we present an experiment with a larger number of time lags, setting k = 5. This experiment considers N = 10
samples of time series, each of length T = 1000, while varying the number of nodes. All other experimental settings remain
the same as in the main experiment, except for the weight bounds of W , which are set to [0.1, 0.2]. This adjustment is
necessary because a larger number of lags requires smaller weights to ensure bounded data, as dictated by Theorem A.1.
The results are consistent with those in Fig. 2, with SpinSVAR performing better than the baselines.
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Figure 9: Synthetic experiment with with larger time lag k = 5, assuming input with Laplacian distribution. The number
of samples is set to N = 10 and each time series sample has length T = 1000. The plots show performance for varying
number of nodes.
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Figure 10: Synthetic experiment with larger time lag k = 5, assuming input with Bernoulli distribution.

E.5 SENSITIVITY OF TIME LAG

We examine the sensitivity of the time lag parameter in the algorithms using the experiment shown in Figs.11,12. This
experiment follows standard synthetic settings with d = 1000, T = 1000, and a true time lag of k = 3.



Bernoulli-uniform input When SpinSVAR is provided with a time lag parameter k′ ≥ k = 3, its approximation remains
optimal. This indicates that, as long as SpinSVAR is given a sufficiently large time lag, it can correctly identify the true
maximum time lag k of the system. We observed a similar behavior in our real-world stock market experiment (Fig. 3),
where SpinSVAR did not detect any time-lagged dependencies, as expected—the stock market typically reacts almost
instantaneously. Conversely, if SpinSVAR is given a time lag k′ < 3, its performance deteriorates significantly.

SparseRC performs well as long as k′ ≥ k, though its approximation remains worse than that of SpinSVAR. Additionally,
SparseRC has a higher execution time and fails to complete (times out) when k′ = 6. VARLiNGAM performs reasonably
when provided with the exact time lag k, but also times out when k′ > 3.

Other baseline methods either timed out or exhibited poor performance.
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Figure 11: Evaluating the sensitivity of the time lag k in synthetic settings with original k = 3, d = 1000 nodes, T = 1000
and N = 10 samples and Bernoulli-uniform input. The algorithms have varying time lag from 1 to 6.

Laplacian input In this setting, the behavior differs slightly. When k′ ≥ k, SpinSVAR continues to perform well but is
unable to recover the exact ground truth. This limitation explains the failure of the Ŝ metric. Nevertheless, SpinSVAR still
outperforms the baseline methods. Notably, VARLiNGAM times out in this scenario.
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Figure 12: Evaluating the sensitivity of the time lag k in synthetic settings with original k = 3, d = 1000 nodes, T = 1000
and N = 10 samples and Laplacian input. The algorithms have varying time lag from 1 to 6.

E.6 LARGER DAGS

Here we include the time-outs of VARLiNGAM for d = 2000 and the performance of SparseRC which is poor compared to
VARLiNGAM and SpinSVAR.



Table 3: Normalized SHD for large DAGs (T = 1000).

SpinSVAR N = 1 2 4 8 16

d = 1000, S ∼ Laplace 0.927 0.118 0.041 0.012 0.003
d = 1000, S ∼ Bernoulli 0.000 0.000 0.000 0.000 0.000
d = 2000, S ∼ Laplace 1.000 0.928 0.119 0.036 0.010
d = 2000, S ∼ Bernoulli 0.001 0.000 0.000 0.000 0.000
d = 4000, S ∼ Laplace 1.000 1.000 0.926 0.125 0.034
d = 4000, S ∼ Bernoulli 0.005 0.001 0.000 0.000 0.000

VARLiNGAM N = 1 2 4 8 16

d = 1000, S ∼ Laplace − − − − −
d = 1000, S ∼ Bernoulli − − − 0.013 0.003
d = 2000, S ∼ Laplace − − − − −
d = 2000, S ∼ Bernoulli − − − − −
SparseRC N = 1 2 4 8 16

d = 1000, S ∼ Laplace 0.365 0.247 0.219 0.203 0.202
d = 1000, S ∼ Bernoulli 0.287 0.192 0.175 0.181 0.186
d = 2000, S ∼ Laplace − − − − −
d = 2000, S ∼ Bernoulli − − − − −

Table 4: SHD report for large DAGs (T = 1000).

SpinSVAR N = 1 2 4 8 16

d = 1000, S ∼ Laplace 8.3k 1k 371 112 27
d = 1000, S ∼ Bernoulli 2 0 0 0 0
d = 2000, S ∼ Laplace 18k 17k 2.1k 645 183
d = 2000, S ∼ Bernoulli 12 0 0 0 0
d = 4000, S ∼ Laplace 36k 36k 33k 4.5k 1.2k
d = 4000, S ∼ Bernoulli 164 27 15 7 9

VARLiNGAM N = 1 2 4 8 16

d = 1000, S ∼ Laplace − − − − −
d = 1000, S ∼ Bernoulli − − − 115 29
d = 2000, S ∼ Laplace − − − − −
d = 2000, S ∼ Bernoulli − − − − −
SparseRC N = 1 2 4 8 16

d = 1000, S ∼ Laplace 3.3k 2.2k 2k 1.8k 1.8k
d = 1000, S ∼ Bernoulli 2.6k 1.7k 1.6k 1.6k 1.7k
d = 2000, S ∼ Laplace − − − − −
d = 2000, S ∼ Bernoulli − − − − −

E.7 SIMULATED FINANCIAL PORTFOLIOS

We evaluate our method on simulated financial time-series data from Kleinberg [2013], generated using the Fama-French
three-factor model [Fama, 1970] (volatility, size, and value). The return xi,t of stock i at time t is computed as xt,i =∑

j bijft,i + ϵt,i, where ft,i are the three factors, bij are their corresponding weights and ϵt,i are (correlated) idiosyncratic
terms. We use 16 datasets from this benchmark, each incorporating time lags up to k = 3. The data consists of daily returns
for d = 25 stocks, with ground truth DAGs containing an average of 22 edges. Each dataset provides a multivariate time
series X with 4000 time steps, which we segment into non-overlapping windows of 50 time steps, yielding a dataset X of
shape 80× 50× 25.



Table 5: Performance on the simulated financial dataset [Kleinberg, 2013].

Method SHD (↓) Time [s]

SpinSVAR (Ours) 12.89± 7.87 5.43± 0.65
SparseRC 9.92± 8.22 9.74± 1.21
VARLiNGAM 19.25± 10.64 1.64± 0.10
Directed VARLiNGAM 15.31± 9.38 4.85± 0.31
cuLiNGAM 15.22± 8.44 12.88± 0.42
TCDF 19.06± 10.18 33.56± 1.01
DYNOTEARS 33.92± 9.09 112.91± 29.59
NTS-NOTEARS 57.83± 37.22 16.40± 14.45
tsFCI 21.94± 9.52 17.50± 12.82
PCMCI 361.69± 67.80 16.23± 4.69

Table 5 reports the SHD and runtime for each method. Since the true structural shocks are unknown, we do not evaluate
them in this setting. Hyperparameters were selected via grid search, as detailed in Appendix E.10.3. The best-performing
methods are SpinSVAR and SparseRC, suggesting that assuming a sparse set of structural shocks is valid for financial data.
SparseRC slightly outperforms SpinSVAR, likely due to the dataset’s small scale—both in terms of time lags and number of
nodes—though it remains slower. The fastest method, VARLiNGAM, exhibits weaker performance. The other baselines
perform poorly in this dataset.

E.8 DREAM3 CHALLENGE DATASET

Table 6: AUROC report on the Dream3 challenge dataset [Marbach et al., 2009, Prill et al., 2010]. The methods are
partitioned into non-linear and linear for a fair comparison. Best performances are marked with bold.

Model E.coli-1 E.coli-2 Yeast-1 Yeast-2 Yeast-3

Non-linear

MLP 0.644 0.568 0.585 0.506 0.528
LSTM 0.629 0.609 0.579 0.519 0.555
TCDF 0.614 0.647 0.581 0.556 0.557
SRU 0.657 0.666 0.617 0.575 0.55
eSRU 0.66 0.629 0.627 0.557 0.55
PCMCI 0.594 0.545 0.498 0.491 0.508
NTS-NOTEARS 0.592 0.471 0.551 0.551 0.507
tsFCI 0.5 0.5 0.5 0.5 0.5

Linear

SpinSVAR (Ours) 0.547 0.525 0.551 0.508 0.513
SparseRC 0.543 0.516 0.554 0.507 0.512
VARLiNGAM 0.545 0.519 0.516 0.509 0.502
Directed VARLiNGAM 0.504 0.501 0.514 0.501 0.510
DYNOTEARS 0.590 0.547 0.527 0.526 0.510

In Table 6 we report the AUROC performance of our method compared to baselines. There, Component-wise MLP and
LSTM are from [Tank et al., 2021] and SRU and eSRU from [Khanna and Tan, 2019]. while the rest of the methods
are present in the main paper. The results of the first 5 rows are taken from [Khanna and Tan, 2019] and DYNOTEARS
from [Gong et al., 2022]. The methods are partitioned into non-linear and linear for a fair comparison.

Our method is competitive to other linear-model baselines but worse than those assuming a nonlinear model. Apparently,
one of the two assumptions, either the sparse SVAR input assumption or linearity of the data generation does not hold in this
dataset and our method might not be the most appropriate.

E.9 S&P 500 REAL EXPERIMENT

In Figs. 13 and 14 we show the performance of SparseRC, VARLiNGAM, TCDF and PCMCI on the S&P 500 stock market
index. As also mentioned in the main text, SparseRC approximates a DAG similar to SpinSVAR. This is due to the few



structural shock assumption that both methods use.

• VARLiNGAM seems to identify significant edges for any random stock combination, thus producing a poor result.
Also, the approximated structural shocks Ŝ are less expressive than ours in the sense that out of the 4507 discovered
structural shocks only 33.7% of them align with the data changes.

• TCDF produces a very sparse DAG with not enough information.

• PCMCI outputs a zero graph for time lag 0 and a not well-structured graph for time lag 1. As a consequence, we don’t
see a meaningful pattern in the structural shocks.

• DYNOTEARS had as output an empty graph and thus its performance is not reported. Regarding its hyperparameters,
we minimized the weight threshold up to 0 (all weights included as edges) and we tried both λw = λa = 0.01 and
k = 2, which were the optimal from our synthetic experiments and λw = λa = 0.1 which is the reported best in the
S&P 100 experiment in [Pamfil et al., 2020].

• Directed VARLiNGAM, cuLiNGAM, tsFCI and NTS-NOTEARS had time-out in this experiment.
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(a) SparseRC estimate for B̂0
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(d) VARLiNGAM estimate for Ŝ

Figure 13: Evaluating baselines on the real experiment with S&P 500 stock market index. (a) Instantaneous relations between
the 45 highest weighted stocks within S&P 500 and (b) the discovered structural shocks for 60 dates.
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(a) TCDF estimate for B̂0
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(b) TCDF estimate for Ŝ
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(c) PCMCI estimate for B̂1
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(d) PCMCI estimate for Ŝ

Figure 14: Evaluating PCMCI on the real experiment with S&P 500 stock market index. (a) Relations between the 45 highest
weighted stocks within S&P 500 with time lag 1 and (b) the discovered structural shocks for 60 dates.

E.10 HYPERPARAMETER SEARCH

To find the most suitable hyperparameter selection for each method in our synthetic and simulated experiments we perform
a grid search and choose the parameter combination that achieves the best nSHD performance.

E.10.1 Synthetic experiments with Laplacian input

For convenience we perform the grid search on small synthetic experimental settings (N = 1 sample, T = 1000 time
steps, d = 20 nodes) where all methods have reasonable execution time. Note that for all methods we set their parameters
regarding the number of lags correctly, to equal the ground truth lag (default k = 2). Any non-relevant hyperparameter that
is not mentioned is set to its default value. The hyperparameter search gave the following optimal hyperparameters for each
method:

SpinSVAR We set λ1 = 0.0005, λ2 = 0.5 the coefficients for the L1 and acyclicity regularizer, respectively and ω = 0.09.
We let SpinSVAR run for 10000 epochs, although usually it terminates earlier as we have an early stopping activated when



for 40 consecutive epochs the loss didn’t decrease.

SparseRC We set λ1 = 0.001, λ2 = 1, λ3 = 0.001 the coefficients for the L1, acyclicity and block-Toeplitz regularizers,
respectively and ω = 0.09. We similarly let SparseRC run for 10000 epochs, although usually it terminates earlier using
early stopping as with SpinSVAR.

VARLiNGAM We may choose between ICA or Direct LiNGAM. In our experiments, we consider both cases (VAR-
LiNGAM and Directed VARLiNGAM). The weight threshold is set to 0.09 both for VARLiNGAM and Directed VAR-
LiNGAM but for cuLiNGAM is set to 0.05.

DYNOTEARS The resulting values are λw = λa = 0.01 and ω = 0.01

NTS-NOTEARS The resulting values are λ1 = 0.002, λ2 = 0.01 and ω = 0.01 The htol and the dimensions of the
neural network were left to default.

tsFCI Significance level is set to 0.1 and ω = 0.01. Note that the output of tsFCI is a partial ancestral graph (PAG), which
we therefore need to interpret as a DAG. For this scope we follow the rules of DYNOTEARS [Pamfil et al., 2020], meaning
that whenever there is ambiguity in the directionality of the discovered edge we assume that tsFCI made the correct choice
(this favors and over-states the performance of tsFCI). In particular, we translate the edge between nodes i and j in the
following ways (i) if i → we keep it, (ii) if i ↔ j in the PAG we discard it, (iii) either i◦ → j or i ◦ − ◦ j we assume tsFCI
made the correct choice, by looking at the ground truth graph.

PCMCI The ParCorr conditional independence test was chosen. We do so because this test is suitable for linear additive
noise models. Parameters are set as pca = 0.1, alevel = 0.01 and ω = 0.01. The output can sometimes be ambiguous
(◦ − ◦) because the algorithm can only find the graph up to the Markov equivalence class, or there be conflicts (x− x) in the
conditional independence tests. In the former case, we assume that PCMCI made the correct choice and in the latter we
disregard the edge.

TCDF Here the kernel size and the dilation coefficient are set as the number of lags +1 (k+1 = 3). The other parameters
are significance = 1 and epochs = 1000 and ω = 0.01.

E.10.2 Synthetic experiments with Bernoulli-uniform input

Similarly for the Laplacian input, we perform hyperparameter search for N = 1 sample, T = 1000 time steps and d = 20
nodes. The hyperparameter search gave the following optimal hyperparameters for each method:

SpinSVAR We set λ1 = 0.0001, λ2 = 0.1 and ω = 0.09. We let SpinSVAR run for 10000 epochs.

SparseRC We set λ1 = 0.001, λ2 = 1, λ3 = 0.001 and ω = 0.09. We similarly let SparseRC run for 10000.

VARLiNGAM In our experiments, we consider both cases (VARLiNGAM and Directed VARLiNGAM). The weight
threshold is set to 0.09 both for VARLiNGAM and Directed VARLiNGAM but for cuLiNGAM is set to 0.05.

DYNOTEARS The resulting values are λw = λa = 0.01 and ω = 0.09.

NTS-NOTEARS The resulting values are λ1 = 0.002, λ2 = 0.01 and ω = 0.09. The htol and the dimensions of the
neural network were left to default.

tsFCI Significance level is set to 0.1 and ω = 0.09.

PCMCI Parameters are set as pca = 0.1, alevel = 0.01 and ω = 0.09.

TCDF Here the kernel size and the dilation coefficient are set as the number of lags +1 (k+1 = 3). The other parameters
are significance = 1 and epochs = 1000 and ω = 0.09.



E.10.3 Simulated financial data

Here we perform the grid search on the first available dataset of the simulated data (out of the 16 available) and choose
the hyperparameters offering the best SHD performance. Here, we search for the most compatible weight threshold ω as
the distribution of the ground truth weights is not known from the data generation. For all methods we set the number of
maximum time lags at 3, which is the maximal ground truth lag. Any non-relevant hyperparameter that is not mentioned is
set to its default value. The hyperparameter search gave the following optimal hyperparameters for each method:

SpinSVAR We set λ1 = 0.01, λ2 = 1, ω = 0.5. We let SpinSVAR run for 10000 epochs at maximum.

SparseRC We set λ1 = 0.001, λ2 = 1, λ3 = 0.1, ω = 0.3. We similarly let SparseRC run for 10000 epochs at
maximum.

VARLiNGAM The weight threshold is set to ω = 0.5 for VARLiNGAM and ω = 0.6 for Directed VARLiNGAM and
cuLiNGAM.

DYNOTEARS The resulting values are λw = 0.05, λa = 0.01, ω = 0.3.

NTS-NOTEARS The resulting values are λ1 = 0.001, λ2 = 1, ω = 0.1. The htol and the dimensions of the neural
network were left to default.

tsFCI Significance level is set to 0.001 and ω = 0.1 As previously we favor tsFCI in case of ambiguity, using the ground
truth.

PCMCI The ParCorr conditional independence test was chosen and parameters are set as pca = 0.1, alevel = 0.01, ω =
0.1. In case of ambiguity, we assume PCMCI made the correct choice.

TCDF The kernel size and the dilation coefficient are set as number of lags +1 (k + 1 = 4). The other parameters are
significance = 0.8, epochs = 1000, ω = 0.2.

E.10.4 DREAM3 dataset

Here we perform the grid search on the first available dataset of the data (out of the 5 available) and choose the hyperparam-
eters offering the best AUROC performance. We get the following results.

SpinSVAR λ1 = 0.001, λ2 = 10, ω = 0.2. We let SpinSVAR run for 10000 epochs at maximum.

SparseRC λ1 = 0.01, λ2 = 0.1, λ3 = 0.1, ω = 0.2. We similarly let SparseRC run for 10000 epochs at maximum.

VARLiNGAM The weight threshold is set to ω = 0.2 for VARLiNGAM, Directed VARLiNGAM and cuLiNGAM

DYNOTEARS The resulting values are λw = 0.05, λa = 0.01, ω = 0.3.

NTS-NOTEARS The resulting values are λ1 = 0.001, λ2 = 0.01, ω = 0.2. The htol and the dimensions of the neural
network were left to default.

tsFCI Significance level is set to 0.001 and ω = 0.1

PCMCI pca = 0.1, alevel = 0.01, ω = 0.1.

TCDF The kernel size and the dilation coefficient are set as number of lags +1 (k + 1 = 4). The other parameters are
significance = 0.8, epochs = 1000, ω = 0.2.



E.11 COMPUTE RESOURCES

Our experiments were run on a single laptop machine (Dell Alienware x17 R2) with 8 core CPU with 32GB RAM and an
NVIDIA GeForce RTX 3080 GPU. The execution of the synthetic experiments for the 5 repetitions amounts to approximately
1 week of full run. Of course, initially there were some failed experiments, and after debugging the experiments were
executed for only 1 repetition to determine where each method has a time-out. We thus chose the time-out to 10000 to try to
make our experiments with as little cost as possible.

E.12 CODE RESOURCES

For the implementation of the methods in our experiments we use the following publicly available repositories or websites.
All github repositories are licensed under the Apache 2.0 or MIT license, except tigramite and TCDF which are under the
GPL-3.0 license.

SparseRC SparseRC code https://github.com/pmisiakos/SparseRC/. (MIT license)

VARLiNGAM We use the official LiNGAM repo which we clone from github: https://github.com/cdt15/lingam. (MIT
license)

cuLiNGAM Akinwande and Kolter [2024] provide the following github repo: https://github.com/aknvictor/culingam.
(MIT license)

DYNOTEARS Code is available from the CausalNex library of QuantumBlack. The code is at
https://github.com/mckinsey/causalnex/blob/develop/causalnex/structure/dynotears.py (Apache 2.0 license)

NTS-NOTEARS We use the github code https://github.com/xiangyu-sun-789/NTS-NOTEARS provided by Sun et al.
[2023]. (Apache 2.0 license)

tsFCI We use the R implementation from Doris Entner website which in turn utilizes the
https://www.cmu.edu/dietrich/philosophy/tetrad/. Tetrad is licensed under the GNU General Public License v2.0.
We also used the repository https://github.com/ckassaad/causal_discovery_for_time_series corresponding to the causal time
series survey [Assaad et al., 2022b] (no license available).

PCMCI We use the PCMCI implementation from [Runge et al., 2019] within the tigramite package. (GNU General Public
License v3.0)

TCDF We use the repository https://github.com/M-Nauta/TCDF from Nauta et al. [2019]. (GNU General Public License
v3.0)

eSRU We use the repository https://github.com/iancovert/Neural-GC from Khanna and Tan [2019]. (MIT License)

E.13 DATA RESOURCES

Simulated financial time series We take the data from http://www.skleinberg.org/data.html licensed under CC BY-NC 3.0

S&P 500 stock returns The data are downloaded using yahoofinancials python library.

https://github.com/pmisiakos/SparseRC/
https://lingam.readthedocs.io/en/latest/index.html
https://github.com/cdt15/lingam
https://github.com/aknvictor/culingam
https://github.com/mckinsey/causalnex/blob/develop/causalnex/structure/dynotears.py
https://github.com/xiangyu-sun-789/NTS-NOTEARS
https://sites.google.com/site/dorisentner/publications/tsfci
https://github.com/ckassaad/causal_discovery_for_time_series
https://github.com/jakobrunge/tigramite/blob/master/tigramite/pcmci.py
https://github.com/jakobrunge/tigramite
https://github.com/M-Nauta/TCDF
https://github.com/iancovert/Neural-GC
http://www.skleinberg.org/data.html
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