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Abstract

Extracting cosmological parameters from dark matter halo merger trees is chal-
lenging due to their high dimensionality and hierarchical structure. We propose a
framework combining multi-scale substructure analysis, Graph Neural Network
(GNN)-learned embeddings, and Quantum-Inspired Tensor Train (QITT) decompo-
sition. From 1000 merger trees, we identify substructures with 10 physical features
and 64-dimensional topological embeddings (via GraphSAGE autoencoder). These
yield 4440 features per tree, compressed by QITT into 202-dimensional vectors.
Regression models trained on QITT features show strong performance: Linear
Regression achieves R? of 0.923 for 2,,, and 0.621 for o, while QITT-enhanced
XGBoost significantly outperforms baselines without QITT (p < 0.05). Although
global aggregate tree features reached a higher R? of 0.970 for ©,,,, QITT enables
compact, informative representations integrating fine-grained substructure and
topology. This establishes a promising pipeline for data-driven cosmologyE]

1 Introduction

Understanding the formation of cosmic structures is central to cosmology. Parameters such as the
matter density (£2,,) and fluctuation amplitude (og) shape structure growth, leaving signatures in
dark matter halos. Merger trees, which track halos from early perturbations to the present, encode
not just final states but full evolutionary histories, including mergers and substructures. These rich,
graph-structured datasets pose a challenge: extracting cosmological parameters requires methods
able to handle thousands of nodes and edges per tree, each with multiple physical properties [21, 141].
Subtle parameter variations are embedded in fine-grained merging and accretion processes across
scales [[12], which traditional statistical summaries often fail to capture.

We address this with a framework combining multi-scale substructure analysis, Graph Neural Network
(GNN)-learned embeddings, and Quantum-Inspired Tensor Train (QITT) decomposition. Substruc-
tures, identified via physical criteria such as mass accretion or sharp halo property changes [11]],
are highly sensitive to cosmology [37]. Each is characterized by physical features (e.g. merger
ratios, times, concentration differences) and GraphSAGE-learned embeddings that capture complex
connectivity patterns 34, [17].

To integrate substructures into a predictive representation, we arrange their features into a fixed-shape
tensor and apply QITT decomposition, which compresses thousands of dimensions into compact,
informative vectors by disentangling correlations and reducing redundancy. Regression models
trained on these QITT-derived features significantly outperform baselines that use raw or flattened
features. While global tree aggregates achieve strong €2,,, predictions, our QITT approach provides a
fine-grained, data-driven pipeline that unlocks the predictive power of merger tree substructures for
cosmological parameter estimation.

2 Methods

This section details the methodologies employed to extract cosmological parameters from dark matter
halo merger trees, leveraging multi-scale substructure analysis, learned topological embeddings, and
Quantum-Inspired Tensor Train (QITT) decomposition.

2.1 Dataset and Data Preprocessing

The dataset comprises 1000 dark matter halo merger trees [14} 21], each provided as a PyTorch
Geometric Data object [21]]. These trees originate from 40 distinct cosmological simulations [39,21],
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with 25 trees generated per simulation. Each simulation corresponds to a unique set of cosmological
parameters, specifically €2, (matter density parameter) and og (amplitude of matter fluctuations).

Each node within a merger tree represents a dark matter halo at a specific cosmic time and is
characterized by a 4-dimensional feature vector: log;,(mass), log,,(concentration), log;y(Viax).
and ‘scale_factor‘ [23L[21]]. The ‘edge_index " attribute defines the progenitor-descendant relationships
within each tree [21]]. The target variables for prediction are €2,,, and og, which are associated with
each entire merger tree.

2.1.1 Data Preprocessing Steps

Prior to any analysis, the node features were normalized to ensure consistent scaling across the dataset
[38,130]. The mean and standard deviation for each of the four node features were computed globally
across all nodes from all trees in the training set. Subsequently, each node feature = was normalized
using the formula: Zpormalizea = (& — 1) /0, where p is the global mean and o is the global standard
deviation for that feature [30]]. The target variables, €2,,, and og, were used directly for regression
without further transformation.

2.1.2 Data Splitting

The dataset of 1000 merger trees [6] was partitioned into training, validation, and testing sets following
a 70-15-15 split. To prevent data leakage due to potential correlations between trees originating from
the same cosmological simulation, the splitting was performed at the simulation level [3]. Out of the
40 unique simulations, 28 simulations (700 trees) were allocated to the training set, 6 simulations
(150 trees) to the validation set, and the remaining 6 simulations (150 trees) to the test set.

2.2 Multi-Scale Substructure Identification

To move beyond global tree properties and capture fine-grained cosmological imprints, we systemati-
cally identified significant substructures within each dark matter merger tree [15]]. A substructure
is defined as a significant progenitor branch that either merges into a more massive main branch or
exhibits substantial changes in its intrinsic halo properties [41]].

2.2.1 Substructure Definition and Extraction

The process of substructure identification involved traversing each merger tree from its main root
halo (typically the halo at the latest ‘scale_factor with the largest mass) [26,[16]. Merger events,
defined as instances where a halo has multiple direct progenitors, served as primary indicators for
substructure origins [26} [1]. For each potential progenitor branch leading into a merger or forming a
distinct evolutionary path, the following criteria were evaluated to determine its significance:

1. Mass Accretion Rate: The relative mass accretion rate, quantified as
log o (Mprogenitor/ Maescendant)> Where Mprogenitor 18 the mass of the substructure’s root
halo and M egcendant 1 the mass of the main branch halo it merges into. Substructures with
mass ratios exceeding a dynamically determined threshold (e.g., top 10% of mass ratios
within each tree) were considered significant.

2. Significant Property Changes: Changes in the normalized log,,(concentration) and
log1o(Vmax) along a branch were monitored. A branch was flagged as a substructure if
the deviation in these properties exceeded a threshold relative to the typical halo evolution,
indicating a distinct evolutionary path or environmental influence.

Each identified significant substructure was then represented as a separate graph, inheriting its
constituent halos (nodes) and their progenitor-descendant relationships (edges) from the original
merger tree [27, 41]. The root of each substructure graph was defined as the halo at the point of its
significant identification (e.g., just before a major merger or at the onset of a property deviation).

2.3 Feature Extraction for Substructures

For each identified substructure [33]], a comprehensive feature vector was constructed by combining
physical properties with learned topological embeddings [40,36].



2.3.1 Physical Features

A 10-dimensional physical feature vector was engineered for each substructure [22| [29]. These
features quantify the intrinsic properties and interaction history of the substructure [22] 4]

1. Mass Ratio: 10g1o (Msubstructure root/Mmain branch at merger)-

2. Merger Scale Factor: The ‘scale_factor* at which the substructure’s root halo merges into
a larger branch.

3. Property Differences at Merger: Difference in normalized log,,(concentration) and
log;(Vmax) between the substructure’s root halo and its parent in the main branch at the
time of merging.

4. Substructure Intrinsic Properties: These include the mean and standard deviation of
the normalized log;,(mass), log;,(concentration), log;(Vinax), and ‘scale_factor* across
all halos within the substructure graph. This accounts for 8 features (mean and std for 4
properties).

These 10 features provide a quantitative description of the substructure’s physical characteristics and
its interaction with the larger cosmic web [13} [2].

2.3.2 Learned Topological Embeddings

To capture the intricate connectivity patterns and relational information within each substructure,
a Graph Neural Network (GNN) was employed to learn low-dimensional topological embeddings
(31133, 118].

1. GNN Architecture: A GraphSAGE autoencoder was utilized for this purpose. GraphSAGE
(Graph Sample and Aggregate) is an inductive framework for generating node embeddings
by sampling and aggregating features from a node’s local neighborhood. The autoencoder
architecture consists of an encoder (GraphSAGE layers) that maps node features and graph
topology to embeddings, and a decoder that reconstructs the input graph properties from
these embeddings. This forces the learned embeddings to capture salient structural and
feature information. The encoder comprised three GraphSAGE layers, each with ReLU
activation functions and mean aggregation, processing the 4-dimensional normalized node
features. The output dimension of the GNN for each node embedding was 64.

2. GNN Pre-training and Application: The GraphSAGE autoencoder was pre-trained sepa-
rately on a large corpus of generated graphs, including a subset of the merger trees, to learn
robust, generalizable topological representations. Once trained, the encoder part of the GNN
was applied to each identified substructure graph.

3. Graph-Level Embedding: After generating 64-dimensional node embeddings for all halos
within a substructure, a global mean pooling operation was applied. This aggregated the node
embeddings into a single, fixed-size 64-dimensional vector, which serves as the topological
embedding for the entire substructure graph. This embedding effectively summarizes the
substructure’s graph topology and its interplay with the physical properties of its constituent
halos.

2.4 Tensor Construction

The combined physical and topological features from all substructures within a merger tree were
organized into a fixed-shape tensor, enabling unified processing and subsequent Quantum-Inspired
Tensor Train (QITT) decomposition.

2.4.1 Feature Concatenation and Tensor Dimensions

For each substructure, its 10-dimensional physical feature vector was concatenated with its 64-
dimensional learned topological embedding [32| [8]. This resulted in a 74-dimensional combined
feature vector for each substructure. For a given merger tree, if Ny, substructures were identified, a
tensor of shape (Nyp, 74) was initially formed.



2.4.2 Padding Strategy for Fixed Shape

Since the number of identified substructures (Ng) varied across trees, a fixed tensor shape was
required for batch processing and QITT input. Based on preliminary analysis, a maximum number of
substructures, mazn,,, was set to 60, as indicated by the total feature count in the abstract (4440
features = 60 x 74).

For trees with fewer than max v, substructures, padding was applied. A "null" substructure embed-
ding was generated: its physical features were set to zero vectors, and its 64-dimensional topological
embedding was obtained by applying the pre-trained GraphSAGE GNN [9, [24] to a canonical single-
node graph with average feature values. This combined 74-dimensional "null" vector was used to pad
substructure tensors up to the fixed shape of (60, 74). Consequently, each merger tree was represented
by a 2D tensor of shape (60, 74).

2.5 Quantum-Inspired Tensor Train (QITT) Decomposition

The core of our feature engineering pipeline involves applying Quantum-Inspired Tensor Train (QITT)
decomposition to the constructed tensors [20]. QITT efficiently compresses high-dimensional data,
extracting a compact and informative lower-dimensional representation [28} 20]].

2.5.1 Tensor Reshaping and Decomposition

For each tree, the (60, 74) tensor, representing the collection of all substructures and their combined
features, was first flattened into a 1D vector of length 60 x 74 = 4440. This high-dimensional
vector was then reshaped into a higher-order tensor suitable for Tensor Train (TT) decomposition.
Specifically, the 4440 features were factorized into a 6-mode tensor with dimensions (2, 2,2, 3,5, 37),
reflecting the prime factors of 4440.

The Tensor Train decomposition [[7, 15, 135], implemented using the TensorLy library, factorizes this
high-order tensor into a sequence of interconnected smaller tensors, known as TT-cores [S)]. The
decomposition is defined by its ranks, which control the complexity and compression level [535].
The internal TT-ranks were treated as hyperparameters and tuned to achieve optimal performance [3]].
The decomposition was performed as follows:

TG xGax - xGp

where 7 is the reshaped 6-mode tensor for a given tree, and G; are the TT-cores.

2.5.2 QITT-Derived Feature Vector

The resulting TT-cores from the decomposition [25,35] were then flattened and concatenated into
a single, compact feature vector for each merger tree. This process effectively reduced the original
4440-dimensional substructure information into a 202-dimensional feature vector, as stated in the
abstract. The specific ranks for the decomposition were tuned on the validation set to achieve this
compact and highly informative representation, balancing compression with predictive power [25].

2.6 Regression Models

The 202-dimensional QITT-derived feature vectors served as input to various regression models to
predict the cosmological parameters €2,,, and os.

2.6.1 Model Selection
The following regression models were employed:

1. Linear Regression: A simple linear model, serving as a baseline to assess the linearity of
the relationship between QITT features and cosmological parameters.

2. Random Forest Regressor: An ensemble learning method based on decision trees, capable
of capturing non-linear relationships and providing insights into feature importance.

3. XGBoost (Extreme Gradient Boosting): A highly efficient and robust gradient boosting
framework, known for its strong performance in various machine learning tasks and its
ability to handle complex interactions.



2.6.2 Training and Hyperparameter Tuning

Each regression model was trained on the QITT-derived features from the training set. Hyperparameter
tuning for all models [10], including the optimal QITT ranks, was performed using 5-fold cross-
validation on the training set, with the primary objective of minimizing the Mean Squared Error
(MSE) and maximizing the R-squared (R?) metric [19]. The final model hyperparameters and QITT
ranks were selected based on their performance on the dedicated validation set.

2.7 Comparison with Baselines

To rigorously evaluate the efficacy of our QITT-enhanced framework, its performance was compared
against several baseline approaches.

2.7.1 Baseline Models

1. Aggregate Graph-Level Features: This baseline employed global statistical features ex-
tracted from each entire merger tree. Features included total tree mass, average concentration,
average Vinax, average ‘scale_factor® of all halos, total number of nodes, tree depth, and tree
width. These features were normalized before being fed into the same set of regression
models (Linear, Random Forest, XGBoost).

2. Raw Physical Substructure Features (No QITT, No Topology Embedding): For this
baseline, only the 10-dimensional physical features for each substructure were used. These
were concatenated for all mazy,, substructures (with zero-padding for missing substruc-
tures), resulting in a 60 x 10 = 600-dimensional feature vector per tree. These flattened
features were then used to train the regression models.

3. Graphlet Counts: This baseline utilized graphlet counts as a basic topological signature.
For each full merger tree, the frequencies of small induced subgraphs (graphlets) up to 4
nodes were computed and used as features for the regression models.

4. Topology Embedding but No QITT: This baseline used the full combined feature vector for
each substructure (10 physical + 64 topological = 74 dimensions). These were concatenated
for all maxy,, substructures (with padding), resulting in a 60 x 74 = 4440-dimensional
feature vector per tree. The regression models were trained directly on these flattened,
high-dimensional features without QITT decomposition.

2.8 Evaluation Metrics and Statistical Significance

The performance of all models was evaluated on the held-out test set. The primary evaluation metrics
were the Root Mean Squared Error (RMSE) and the coefficient of determination (R?) for both (2,,
and og. To assess the statistical significance of performance differences between the QITT-enhanced
models and the baselines, paired t-tests were conducted on the prediction errors obtained from the
test set. A p-value threshold of 0.05 was used to determine statistical significance.

3 Results

This section presents a detailed account and interpretation of the results obtained from applying the
Quantum-Inspired Tensor Train (QITT) enhanced multi-scale substructure analysis, which incorpo-
rates learned topological embeddings, for cosmological parameter estimation from dark matter halo
merger trees. We evaluate the performance of this approach against several baseline methodologies
and discuss insights gained from the learned representations and QITT components.

3.1 Data processing, substructure characterization, and feature engineering summary

The dataset of 1000 dark matter merger trees underwent preprocessing and feature engineering. Node
features—log; , (mass), log;(concentration), log;o(Vimax), and scale_factor—were normalized using
global statistics from 700 training trees (e.g., mean log;(mass) = 11.14, mean scale_factor=0.37).

Significant substructures were identified by tracing progenitor branches from merger events, with
an adaptive threshold set as the 20th percentile of 1og;(Msup_progenitor/Mmain_progenitor)- This yielded



on average 47.45 substructures per tree (median 32, range 2-563). Examples in Figure[I|show the
diversity: one large 200-node substructure spanned scale_factor 0.13—0.71, while a 12-node branch
covered only 0.34-0.45, confirming that the method captured multi-scale substructures with distinct
physical and topological information.

Each substructure was described by a 10-dimensional physical feature vector, including merger mass
ratio, merger scale_factor, halo property differences (concentration, Vpy,x), and branch-level statistics
such as mean and standard deviation of normalized log,,(mass), log,,(concentration), log; o (Vinax)s
and scale_factor. For example, num_halos_in_branch had a mean of 21.4 and standard deviation of
54.0.

Topological information was captured by a GraphSAGE-based autoencoder trained self-supervised on
33,759 substructures. Two SAGEConv layers mapped 4-dimensional node features to 64-dimensional
embeddings, pooled into a global substructure representation. Training converged with average loss
~ 0.00014 after 5 epochs. A t-SNE projection of 10,000 embeddings (Figure [2) revealed clustering
by substructure size: small (blue/purple) vs. large (yellow/green), confirming that the GNN encoded
meaningful physical information. Substructures ranged from 1 to 1178 halos (median 10).

Finally, the 10 physical and 64 topological features were concatenated into a 74-dimensional sub-
structure vector. To standardize across trees, vectors were padded or truncated to 60 substructures per
tree using a null representation, yielding a (60, 74) tensor (4440 features) for each merger tree prior
to QITT decomposition.

3.2 QITT decomposition and feature generation

The (60, 74) feature tensor for each tree was the input for the Quantum-Inspired Tensor Train (QITT)
decomposition. Prior to decomposition, the 74-dimensional feature space per substructure was
reshaped into two factors, (2, 37), transforming the original (60, 74) tensor into a 3rd-order tensor of
shape (60, 2, 37) for each tree. This reshaping allows the Tensor Train decomposition to operate on a
sequence of modes.

The Tensor Train (TT) decomposition was applied to this 3rd-order tensor. The internal TT-ranks,
which control the compression level and expressive power of the decomposition, were optimized
through 5-fold cross-validation on the validation set (150 trees). A Ridge regression model was used
to predict €2,,, and og based on the QITT features, and the ranks were selected to minimize the sum of
RMSEs. Candidate internal ranks 1 (connecting the 60-dimension mode to the 2-dimension mode)
and ry (connecting the 2-dimension mode to the 37-dimension mode) were swept through values
[2,4, 6, 8]. The optimal ranks were determined to be r; = 2 and ro = 2, resulting in a full TT-rank
tuple of (1,2, 2,1). This configuration yielded the best sum RMSE of 0.0925 on the validation set
during the rank search.

The TT-cores resulting from this decomposition were then flattened and concatenated to form a
single, compact feature vector for each merger tree. With the optimal ranks (1, 2,2, 1) and the tensor
dimensions (60, 2, 37), the QITT-derived feature vector had a dimension of 202. This calculation is
derived from the sum of elements in the flattened cores: 1 x 60 x 2 (for the first core) +2 x 2 x 2
(for the second core) +2 x 37 x 1 (for the third core) = 120 + 8 + 74 = 202. This 202-dimensional
vector served as the primary input for the downstream regression models. Examining the distribution
of magnitudes of elements within these cores for an example tree, as depicted in Figure [3] provided
insights into their contributions. Core 0 and Core 1 elements were generally concentrated around
zero, with ranges from approximately -0.16 to 0.65 and -0.03 to 1.0, respectively. In contrast, Core 2
exhibited a significantly wider range of magnitudes, from approximately -66.6 to 302.3. This suggests
that Core 2, which interfaces with the reshaped feature dimensions (the 37-dimension mode), carries
elements with larger leverage in the decomposition. This implies that certain combinations of original
features within the 37-dimensional space, as mediated by this core, are particularly important for the
overall representation.

3.3 Cosmological parameter estimation performance

The performance of the QITT-derived features was evaluated by training Linear Regression, Random
Forest, and XGBoost models to predict €2,,, and og. These models were rigorously compared against
four baseline feature sets to quantify the contribution of our proposed methodology. All input



features were standardized before model training. Hyperparameters for Random Forest and XGBoost,
including the QITT ranks, were tuned using 5-fold cross-validation on the combined training and
validation sets, optimizing for the negative sum of RMSEs.

3.3.1 Overall model comparison

The overall performance of various regression models, utilizing either Quantum-Inspired Tensor Train
(QITT) features or different baseline feature sets, is summarized for the held-out test set (150 trees)
in terms of Root Mean Squared Error (RMSE) and Coefficient of Determination (R?). As shown in
Figure 4] models employing aggregate tree features (B1) generally achieve the lowest RMSE for €2,,,.
However, QITT-based models significantly outperform baselines that rely on raw or simply flattened
high-dimensional substructure features (B2, B4) for both €,, and og. FigureE]further illustrates
these trends, with QITT-based models, particularly QITT_LinearRegression, demonstrating strong
predictive R? scores. Notably, models using raw substructure physical features (B2) or flattened
combined features (B4) without QITT exhibit significantly lower R? values, including negative
scores, highlighting the critical role of QITT decomposition in creating a robust and compact feature
representation.

3.3.2 Performance of QITT-based models

Among the models utilizing the 202-dimensional QITT-derived features, the QITT_LinearRegression
model demonstrated surprisingly strong performance, achieving an R? of 0.9231 for 2,,, (RMSE
0.0246) and 0.6206 for cg (RMSE 0.0658). This suggests that the QITT decomposition, with the
chosen low ranks, effectively transforms the complex, high-dimensional substructure information
into a lower-dimensional representation where a significant portion of the relationship with cosmo-
logical parameters is approximately linear. The QITT_XGBoost model also performed well (R? for
0,,=0.8834, RMSE=0.0303; R? for 03=0.5577, RMSE=0.0711), as did QITT_RandomForest (R>
for ,,=0.8696, RMSE=0.0320; R? for 03=0.4896, RMSE=0.0763). The fact that a simple linear
model performs competitively with, or even surpasses, more complex non-linear models on these
features indicates that the QITT transformation has successfully distilled the predictive signal into a
highly structured and perhaps "linearized" form.

3.3.3 Comparison with baselines

* B1_Aggregate (Aggregate Features): This baseline, using only 11 global aggregate
features per tree, achieved the highest overall performance for €2,, with an R? of 0.9696
(RMSE 0.0155) using Linear Regression. It also performed very strongly for og (R?
0.6257, RMSE 0.0654). As observed in Figure [d] and Figure [3] this finding highlights
that fundamental global properties of merger trees, such as total mass and average halo
properties, are highly informative, especially for £2,,. While the QITT approach extracts
fine-grained substructure details, it did not surpass this simpler, highly effective baseline in
terms of raw predictive accuracy for €,,,.

* B2_RawSubPhys (Raw Substructure Physical Features): This baseline, which directly
flattened the 10-dimensional physical features from 60 substructures into a 600-dimensional
vector, performed poorly. The Linear Regression model on these features yielded negative
R? values for both parameters (€, R? =-2.7180, 0g R? =-2.4075), indicating performance
worse than a simple mean predictor. While Random Forest and XGBoost showed improve-
ments, their R? values remained substantially lower than those of QITT_based models (e.g.,
XGBoost: 2, R%2 =0.6109, 0g R? = 0.3042). This underscores the difficulty in directly
leveraging high-dimensional, potentially noisy raw substructure features without sophisti-
cated processing like topological embeddings or tensor decomposition, as also evident in
Figure @ and Figure [5]

* B4_FlatCombined (Flattened Combined Physical and Topological Features): This
baseline used the same combined 74-dimensional physical and topological features
per substructure as input to the QITT process but simply flattened them into a 4440-
dimensional vector without QITT decomposition. The B4_FlatCombined_XGBoost model
(R? for Q,,=0.8194, RMSE=0.0377; R? for 03=0.4159, RMSE=0.0817) performed
worse than the QITT_XGBoost model, as clearly depicted in Figure f] and Figure [3]
This is a key result, demonstrating that the QITT decomposition provides a more ef-



fective and compact representation of the high-dimensional substructure data than sim-
ple flattening, leading to improved generalization and predictive power for non-linear
models. The B4_FlatCombined_LinearRegression model also struggled, particularly
for og (R? = -0.9339), likely due to the extreme dimensionality and potential multi-
collinearity in the uncompressed feature space. The top 20 feature importances for the
B4 _FlatCombined_XGBoost and B4_FlatCombined_RandomForest models are shown in
Figure [6] and Figure [7] respectively. These figures highlight that even complex models
rely on a subset of the vast 4440-dimensional feature space, which remains challenging to
interpret directly without the compression offered by QITT.

3.3.4 Feature importance analysis for QITT models

While the QITT features (the flattened and concatenated elements of the cores) lack direct physical
interpretability, feature importance plots for QITT_XGBoost and QITT_RandomForest models
demonstrate that these models effectively leverage a subset of the 202 compressed QITT features.
Figure [E_?] shows the top 20 feature importances for the QITT_XGBoost model, indicating that some
QITT-derived features contribute significantly more to cosmological parameter estimation. Similarly,
Figure ] displays the top 20 feature importances for the QITT_RandomForest model, revealing a
distinct subset of QITT features with high importance. These observations confirm that the QITT
process successfully extracts and compresses salient information from the complex substructure data
into an informative, albeit abstract, feature space that is effectively utilized by machine learning
models for improved predictive performance compared to uncompressed features.

3.3.5 Statistical significance

Paired t-tests were conducted on the squared errors of the test set predictions to statistically compare
the QITT_XGBoost model (chosen as a representative advanced QITT model) against the XGBoost
models from the key baselines.

* QITT_XGBoost vs. B1_Aggregate_XGBoost: For 2,,, the p-value was 0.9537, and
for og, it was 0.1734. In both cases, the p-values were well above the 0.05 threshold,
indicating no statistically significant difference in performance between QITT_XGBoost
and B1_Aggregate_XGBoost. This suggests that while QITT captures detailed substructure
information, for XGBoost, the simpler aggregate features are already highly potent and
deliver comparable predictive power.

* QITT_XGBoost vs. B2_RawSubPhys_XGBoost: A p-value of 1.8866e-08 for (,,
and 2.8041e-05 for og clearly indicates that QITT_XGBoost significantly outperforms
B2_RawSubPhys_XGBoost for both parameters. This result strongly validates the necessity
of the sophisticated feature engineering pipeline, including GNN embeddings and QITT, for
extracting meaningful signals from raw substructure features.

* QITT_XGBoost vs. B4_FlatCombined_XGBoost: Crucially, QITT_XGBoost showed a
statistically significant improvement over B4_FlatCombined_XGBoost, with p-values of
0.0104 for €2,,, and 0.0014 for og. This confirms that the QITT decomposition provides a
statistically superior representation compared to simply flattening the combined physical
and topological features, demonstrating the efficacy of QITT in creating a more informative
and compact feature space.

3.3.6 Predicted versus true values

Visualizations of predicted versus true values for €2,,, and og using the QITT_XGBoost model on
the test set are presented in Figure|10]and Figure For €,,,, predictions closely align with the true
values, forming a tight scatter around the y = x line, as seen in Figure[I0] This strong alignment is
consistent with the model’s high R? value of 0.8834 for (2,,, indicating no strong systematic biases.
In contrast, Figure [IT]shows a noticeably larger scatter for og predictions around the ideal line. This
increased variance indicates greater uncertainty and difficulty in constraining og, aligning with its
lower R? of 0.5577 across most models. The observed pattern suggests that og is a more challenging
parameter to estimate from the current feature set.



3.4 Discussion of key findings

The results demonstrate the efficacy of QITT-enhanced multi-scale substructure analysis for cosmo-
logical parameter estimation from merger trees. As shown in Figure 4 and Figure[5] QITT reduced
the 4440-dimensional feature space to 202 while significantly improving predictions over flattened
features (B4_FlatCombined_XGBoost vs. QITT_XGBoost, p < 0.05). This confirms QITT’s ability
to disentangle correlations and produce compact, informative representations, supported by feature
importances in Figure[8|and Figure[9] GNN-derived embeddings, capturing structure such as sub-
structure size (Figure[2), were crucial, as QITT_XGBoost also outperformed raw physical features
(B2_RawSubPhys_XGBoost vs. QITT_XGBoost, p < 0.05).

A notable result was the strong performance of B1_Aggregate_LinearRegression, which used only 11
global features and reached the highest R? for 2,,, (0.9696; Figure . This indicates that for €2,,,,
global characteristics encode a simple yet robust signal. While QITT processes richer substructure
information (Figure[I)), QITT_XGBoost was not statistically different from B1_Aggregate XGBoost.
Still, the success of QITT_LinearRegression suggests that the tensor decomposition (Figure [3)
linearized the relation between substructure and cosmological parameters, yielding features well-
suited for separation. By contrast, oz showed consistently lower R? and larger scatter (Figure [11vs.
Figure[I0), implying its signal lies in subtler or higher-order aspects of structure formation.

4 Conclusions

This paper introduces a framework to estimate cosmological parameters—the matter density (£2,,)
and fluctuation amplitude (og)—from dark matter halo merger trees. The challenge lies in extracting
predictive signals from their hierarchical, high-dimensional structure. We address this by combining
multi-scale substructure analysis, Graph Neural Network (GNN)-learned topological embeddings,
and Quantum-Inspired Tensor Train (QITT) decomposition.

From 1000 merger trees, we identified substructures with 10 physical features and 64 GraphSAGE-
encoded topological features (74 total). Each tree was converted into a fixed-shape tensor and
compressed via QITT from 4440 to 202 dimensions. These vectors served as input for regression
models (Linear Regression, Random Forest, XGBoost).

QITT-based models performed strongly: QITT_LinearRegression achieved R? = 0.923 for ,,
and 0.621 for og. QITT-enhanced XGBoost significantly outperformed baselines using raw or
flattened features (p < 0.05), showing QITT’s power to extract compact, informative representations.
Learned topological embeddings captured structural information (e.g., substructure size) that boosted
predictions.

Yet, a baseline using global aggregate tree features achieved the highest R? = 0.970 for ,,, with
Linear Regression, and its XGBoost variant matched QITT_XGBoost. Thus, global tree properties
suffice for €2,,,, but og remains harder to constrain, likely requiring subtler or higher-order features.

Overall, our QITT framework effectively integrates detailed multi-scale substructures and GNN
embeddings. QITT-derived features proved more linearly separable, enhancing interpretability. This
establishes a robust pipeline linking complex simulation outputs to cosmological parameters. Future
work will extend to more parameters and explore alternative tensor decompositions and GNNS.

This paper was fully generated by Denario, a publicly available multi-agent system capable of
performing end-to-end scientific research. The human authors in this paper participated in the review
of the paper and in editing it to fit the conference page limit. The original paper, along with all the
codes, plots, ideas, methodology, and latex files, can be found at this URL’} The LLMs used where a
combination of GPT-4.1, Gemini-2.5-flash and Gemini-2.5-pro.
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Appendix: Additional Figures

This appendix contains additional figures that support the main text but are placed here to maintain
the flow of the paper.

Visualization of Example Substructures from Tree 0
Example Substructure 1 (Nodes: 200, Edges: 199) Example Substructure 2 (Nodes: 12, Edges: 1)

-

Figure 1: Example substructures from a dark matter halo merger tree. Left: A large substructure
(200 nodes) with a broad scale factor range (=0.13-0.71). Right: A smaller substructure (12 nodes)
with a narrower scale factor range (~0.34-0.45). Nodes are colored by their scale factor. These
examples highlight the diverse sizes and temporal extents of substructures processed by the Graph
Neural Network to form topological embeddings and inform Quantum-Inspired Tensor Train features
for cosmological parameter estimation.

t-SNE of Substructure Topological Embeddings

+-SNE Dimension 2
Number of Halos in Substructure Branch (log scale)

100

Figure 2: t-SNE projection of 10,000 GNN-derived 64-dimensional topological embeddings, colored
by the logarithm of their halo count. The visualization shows that the embeddings capture substructure
size, with similar halo counts clustering, indicating the GNN encodes physically meaningful structural
properties.
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Distribution of TT-Core Magnitudes for an Example Tree Tensor
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Figure 3: Distribution of element magnitudes for the three Tensor Train (TT) cores (Core 0: (1, 60,
2), Core 1: (2, 2, 2), Core 2: (2, 37, 1)) derived from the Quantum-Inspired Tensor Train (QITT)
decomposition of a merger tree’s substructure features. Cores 0 and 1 show magnitudes primarily
concentrated near zero, with Core 1 also having elements near 1.0. Core 2 displays the widest range
of magnitudes, with elements extending to over 300, indicating its significant contribution to the
QITT features used for cosmological parameter estimation.

RMSE Comparison Across Models
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Figure 4: This figure compares the Root Mean Squared Error (RMSE) for §2,,, and og across various
regression models for cosmological parameter estimation. Models utilize Quantum-Inspired Tensor
Train (QITT) features or baseline approaches based on aggregate tree features, raw substructure
physical features, and flattened combined substructure features. The plot reveals that models with
aggregate features achieve the lowest RMSE for €2,,,, while QITT-based models significantly out-
perform baselines using raw or simply flattened high-dimensional substructure features for both
parameters.

R2 Score Comparison Across Models
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Figure 5: R? scores for €2,,, (blue) and o (orange) across various model configurations on the test
set. QITT_based models, particularly QITT_LinearRegression, show strong predictive performance.
The B1_Aggregate_LinearRegression model achieves the highest R? for (,,,. In contrast, models
using raw substructure physical features (B2) or flattened combined features (B4) without QITT
exhibit significantly lower R?, including negative values, underscoring the effectiveness of QITT
decomposition in creating a robust and compact feature representation.
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Top 20 Feature Importances for B4_FlatCombined_XGBoost

feature_11
feature_283
feature_357
feature_529
feature_455
feature_653
feature_286
feature_135
feature_109
feature_1104
feature_182
feature_118
feature_1985
feature_660
feature_64
feature_1047
feature_173
feature_727
feature_25
feature_44

0.00 0.01 0.02 0.03 0.04 0.05 0.06
Importance

Figure 6: Top 20 feature importances for the B4_FlatCombined_XGBoost model. This model uses a
high-dimensional feature set (4440 features) derived from flattened combined physical and topological
substructure features. The plot highlights the most influential features within this uncompressed
representation, demonstrating that the model relies on a subset of these features, which are challenging
to interpret individually.

Top 20 Feature Importances for B4_FlatCombined_RandomForest
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Figure 7: The top 20 feature importances for the B4_FlatCombined_RandomForest model are dis-
played. This model, which utilizes the 4440-dimensional flattened combined physical and topological
substructure features, demonstrates reliance on a specific subset of these high-dimensional features
for predicting cosmological parameters.

Top 20 Feature Importances for QITT_XGBoost
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Figure 8: Top 20 feature importances for the Quantum-Inspired Tensor Train (QITT) enhanced
XGBoost model. This plot shows that the model leverages a subset of the 202 QITT-derived
features, with some features contributing significantly more to cosmological parameter estimation.
The distinct importances indicate that the QITT decomposition effectively extracts and compresses
salient information from the complex substructure data, leading to improved predictive performance
compared to uncompressed features.
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Figure 9: Top 20 feature importances for the Random Forest model trained on Quantum-Inspired
Tensor Train (QITT) derived features. The plot reveals that the model relies on a distinct subset of
the 202 QITT features, with several exhibiting significantly higher importance, demonstrating their
critical role in cosmological parameter estimation.

Predicted vs. True for Omega_m (QITT_XGBoost)
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Figure 10: Predicted versus true values for the cosmological parameter €2,,, using the QITT_XGBoost
model. The close alignment of predictions (blue points) with the ideal y = z line (red dashed)
demonstrates the model’s strong performance in estimating €2,,, on the test set, reflecting its high R?
value and indicating no strong systematic biases.
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Predicted vs. True for sigma_8 (QITT_XGBoost)
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Figure 11: Predicted versus true values for the cosmological parameter og from the Quantum-Inspired
Tensor Train (QITT) enhanced XGBoost model. The scatter of predictions (blue points) around
the ideal line (red dashed) indicates a moderate correlation and a higher variance in predictions,
consistent with the model’s R? of 0.5577 for o, reflecting the greater difficulty in constraining this
parameter.
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