
Length-Induced Embedding Collapse in PLM-based Models

Anonymous ACL submission

Abstract001

Text embeddings from PLM-based models en-002
able a wide range of applications, yet their003
performance often degrades on longer texts.004
In this paper, we introduce a phenomenon005
we call Length Collapse, where embeddings006
of longer texts tend to cluster together. This007
clustering results in a distributional inconsis-008
tency between the embeddings of short and009
long texts. We further investigate how these010
differences contribute to the performance de-011
cline observed with longer texts across various012
downstream tasks. Through a rigorous theoret-013
ical analysis of the self-attention mechanism,014
which acts as a low-pass filter in PLM-based015
models, we demonstrate that as text length in-016
creases, the strength of low-pass filtering in-017
tensifies, causing embeddings to retain more018
low-frequency components. As a result, in-019
put token features become more similar, lead-020
ing to clustering and ultimately the collapse021
of embeddings for longer texts. To address022
this issue, we propose a simple method, Temp-023
Scale, which mitigates the Length Collapse024
phenomenon. By narrowing the gap in low-025
pass filtering rates between long and short026
texts, TempScale ensures more consistent em-027
beddings across different text lengths. This028
approach leads to performance improvements029
of 0.94% on MTEB and 1.10% on LongEm-030
bed, which focuses specifically on long-context031
retrieval, providing strong evidence for the032
validity of our analysis. The source code033
is available at https://anonymous.4open.034
science/r/Length_Collapse-0FD2.035

1 Introduction036

Text embeddings—dense vectors that capture037

the semantic information of texts—are essential038

for many NLP applications, including text anal-039

ysis (Aggarwal and Zhai, 2012; Angelov, 2020),040

question answering (Tan et al., 2023; Xu et al.,041

2024), web search (Zhao et al., 2024; Yates et al.,042

2021), and retrieval-augmented generation (Gao043

et al., 2023; Fan et al., 2024). Typically, embed- 044

dings are generated by pre-trained language models 045

(PLMs), which produce fixed-dimensional vectors 046

regardless of text length. In practice, we expect 047

PLMs to perform consistently across texts of vary- 048

ing lengths in downstream tasks. 049

Unfortunately, popular PLM-based embedding 050

models perform poorly on longer texts. As shown 051

in Figure 1a, we evaluate mainstream models on 052

the IMDB classification task from the Massive Text 053

Embedding Benchmark (MTEB)(Muennighoff 054

et al., 2023), using test sets grouped by text length. 055

The results show that models with varying capabil- 056

ities degrade as text length increases. For example, 057

the BGE (Xiao et al., 2023) model’s accuracy drops 058

from 75.6% in the [0, 100) token range to 59.0% 059

in the [400, 500) range, a 16.6% point decline. 060

We attribute this performance degradation to 061

a biased behavior of embedding models: embed- 062

dings of longer texts tend to cluster together, a phe- 063

nomenon we call Length Collapse. To verify this, 064

we conduct controlled experiments shown in Fig- 065

ures 1b and 1c. Figure 1b shows that embeddings of 066

longer texts cluster more densely near the origin in 067

the reduced embedding space, indicating a collapse 068

that reduces variance. Figure 1c further shows that 069

embeddings of longer texts have higher cosine sim- 070

ilarity to each other, leading to smaller differences. 071

This collapse causes distributional inconsistency 072

between embeddings of different lengths. Further- 073

more, we analyze how this distributional inconsis- 074

tency in embeddings of different text lengths leads 075

to performance degradation in downstream tasks 076

such as classification, retrieval, and STS, particu- 077

larly affecting the performance of longer texts. 078

To study how text length affects embedding dis- 079

tributions, we analyze the self-attention mechanism 080

in Fourier space (Wang et al., 2022b) (§ 2.2). Build- 081

ing on the findings that cascading self-attention 082

blocks act as repeated low-pass filters, we prove 083

that the attenuation rate of this filter is propor- 084
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Figure 1: (a) Performance of embedding models on IMDb classification across length intervals [0, 100) to [400,
500). The bluer a cell, the higher the classification accuracy. (b) t-SNE visualization of embeddings from the
BGE on NFCorpus dataset, with ● for the original dataset and ▲ and × for LLM-summarized versions, retaining
semantic meaning with varying lengths. L indicates average text length, and D denotes mean distance to the origin.
(c) Mean pairwise cosine similarity of embeddings from the BGE model across text length intervals on the corpus
from NFCorpus, with an X-axis for length intervals and a Y-axis for average pairwise similarity.

tional to the largest singular value σa of the high-085

frequency components in the self-attention ma-086

trix. Assuming Gaussian-distributed input keys087

and query tokens, we show that σa decreases with088

increasing text length, causing longer texts to re-089

tain more of the Direct Component (DC) in token090

signals. This results in embeddings collapsing to a091

narrow space, as seen in Figure 1b.092

To validate our theoretical analysis, we propose a093

method, Temperature Scaling (TempScale), to mit-094

igate Length Collapse. TempScale manipulates the095

attention map by dividing the scores by a parameter096

called temperature (smaller than 1) before applying097

the softmax(·) operator. This reduces the gap in098

σa between long and short texts in the self-attention099

matrix, minimizing the distributional gap between100

their embeddings. As shown in Figure 1c, a smaller101

temperature enables embeddings to exhibit lower102

pairwise cosine similarity, resulting in a more even103

distribution and alleviating Length Collapse. Ad-104

ditionally, TempScale improves performance by105

0.94% and 1.10% in MTEB and LongEmbed (Zhu106

et al., 2024), respectively. All results confirm the107

validity of our analysis.108

Our contributions are as follows: (1) We are the109

first to identify Length Collapse, where embed-110

dings of longer texts cluster together, and explain111

how this uneven distribution causes performance112

degradation on long texts in downstream tasks. (2)113

We provide a rigorous theoretical analysis in the114

spectral domain, demonstrating that Length Col-115

lapse occurs due to the increasing low-pass filtering116

strength of self-attention as sequence length grows,117

causing token signals to retain only their DC com-118

ponent. (3) To validate this theoretical analysis, we 119

propose a simple method, TempScale, to mitigate 120

Length Collapse. Empirical results show a 0.94% 121

performance improvement across the MTEB and 122

a 1.10% improvement on LongEmbed, validating 123

the correctness of our theoretical analysis. 124

2 Length Collapse 125

In this section, we define the problem and intro- 126

duce our notations. We then present the Trans- 127

former structure in PLM-based models and briefly 128

explain the Fourier transform from (Wang et al., 129

2022b). Using this framework, we show that the 130

attention mechanism functions as a low-pass filter, 131

with longer input sequences amplifying this effect, 132

resulting in increasingly similar representations. 133

2.1 Preliminaries and Background 134

Notations. Let X ∈ Rn×d denote the input feature 135

matrix, where n is the number of tokens and d is 136

the embedding dimension. Let xi ∈ Rd represent 137

the vector for the i-th token, and zj ∈ Rn represent 138

the token sequence for the j-th dimension, where 139

i ∈ {1, . . . , n} and j ∈ {1, . . . , d}. 140

Transformer Architecture. Most modern em- 141

bedding models (Chen et al., 2024a; Xiong et al., 142

2021) use a bidirectional transformer architecture 143

with attention mechanisms. These models typically 144

consist of three components: an embedding layer, 145

a stack of transformer encoder blocks with Multi- 146

Head Self-Attention (MSA) and Feed-Forward Net- 147

works (FFN), and a pooling layer to generate the 148

final embedding. The Self-Attention (SA) mod- 149

ule encodes each token by aggregating information 150
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from other tokens based on attention scores, as151

defined by the equation (Waswani et al., 2017):152

SA(X) = softmax

(
XWQ(XWK)T√

d

)
XWV ,153

where WK , WQ, and WV are the key, query,154

and value weight matrices, with dq and dk as the155

query and key dimensions. The function softmax(·)156

normalizes the attention scores. Multi-Head Self-157

Attention (MSA) aggregates the outputs of multiple158

SA heads, projected back to the hidden dimension:159

MSA(X) =
[
SA1(X) · · · SAH(X)

]
WO,160

where H is the number of heads, and WO projects161

the combined outputs to the hidden dimension.162

Fourier Analysis. We use the Fourier trans-163

form as the primary analytic tool, following (Wang164

et al., 2022b). Let F : Rn → Cn repre-165

sent the Discrete Fourier Transform (DFT), with166

its inverse F−1 : Cn → Rn. Applying F167

to a token sequence z corresponds to multi-168

plying by a DFT matrix, where the k-th row169

corresponds to the Fourier basis at frequency170

fk = [e2πj(k−1)·0, . . . , e2πj(k−1)·(n−1)]⊤/
√
n ∈171

Rn, with j as the imaginary unit. Let z̃ =172

Fz denote the spectrum of z, with z̃dc ∈ C173

and z̃hc ∈ Cn−1 as the DC and high-frequency174

components, respectively. We define the Direct-175

Current (DC) component as DC[z] = z̃dcf1 ∈ Cn,176

and the high-frequency component as HC[z] =177

[f2, . . . ,fn]z̃hc ∈ Cn. In signal processing, a178

low-pass filter preserves low-frequency compo-179

nents while attenuating high frequencies. In this180

paper, we define a low-pass filter that retains only181

the DC component DC [z], while diminishing the182

high-frequency components HC [z]. A precise def-183

inition is given in Definition 1.184

Definition 1. Let f : Rn → Rn be an endomor-185

phism with f t denoting f applied t times. The186

function f acts as a low-pass filter if and only if187

limt→∞
∥HC[f t(z)]∥2
∥DC[f t(z)]∥2 = 0 for all z ∈ Rn.188

For additional details, refer to Appendix A.189

2.2 Theoretical Analysis on Length Collapse190

Overview. This subsection demonstrates that in-191

creasing text length n accelerates low-pass filtering192

in the attention matrix, making text embeddings193

for longer texts more similar. We justify this by194

analyzing self-attention’s spectral-domain effect.195

Building on Lemma1, we show that the largest196

singular value σa of HC [A] influences the filter- 197

ing rate, with a smaller σa indicating greater high- 198

frequency loss (Theorem2). Our analysis further 199

reveals that longer texts result in smaller σa values, 200

causing longer text embeddings to lose feature ex- 201

pressiveness (Theorem3). Consequently, we infer 202

that longer texts yield more similar representations 203

(Corollary4), leading to Length Collapse. 204

Formally, the following lemma demonstrates 205

that the attention matrix generated by a softmax 206

function acts as a low-pass filter, independent of 207

the specific token features or context window. 208

Lemma 1. (Attention Matrix is A Low-pass Filter) 209

Let A = softmax(P ), where P ∈ Rn×n. Then A 210

must be a low-pass filter. For all z ∈ Rn, 211

lim
t→∞

∥HC[Atz]∥2
∥DC[Atz]∥2

= 0. 212

Lemma 1 follows from the Perron-Frobenius the- 213

orem (Meyer, 2000). Since all elements of the self- 214

attention matrix are positive and each row sums 215

to 1, the largest eigenvalue is 1. Repeated appli- 216

cation of the self-attention matrix represents the 217

forward process of the embedding model, and as 218

the number of layers increases, the output retains 219

only the DC component. A more detailed proof 220

can be found in Theorem 1 of Wang et al. (2022b). 221

Understanding that self-attention matrices act 222

as low-pass filters, we are interested in the extent 223

to which an SA layer suppresses high-frequency 224

components. Additionally, we provide a filter rate 225

to illustrate the speed at which these high-frequency 226

components are eliminated. 227

Theorem 2. (Filter Rate of SA) Let σa be the 228

largest singular value of HC [A], and SA(X) = 229

AXWV the self-attention output. We have: 230

∥HC [SA(X)]∥F ≤ σa∥WV ∥2∥HC [X]∥F . (1) 231

Theorem 2 suggests the high-frequency inten- 232

sity ratio to the pre- and post- attention aggre- 233

gation is upper bounded by σa∥WV ∥2. When 234

σa∥WV ∥2 < 1, HC [X] converges to zero ex- 235

ponentially. We further present Figure 6 in Ap- 236

pendix C.2 to justify our results, showing that the 237

upper bound is consistent with the trend observed 238

in the actual values. The proof of Theorem 2 can 239

be found in Appendix B.1. 240

Based on the fact that a lower σs leads to a higher 241

filter-pass rate, we prove in the following theorem 242

that σs decreases as the input length n increases. 243
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Theorem 3. (Filter Rate of Different Input Length244

n) Let XWQ and XWK be a Gaussian ma-245

trix, where elements qij ∼ N (0, σ2
q ) and kij ∼246

N (0, σ2
k),∀i, j. Let pij = q⊤i kj/

√
d the attention247

score of pair i, j, whose variance can be expressed248

as σ2
s = σ2

qσ
2
k + Ccross, where Ccross is the cross-249

covariance of the squared queries and keys (Good-250

man, 1960). Then we have251

σa ≤
√√√√ n

2
√
1 + 1

e2σ
2
s
(n− 1)

3
2 + 1

, (2)252

where σa decreases with n increasing.253

The proof of Theorem 3 is in Appendix B.2.254

Building on the work of Fenton (1960); Nahshan255

et al. (2024) on log-normal variables, Theorem256

3 shows that as input length n increases, σa de-257

creases, suppressing high-frequency information258

and reducing feature expressiveness due to the self-259

attention matrix’s low-pass filtering effect. To val-260

idate this, we sample texts of varying lengths and261

plot the σa values from the final layer’s attention262

matrix, as shown in Figure 7 in Appendix C.3. The263

results confirm that σa decreases with text length,264

leading to a higher filtering rate. To facilitate fur-265

ther analysis, we define the temperature of the SA266

defined in Nahshan et al. (2024) as:267

τs =
1

σs
=

1√
σ2
qσ

2
k + Ccross

. (3)268

Then denote p̃ij = pij/σs and each element in269

attention matrix A can be rewritten as follows:270

Aij =
ep̃ij/τs∑n
k=1 e

p̃ik/τs
, (4)271

where p̃ij ∼ N (0, 1) and σa increases with τs de-272

creases. This implies that with a lower temperature273

τs, the self-attention (SA) mechanism preserves274

more high-frequency components in the token sig-275

nals, thereby preventing collapse in long texts.276

Corollary 4. (Length Collapse in Text Embed-277

dings) As text length n increases, the cosine simi-278

larity of their embeddings tends to increase.279

The proof of Corollary 4 in Appendix B.3 is280

based on the assumption that the mean of word281

embeddings in natural language texts remains con-282

sistent. As shown in Figure 2, we compute text283

embeddings by averaging word embeddings from284

the BGE model’s embedding matrix and then as-285

sess similarity across length intervals. The results286

[0, 100)

[100, 200)

[200, 300)

[300, 400)

[400, 500)

0.91

0.92

0.93

0.94

0.95

0.96

Avg. Cosine Similarity

NFCorpus
SciFact
SCIDOCS

Figure 2: Mean cosine similarity of text embeddings
across length intervals, with embeddings averaged from
the model’s word embedding matrix.

show that as text length increases, embedding simi- 287

larity rises, supporting the assumption. However, 288

we must emphasize that the increased low-pass fil- 289

tering with length is the primary cause of Length 290

Collapse. In Appendix C.4, we demonstrate that 291

repeating two different tokens and computing the 292

similarity between the sequences shows that the co- 293

sine similarity of their embeddings increases with 294

length, even without any overlapping tokens. 295

Finally, we discuss the role of other Transformer 296

modules in Length Collapse and distinguish our 297

work from prior research on similar collapse phe- 298

nomena in Appendix C.5. 299

3 How does Length Collapse Lead to 300

Performance Degradation 301

After analyzing how the self-attention module 302

leads to Length Collapse, this section examines 303

its impact on text embedding performance in the 304

MTEB benchmark. The tasks in MTEB can be cat- 305

egorized into classification/clustering and match- 306

ing tasks. For classification/clustering, a classi- 307

fier is trained on text embeddings, while matching 308

tasks involve calculating the similarity between 309

embeddings using cosine similarity or dot product. 310

Matching tasks are further divided into retrieval 311

(for texts with significant length differences) and 312

STS/summarization (for texts with similar lengths). 313

We will explore how Length Collapse affects per- 314

formance across these tasks. 315

Impact on Classification and Clustering Tasks. 316

As shown in Figure 3 (Left), Length Collapse 317

causes long-text embeddings to cluster at the cen- 318

ter, while short-text embeddings spread around the 319
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Figure 3: A 3D toy example explains why Length Collapse leads to performance degradation.

periphery. In KNN classification, this brings clus-320

tering centers closer to long texts, resulting in a321

biased influence and reducing performance.322

Impact on Retrieval Tasks. As shown in323

Figure 3 (Middle), long documents are clustered324

in a smaller central space, while shorter queries325

are more dispersed, with richer contextual repre-326

sentations (Ethayarajh, 2019). While centrally-327

positioned long documents have higher similarity328

with all embeddings, their representational space329

is more limited. This can lead to shorter noise doc-330

uments (Green Square) appearing more relevant331

to the query (Purple Circle) due to their broader332

representational space. Analysis of the NFCor-333

pus dataset, comparing rankings of the top 10%334

longest and shortest relevant documents (Figure 4),335

shows that short documents follow an inverted U-336

shaped distribution, whereas long documents ex-337

hibit a more uniform distribution. This is because338

shorter documents have a larger representational339

space, making it easier for them to appear at the340

beginning or end of the ranking list.341

Impact on STS Tasks. As shown in Figure 3342

(Right), Length Collapse causes long-text embed-343

dings to cluster in a narrower space, where unre-344

lated embeddings may show higher similarity than345

relevant pairs. Noise sentences (Green Square)346

in the long-text space may appear more similar347

than related sentences (Purple Square). In contrast,348

short-text embeddings are more spread out, result-349

ing in better performance due to greater separation350

between noise and relevant sentences.351

4 Mitigating Length Collapse via352

Temperature Scaling353

As discussed in § 2.2, the self-attention matrix354

applies stronger low-pass filtering to longer texts,355

resulting in distributional differences between long356

and short text embeddings, which subsequently357

leads to a decline in long-text performance across358

various tasks in the MTEB benchmark. To address359

this issue and validate our analysis, a straightfor-360

ward solution is to reduce the filtering rate differ-361

ence between long and short texts, thereby mitigat-362

ing the disparity in their embeddings. To achieve 363

this, we propose a scaling technique called Temper- 364

ature Scaling (TempScale), which directly adjusts 365

the attention map by multiplying τs by a constant 366

temperature τ less than 1, thereby reducing the dif- 367

ference in filtering rates σa between long and short 368

texts. 369

Specifically, a larger σs will result in a smaller 370

factor 2
√
1 + 1

e2σ
2
s

in Eqn. 2, which means that as 371

the text length n increases, σa will decrease more 372

slowly, thereby reducing the difference in filtering 373

rates between long and short texts. Therefore, by 374

increasing σs, or equivalently decreasing τs based 375

on Eqn. 3, we can mitigate the distributional differ- 376

ence between long and short text embeddings. 377

Formally, let A = softmax
(
XWQ(XWK)⊤√

d

)
378

denote a self-attention matrix. To decrease the τs 379

of A based on Eqn. 4, we apply a temperature 380

coefficient τ to the logits before performing the 381

softmax operation. Specifically, for each row pi in 382

the attention score matrix XWQ(XWK)⊤√
d

, we com- 383

pute the scaled logits by dividing by a temperature 384

τ ∈ (0, 1], and then apply the softmax function to 385

obtain the attention weights: 386

A = softmax

(
XWQ(XWK)⊤

τ
√
d

)
, (5) 387

where a lower τ results a smaller τs. 388

Another Intuitive Explanation. We illustrate 389

the effects of temperature scaling using two ex- 390

treme cases to highlight how TempScale works 391

from a different perspective. As shown in Figure 5, 392

when scaling the matrix A with a relatively large 393

τ , the elements of A become nearly equal, causing 394

the matrix to filter out all high-frequency informa- 395

tion and resulting in identical token embeddings. 396

In contrast, when scaling with a smaller tempera- 397

ture, A no longer acts as a weighted sum of token 398

representations, but selects a specific token’s rep- 399

resentation, preserving more high-frequency infor- 400

mation. Viewing the attention matrix as an adja- 401

cency matrix, a higher temperature leads to a denser 402

graph, enhancing information exchange between 403
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Figure 4: The count of relevant documents at different ranking positions, where a smaller ranking position indicates
a document is more relevant to the query.
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Figure 5: Two extreme cases of TempScale: larger τ
causes uniform matrix elements in self-attention ma-
trix A, filtering out high-frequency information, while
smaller τ preserves high-frequency details by selecting
specific token representations. The darker the color, the
higher the attention score.

nodes but losing high-frequency details (Oono and404

Suzuki, 2020; Cai and Wang, 2020). A lower tem-405

perature, on the other hand, creates a sparser graph,406

preserving more high-frequency information and407

preventing over-smoothing between nodes.408

5 Experiments409

In this section, we first conduct experiments to val-410

idate the effectiveness of our TempScale on MTEB411

and LongEmbed. Then we analyze how different412

tasks can benefit from TempScale to validate our413

theoretical analysis.414

5.1 TempScale Benefits Embedding Models415

Experiment Settings. We evaluate embedding416

models on long-context retrieval using 4 real-world417

tasks from LongEmbed (Zhu et al., 2024), focus-418

ing on factuality in both short-query and long-419

document settings. For other tasks, we select 39420

datasets from MTEB (Muennighoff et al., 2023),421

covering classification, clustering, summarization,422

STS, retrieval, and reranking. Specifically, for clas-423

sification, we only downloaded 10 datasets due424

to open-source restrictions. For retrieval, we se-425

lect the 5 datasets with the longest documents426

to better assess Length Collapse. To comprehen-427

sively evaluate TempScale, we select several rep-428

resentative PLM-based embedding models, includ-429

ing (1) ANCE (Xiong et al., 2021); (2) GTR (Ni430

et al., 2022); (3) GIST (Solatorio, 2024); (4) 431

BGE (Xiao et al., 2023); (5) E5 (Zhu et al., 2024). 432

These models are fine-tuned from various pretrain 433

language models, including BERT (Kenton and 434

Toutanova, 2019), RoBERTa (Liu et al., 2019), and 435

T5 (Chung et al., 2024). More descriptions of the 436

datasets and models can be found in Appendix G. 437

When evaluating the embedding models, we set 438

the same τ on the softmax function for the atten- 439

tion modules across all layers within the range of 440

{0.1, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. The metrics used 441

for different tasks are consistent with MTEB and 442

can be found in Appendix F. 443

Results. We select the optimal temperature τ 444

for each model based on their performance across 445

a single task and present the results in Table 1. The 446

findings demonstrate that our proposed method, 447

TempScale, improves performance across a range 448

of general tasks, with an average increase of 0.94%. 449

For long-context retrieval tasks, the average im- 450

provement is 1.10%. Notably, some tasks, like STS, 451

involve texts with an average length of around 10 452

tokens, while datasets such as LongEmbed consist 453

of texts exceeding 1000 tokens. TempScale proves 454

effective for both, preventing long-text collapse 455

and enhancing short-text embeddings, which im- 456

proves downstream task performance. Additionally, 457

larger context windows yield greater performance 458

gains, with E5 showing the highest improvement of 459

1.72%. This may be due to larger windows offering 460

more data for adjustment. Beyond the excellent 461

performance of TempScale, more importantly, it 462

validates the correctness of our theoretical analysis. 463

5.2 Further Analysis 464

How do the Classification and Clustering Tasks 465

Benefit from TempScale? In § 3, we attribute the 466

performance decline in classification and cluster- 467

ing tasks to the distributional differences between 468

long and short texts, which lead the model to as- 469

sign greater weight to long text embeddings during 470
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Class. Clust. Summ. STS BeirRetr. Rerank. LongEmbdRetr. Avg.
Num. Datasets (→) 8 11 1 10 5 4 4 43

window=512

ANCE 55.27 33.04 29.58 66.32 26.95 49.09 34.02 42.04
+TempScale 55.44 33.28 29.59 66.47 27.39 49.25 34.07 42.21
Relative Improv. (%) 0.29 ▲ 0.73 ▲ 0.06 ▲ 0.22 ▲ 1.63 ▲ 0.32 ▲ 0.17 ▲ 0.49 ▲

GTR 55.10 38.65 29.67 70.11 33.00 54.23 37.33 45.44
+TempScale 55.59 39.52 29.83 70.26 33.56 54.22 37.33 45.76
Relative Improv. (%) 0.88 ▲ 2.26 ▲ 0.54 ▲ 0.21 ▲ 1.69 ▲ -0.01 ▼ 0.01 ▲ 0.80 ▲

GIST 64.75 44.77 31.14 75.61 37.55 58.55 38.21 50.08
+TempScale 65.12 44.66 32.17 75.61 37.82 58.60 38.35 50.33
Relative Improv. (%) 0.56 ▲ -0.25 ▼ 3.31 ▲ -0.01 ▼ 0.71 ▲ 0.08 ▲ 0.36 ▲ 0.68 ▲

BGE 64.79 45.80 31.03 75.88 38.14 58.87 37.46 50.28
+TempScale 64.91 45.79 31.87 75.68 38.46 58.97 38.73 50.63
Relative Improv. (%) 0.19 ▲ -0.01 ▼ 2.71 ▲ -0.26 ▼ 0.84 ▲ 0.17 ▲ 3.41 ▲ 1.01 ▲

window=4k

E5 61.72 38.82 30.58 71.77 29.77 53.12 56.01 48.83
+TempScale 62.15 40.62 31.26 72.17 30.28 53.47 56.88 49.55
Relative Improv. (%) 0.7 ▲ 4.62 ▲ 2.25 ▲ 0.55 ▲ 1.69 ▲ 0.65 ▲ 1.56 ▲ 1.72 ▲

Avg Improv. (%) 0.53 ▲ 1.47 ▲ 1.77 ▲ 0.14 ▲ 1.31 ▲ 0.24 ▲ 1.10 ▲ 0.94 ▲

Table 1: Average of the main metric (see Appendix F) per task on MTEB English subsets and LongEmbd. Relative
Improv. means percentage increase over the performance without TempScale and improvements are highlighted
with ▲ while decreasing values are denoted by ▼.

classifier training. TempScale addresses this by ad-471

justing the longer texts to align with the same space472

as short texts as described in Figure 1c, ensuring473

that both contribute equally during training. By474

giving more weight to short texts during classifier475

training, the classification performance on short476

texts can also be improved. More experiments can477

be found in Appendix C.6.478

How do Retrieval Tasks Benefit from Temp-479

Scale? In § 3, we attribute the performance decline480

in retrieval tasks to the fact that short texts have481

more contextual embeddings. TempScale improves482

long text performance by adjusting the temperature483

to enhance high-frequency information, leading to484

a more contextual distribution. We validate this485

using NFCorpus and SciFact. As shown in Ta-486

ble 2, applying TempScale at lower temperatures487

improves the ranking of relevant long documents.488

This method reduces the bias introduced by text489

length. In summary, TempScale improves long490

document performance, with further results on ad-491

ditional models and datasets in Appendix C.7.492

How do the STS Tasks Benefit from Temp-493

Scale? TempScale enhances performance by giv-494

ing long-document embeddings the same spatial495

representation as short texts. To verify this, we496

record the cosine similarity between random sen-497

tences, related sentences, and unrelated sentences498

at different temperatures, as shown in Table 3. The499

results show that as the τ in TempScale decreases,500

the similarity between related sentences remains 501

relatively high, while the similarity between un- 502

related sentences is further reduced. Specifically, 503

although the similarity between random sentences 504

increases with τ in STS13 and STS14, the increase 505

in the unrelated part is not as large as that of the 506

random sentences. This indicates that the distance 507

between unrelated sentences is increasing. 508

Can the Temperature be Set Based on the 509

Length of the Texts? As shown in Table 2, the 510

ranking of relevant long documents in retrieval 511

tasks improves as the τ decreases. This suggests 512

that using a smaller temperature τ for long texts 513

better aligns the embeddings of long and short texts 514

within the same distribution. For longer texts, opti- 515

mal performance is achieved with a smaller τ , and 516

further discussions can be found in Appendix C.7. 517

6 Discussion 518

LLM-based Embedding Models: While primar- 519

ily focusing on PLM-based models, we also ob- 520

serve and discuss Length Collapse in LLM-based 521

models in Appendix D. Contrastive Learning: 522

Length Collapse increases similarity between long 523

and short text embeddings. Although contrastive 524

learning mitigates high similarity, performance 525

degradation in long texts is also due to distribu- 526

tion differences between long and short texts, not 527

just similarity. Details are in Appendix E.1. Com- 528

parison with Other Methods: We compare our 529
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Temperature τ 1.0 0.9 0.8

ANCE 1,306.2 1,291.6 1,278.1
GTR 1,132.8 1,120.5 1,113.1
GIST 1,111.0 1,112.8 1,113.8
BGE 998.3 978.9 965.1
E5 1,193.3 1,172.3 1,162.8

(a) NFCorpus

Temperature τ 1.0 0.9 0.8

ANCE 80.7 78.7 81.5
GTR 81.7 76.6 72.4
GIST 14.4 12.4 11.3
BGE 13.3 12.3 12.4
E5 66.8 47.5 38.9

(b) SciFact

Table 2: Average ranking position with 20% longest document across different temperature τ .

Temperature
STS12 STS13 STS14

Random Related Unrelated Random Related Unrelated Random Related Unrelated
1.0 0.9097 0.9611 0.7973 0.8707 0.9470 0.7931 0.8877 0.9494 0.7889
0.9 0.9096 0.9612 0.7937 0.8721 0.9481 0.7942 0.8886 0.9499 0.7893
0.8 0.9097 0.9612 0.7926 0.8741 0.9490 0.7969 0.8897 0.9501 0.7912

Table 3: Average cosine similarities across different temperature settings.

method with post-processing approaches (Flow530

Function (Li et al., 2020), Whitening (Su et al.,531

2021)) and long-text methods (Chiang and Cholak532

(2022), YaRN (Peng et al., 2024)) in Appendix E.2533

and E.3. Despite similar forms, these methods fail534

to address Length Collapse effectively.535

7 Related Work536

Text Embedding Models. Embeddings are gen-537

erated by PLMs, which produce fixed-dimensional538

embeddings regardless of texts length, forming539

the basis of many NLP applications. Early540

word embedding models (Pennington et al., 2014)541

lack context awareness, while modern mod-542

els (Wang et al., 2022a; Xiao et al., 2023) incor-543

porate context through self-attention mechanisms.544

Transformer-based architectures like BERT (Ken-545

ton and Toutanova, 2019) and RoBERTa (Liu et al.,546

2019) are pre-trained on weakly supervised text547

pairs using contrastive loss (Gao et al., 2021) and548

fine-tuned on high-quality datasets. Recent work549

by (Muennighoff et al.) integrates generative and550

embedding tasks in PLM-based GritLM, enhancing551

performance in both areas. Among PLMs-based552

models (Wolf et al., 2020), self-attention is central,553

and this paper explores its role in Length Collapse.554

Context Window Extension for Embedding555

Models. Despite excelling at generating vector rep-556

resentations, PLM-based embedding models are557

often limited by narrow context windows ( 512 to-558

kens) (Wang et al., 2022a; Xiao et al., 2023; Ni559

et al., 2022), restricting their use in long-input560

scenarios like Wikipedia entries or meeting tran-561

scripts (Saad-Falcon et al., 2024; Zhu et al., 2024).562

Previous work attributes this limitation to small563

context windows and seeks to extend them. Current 564

efforts to develop long-context models typically in- 565

volve pre-training a backbone model from scratch 566

with long inputs (Günther et al., 2023; Nussbaum 567

et al., 2024; Chen et al., 2024a) or adapting existing 568

models (Wang et al., 2024; Zhu et al., 2024), fol- 569

lowed by training for embedding generation. How- 570

ever, in this paper, we discover that regardless of 571

the model’s context window size, the model con- 572

sistently performs worse on longer texts than on 573

shorter texts due to Length Collapse. Therefore, 574

we aim to improve the performance of long texts 575

across all context window size models by analyzing 576

and addressing Length Collapse, rather than simply 577

expanding context window size. 578

8 Conclusion 579

In this paper, we identify the phenomenon of 580

Length Collapse, where the embeddings of longer 581

texts tend to cluster together and provide a Fourier 582

domain analysis to explain this behavior. Our the- 583

oretical findings suggest that Self-Attention inher- 584

ently performs stronger low-pass filtering as the 585

text length increases, leading to patch uniformity 586

issues in longer sentences. Furthermore, the dis- 587

tributional differences between short and long text 588

embeddings contribute to the performance decline 589

of longer texts. To address this, we propose Temp- 590

Scale, which effectively balances the filtering rates 591

for short and long texts. Our extensive experiments 592

validate the accuracy of our analysis and the effec- 593

tiveness of our method, significantly improving the 594

performance of general embedding models on the 595

MTEB and LongEmbed benchmarks. 596

8



Limitation597

Limitation includes: 1) LLM-based embedding598

model: Although we have observed a Length Col-599

lapse in LLM-based embedding models, further600

analysis is needed to investigate how unidirectional601

attention mechanisms specifically contribute to this602

phenomenon. Additionally, LLMs also exhibit a603

performance drop on long texts during text genera-604

tion, which can be seen as Length Collapse. How-605

ever, in this work, we only focus on PLM-based606

models across various tasks in MTEB. Future work607

could attempt to explain the reasons behind the608

performance decline of LLMs on long text gen-609

eration from the perspective of low-pass filtering;610

2) Tuning method: The work in this paper re-611

lies on existing models and pre-trained parameters612

without using a training dataset. In future work,613

we will focus on tuning the temperature for addi-614

tional improvements; 3) Analysis on more mod-615

ules: We primarily investigate the impact of the616

self-attention module on Length Collapse in this617

paper. Moving forward, we plan to explore the618

effects of additional modules in transformers such619

as LayerNorm and FFN.620
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A Background Information about Fourier936

Analysis937

In this appendix, we provide additional background938

information on Fourier analysis. Specifically, con-939

sider the discrete Fourier transform (DFT) in the940

real-valued domain, denoted as F : Rn → Cn.941

The DFT can be expressed in matrix form as shown942

below:943

DFT = 1√
n



1 1 · · · 1

1 e2πj · · · e2πj(n−1)

...
...

. . .
...

1 e2πj(k−1) · · · e2πj(k−1)·(n−1)

...
...

. . .
...

1 e2πj(n−1) · · · e2πj(n−1)2


944

and inverse discrete Fourier transform is945

DFT−1 = DFT⊤ = DFT . In signal pro-946

cessing, we can regard matrices as multi-channel947

signals. For example, X ∈ Rn×d means d-channel948

n-length signals. When the DFT and inverse949

DFT are applied to multi-channel signals, each950

channel is transformed independently. That is,951

F(X) =
[
F(x1) · · · F(xd)

]
= DFT ·X .952

Hereby, we can independently operators DC [·]953

and HC [·] on the echo channel using the matrices954

in Eqn. 6. Then we can write DC [·] as below:955

DC [x] = DFT−1 diag(1, 0, · · · , 0)DFTx956

=
1

n
11Tx.957

Conversely, we can denote HC [·] as:958

HC [x] = DFT−1 diag(0, 1, · · · , 1)DFTx959

= DFT−1(I − diag(1, 0, · · · , 0))DFTx960

= (I − 1

n
11T )x.961

B Detailed Proofs962

B.1 Proof of Theorem 2963

We start our analysis by providing a lemma.964

Lemma 5. The following holds ∥AB∥F ≤965

∥A∥2∥B∥F and ∥AB∥F ≤ ∥A∥F ∥B∥2.966

Proof. Denote B =
(
b1 · · · bn

)
and we have967

AB =
(
Ab1 · · · Abn

)
. From the definition968

of the spectral norm, we have:∥A∥2 ≥ ∥Abi∥2
∥bi∥2 .969

Taking the average of the right-hand side, we ob-970

tain: ∥A∥22 ≥
∑n

i=1
∥bi∥22
∥B∥2F

∥Abi∥22
∥bi∥22

. This implies:971

∥A∥22∥B∥2F ≥
∑n

i=1∥Abi∥22 = ∥AB∥2F . Fi-972

nally, the last step utilizes the result ∥A∥2F =973

∑
i,j |aij |2 =

∑n
j=1∥aj∥22. Because both the spec- 974

tral norm and the Frobenius norm of a matrix 975

remain unchanged under transposition, we have 976

∥AB∥F = ∥B⊤A⊤∥F ≤ ∥BT ∥2∥AT ∥F = 977

∥A∥F ∥B∥2. 978

979

Theorem 6. (Filter Rate of SA) Let σa be 980

the largest singular value of HC [A]. Define 981

SA(X) = AXWV as the output of a self- 982

attention module, then 983

∥HC [SA(X)]∥F ≤ σa∥WV ∥2∥HC [X]∥F . (6) 984

Proof. First, we write X = DC [X] +HC [X] = 985
1
n11

⊤X+H , where H = HC [X] represents the 986

remaining part of the original signals. 987

HC [SA(X)] =

(
I −

1

n
11

T

)
AXWV (7) 988

=

(
I −

1

n
11

T

)
A(

1

n
11

⊤
X + H)WV (8) 989

=
1

n

(
I −

1

n
11

T

)
A11

⊤
XWV (9) 990

+

(
I −

1

n
11

T

)
AHWV (10) 991

=

(
I −

1

n
11

T

)
AHWV (11) 992

Therefore, 993

∥HC [SA(X)]∥F =

∥∥∥∥(I − 1

n
11T

)
AHWV

∥∥∥∥
F

(12) 994

≤
∥∥∥∥(I − 1

n
11T

)
A

∥∥∥∥
2

∥WV ∥2∥H∥F

(13)

995

= σa∥WV ∥2∥H∥F (14) 996

The Eqn. 13 leverages inequality in Lemma 5. 997

998

B.2 Proof of Theorem 3 999

Theorem 7. (Filter Rate of Different Input Length 1000

n) Let XWQ and XWK be a Gaussian ma- 1001

trix, where elements qij ∼ N (0, σ2
q ) and kij ∼ 1002

N (0, σ2
k), ∀i, j. Let xij = q⊤i kj/

√
d the attention 1003

score of pair i, j, whose variance can be expressed 1004

as σ2
s = σ2

qσ
2
k + Ccross, where Ccross is the cross- 1005

covariance of the squared queries and keys (Good- 1006

man, 1960). Then we have 1007

σa ≤
√√√√ n

2
√
1 + 1

e2σ
2
s
(n− 1)

3
2 + 1

, (15) 1008

where σa decreases with n increasing. 1009
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Proof. First, we have1010

σa =

∥∥∥∥(I − 1

n
11T

)
A

∥∥∥∥
2

(16)1011

≤
∥∥∥∥I − 1

n
11T

∥∥∥∥
2

∥A∥2 (17)1012

≤ ∥A∥F (18)1013

The Eqn. 18 leverages
∥∥I − 1

n11
T
∥∥
2

= 11014

and ∥A∥2 ≤ ∥A∥F . Now we need to upper1015

bound ∥A∥F . Generally, the product of two in-1016

dependent Gaussian variables has a density in the1017

form of a modified Bessel function of the second1018

kind (Nahshan et al., 2024). When the vector di-1019

mensions are sufficiently large, the Central Limit1020

Theorem implies that the distribution of the dot1021

product between qi and kj can be approximated by1022

a Gaussian distribution with zero mean and vari-1023

ance σ2
s . As mentioned in Theorem 3, the variance1024

of q⊤i kj can be expressed as σ2 = σ2
qσ

2
k + Ccross,1025

where Ccross = Cov(q2,k2) − Cov(q,k)2 is1026

the cross-covariance of the squared queries and1027

keys (Goodman, 1960). Thus we can suppose1028

that each element pj ∼ N (0, σs) in the ma-1029

trix XWQW⊤
KXT is independent, where j ∈1030

(1, · · · , n):1031

∥A∥F =

√√√√√n
n∑

j=1

(
e
xj∑n

i=1 exi

)2

(19)1032

=

√√√√√n

∑n
j=1 e

2xj

2
∑n

i=1

∑n
j=1,j ̸=i

e
xi+xj +

∑n
j=1 e

2xj
(20)1033

=

√√√√√√√√ ne
lnn+2σ2

s− 1
2

ln e
4σ2

s−1
n

2e
lnn(n−1)+σ2

s− 1
2

ln e
2σ2

s−1
n(n−1) + e

lnn+2σ2
s− 1

2
ln e

4σ2
s−1
n

(21)

1034

=

√√√√√ n

2
√

1 + 1

e
2σ2

s
(n − 1)

3
2 + 1

. (22)1035

The derivation in Eqn. 21 primarily relies on the1036

theorem from Fenton (1960), which addresses the1037

sum of log-normal variables. First, we have ex ∼1038

LogNormal(0, σ2
s) and e2x ∼ LogNormal(0, 4σ2

s).1039

Additionally, we assume that exi and exj are inde-1040

pendent, leading to exi+xj ∼ LogNormal(0, 2σ2
s).1041

Now, considering the sum of log-normal variables,1042

Fenton (1960)’s theorem provides that, for moder-1043

ate values of σ2, the sum of zero-mean i.i.d. log-1044

normal variables can be approximated by another1045

log-normal distribution with mean µΣ and variance1046

σ2
Σ, where:1047

σ2
Σ = ln

(
1

n

(
eσ

2 − 1
)
+ 1

)
;1048

µΣ = lnn+ (σ2 − σ2
Σ)/2.1049

For moderate values of n and σ2, the variance 1050

σ2
Σ can be approximated as: 1051

σ2
Σ ≈ ln

(
1

n

(
eσ

2 − 1
))

. 1052

Thus, the sum
∑n

j=1 e
2xj follows a log-normal 1053

distribution: 1054∑n
j=1 e

2xj ∼ LogNormal
(
lnn+ 2σ2

s − 1
2 ln

(
1
n

(
e4σ

2 − 1
))

, ln
(

1
n

(
e4σ

2 − 1
)))

. 1055

Similarly, the sum
∑n

i=1

∑n
j=1,j ̸=i e

xi+xj fol- 1056

lows: 1057∑n
i=1

∑n
j=1,j ̸=i e

xi+xj ∼ LogNormal
(
lnn(n− 1) + σ2

s − 1
2 ln

(
e2σ

2
s−1

n(n−1)

)
, ln

(
e2σ

2
s−1

n(n−1)

))
. 1058

From these, Eqn. 21 follows naturally. Finally, 1059

we have 1060

σa ≤
√√√√ n

2
√
1 + 1

e2σ
2
s
(n− 1)

3
2 + 1

, 1061

where σa decreases with n increasing. 1062

1063

B.3 Proof of Corollary 4 1064

Theorem 8. (Length Collapse in Text Embeddings) 1065

Given two texts of length n, the cosine similarity of 1066

their text embeddings tends to increase as n grows. 1067

Proof. Given the two texts embeddings x1 and x2, 1068
we have 1069

cos(x1,x2) =
(HC [x1] +DC [x1])

(
HC

[
xT

2

]
+DC

[
xT

2

])
∥x1∥2∥x2∥2

(23)

1070

=
HC [x1]HC

[
xT

2

]
+DC [x1]DC

[
xT

2

]
∥x1∥2∥x2∥2

(24)

1071

≥ α2√
α2 + α2

1

√
α2 + α2

2

, (25) 1072

where α1 and α2 represent the maximum values in 1073

the frequency domain of HC [x1] and HC [x2] and 1074

α represent the value of DC [x1] and DC [x2], re- 1075

spectively, after applying the discrete Fourier trans- 1076

form. Eqn. 24 leverages that HC [·] and DC [·] are 1077

orthogonal. Eqn. 25 leverages that the assumption 1078

the mean of word embeddings in natural language 1079

texts maintains a relatively consistent representa- 1080

tion. Thus HC [x1] and HC [x2] have the same 1081

value α after applying the discrete Fourier trans- 1082

form. Finally, according to Theorem 3, α1 and α2 1083

will gradually decrease with n grows, leading to a 1084

higher cosine similarity between x1 and x2. 1085
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C More Experiments and Analysis1086

C.1 Rewriting Process1087

To investigate the differences in embedding distri-1088

butions across texts of varying lengths, we use the1089

Llama3 (i.e., Llama-3.1-8B-Instruct) (Dubey1090

et al., 2024) model to rewrite the texts. Specifi-1091

cally, we used two prompts, “Please express the1092

given text in one sentence. No more than 10 tokens.1093

{{original text}}” and “Please use few sentences1094

to summarize the given text. {{original text}}”, to1095

summarize the texts. This rewriting allows the texts1096

to retain the same semantics while having lower1097

lengths. By studying the differences in texts of1098

varying lengths, we conclud that the cause of the1099

Length Collapse phenomenon is that longer texts1100

cluster to each other in embedding space.1101

C.2 Details on Figure 61102

To verify Theorem 2, we illustrate the high-1103

frequency intensity of each layer’s output along1104

with its theoretical upper limit. Our visualization is1105

based on the official checkpoint of 12-layer ANCE,1106

GIST and BGE. We use a logarithmic scale for the1107

purpose of a better view. Let Xl denote the output1108

of the l-th layer. For red line, we directly calculate1109

log(∥HC [Xl+1]∥F /∥HC [Xl]∥F ) at each layer. In1110

practice, models typically employ multi-head atten-1111

tion, so we replace ∥WV ∥2 in Eqn. 1 with σ1H ,1112

where σ1 = maxHh=1∥W h
V ∥2. For blue line, we1113

obtain the coefficient σ1 with respect to network1114

parameters and apply the logarithmic scale. To1115

summarize, Figure 6 imply an convergence rate,1116

which is consistent with our Theorem 2. Figure ??1117

show the same trend as Figure 6, although the E51118

model exhibits anomalies at deeper layers.1119

C.3 Details on Figure 71120

To verify Theorem 3, we visualize the value of σa1121

across different text length. Our visualization is1122

based on the texts from NFCorpus. We sample 1001123

samples for each bin from 0 to 500 with a bin size1124

of 50. The σa value is computed as the average of1125

the σa based on the attention of all heads before1126

the output of the final layer. To summarize, Fig-1127

ure 7 imply that σa shows a decreasing trend as n1128

increases, which is consistent with our Theorem 3.1129

Moreover, σa also increases as τ decreases, further1130

validating our proposed method, TempScale. E51131

model shows an increasing σa with length, which1132

may be due to anomalies in the deep layer attention1133

patterns.1134

C.4 More Analysis about Assumption in 1135

Theorem 4 1136

In Corollary 4, we hypothesize and verify that all- 1137

natural language sequences tend to have a relatively 1138

consistent representation. As a result, different 1139

texts tend to exhibit consistent low-pass signals af- 1140

ter losing high-frequency information, leading to 1141

ultimately consistent text embeddings. This leads 1142

to an increase in cosine similarity for longer texts. 1143

However, as shown in Figure 8, we repeat the words 1144

“dog” and “word” n times and calculate the simi- 1145

larity between these two texts. The results show 1146

that even when the sequences do not overlap, the 1147

text embeddings tend to converge to similar repre- 1148

sentations as the sequence length increases. This 1149

further demonstrates that Length Collapse causes 1150

completely different sequences to converge toward 1151

similarity. 1152

C.5 More Discussion about Other Works 1153

Other Components in Transformer. After dis- 1154

cussing how self-attention contributes to Length 1155

Collapse, we proceed to examine the influence of 1156

other modules in the transformer, such as multi- 1157

head, residual, and FFN. Fortunately, previous 1158

work (Wang et al., 2022b) has talked about whether 1159

these components can effectively alleviate the low- 1160

pass filtering drawbacks. The proof demonstrates 1161

that while these components help preserve high- 1162

frequency signals, they do not alter the fact that 1163

the MSA block, as a whole, functions solely with 1164

the representational power of a low-pass filter. Fur- 1165

thermore, the ability of these models to preserve 1166

high-frequency signals is solely determined by their 1167

internal parameters and architecture, independent 1168

of the input text length. As a result, these modules 1169

do not impact our analysis of Length Collapse in 1170

practical models. 1171

Difference from Over-Smoothing in Deeper 1172

Layers. In previous research (Wang et al., 2022b), 1173

it has been noted that a self-attention module acts 1174

as a low-pass filter, causing input feature maps to 1175

gradually lose high-frequency signals as the model 1176

layers go deeper. Furthermore, other studies (Oono 1177

and Suzuki, 2020; Cai and Wang, 2020) indicate 1178

that the node features of Graph Convolutional Net- 1179

works (GCNs) can become exponentially trapped 1180

in the null space of the graph Laplacian matrix. The 1181

root cause of this phenomenon is that both graph 1182

Laplacian matrices and self-attention matrices con- 1183

sistently exhibit a dominant eigenvector, commonly 1184
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Figure 6: Visualization of the intensity of high-frequency components and their theoretical upper bounds. The blue
line is defined by log(∥HC [Xl+1]∥F /∥HC [Xl]∥F ), and the red line is estimated using the results in Theorem 2.
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Figure 7: σa of HC [A] before the last layer across different text length under different τ setting.

referred to as the DC component. While these stud-1185

ies address over-smoothing in deeper layers, we fo-1186

cus on how the low-pass filtering process changes1187

as the input sequence lengthens, specifically exam-1188

ining over-smoothing in longer sequences.1189

C.6 More discussions on Classification and1190

Clustering Tasks1191

For data grouping tasks like classification and clus-1192

tering, in the case of N -class tasks, we can think of1193

the model as learning N classification boundaries.1194

The farther the text embedding is from the bound-1195

ary, the closer the output probability approaches 11196

or 0. As shown in Figure 9 (left), we plot the en-1197

tropy of the model output probabilities across dif-1198

ferent length intervals. The model outputs higher1199

entropy for longer texts, which may be because the1200

embeddings of longer texts are positioned closer to1201

the center of the space as described in Figure 1b,1202

resulting in a shorter distance to various classifica-1203

tion boundaries. Meanwhile, in Figure 9 (right), we1204

can also observe that accuracy and entropy follow1205

the same trend: the model achieves higher accu-1206

racy when it has lower entropy. In other words, the1207

model performs better if the text embeddings are1208

farther from the boundary. After applying Temp-1209

Scale, a decreased entropy will result in increased1210

accuracy. This further supports the relationship be-1211

tween entropy and accuracy in classification tasks.1212

Moreover, if the model exhibits a more severe1213

Length Collapse phenomenon, meaning a greater1214

performance drop on longer texts, the more perfor-1215

mance improvement it experiences after applying1216

TempScale. This suggests that one possible reason1217

TempScale is effective on shorter text datasets is1218

that it adjusts the distribution differences between1219

texts of varying lengths. As shown in Figure 1c, 1220

after applying TempScale, the distribution of text 1221

embeddings across different length intervals be- 1222

comes more uniform, which facilitates the model 1223

in learning length-agnostic parameters. 1224

C.7 More Results on Longer Texts 1225

Can the temperature be set based on the length 1226

of the text? In the previous experiments, we use 1227

the same temperature τ for scaling all texts in the 1228

same task. However, our analysis indicates that 1229

texts of different lengths have varying filtering 1230

rates, so a natural idea is to use different temper- 1231

atures for texts of different lengths. As shown in 1232

Figure 12, We plot the performance trend for texts 1233

under the same settings in Figure 9 as the tempera- 1234

ture varies. The results indicate that a higher tem- 1235

perature is optimal for short texts, while a lower 1236

temperature is preferable for long texts, as con- 1237

firmed by the results in Table 2. When performing 1238

retrieval tasks, we can also set different tempera- 1239

tures for queries and documents to achieve better 1240

performance. As shown in Figure 11, on the QM- 1241

Sum dataset, we can consistently achieve better per- 1242

formance by setting a lower temperature for queries. 1243

Moreover, as shown in Figure 13, compared to the 1244

QMSum dataset, SummScreenFD requires a lower 1245

temperature for scaling the document due to its 1246

longer length. This further supports the conclusion 1247

that longer texts require a lower temperature for 1248

scaling. In Figure 10, we observe a similar phe- 1249

nomenon across other models. Except for ANCE, 1250

the performance of other models on long queries 1251

decreases as the temperature decreases. This sug- 1252

gests that long queries require a lower tempera- 1253

ture to mitigate the Length Collapse phenomenon. 1254
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Figure 8: The cosine similarity of embeddings of texts generated by repeating words “dog” and “cat”.
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Figure 9: Probability entropy and classification accuracy of models across different length intervals on Amazon-
Polarity dataset. Each model has bars representing intervals of 100 in length, with 500 text samples per interval,
covering a range from 0 to 300. Bars represent raw outputs, with green and red hatching indicating increases and
decreases after TempScale, respectively.

However, ANCE’s performance degradation with1255

decreasing temperature is likely attributable to its1256

inherent limitations in processing long texts.1257

D Length Collapse in LLM-based1258

Embedding Models1259

To explore whether Length Collapse also oc-1260

curs in long-context LLMs, we select three1261

widely used LLM-based embedding models1262

from the MTEB benchmark—bge-multilingual-1263

gemma2 (Chen et al., 2024a), NV-Embed-v2 (Lee1264

et al., 2024), and e5-mistral-7b-instruct (Wang1265

et al., 2022a)—all of which rank within the1266

top 20 on the MTEB leaderboard. We con-1267

duct experiments using three commonly used1268

long-text datasets, including nq and hotpotqa in1269

LongRAG (Jiang et al., 2024) and LongAlpaca-1270

12k (Chen et al., 2024b), which are selected based1271

on relevance to the keyword "long" and chosen for1272

their evenly distributed text lengths. Specifically,1273

we analyze shifts in embedding space across differ-1274

ent text length intervals by calculating the average1275

Euclidean distance of each embedding from the1276

central embedding (the mean of all embeddings)1277

and computing cosine similarity between each pair1278

of embeddings as in Table 4 and Table 5.1279

The experimental results show that as text length1280

increases, the embeddings from different LLM-1281

based embedding models exhibit a gradual conver-1282

gence trend, with the average Euclidean distance1283

between embeddings decreasing and pairwise co-1284

sine similarity increasing. This indicates that even1285

mainstream long-context LLM embedding models1286

tend to experience embedding convergence (Length 1287

Collapse) and reduced distinctiveness in long-text 1288

processing due to the low-pass filtering effect. 1289

E More Discussions about TempScale 1290

1291

E.1 Relationship with Contrastive Learning 1292

Background and Motivation. Contrastive learn- 1293

ing is widely used to address embedding space 1294

anisotropy, reducing high similarity between ran- 1295

dom text samples of varying lengths by maximizing 1296

distances among negative pairs and aligning pos- 1297

itive pairs. While it improves embedding quality 1298

in many applications, its impact on Length Col- 1299

lapse remains unexplored. This section examines 1300

how contrastive learning affects Length Collapse, 1301

assessing its contributions and limitations. 1302

As shown in previous works (Wang and Isola, 1303

2020), the InfoNCE loss, when scaled to a large 1304

number of negative samples, can be decomposed 1305

into two primary components: Alignment and 1306

Uniformity. Alignment ensures that positive 1307

pairs—texts with similar content—are close in the 1308

embedding space, while Uniformity spreads em- 1309

beddings of negative pairs to prevent them from 1310

clustering excessively. Mathematically, as the num- 1311

ber of negative samples M → ∞, the normalized 1312

InfoNCE loss can be expressed as: 1313

lim
M→∞

L(f, τ) − logM = −
1

τ
E(

x,x+
)
∼ppos

[
f(x)

T
f
(
x
+
)]

1314

+ Ex∼pdata

[
logE

x−∼p
−
data

[
e
f(x)T f

(
x−

)
/τ

]]
. 1315
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Figure 10: Results about performance difference between long query and short query across varying temperature τ
on SummScreenFD dataset.
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Figure 11: Relative performance compared to the raw results with varying query (Q Temperature) and document (D
Temperature) temperatures using different models on QMSum.

Dataset Model 0-1000 1000-2000 2000-3000

nq
bge-multilingual-gemma2 0.94 0.92 0.91
NV-Embed-v2 0.98 0.91 0.89
e5-mistral-7b-instruct 0.68 0.64 0.64

hotpotqa
bge-multilingual-gemma2 0.93 0.88 0.87
NV-Embed-v2 0.95 0.84 0.79
e5-mistral-7b-instruct 0.70 0.61 0.57

LongAlpaca-12k
bge-multilingual-gemma2 0.71 0.48 0.49
NV-Embed-v2 0.89 0.86 0.87
e5-mistral-7b-instruct 0.69 0.53 0.53

Table 4: Euclidean distance results for different datasets and LLM-based embedding models.

Dataset Model 0-1000 1000-2000 2000-3000

nq
bge-multilingual-gemma2 0.39 0.42 0.45
NV-Embed-v2 0.32 0.47 0.59
e5-mistral-7b-instruct 0.75 0.77 0.78

hotpotqa
bge-multilingual-gemma2 0.51 0.52 0.59
NV-Embed-v2 0.48 0.59 0.69
e5-mistral-7b-instruct 0.75 0.81 0.85

LongAlpaca-12k
bge-multilingual-gemma2 0.76 0.90 0.89
NV-Embed-v2 0.48 0.65 0.68
e5-mistral-7b-instruct 0.78 0.87 0.87

Table 5: Pair cosine similarities results for different datasets and LLM-based embedding models.
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Figure 12: Results about performance difference between long query and short query across varying temperature τ
on AmazonPolarity dataset.
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Figure 13: Relative performance compared to the raw results with varying query (Q Temperature) and document (D
Temperature) temperatures using different model on SummScreenFD

These properties make contrastive learning es-1316

pecially effective in tasks such as retrieval, where1317

maximizing inter-sample variance is crucial.1318

E.1.1 Why Contrastive Learning Cannot1319

Fully Address Length Collapse1320

While contrastive learning alleviates high similar-1321

ity issues across all text lengths, it does not en-1322

tirely resolve the Length Collapse issue inherent1323

in PLM-based models. Length Collapse arises from1324

self-attention’s tendency to push embeddings for1325

longer texts toward a concentrated representation1326

space. This characteristic is unaffected by con-1327

trastive learning’s alignment or uniformity mech-1328

anisms because contrastive learning optimizes the1329

relative positioning of positive and negative pairs1330

rather than mitigating the length-induced clustering1331

trend.1332

E.2 Comparison with Other Post-processing1333

Techniques1334

In addition to TempScale, several post-processing1335

methods have been proposed to address high simi-1336

larity in embeddings, such as the Flow Function (Li1337

et al., 2020) and Whitening (Su et al., 2021). For1338

comparative analysis, we implemented the last2avg1339

version of the Flow Function, as the full flow ver-1340

sion requires additional training, and the Whitening1341

method is based on its original formulation. The1342

results, summarized in Table 6, highlight that these1343

methods do not perform as effectively in our spe-1344

cific application. These results indicate that Flow1345

and Whitening, originally developed for standard1346

BERT embeddings, are less effective with the fine- 1347

tuned Transformer model used in this paper, which 1348

includes additional normalization layers. While 1349

TempScale reduces similarity in long-sequence 1350

embeddings, achieving distributional consistency 1351

across different sequence lengths is more critical 1352

for performance. Therefore, lowering similarity 1353

alone may not significantly improve downstream 1354

tasks. 1355

E.3 Comparison with Other Similar 1356

Long-Text Methods 1357

To thoroughly evaluate our TempScale approach, 1358

we compare it with two related attention scaling 1359

methods: softmax
(

logn
τ
√
d
QKT

)
V (Method1) (Chi- 1360

ang and Cholak, 2022) and YaRN (Peng et al., 1361

2024). In YaRN, the scaling formula for the at- 1362

tention matrix is given as softmax
(

1
τ
√
d
QKT

)
V , 1363

where 1
τ = 0.1 ln s+ 1, and s = L′

L , with L′ repre- 1364

senting the extended context window length and L 1365

the original context window length. These methods 1366

propose different scaling strategies, but they differ 1367

in their theoretical motivations, applications, and 1368

experimental outcomes. 1369

While Method1, YaRN, and TempScale share a 1370

similar structural approach, they tackle different 1371

challenges. Method1 is for binary classification 1372

tasks, specifically determining if the first string in 1373

a sequence of binary strings is a ’1’. It focuses on 1374

resolving straightforward decision-making prob- 1375

lems in binary data. YaRN, by contrast, extends the 1376

context window of LLMs without requiring retrain- 1377
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Model Rerank. Summ. Class. Clust. LongEmbdRetr. STS BeirRetr. Avg.

ANCE 49.09 29.58 55.27 33.04 34.02 66.32 36.87 43.45
+Flow 48.49 29.57 56.34 32.11 31.92 66.02 36.57 43.00
+Whitening 25.16 21.76 25.82 3.21 1.29 2.78 0.79 11.54

GTR 54.23 29.67 55.10 38.65 37.33 70.11 44.98 47.15
+Flow 37.49 28.09 41.98 21.87 7.65 35.55 1.35 24.85
+Whitening 24.63 20.69 25.71 3.06 1.35 -3.02 0.63 10.44

GIST 58.55 31.14 64.75 44.77 38.21 75.61 52.77 52.26
+Flow 58.16 30.56 65.68 44.67 35.83 74.98 51.40 51.61
+Whitening 24.08 24.26 20.06 9.83 1.78 -4.31 0.81 10.93

BGE 58.87 31.03 64.79 45.80 37.46 75.88 55.29 52.73
+Flow 58.48 30.73 64.77 45.28 36.95 74.43 54.52 52.16
+Whitening 24.75 19.61 16.50 4.23 2.39 1.60 0.47 9.94

E5-4K 53.12 30.58 61.72 41.01 56.01 71.77 47.22 51.63
+Flow 52.48 29.82 62.33 39.95 44.71 68.55 30.68 46.93
+Whitening 24.94 22.14 22.73 4.04 1.85 1.96 0.56 11.17

Table 6: Performance comparison of different post-processing methods across various tasks

ing, particularly adjusting the attention mechanism1378

to handle larger contexts. TempScale addresses1379

Length Collapse in embedding models for long1380

texts, improving performance without retraining by1381

preserving distinct representations as text length1382

increases. Moreover, Method1 offers a solution us-1383

ing a specially designed Transformer example, but1384

its motivation is limited by the specificity of this1385

example. In contrast, YaRN introduces an empiri-1386

cally derived scaling formula. TempScale is based1387

on a rigorous low-pass filtering analysis, giving1388

it a strong theoretical foundation and an intuitive1389

explanation.1390

To effectively compare the performance of1391

the above methods, we tested them on the1392

MTEB benchmark. Since we are not modify-1393

ing the context window length, we adapt YaRN1394

as softmax
(

τ√
d
QKT

)
V , with τ = λ log n +1395

1. We explore values for λ in the range1396

{0.0001, 0.001, 0.01, 0.1, 1}. This setup is reason-1397

able, as our findings indicate that longer texts gener-1398

ally benefit from a smaller temperature scale. The1399

experimental results are as shown in Table 7.1400

The experimental results indicate that neither1401

Method1 nor YaRN effectively adapts to the embed-1402

ding model scenario. (Although YaRN shows slight1403

improvement when the λ value is small, in this case,1404

Method 2 degenerates into TempScale.) Some po-1405

tential reasons are as follows: A plausible explana-1406

tion is that while both methods perform finer scal-1407

ing on the attention matrix, applying different tem- 1408

perature adjustments across varying text lengths 1409

may lead to embeddings from different lengths 1410

falling into distinct distributions, which is unfa- 1411

vorable for downstream tasks. Moreover, in gen- 1412

eration tasks, Method1 and YaRN succeed likely 1413

because of differences in output requirements. For 1414

these tasks, the model outputs a probability distri- 1415

bution and samples from it. Minor perturbations 1416

generally don’t affect the token output significantly; 1417

even if one sequence’s token distribution changes, 1418

it doesn’t impact the output of other sequences. In 1419

contrast, any substantial change in a single embed- 1420

ding for an embedding model can directly affect the 1421

entire downstream performance. For instance, in 1422

classification tasks, a classifier model relies on em- 1423

beddings as input, and in retrieval tasks, a change 1424

in embedding impacts document ranking. Over- 1425

all, for embedding tasks, simply applying a single 1426

temperature adjustment better maintains the overall 1427

embedding distribution, helping mitigate Length 1428

Collapse and achieve better results across various 1429

downstream applications. 1430

F Datasets and Evaluation Metrics 1431

Table 8 provides an overview of the datasets used in 1432

our experiments. Next, we give a brief description 1433

of the tasks involved in the experiments and the 1434

corresponding datasets and evaluation metrics they 1435

include. 1436
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Model Rerank. Summ. Class. Clust. LongEmbdRetr. STS BeirRetr. Avg.

ANCE 49.09 29.58 55.27 33.04 34.02 66.32 36.87 43.45
+Method1 41.80 29.21 48.21 20.72 6.23 53.40 7.74 29.61
+YaRN(λ = 0.0001) 49.09 29.58 55.62 33.01 34.02 66.32 36.86 43.50
+YaRN(λ = 0.001) 49.08 29.57 55.62 33.05 33.96 66.32 36.87 43.49
+YaRN(λ = 0.01) 49.10 29.31 55.65 32.95 33.92 66.27 36.87 43.44
+YaRN(λ = 0.1) 48.95 29.30 55.45 32.65 32.31 65.72 35.77 42.88
+YaRN(λ = 1) 45.71 29.28 52.80 26.16 10.59 60.15 13.34 34.00

GTR 54.23 29.67 55.10 38.65 37.33 70.11 44.98 47.15
+Method1 38.12 28.44 40.34 14.46 3.61 47.09 0.82 24.70
+YaRN(λ = 0.0001) 54.23 29.68 55.06 38.30 37.42 70.11 44.98 47.11
+YaRN(λ = 0.001) 54.23 29.71 55.08 38.29 37.56 70.11 44.97 47.13
+YaRN(λ = 0.01) 54.23 29.71 55.04 38.63 37.39 70.06 45.00 47.15
+YaRN(λ = 0.1) 54.12 29.34 54.86 34.07 36.53 69.86 43.06 45.98
+YaRN(λ = 1) 55.19 29.00 47.27 19.06 3.99 61.87 1.46 31.12

GIST 58.55 31.14 64.75 44.77 38.21 75.61 52.77 52.26
+Method1 58.64 28.26 51.05 28.11 5.42 62.43 7.51 34.49
+YaRN(λ = 0.0001) 58.55 31.14 64.26 44.75 38.21 75.61 52.78 52.19
+YaRN(λ = 0.001) 58.55 31.12 64.28 44.75 38.20 75.61 52.78 52.18
+YaRN(λ = 0.01) 58.53 31.26 64.24 44.78 38.05 75.60 52.79 52.18
+YaRN(λ = 0.1) 58.45 30.36 63.86 44.62 37.34 75.31 52.10 51.72
+YaRN(λ = 1) 55.75 26.76 58.79 36.95 11.85 69.00 23.59 40.38

BGE 58.87 31.03 64.79 45.80 37.46 75.88 55.29 52.73
+Method1 37.78 29.17 37.80 14.36 2.10 43.72 0.84 23.68
+YaRN(λ = 0.0001) 58.86 31.04 64.78 45.77 37.45 75.88 55.29 52.72
+YaRN(λ = 0.001) 58.86 30.96 64.78 45.75 37.47 75.87 55.28 52.71
+YaRN(λ = 0.01) 58.85 31.02 64.73 45.61 37.26 75.86 55.22 52.65
+YaRN(λ = 0.1) 58.86 30.90 64.51 45.19 36.55 75.55 54.96 52.36
+YaRN(λ = 1) 52.65 29.09 50.51 25.50 2.36 64.20 2.14 32.35

E5-4K 53.12 30.58 61.72 41.01 56.01 71.77 47.22 51.63
+Method1 40.90 24.11 42.85 13.64 3.24 41.62 1.05 23.92
+YaRN(λ = 0.0001) 53.12 30.57 61.78 40.77 56.01 71.77 47.22 51.61
+YaRN(λ = 0.001) 53.11 30.55 61.78 40.75 55.98 71.77 47.22 51.59
+YaRN(λ = 0.01) 53.07 30.42 61.73 40.61 55.53 71.71 47.21 51.47
+YaRN(λ = 0.1) 52.64 30.20 61.51 40.19 48.39 70.68 46.36 50.00
+YaRN(λ = 1) 45.00 29.01 50.81 17.99 2.91 57.27 1.46 29.21

Table 7: Average main metric on MTEB and LongEmbd across Method1 and YaRN.

F.1 Classification1437

In general, we use the provided embedding model1438

to obtain a training set and a test set. The embed-1439

dings of the training set are used to train a logistic1440

regression classifier with a maximum of 100 itera-1441

tions, which is then scored on the test set. The main1442

evaluation metrics are accuracy, average precision,1443

and the f1 score.1444

AmazonPolarity (Zhang et al., 2015) consists of1445

Amazon customer reviews, each labeled as either1446

“positive" or “negative."1447

Banking77 (Casanueva et al., 2020) dataset1448

consists of online banking user queries labeled with1449

one of 77 specific intents. 1450

Emotion (Saravia et al., 2018) comprises Twit- 1451

ter messages categorized by six fundamental emo- 1452

tions: anger, fear, joy, love, sadness, and surprise. 1453

Imdb (Maas et al., 2011) consists of extensive 1454

movie reviews categorized as either positive or neg- 1455

ative. 1456

MassiveIntent (FitzGerald et al., 2022) is a 1457

multilingual dataset featuring a diverse array of 1458

utterances from Amazon Alexa, each labeled with 1459

one of 60 different intents across 51 languages. 1460

MassiveScenario (FitzGerald et al., 2022) 1461

dataset comprises a diverse collection of Amazon 1462
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Type Name Categ. #Lang. Train
Samples

Dev
Samples

Test
Samples

Train avg.
chars

Dev avg.
chars

Test avg.
chars

BEIR Retrival

NFCorpus s2p 1 0 0 3,956 0 0 1,462.7
SciFact s2p 1 0 0 5,483 0 0 1,422.3
SciFact s2p 1 0 0 5,483 0 0 1,422.3
SCIDOCS s2p 1 0 0 26,657 0 0 1161.9
FiQA2018 s2p 1 0 0 58,286 0 0 760.4
Touche2020 s2p 1 0 0 382,594 0 0 1720.1

Classification

AmazonPolarityClassification p2p 1 3,600,000 0 400,000 431.6 0 431.4
Banking77Classification s2s 1 10,003 0 3,080 59.5 0 54.2
EmotionClassification s2s 1 16,000 2,000 2,000 96.8 95.3 96.6
ImdbClassification p2p 1 25,000 0 25,000 1,325.1 0 1,293.8
MassiveIntentClassification s2s 51 11,514 2,033 2,974 35.0 34.8 34.6
MassiveScenarioClassification s2s 51 11,514 2,033 2,974 35.0 34.8 34.6
ToxicConversationsClassification s2s 1 50,000 0 50,000 298.8 0 296.6
TweetSentimentExtractionClassification s2s 1 27,481 0 3,534 68.3 0 67.8

Clustering

ArxivClusteringP2P p2p 1 0 0 732,723 0 0 1,009.9
ArxivClusteringS2S s2s 1 0 0 732,723 0 0 74.0
BiorxivClusteringP2P p2p 1 0 0 75,000 0 0 1,666.2
BiorxivClusteringS2S s2s 1 0 0 75,000 0 0 101.6
MedrxivClusteringP2P p2p 1 0 0 37,500 0 0 1,981.2
MedrxivClusteringS2S s2s 1 0 0 37,500 0 0 114.7
RedditClustering s2s 1 0 420,464 420,464 0 64.7 64.7
RedditClusteringP2P p2p 1 0 0 459,399 0 0 727.7
StackExchangeClustering s2s 1 0 417,060 373,850 0 56.8 57.0
StackExchangeClusteringP2P p2p 1 0 0 75,000 0 0 1,090.7
TwentyNewsgroupsClustering s2s 1 0 0 59,545 0 0 32.0

LongEmbd Retrival

LEMBNarrativeQARetrieval s2p 1 0 0 10,804 0 0 326,753.5
LEMBQMSumRetrieval s2p 1 0 0 1,724 0 0 53,335.8
LEMBSummScreenFDRetrieval s2p 1 0 672 0 0 30,854.3 0
LEMBWikimQARetrieval s2p 1 0 0 500 0 0 37,445.6

Reranking

AskUbuntuDupQuestions s2s 1 0 0 2,255 0 0 52.5
MindSmallReranking s2s 1 231,530 0 107,968 69.0 0 70.9
SciDocsRR s2s 1 0 19,594 19,599 0 69.4 69.0
StackOverflowDupQuestions s2s 1 23,018 3,467 3,467 49.6 49.8 49.8

STS

BIOSSES s2s 1 200 200 200 156.6 156.6 156.6
SICK-R s2s 1 19,854 19,854 19,854 46.1 46.1 46.1
STS12 s2s 1 4,468 0 6,216 100.7 0 64.7
STS13 s2s 1 0 0 3,000 0 0 54.0
STS14 s2s 1 0 0 7,500 0 0 54.3
STS15 s2s 1 0 0 6,000 0 0 57.7
STS16 s2s 1 0 0 2,372 0 0 65.3
STS17 s2s 11 0 0 500 0 0 43.3
STS22 p2p 18 0 0 8,060 0 0 1,992.8
STSBenchmark s2s 1 11,498 3,000 2,758 57.6 64.0 53.6

Summarization SummEval p2p 1 0 0 2,800 0 0 359.8

Table 8: Statistics of the experimental datasets used in the work.

Alexa user utterances, each labeled with one of 601463

thematic intents, and supports 51 languages.1464

ToxicConversations 1 , sourced from a Kaggle1465

competition, comprises comments from the Civil1466

Comments platform, complete with annotations1467

indicating whether each comment is toxic.1468

TweetSentimentExtraction 2, a dataset from a1469

Kaggle competition focuses on classifying tweets1470

into three categories: neutral, positive, and negative1471

sentiments.1472

1ToxicConversations
2TweetSentimentExtraction

F.2 Clustering 1473

Clustering aims at grouping a given set of sentences 1474

or textbfs into meaningful clusters by training a 1475

mini-batch k-means model on the text embeddings. 1476

The model is scored using the v-measure (Rosen- 1477

berg and Hirschberg, 2007). Since the v-measure 1478

does not depend on the cluster labels, the arrange- 1479

ment of the labels will not affect the score. 1480

ArxivClusteringS2S, ArxivClusteringP2P, 1481

BiorxivClusteringS2S, BiorxivClusteringP2P, 1482

MedrxivClusteringP2P, MedrxivCluster- 1483

ingS2S (Muennighoff et al., 2023). These datasets 1484

are tailored for MTEB, utilizing titles or a combi- 1485

nation of titles and abstracts from arXiv, bioRxiv, 1486

and medRxiv, with clustering labels derived from 1487
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Model Name Publicly Available Link

ANCE https://huggingface.co/sentence-transformers/msmarco-roberta-base-ance-firstp
GTR https://huggingface.co/sentence-transformers/gtr-t5-base
GIST https://huggingface.co/avsolatorio/GIST-small-Embedding-v0
BGE https://huggingface.co/BAAI/bge-base-en-v1.5
E5 https://huggingface.co/dwzhu/e5-base-4k

Table 9: Embedding models used in the experiments.

human-assigned categories, emphasizing both1488

main and secondary classification levels.1489

RedditClustering (Geigle et al., 2021), a dataset1490

consists of titles from 199 subreddits, is organized1491

into 25 splits, each featuring 10 to 50 classes, with1492

every class containing between 100 and 1,000 sen-1493

tences.1494

RedditClusteringP2P (Muennighoff et al.,1495

2023), developed for the MTEB, consists of Reddit1496

posts combined with their titles, organized into ten1497

splits featuring 10 and 100 clusters each, with a1498

total of 1,000 to 100,000 posts, aimed at clustering1499

based on subreddit affiliation.1500

StackExchangeClustering (Geigle et al., 2021),1501

a dataset consisting of titles from 121 Stack Ex-1502

change communities, is organized into 25 subsets,1503

each containing 10 to 50 categories, with 100 to1504

1,000 sentences per category.1505

StackExchangeClusteringP2P (Muennighoff1506

et al., 2023), designed for MTEB, comprises 101507

splits of posts from StackExchange, each contain-1508

ing 5,000 to 10,000 entries, clustered by subreddit1509

based on the combined content of titles and posts.1510

TwentyNewsgroupsClustering 3 consists of ar-1511

ticle titles from 20 different newsgroups, designed1512

for clustering tasks, and includes 10 splits with1513

each split featuring between 1,000 and 10,000 ti-1514

tles across the 20 categories.1515

F.3 Reranking1516

Reranking involves inputting a query along with1517

a series of relevant and irrelevant reference texts,1518

then sorting the results based on their relevance to1519

the query. The provided model embeds the refer-1520

ence texts, which are compared to the query using1521

cosine similarity. Each query is scored, and the av-1522

erage score across all queries is used to generate the1523

final ranking. The evaluation metrics are MRR@k1524

and MAP, with MAP serving as the primary metric.1525

3https://scikit-learn.org/0.19/datasets/
twenty_newsgroups.html

AskUbuntuDupQuestions 4 dataset comprises 1526

questions sourced from AskUbuntu, accompanied 1527

by manually annotated labels that indicate whether 1528

pairs of questions are similar or dissimilar. 1529

MindSmall (Wu et al., 2020) dataset is a compre- 1530

hensive English resource designed for research in 1531

news recommendation, focusing on ranking news 1532

articles based on the title of a currently read article 1533

to suggest related content. 1534

SciDocsRR (Cohan et al., 2020a) is a dataset 1535

designed for ranking related scientific papers using 1536

their titles as the primary basis for assessment. 1537

StackOverflowDupQuestions (Liu et al., 2018) 1538

dataset focuses on identifying whether questions 1539

tagged with Java, JavaScript, and Python on Stack 1540

Overflow are duplicates of existing queries. 1541

F.4 Retrieval 1542

In retrieval task, each dataset consists of a corpus, 1543

queries, and a mapping of each query to relevant 1544

documents. The task goal is to find these relevant 1545

documents based on a given query. When evalu- 1546

ating, we first use the provided model to embed 1547

queries and corpus documents and then calculate 1548

the cosine similarity to obtain relevance scores and 1549

rank the corpus documents for each query based 1550

on these scores. The evaluation metrics consists of 1551

nDCG@k, MRR@k, MAP@k, precision@k, and 1552

recall@k, with nDCG@10 as the primary metric. 1553

F.4.1 Beir Retrival 1554

NFCorpus (Boteva et al., 2016) is a dataset that 1555

includes natural language queries sourced from 1556

NutritionFacts, paired with annotated medical doc- 1557

uments from PubMed, utilizing the original splits 1558

from various types of content from NF, such as 1559

videos, blogs, and Q&A posts. 1560

SciFact (Wadden et al., 2020) dataset evaluates 1561

scientific claims by matching them with evidence 1562

sourced from research literature, specifically uti- 1563

4https://github.com/taolei87/askubuntu
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lizing a set of 300 test queries and the complete1564

document collection from the original dataset.1565

SCIDOCS (Cohan et al., 2020b) is a benchmark1566

dataset for evaluating scientific document embed-1567

dings, featuring seven tasks such as citation pre-1568

diction, document classification, and recommenda-1569

tion.1570

FiQA2018 (Maia et al., 2018) is a financial ques-1571

tion answering dataset built by crawling StackEx-1572

change posts under the Investment topic from 20091573

to 2017, containing a knowledge base of 57,6401574

answer posts and 17,110 training question-answer1575

pairs, with 531 testing question-answer pairs.1576

Touche2020 (Bondarenko et al., 2020) is a1577

benchmark for argument retrieval, designed to sup-1578

port research in finding and evaluating arguments1579

on various topics.1580

F.4.2 LongEmbd Retrival1581

LongEmbed (Zhu et al., 2024) includes 4 real-1582

world retrieval tasks curated from long-form QA1583

and summarization. The document in LongEmbed1584

is much longer compared to BEIR. Thus, it can ef-1585

fectively evaluate the capability of the embedding1586

model on long texts.1587

LEMBNarrativeQARetrieval (Kočiskỳ et al.,1588

2018) is a question-answering dataset featuring1589

lengthy narratives, averaging 50,474 words, that1590

challenge models to comprehend and extract in-1591

formation about characters and events dispersed1592

throughout the stories.1593

LEMBQMSumRetrieval (Zhong et al., 2021)1594

dataset focuses on generating summaries of meet-1595

ings based on specific queries, necessitating the ex-1596

traction and synthesis of relevant information from1597

various segments of the conversation that cover1598

multiple topics and participants.1599

LEMBSummScreenFDRetrieval (Chen et al.,1600

2021) dataset consists of pairs of transcripts from1601

TV series and their corresponding human-crafted1602

summaries, requiring the integration of dispersed1603

plot elements into concise narrative descriptions.1604

LEMBWikimQARetrieval (Ho et al., 2020)1605

dataset is a complex question-answering resource1606

that includes questions requiring up to five rea-1607

soning steps, designed using specific templates to1608

encourage deep understanding rather than simple1609

retrieval of information.1610

F.5 Semantic Textual Similarity (STS)1611

The task goal is to determine the similarity between1612

a pair of sentences, where continuous scores serve1613

as labels, with higher values indicating greater sim- 1614

ilarity. The provided model embeds the sentences, 1615

and their similarity is calculated using cosine simi- 1616

larity. The primary evaluation metric is the Spear- 1617

man correlation (Reimers et al., 2016). 1618

STS12, STS13, STS14, STS15, STS16, STS17, 1619

STS22, STSBenchmark (Agirre et al., 2012, 2013; 1620

Bandhakavi et al., 2014; Biçici, 2015; Nakov et al., 1621

2016) 5 6 7 are collections of sentence pairs de- 1622

signed to evaluate semantic textual similarity, with 1623

the former set focused on monolingual English 1624

pairs and the latter two incorporating cross-lingual 1625

comparisons across multiple languages. 1626

BIOSSES (Soğancıoğlu et al., 2017) comprises 1627

100 pairs of sentences specifically focused on the 1628

biomedical domain. 1629

SICK-R (Dadas et al., 2020) , which stands for 1630

Sentences Involving Compositional Knowledge, 1631

comprises 100,000 diverse sentence pairs that ex- 1632

hibit rich lexical, syntactic, and semantic character- 1633

istics. 1634

F.6 Summarization 1635

The input consists of a set of summaries written 1636

by humans and machines. The goal is to score the 1637

machine-generated summaries. Use the provided 1638

model to embed the summaries. Calculate the dis- 1639

tance between each machine summary and all hu- 1640

man summary embeddings. Retain similar scores 1641

as the model score for each individual machine- 1642

generated summary. Calculate the Spearman cor- 1643

relation based on cosine similarity (Reimers et al., 1644

2016) as the main metric. 1645

SummEval (Fabbri et al., 2021) consists of sum- 1646

maries produced by advanced summarization mod- 1647

els trained on CNN and DailyMail articles. 1648

G Embedding Models 1649

Table 9 provides the models used in the experi- 1650

ments and their publicly available links. Below is 1651

a brief introduction to these models. 1652

ANCE (Xiong et al., 2021) enhances dense re- 1653

trieval by selecting challenging negative samples 1654

from the entire corpus and asynchronously updat- 1655

ing the Approximate Nearest Neighbor (ANN) in- 1656

dex with each training iteration, using a context 1657

window size of 512. 1658

5https://alt.qcri.org/semeval2017/task1/
6https://competitions.codalab.org/

competitions/33835
7https://github.com/PhilipMay/stsb-multi-mt/
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GTR (Ni et al., 2022) improves dual encoder1659

performance for retrieval tasks by scaling up model1660

size while keeping a fixed bottleneck embedding,1661

leading to significant improvements in out-of-1662

domain generalization, all within a context window1663

size of 512.1664

GIST (Solatorio, 2024) consistently improves1665

performance across different model sizes by lever-1666

aging the strengths of large, resource-intensive1667

models to enhance smaller ones, making advanced1668

AI technologies more accessible and cost-effective,1669

all within a context window size of 512.1670

BGE (Xiao et al., 2023) offers a range of well-1671

trained embedding models based on a BERT-like1672

architecture, enabling users to balance performance1673

and efficiency for various applications while also1674

allowing easy fine-tuning. In our experiments, we1675

use the gte-base-en-v1.5 model, which operates1676

with a context window size of 512.1677

E5 (Zhu et al., 2024) is a long-context embed-1678

ding model fine-tuned to support 4k token inputs1679

while maintaining the original performance for1680

shorter contexts, designed to advance research in1681

long-context embedding technologies. It uses a1682

context window size of 4k.1683

25


	Introduction
	Length Collapse
	Preliminaries and Background
	Theoretical Analysis on Length Collapse

	How does Length Collapse Lead to Performance Degradation
	Mitigating Length Collapse via Temperature Scaling
	Experiments
	TempScale Benefits Embedding Models
	Further Analysis

	Discussion
	Related Work
	Conclusion
	Background Information about Fourier Analysis
	Detailed Proofs
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Corollary 4

	More Experiments and Analysis
	Rewriting Process
	Details on Figure 6
	Details on Figure 7
	More Analysis about Assumption in Theorem 4
	More Discussion about Other Works
	More discussions on Classification and Clustering Tasks
	More Results on Longer Texts

	Length Collapse in LLM-based Embedding Models
	More Discussions about TempScale
	Relationship with Contrastive Learning
	Why Contrastive Learning Cannot Fully Address Length Collapse

	Comparison with Other Post-processing Techniques
	Comparison with Other Similar Long-Text Methods

	Datasets and Evaluation Metrics
	Classification
	Clustering 
	Reranking
	Retrieval
	Beir Retrival
	LongEmbd Retrival

	Semantic Textual Similarity (STS)
	Summarization

	Embedding Models

