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ABSTRACT

In the analysis of brain functional MRI (fMRI) data using regression models,
Bayesian methods are highly valued for their flexibility and ability to quantify
uncertainty. However, these methods face computational challenges in high-
dimensional settings typical of brain imaging, and the often pre-specified cor-
relation structures may not accurately capture the true spatial relationships within
the brain. To address these issues, we develop a general prior specifically de-
signed for regression models with large-scale imaging data. We introduce the
Soft-Thresholded Conditional AutoRegressive (ST-CAR) prior, which reduces in-
stability to pre-fixed correlation structures and provides inclusion probabilities
to account for the uncertainty in choosing active voxels in the brain. We apply
the ST-CAR prior to scalar-on-image (SonI) and image-on-scalar (IonS) regres-
sion models—both critical in brain imaging studies—and develop efficient com-
putational algorithms using variational inference (VI) and stochastic subsampling
techniques. Simulation studies demonstrate that the ST-CAR prior outperforms
existing methods in identifying active brain regions with complex correlation pat-
terns, while our VI algorithms offer superior computational performance. We
further validate our approach by applying the ST-CAR to working memory fMRI
data from the Adolescent Brain Cognitive Development (ABCD) study, highlight-
ing its effectiveness in practical brain imaging applications.

1 INTRODUCTION

Regression problems with high-dimensional components have wide-ranging applications. For indi-
vidual i, let a random function Mi(s), s ∈ Rd denote the high-dimensional component, and it can
be time-series (d = 1), 2D images (d = 2), or in our particular interest, the functional Magnetic
Resonance Imaging (fMRI) data (d = 3) of the human brain. In the context of the Adolescent
Brain Cognitive Development (ABCD) study (Casey et al., 2018), fMRI data reflects children’s
brain development. Two scientific problems of interest are (i) the impact of brain development on
children’s general cognitive ability, formulated as scalar-on-image (SonI) regression; and (ii) the
impact of the parental education level on different areas of the children’s brain development, for-
mulated as an image-on-scalar (IonS) regression. However, the complex anatomical structure of the
human brain, the sparse signal in fMRI data, and the computational burden associated with handling
high-resolution 3D images all pose challenges to image regressions.

Recent Development in Image Regressions To address these issues, state-of-the-art methods
mostly impose sparsity and spatial dependence on the functional parameters. It is well acknowl-
edged in the neuroimaging community that the fMRI data signals are assumed to be sparse and
piecewise smooth functions (Kang et al., 2018; Taylor & Worsley, 2007; Smith & Fahrmeir, 2007;
Mao et al., 2017). This includes frequentist penalization via total variation distance (Wang et al.,
2017), Bayesian Ising priors to control sparsity, and Gaussian Markov Random Field (MRF) or other
latent Gaussian Processes to control spatial-correlation (Goldsmith et al., 2014; Huang et al., 2013;
Li et al., 2015; Kang et al., 2018; Zeng et al., 2022). A common issue with these approaches is
that the spatial smoothness is pre-determined, either through tuning penalty parameters or imposing
prior structures on MRF. The data-adaptive way of tuning these smoothness parameters resorts to
cross-validation, but with high-resolution 3D fMRI data, cross-validation can be computationally
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expensive. The T-LoHo method (Lee et al., 2021) proposed a tree-based graph partition prior that
can learn spatial correlation treating voxels in 2D space as nodes in a graph, thus avoiding pre-
specified smoothness assumption, but this approach is still computationally expensive for 3D fMRI
data. In IonS, the popular approach is to use low-rank mapping (Ramsay & Silverman, 2005; Reiss
et al., 2010; Yu et al., 2021; Li et al., 2021; Zhu et al., 2014). Again, the choice of the low-rank
mapping using basis functions requires fine-tuning to reflect the true correlation structure of the
high-dimensional data. Zhang et al. (2023) proposed to learn the high-dimensional effect through
neural networks. Although tuning-free, this only provides point estimation with no uncertainty
quantification on the active areas.

Varitional Inference (VI) Posterior sampling for high-dimensional large-scale data has been chal-
lenging for traditional MCMC methods, especially for imaging applications. As discussed in Blei
et al. (2017), VI approximates the posterior sampling problem by an optimization problem, to min-
imize the Kullback-Leibler (KL) divergence between the posterior density and the candidate den-
sity function over a family of densities. This allows us to borrow optimization techniques such
as stochastic optimization with subsampling, and develop scalable algorithms for massive imaging
data. Under the mean-field assumption, our proposed ST-CAR prior can be easily implemented us-
ing Coordinate Ascent VI (CAVI). In addition, inspired by the mini-batch Langevin Dynamic (Wu
et al., 2022) algorithm, we also provide a simple modification on CAVI using stochastic subsampling
to compute the posterior gradient, which we refer to as Stochastic Subsampling VI (SSVI). One crit-
icism of VI algorithms is that, although VI can provide accurate point estimation, its ability to
provide inference and uncertainty quantification on the point estimates is less desirable compared to
traditional MCMC algorithms such as the Gibbs sampler. However, by designing a sparsity-inducing
prior such as the ST-CAR prior, we can at least get the Posterior Inclusion Probability (PIP) using
VIs, which provides statistical confidence whether the effect on certain voxels is nonzero. Down-
stream FDR control methods (Meyer et al., 2015) can be applied using PIP.

Motivated by the above challenges and computational algorithms, we propose the Soft-Thresholded
Conditional AutoRegressive (ST-CAR) prior, which uses a latent variable with CAR structure that is
not sensitive to the pre-specified prior correlation and provides shrinkage. Through extensive simu-
lation and real data examples using the ABCD data on both SonI and IonS regressions, we find that
ST-CAR with VI algorithms can achieve the best computational performance among all comparable
existing methods, and provide top-tier estimation and selection accuracy with state-of-the-art meth-
ods. In summary, the proposed ST-CAR prior and its VI algorithms are (i) computationally efficient;
(ii) prone to misspecified prior correlation and adaptive to data-driven smoothness; (iii) suitable for
active voxels selection and downstream FDR control using PIP; (iv) generalizable not only to SonI
and IonS regressions, but also to logistic regression with imaging predictor, or other generalized
regression models.

2 ST-CAR PRIOR

2.1 GENERAL NOTATIONS

Let N(µ, σ2) represent a normal distribution with mean µ and variance σ2. For the index set
{1, . . . , p}, let [−j] denote the set {1, . . . , p} \ {j}. For a square matrix A, let λmin(A) and λmax(A)
be the smallest and the largest eigenvalues of A respectively. Let C+(A) denote the half Cauchy
distribution with density function f(x) = (2/πA)I(x ≥ 0)/(1 + x2/A2). Let Rq denote the q-
dimensional Euclidean space. Iq is the q by q dimensional identity matrix. IG(a, b) stands for the
inverse-gamma distribution. We use N (j) to denote a neighborhood index set for j-th component,
and |N (j)| to denote the cardinality ofN (j). For a vector a, diag {a} is used to denote the diagonal
matrix with diagonal vector a. We use sgn(x) = I(x > 0)− I(x < 0) to denote the sign of x.

2.2 ST-CAR PRIOR

The soft-thresholding operator, defined as Tν(x) := {x − sgn(x)ν}I(|x| > ν) for any ν ≥ 0, is a
continuous function that shrinks small values below ν towards zero. The soft-thresholded Gaussian
Process (Kang et al., 2018, STGP) prior applies Tν to a latent GP. Thus, STGP allows the estimation
of functional parameters within the Reproducing Kernel Hilbert Space (RKHS) of the late GP kernel.
As the GP kernel and the corresponding RKHS change, the smoothness of the functional parameter
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space also changes. Without knowing the true signal pattern, pre-specifying the GP kernel can harm
STGP’s ability to learn the functional parameters (shown in Figure 2). Motivated by this idea, we
relax the prior assumption on the smoothness of the functional parameters, and propose a novel
noise-relaxed version of the STGP, referred to as the Soft-thresholded conditional auto-regressive
(ST-CAR) prior.
Definition 1. A sparse, spatially correlated parameter β(s) on a fixed grid s1, . . . , sp follows the
ST-CAR prior if

β(sj)
ind∼ N(Tν(µj), σ

2
β), j = 1, . . . , p

µj | µN (j) ∼N(µ̄N (j), τ
2
µ,j), µ̄N (j) = ρj

∑
k∈N (j)

bj,kµk

We use β ∼ ST-CAR(ν,B) to denote β = (β(s1), . . . , β(sp))
T follow the ST-CAR prior with

thresholding parameter ν and the neighborhood matrix B where (B)j,k = bj,k.

Here, β(·) is the target spatially varying parameter. The prior mean of β(sj) is the soft-thresholded
µj , where µj is a latent parameter for location sj . The prior mean of µj is determined by the
correlation coefficient ρj , the neighborhood set N (j), and the neighborhood weights bj,k.

The variance parameter σβ is not identifiable when the ST-CAR prior is applied to SonI or IonS
regression. To impose sparsity on β, we use the annealing idea on σβ , and let σβ decay to 0 as the
iteration increases. This will force the spatially independent β to converge to the sparse and spatially
correlated µ = (µ1, . . . , µp)

T. The decay rate of σβ has an impact on the variable selection accuracy
especially for low signal-to-noise ratio data. A general rule of thumb is to set σβ relatively large at
the beginning to allow for more flexibility and decays to a small value at the end.

The correlation parameter ρj can either be pre-fixed at all locations, or updated by

ρj = δj ρ̃, δj ∼ Ber(pj),

where ρ̃j is pre-fixed, and the binary indicator δj help to adaptively determine whether the value of
µj is strongly correlated with its neighborhood mean. We find these two approaches of updating
or fixing ρj have similar performances in variable selection accuracy, and the ST-CAR prior is not
sensitive to the choice of ρ or the bandwidth |N (j)|. However, taking the second approach to adap-
tively update ρ can give us extra information on the correlation structure of the high-dimensional
coefficient.

The spatially-correlated structure of the latent µ is imposed by the Conditional Auto-Regressive
(CAR) covariance structure (Gelfand & Vounatsou, 2003). Define a matrix B and a diagonal matrix
Dσµ as

(B)j,k = bj,k =
wj,k

wj+
, (Dσµ)j,j = τµ,j =

σ2
µ

wj+
(1)

where wj,k are the (j, k)-th index of a symmetric matrix W , and wj+ =
∑p

k=1 wj,k is the
row(column) summation. The matrix W represents the correlation structure, and in practice we
set wj,k ∝ exp {−d(sj , sk)}, exponentially negatively associated with the distance between sk and
sj . In addition to the CAR structure, we set a bandwidth |N (j)| on the number of components in-
cluded in the neighborhoodN (j), such that for each j, bj,k is nonzero only if wj,k is within the first
|N (j)| largest values among {wj,k}pk=1. Denote ρ = (ρ1, . . . , ρp)

T, the joint density of µ takes the
form

f(µ|σµ) ∝ exp

[
−1

2
µTD−1

σµ
{I − diag (ρ)B}µ

]
If we denote Σ−1

µ := D−1
σµ
{I − diag (ρ)B}, it can be shown that Σ−1

µ is a symmetric, positive
definite matrix when each ρj ∈

(
λmin(B)−1, λmax(B)−1

)
. Note that B is not a symmetric matrix in

general. In the construction in equation 1, λmax(B) = 1 and λmin(B) < 0. Hence we choose ρj ∈
[0, 1) for any j, and the joint density of µ is guaranteed to be non-degenerative. One caveat of doing
so is that the value of µj and the neighborhood mean µ̄N (j) is only allowed to be either positively
correlated or independent (ρj ≥ 0), but the negative correlation is not taken into consideration.
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This constraint makes sense in brain imaging applications, because the true signal is assumed to be
sparse and piecewise smooth, which excludes the case where the signal across neighboring voxels
has a sharp drop from positive to negative values. In general, the ST-CAR prior is suitable for the
case where the positive and negative areas do not share boundaries.

The proposed ST-CAR prior enjoys good computational properties as it has a conditional conjugate
posterior when applied to a spatial parameter in a regression problem. The main challenge in updat-
ing a thresholded parameter is that the thresholding function such as Tν is non-linear. But we can
show that µj conditional on all other µ[−j] and β has a mixture of truncated normal distribution as
its posterior.

Proposition 1. Within the ST-CAR prior, the posterior of µj can be expressed as a mixture of three
truncated normal distributions.

π(µj | β, µ[−j], σµ, σβ) =

P+
j ·N[ν,+∞)(µ

+
j , Vj) + P 0

j ·N[−ν,ν](µ̄N (j), V0) + P−
j ·N(−∞,−ν](µ

−
j , Vj) (2)

The expression for P+
j , P 0

j , P
−
j , µ+

j , µ
−
j , Vj , V0 can be found in the proof of Proposition 1 in the

Appendix. Proposition 1 provides the closed-form posterior density for the sparse-mean latent pa-
rameter {µj}pj=1 as a mixture of 3 truncated normal distributions in the ST-CAR prior. Due to the
normal mixture conjugacy, the Gibbs sampler can be directly applied. Proposition 1 and the prior
property E (βj |µj = 0) = 0 will allow us to approximate the posterior inclusion probability using
(1− P 0

j ) given data.

The proposed ST-CAR prior is a general prior that can be applied to many high-dimensional regres-
sion settings, where the coefficient is assumed to be smooth and sparse across their spatial domain.
SonI and IonS regressions in Section 2.3 are two examples to illustrate the power of ST-CAR prior.
Other potential applications include logistic regression with high-dimensional exposure and other
types of generalized linear models.

Regression
Model

Spatial coefficients Active Signal 
Observed Image 

Data

Figure 1: Illustration to use ST-CAR prior for regression models with imaging data.

2.3 APPLICATION TO IMAGE REGRESSION MODELS

The ST-CAR prior can be applied to various models with sparse and spatially varying functional
parameters as shown in Figure 1. This section demonstrates its advantage using SonI and IonS
models. We focus on the SonI model and defer IonS model details to the Appendix.

Scalar-on-Image (SonI) Regression Let Mi(sj) denote the fMRI signal intensity at location sj for
individual i, Xi ∈ Rq be a vector-valued confounder variables. Let Yi denote the scalar-valued
outcome for subject i. i = 1, . . . , n, j = 1, . . . , p.

Yi =

p∑
j=1

β(sj)Mi(sj) + γTXi + ϵi ϵi
iid∼N(0, σ2

Y )

β ∼ ST-CAR(ν,B) (3)

where β ∈ Rp is the high-dimensional spatially-varying coefficient of interest, and γ ∈ Rq is the
vector-valued coefficient for the confounders Xi.

The remaining parameters are assigned the following priors γ ∼ N(0, σ2
γIq), σY ∼ C+(1), σγ ∼

C+(1). For all of the Half-Cauchy parameters, we use their equivalent conjugate form to update:
σY ∼ C+(1) is equivalent to σ2

Y ∼ IG(1/2, 1/aY ), aY ∼ IG(1/2, 1). Because β ∼ ST-CAR(ν,B)
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essentially assigns spatially independent prior to β with a latent spatial-correlated mean function,
we can use singular value decomposition (SVD) on the design matrix M ∈ Rn×p to boost further
the computation speed1.

Image-on-Scalar (IonS) Regression In IonS regression, let the spatially varying outcome be the
fMRI data Mi(sj). The exposure of interest is denoted as Xi, and the confounders are denoted as
Ci ∈ Rm. The IonS model is as follows

Mi(sj) = α(sj)Xi +

m∑
k=1

ξk(sj)Ci,k + ηi(sj) + ϵi,j , ϵi,j
iid∼ N(0, σ2

M )

α ∼ ST-CAR(ν,B), (4)

with other prior specification as follows: ξk
iid∼ GP(0, σ2

ξκ), k = 1, . . . ,m, ηi
iid∼

GP(0, σ2
ηκ), σM ∼ C+(1), σξ ∼ C+(1), ση ∼ C+(1). Here, we only assign ST-CAR to

α for selecting active regions for the exposure. We defer details of IonS to Appendix A.1.

3 VARIATIONAL INFERENCE ALGORITHMS

This section uses the SonI equation 3 as an example, and introduces variational inference algorithms:
Coordinate Ascent Variational Inference (CAVI) and Stochastic subsampling version of variational
inference (SSVI). More computational details can be found in A.2 and A.3.

The variational inference methods (CAVI, SSVI) are based on the mean-field assumption (Blei et al.,
2017). If we denote θ = (β,γ,µ, σY , σγ) as the collection of all parameters. The mean-field
variational inference minimizes the evidence lower bound

min
q

E [KL(q(θ) | p(θ|Y,M,X))] s.t. q(θ) = q(β)q(γ)q(µ)q(σY )q(σγ).

Coordinate Ascent Variational Inference (CAVI) The classic CAVI algorithm iteratively refines
the approximated density q by updating each parameter in successive iterations t by the following
density approximation,

log q(t)(β) ∝ Eq(t−1)(γ,µ,σY ,σγ) {log p(β | Y,M,X,γ,µ, σY , σγ)} .

Because each prior in SonI has closed-form posterior density, we can directly apply this iterative
approach.

One issue with the conventional CAVI is that although it can give a good point estimation as an
optimization algorithm, but cannot directly make inferences such as the credible interval, com-
pared with MCMC sampling methods. The novelty in our proposed ST-CAR prior is that we can
use the mixing probability in Proposition 1 as the uncertainty quantification measure for selecting
significant regions, circumventing the requirement for credible interval based on MCMC samples,
while leveraging the computational efficiency provided by CAVI. Proposition 1 gives the posterior
probability of µj belonging to the positive group [ν,∞), zero group [−ν, ν), and negative group
(−∞,−ν). When using CAVI, we can directly compute the Posterior Inclusion Probability (PIP)
under q density as (P+

j + P−
j ) in equation 2 as a measure of coefficient significance.

Stochastic Subsampling Variational Inference (SSVI) The idea of SSVI is similar to the Stochas-
tic Gradient Langevin Dynamics (Welling & Teh, 2011, SGLD), in the spirit that instead of using
the entire sample, we take a subsample of data, indexed by I ⊂ {1, . . . , n}, and apply stochastic
gradient updating algorithm. In the context of VI update of βj , let st be the step size at t-th iteration,
let π be the prior density of βj ,

Eq(t) {βj} ← Eq(t−1) {βj}+ st

(
n

ns
∇Eq(t−1) log

∑
i∈I

p(Yi,Mi,Xi | θ) +∇Eq(t−1) log π(βj)

)
.

We defer details of SSVI to Section A.3. SSVI is particularly useful for large-scale problems such as
IonS where the likelihood computation is expensive due to the high-dimensional outcome, whereas
the performances of SSVI and CAVI for SonI are similar.

1Details on this derivation can be found in the Appendix
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4 NUMERICAL EXAMPLES

In this section, we focus on simulation for SonI equation 3, and defer simulation results on IonS
equation 4 regressions to A.4. Our primary goal is to compare the proposed prior ST-CAR with other
existing methods using CAVI. Because CAVI offers a balance between computational efficiency and
selection accuracy in SonI setting. Empirical comparisons of the posterior computation algorithms
including Gibbs sampler, SSVI, and CAVI are included in A.10.

Simulation I: Scalar-on-image regression with CAVI

For SonI model equation 3, we compare ST-CAR with 3 other methods: (1) Soft-thresholding Gaus-
sian Process prior (STGP) Kang et al. (2018), (2) T-LoHo Lee et al. (2021), (3) Elastic Net Zou &
Hastie (2005).

For the elastic net implemented in the glmnet package (Friedman et al., 2010a), the mixing parameter
α is set to 0.5, and the penalty parameter λ is chosen using cross-validation.

The STGP prior is based on soft-thresholding on the latent Gaussian Process. When β(s) ∼
ST GP(ν, κ), there exists a corresponding latent Gaussian Process β̃(s) ∼ GP(0, κ) such that
β(s) = Tν(β̃). This method requires a pre-specified kernel function κ, and the posterior sam-
pling algorithm is the Metropolis-adjusted Langevin algorithm (MALA). In this simulation, we use
the exponential square kernel

κ(s, s′; a, b) = cor{β(s), β(s′)} = exp{−a(s2 + s′
2
)− b(s− s′)2} (5)

where a = 0.01, b = 10. The implementation is based on BIMA package 2 (Xu & Kang, 2023).
Note that this implementation of STGP allows the users to specify different regions in the image and
specify a region-wise independent kernel in order to speed up the computation in high dimensions
and boost selection accuracy in each region. Hence for the simulation pattern shown in Figure 2,
we evenly split the entire 2D region into 4 sub-regions, and use the modified exponential square
kernel on each sub-region. The basis function is generated using Kang (2022) with 10 degrees of
Hermite polynomials for each sub-region. We use the elastic net result as the initial value for β, and
run a total of 104 iterations with the last 20% as the converged MCMC sample. The thresholding
parameter ν is set to be 0.2. For the variable selection accuracy, we use the Posterior Inclusion
Probability (PIP) based on the MCMC sample of β, defined as PIPj =

∑T
t=1 I(βj ̸= 0)/T for the

location j with T MCMC sample.

The T-LoHo 3 method is designed for clustering nodes in graph models into finite discrete values,
and it shows great performance for this purpose especially under low SNR. However, it is not well
suited to capture continuous functional parameters. In addition, T-LoHo does not impose sparsity.
We use the 95% credible interval to select active voxels. T-LoHo package does not provide the
confounder coefficients estimation, hence we set true γ = 0. We use a total of 50000 MCMC
iterations and take the last 10000 as the converged sample.

For ST-CAR prior updated using the CAVI algorithm, we use the ridge regression result as the initial
value for β, and set the initial value for µ to be all 0. The thresholding parameter ν is set to be the
largest marginal value in β estimated from ridge regression. This is because setting ν to be a large
value can reduce false discoveries, and µ is still able to recover the true signal pattern even when
starting from all 0 initial values. This algorithm is much less sensitive to the thresholding parameter
compared to STGP. The decay rate of σ2

β is set to be 0.5(1 + t)−0.7 where t represents the number
of iterations. Since we use annealing on σ2

β instead of fully conjugate update, we can no longer
use ELBO as a stopping rule. Instead, at the t + 1 iteration, we compute the difference of β(t) and
β(t+1), defined as

∑p
j=1(β

(t)
j − β

(t+1)
j )2/p, to determine whether the optimization has converged.

The tolerance is set to be 10−10. For the neighboring matrix B, we set the number of neighbors as
8, and the correlation parameter ρ̃ is set to be 0.9. The variance parameter σµ is fixed at 1 for the
CAVI update.

Figure 2a and 2b provide visual comparison under two simulation settings. The true β image is
designed to include several challenging patterns where the active area can decay smoothly to almost

2BIMA package available on GitHub
3TLOHO package https://github.com/changwoo-lee/TLOHO
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(a) Case 1. n = 600, p = 1600, σ2
Y = 1.

(b) Case 5. n = 6000, p = 10000, σ2
Y = 5.

Figure 2: SonI result illustration for all competing methods. The first figure in each row is the true
β signal.

0, to have a complex correlation structure such as the M-shape on the top-left corner, and to include
both positive and negative patterns. Case 1 (Figure 2a) is the low-resolution and low SNR setting,
and Case 5 (Figure 2b) is the high-resolution and high SNR setting.

From this visual comparison, STGP is good at estimating smooth function patterns such as the
bottom-left circle, but without further tuning the Gaussian Process kernel, estimating more complex
patterns such as the M-shape would be difficult. Here, STGP already considers the region partition.
If we were to generate a Gaussian Kernel over the entire support, the result would be even smoother
(appear more blurry on sharp edges). T-LoHo as a clustering method is good at grouping larger
effects, but as the true signal decays smoothly towards 0, T-LoHo can ignore some small non-zero
effects, resulting in a lower statistical power, as shown in the bottom-left circle in Figure 2b. Elastic
Net can identify the spatial pattern to a certain extent, but the power is limited as it does not leverage
spatial information. Consequently, it may yield a noisy estimation in case 1. Even in case 5, where
the point estimation is favorable, Elastic Net can still introduce background noises. ST-CAR can
estimate each pattern relatively well without specifying any region partition or tuning the correlation
matrix and it automatically adapts to different signal patterns. Although some small effects such as
the bottom tip of the T-shape can still be missed, ST-CAR provides the best overall performance
compared to other priors across different settings without any tuning procedure.

Table 1 provides a detailed numerical comparison. The evaluation criteria for estimation accuracy
include (i) Selection accuracy: false discovery rate (FDR), true positive rate (TPR), and overall ac-
curacy (ACC); (ii) Point estimation: root mean squared error (RMSE); (iii) Goodness-of-fit: the pre-
dictive mean squared error on the outcome Yi using training and testing data (train and test pMSE).
We also include the computational time comparison averaged over 100 replications. Because CAVI
is an optimization algorithm, we can set a stopping rule, whereas for MCMC sampling algorithms
for STGP and T-LoHo, a lot more iterations are required. Hence we report both the total time and
the number of iterations per second.

For the variable selection results for ST-CAR, Elastic Net, and STGP, we use a tuning procedure
to find a cutoff such that the FDR can be controlled below 10% within a fixed tuning window. For
STGP and ST-CAR, the PIP is used to control FDR. For elastic net, effect size of β is used to control
FDR. For T-LoHo, the 95% CI is used.

Based on Table 1, we can see that ST-CAR has the lowest testing pMSE in 3 relatively high SNR
cases (Case 2,3,5). For Case 1 and 4 with relatively low SNR, ST-CAR has the second-best perfor-
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Table 1: Numeric result for SonI simulation, under 100 replications.

(a) SonI: Comparison of estimation accuracy. The evaluation criteria for estimation includes false discovery rate
(FDR), true positive rate (TPR), overall accuracy (ACC), and root mean squared error (RMSE), all multiplied by
100. The evaluation criteria for predictive performance includes training and testing predictive MSE, denoted
as Train and Test pMSE respectively

Case 1. n = 600, p = 1600, σ2
Y = 1 Case 2. n = 600,p = 900, σ2

Y = 1
ST-CAR ElasNet STGP T-LoHo ST-CAR ElasNet STGP T-LoHo

FDR 9.52 9.54 10.42 4.41 FDR 9.40 1.82 9.77 3.92
TPR 97.47 44.85 95.37 97.32 TPR 99.81 98.45 94.06 99.34
ACC 98.05 90.87 97.60 98.62 ACC 98.45 99.50 97.63 98.65
RMSE 11.00 30.45 13.44 9.46 RMSE 5.51 7.12 13.00 6.56
Train pMSE 2.29 1.03 5.97 3.61 Train pMSE 1.10 0.33 3.40 1.55
Test pMSE 7.18 60.31 12.54 6.21 Test pMSE 2.02 3.04 6.36 2.24

Case 3. n = 1000, p = 1600, σ2
Y = 1 Case 4. n = 600, p = 1600,σ2

Y = 5
ST-CAR ElasNet STGP T-LoHo ST-CAR ElasNet STGP T-LoHo

FDR 9.39 0.39 9.89 1.10 FDR 9.64 9.42 9.83 7.09
TPR 100.00 99.08 97.93 99.79 TPR 90.06 37.11 92.00 94.19
ACC 98.42 99.80 98.05 99.76 ACC 97.02 89.82 97.25 97.09
RMSE 4.27 6.53 12.04 5.83 RMSE 14.65 33.31 14.72 12.51
Train pMSE 1.08 0.48 6.47 1.92 Train pMSE 4.85 2.55 9.17 8.56
Test pMSE 2.03 3.79 9.92 2.78 Test pMSE 17.76 76.84 19.31 14.37

Case 5. n = 6000, p = 10000, σ2
Y = 5 Case 6. n = 6000, p = 10000, σ2

Y = 10
ST-CAR ElasNet STGP T-LoHo ST-CAR ElasNet STGP T-LoHo

FDR 0.46 0.27 17.16 6.84 FDR 1.18 2.47 17.15 4.78
TPR 99.98 99.39 98.52 99.67 TPR 99.91 98.21 98.53 99.52
ACC 99.92 99.86 96.57 95.96 ACC 99.80 99.33 96.58 97.71
RMSE 3.73 6.73 13.78 5.25 RMSE 3.14 3.94 6.44 2.48
Train pMSE 5.48 3.12 80.90 12.78 Train pMSE 10.62 3.81 85.91 18.60
Test pMSE 9.37 22.94 86.88 15.54 Test pMSE 18.43 41.06 92.25 22.44

(b) Computation time for SonI simulation, averaged over 100 replications.

Computation time Total time (seconds) Number of iteratios per second
Case ST-CAR STGP T-LoHo ST-CAR STGP T-LoHo
Case 1. n = 600, p = 1600, σ2

Y = 1 103.0 503.0 306.5 11.4 208.0 262.6
Case 2. n = 600,p = 900, σ2

Y = 1 24.2 250.8 205.0 42.3 420.5 393.4
Case 3. n = 1000, p = 1600, σ2

Y = 1 111.2 866.2 426.2 10.2 122.9 189.5
Case 4. n = 600, p = 1600,σ2

Y = 5 108.5 486.0 312.5 11.1 212.4 259.8
Case 5. n = 6000, p = 10000, σ2

Y = 5 8034.9 40658.8 11141.1 0.2 2.6 7.3
Case 6. n = 6000, p = 10000, σ2

Y = 10 7811.3 40839.1 11297.8 0.2 2.6 7.2

mance next to T-LoHo. For the computation time in Table 1b, ST-CAR has the best computational
efficiency across all cases.

5 APPLICATION TO ABCD STUDY

In this section, we apply ST-CAR to analyze the Adolescent Brain Cognitive Development (ABCD)
study release 1 data (Casey et al., 2018). The ABCD study is a long-term study on the brain de-
velopment of children in the United States. In this real data analysis, we use the 2-back 3mm task
fMRI contrast data (Sripada et al., 2020a). The preprocessing and the general cognitive score (g-
score) follow from the previous study Sripada et al. (2020b). The scientific questions of interest are:
(i) whether the brain signals in different regions have different impacts on the children’s IQ score
(SonI); (ii) whether parents with higher education degrees has an impact on the children’s cognitive
ability development (IonS). For the task fMRI data, after preprocessing (Sripada et al., 2020b) and
removing subjects with missing covariates, we have p = 47636 voxels and n = 1861 subjects in
total.

To answer (i) with SonI model equation 3, we use the children’s IQ score as the scalar outcome Yi,
and use the task fMRI data as the high-dimensional predictor Mi(sj), where sj stands for voxel
locations in the brain. The confounders include parental education level (binary, 1 if the parent has a
bachelor’s degree or higher), age, gender, race and ethnicity (Asian, Black, Hispanic, Other, White),
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and household income (less than 50k, between 50k and 100k, greater than 100k). The coefficient
of interest is β in equation 3. We expect β to be very sparse and have small effects, since the
interpretation for β(sj) = b is that one unit increase in the brain signal in location sj is associated
with b amount of change in the children’s IQ score, and the range of the standardized IQ score is
(−2.84, 3.26), a small range compared to a large number of predictors p = 47636.

To answer (ii) with the IonS model equation 4, we use the task fMRI data as the outcome, and the
parental education level as the exposure. The confounders include age, gender, race and ethnicity,
and household income. For the IonS model, for ξk, ηi that are assigned GP priors. The interpretation
for α(sj) = a in equation 4 is that parents with bachelor’s degrees or higher are associated with a
amount of change in the brain signal at location sj . Hence we expect the effect size of α to be
relatively larger than that of β.

In ST-CAR prior, the two most important tuning parameters are the thresholding parameter ν, and
the initial value for σ2

β which controls how close β is to the latent sparse µ. In theory (Kang et al.,
2018), the choice of ν does not have a huge impact as long as the initial values are close enough to the
truth, or the MCMC sampling algorithm can run long enough to fully explore the parameter space.
Because we are using VI algorithms, it is important to start with a good initial value. Hence we
perform a sensitivity analysis to select the best ν and initial σ2

β in terms of the smallest testing pMSE.
The entire data set is split into 70% training data and 30% testing data. Based on the sensitivity
analysis results in Table A2 and Appendix Table A4 and A3, we choose ν = 0.007, the initial value
for σ2

β to be 10−5, bandwidth 9 and decay rate γ = 0.35 in the decay rate function of σ2
β for SonI,

and choose ν = 0.005, the initial value for σ2
α to be 0.1, bandwidth 26 and decay rate γ = 0.45 for

IonS. Although varying ν, bandwidth and decay rate have little influence on the results. Table A2
also reflects that our method has better testing pMSE compared to the competing methods Elastic
Net, STGP, and MUA. Due to the computational limitation of other methods, we chose not to run
all competing methods on the real data.

We use CAVI on SonI, which takes 1.7 hours to run, and SSVI on IonS, which takes 7.3 hours
to run. Due to the vast sparsity and low SNR in β, the computational time of SonI is similar to
STGP (1.6 hours). However, the IonS model with the SSVI algorithm shows a huge computational
improvement compared to STGP (85.9 hours).

(a) SonI: values of β (Red) w. color range [0.0005,0.001], and values of PIP (overlaying blue) w. color range
[0.25, 0.5].

(b) IonS: values of α (Red) w. color range [0.05,0.1], and values of PIP (overlaying blue) w. color range
[0.95,1].

Figure 3: Visual illustration of β in SonI and α in IonS.

We present the final data analysis result in both visual illustrations in Figure 3, and numeric values
in Table 2. Figure 3 is a visualization of the positive significant voxels in SonI and IonS. The color
range for the plots is between [a, b], where only voxels with values greater than a are shown, and
voxels with values greater than b are shown in the brightest color. From Figure 3a, due to the low
SNR in SonI, both the effect size and PIP are small, and only a small amount of voxels with a large
effect size aligns with the mapping of PIP greater than 0.25. In comparison, α in IonS has a larger
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effect size, and as shown in Figure 3b, the large effect areas align well with the mapping of PIP
greater than 0.98.

Table 2: Numeric result for the top 10 regions sorted by number of significant positive voxels in
SonI and IonS. For SonI, sig count is the number of significant voxels (PIPj ≥ 0.25) in each
region, pos sig count is the number of significant voxels with β(sj) ≥ 0.0005, and pos sum is∑

j∈Sr
β(sj)I(β(sj) > 0), the sum of positive effect for all voxels in region r. The IonS result has

the same interpretation, except the cutoff for significant voxels is PIPj ≥ 0.95, and the cutoff for
positive effect in pos sig count is 0.05.

SonI IonS
region
name

region
code

sig
count

pos sig
count

pos
sum

region
name

region
code

sig
count

pos sig
count

pos
sum

Precuneus L 67 12 12 0.25 Parietal Inf L 61 382 357 38.94
Temporal Sup R 82 12 9 0.16 Precuneus L 67 377 312 37.26
Temporal Inf R 90 18 9 0.18 Precentral L 1 305 293 33.55
Precuneus R 68 12 8 0.14 Precuneus R 68 316 285 36.24
Temporal Inf L 89 14 8 0.15 Frontal Mid R 8 322 270 43.12
Occipital Mid L 51 6 6 0.12 Frontal Mid L 7 272 244 43.06
Parietal Inf L 61 8 6 0.15 Supp Motor Area L 19 215 205 23.82
Frontal Sup Orb R 6 6 5 0.08 Parietal Sup L 59 224 167 18.63
Frontal Mid L 7 11 5 0.15 Temporal Mid R 86 175 154 27.18
Frontal Mid Orb R 10 5 5 0.08 Frontal Sup L 3 155 147 21.81

In Table 2, we show the region-level numeric result. Note that, although both SonI and IonS have
a small amount of negative effects, they are very close to 0 compared to the positive effect scale,
hence we only report the positive effect here. From Table 2, for SonI, Precuneus L is the region
with the largest positive effect, which means brain development in this region can have the most
positive effect on the children’s IQ score. This aligns with the previous study in Xu & Kang (2023)
and scientific findings (Wallentin et al., 2006) that Precuneus is related to memory tasks. For IonS,
Frontal Mid region in both the left and right hemispheres have the largest positive effect, and have
been shown to play a key role in the development of literacy (left Frontal Mid) and numeracy (right
Frontal Mid) in previous findings (El-Baba & Schury, 2020).

6 DISCUSSION AND CONCLUSION

In this work, we have proposed the ST-CAR prior, which is a general and flexible prior that could
be applied to any regression problems with imaging components. Variational inference algorithms
are proposed for the ST-CAR prior. Especially, we implemented the coordinate ascent variational
inference (CAVI) as a baseline VI algorithm that can provide good estimation accuracy in low SNR
settings, and we proposed a novel stochastic subsampling variational inference (SSVI) algorithm
that is more computationally efficient. We demonstrated the use of the ST-CAR prior in both scalar-
on-image and image-on-scalar regression models. Through comparisons in numeric studies, we find
our proposed method has better performance in terms of estimation and computation, compared
with existing methods such as T-LoHo, STGP, and SBIOS. The proposed method is applied to the
ABCD study with task fMRI image data and identifies the left Precuneus as a significant region to
the children’s IQ development, and the development of the middle frontal gyrus as the significant
region that can be most positively impacted by parental education level.
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A APPENDIX

A.1 DETAILS ON IONS REGRESSION

For confounder coefficients ξk and the individual effects ηi, we assign the Gaussian Process prior
with the same kernel function κ for computational convenience. The individual effect parameter ηi
separates the spatially correlated noise from the noise term ϵi, and avoids setting a dense correlation
matrix for the noise term ϵi, which speeds up the computation. This is similar to the correlated noise
model in Zhu et al. (2014). The identifiability of model equation 4 has been shown in Zhang et al.
(2023) under the following sufficient conditions: (1) the design matrix X̃ := (X,C) ∈ Rn×(m+1) is
a full rank matrix, (2) for any i and any sj , denote η(sj) = (η1(sj), . . . , ηn(sj)) ∈ Rn, X̃Tη(sj) =

0. The first condition is easily satisfied when the design matrix X̃ is not linearly dependent.

For the Gaussian Process prior update of ξk and ηi, we use the basis decomposition approach.
Leveraging Mercer’s theorem, which asserts that for any function g(s) following a Gaussian Process
with mean zero and covariance function σ2

gκ(·, ·), we can utilize the following basis decomposition.

g(s) =

∞∑
l=1

θg,lϕl(s), θg,l
ind∼ N (0, σ2

gλl),

where λl is the l-th eigen-value, and ϕl is the l-th eigen-function (see Section 4.2 in Rasmussen
& Williams (2005)). In practice, we choose a finite L as the cutoff on the number of bases, and
approximate g(s) by

∑L
l=1 θg,lϕl(s). The number of basis L is chosen such that the summation∑L

l=1 λl is over 90% of
∑p

l=1 λl. The choice of the kernel function includes exponential square
kernel, Matérn kernel, and other kernel functions. For the simulation section, we use the modified
exponential square kernel, κ(s, s′; a, b) = exp{−a(s2 + s′

2
) − b(s − s′)2}. For the real data

analysis with ABCD data, the kernel is a pre-tuned Matérn kernel with region-specific smoothness
parameters that can best align with the empirical correlation of the observed image data, same as in
Xu & Kang (2023).

A.2 COMPUTATIONAL DETAILS

For the neighborhood matrix B in ST-CAR(ν,B), in order to speed up the computation, we use
sparse matrix structure in RcppArmadillo (Eddelbuettel & Sanderson, 2014), and set a fixed band-
width |N (j)| for all j. For a given fixed grid {s1, . . . , sp} in Rd, we use RANN package (Arya
et al., 2019) to efficiently search for the nearest neighbors in the high-dimensional setting.

A.3 STOCHASTIC SUBSAMPLING VARIATIONAL INFERENCE (SSVI)

To make the variational inference method scalable for large data sets, we propose a stochastic sub-
sampling version of CAVI, referred to as SSVI. The main computational bottleneck of CAVI is to
update β, which is a high-dimensional parameter, and the latent variable µ further requires complex
computation of mixed truncated normal densities. Hence given µ, when updating β, we randomly
select a subsample of data, indexed by I ⊂ {1, . . . , n}, and apply a stochastic gradient update sim-
ilar to the Stochastic Gradient Langevine Dynamics (SGLD) (Welling & Teh, 2011). Let st be the
step size at t-th iteration, n be the total number of observations, ns be the subsample size, and π be
the prior density of βj at the jth voxel,

Eq(t) {βj} ← Eq(t−1) {βj}+ st

(
n

ns
∇Eq(t−1) log

∑
i∈I

p(Yi,Mi,Xi | θ) +∇Eq(t−1) log π(βj)

)
.
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This is because under the mean-field assumption, the optimum density q∗(βj) has a closed-form
solution: a normal density with mean and variance

Eq∗(βj) = Varq∗(βj)×Eq∗(σ
−2
Y )

N∑
i=1

Mi,j

Yi − Eq∗γ
TXi −

∑
k∈[−j]

Eq∗βkMi,k + Eq∗

{
σ−2
β Tν(µj)

}
Varq∗(βj) =

(
Eq∗(σ

−2
Y )

N∑
i=1

M2
i,j + Eq∗(σ

−2
β )

)−1

And Eq∗(βj) is also the maximizer to

Eq∗

N∑
i=1

log p(Yi,Mi,Xi | θ) + Eq∗ log π(βj).

We require the step size st to decrease to 0 as t → ∞. In practice, we use the decay function
st = a(b+ t)−γ , as suggested in Welling & Teh (2011).

In practice, we find that in low signal-to-noise ratio (SNR) settings, the CAVI algorithm gives better
accuracy. Hence we recommend using CAVI for the SonI model, where the SNR can be very low,
especially in brain imaging data, and using SSVI for the IonS model since the IonS model has a
much higher SNR for the coefficient at each voxel. The implementation is available as an R package
STCAR in the supplementary material4.

A.4 SIMULATION II: IMAGE-ON-SCALAR REGRESSION WITH SSVI

For IonS model equation 4, we compare ST-CAR with 3 other methods: (1) STGP prior, (2) Scal-
able Bayesian Image-on-Scalar regression (SBIOS) (Xu et al., 2024), (3) Mass Univariate Analysis
(MUA). For the IonS regression equation 4, estimation of α has a larger SNR compared to esti-
mating β in SonI equation 3, hence we use SSVI for this application for ST-CAR prior. Because
we impose GP prior for the confounder parameters ξk and individual effect ηi, the GP kernels used
in this simulation are all the same for STGP, ST-CAR, and SBIOS for fair comparison. We also
use region-wise independent kernels for the GP priors in equation 4. The GP kernel is the same as
equation 5 with a = 0.01 and b = 10.

The mass univariate analysis (MUA) is one of the most commonly used methods for IonS regression.
MUA analyzes IonS as a spatially independent problem and treats the IonS regression as p indepen-
dent linear regression problems with exposure Xi and confounders Ci. To select active voxels, we
use the Benjamini-Hochberg adjusted p-values (Benjamini & Hochberg, 1995) to control the false
discovery rate. The active voxels selected by MUA have an adjusted p-value below 0.05.

The STGP method is similar to what has been discussed in the SonI regression. For the IonS regres-
sion, we use a total of 2×104 iterations and take the last 10% as the converged MCMC sample. The
thresholding parameter ν is set to be 0.2. We use the point estimates of α and ξk from MUA as the
initial value for the MALA algorithm.

The Scalable Bayesian Image-on-Scalar regression (SBIOS) (Xu et al., 2024) is another Bayesian
approach where the parameter of interest can be expressed as α(s) = α̃(s)δ(s). The latent spatially
smooth function α̃ is assigned a GP prior, and the binary selection variable δ(sj) is assigned an
independent prior Ber(p(sj)) for each location sj . SBIOS is designed to analyze a large-scale
data set by using batch updates with stochastic gradient Langevin dynamics algorithm (SGLD).
Hence it is more appropriate to be compared with the SSVI implementation of ST-CAR, since both
methods are based on stochastic gradient updates of a small random sample drawn from the entire
observed data. Different from the idea of SSVI where we simply use stochastic gradient update for
an optimization problem, SGLD gives a smooth transition from optimization to MCMC sampling
as the step size decays to 0 (Welling & Teh, 2011). Similar to STGP, we can use the MCMC sample
of δ(sj) to determine the PIP at location j, PIPj =

∑T
t=1 δ(sj)

(t) ̸= 0/T for T MCMC sample.

4STCAR is also available on Github
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In the simulation, we use 5000 SGLD iterations, with the decay function of the step size set as
st = 0.0001 · (10 + t)−0.35. We use 200 subsample in each iteration. The prior for δ(sj) is set to
be Ber(0.5) for all locations. The last 20% of iterations is used to compute the point estimation of α
and PIP.

The ST-CAR method implemented using the SSVI algorithm requires a stochastic gradient update
of α. We use a step of 10−4 and a subsample of 100 for the SGD optimization. The decay rate
function for σ2

α is (1 + t)−0.4. We use C+(1) as the prior for σµ in equation 1. Because of the
randomness in the SGD update, we cannot use the difference between α(t) and α(t+1) or ELBO as
a stopping rule. For the simulation, we simply run 104 iterations. In practice, the convergence of
SSVI can be roughly determined by the convergence of σ2

µ. For the point estimation and inference
of α, we use the averaged values over the last 20% iterations as the posterior mean of α and PIP to
avoid the randomness from SGD.

Note that updating the individual effects ηi for i = 1, . . . , n is computationally challenging for all
Bayesian methods. We choose to update ηi every 100 iterations for ST-CAR, SBIOS, and every
1000 iterations for STGP.

Figure A1: Point estimation result of IonS regression for all competing methods, n = 600, p =
6400, σ2

M = 5. The top-left figure is the true α signal.

Figure A1 provides a visualization of the point estimation for each method. MUA has the most noisy
point estimation since it does not consider the spatial correlation, and there is no sparsity constraint
directly imposed other than using the adjusted p-value to determine the level of significance for each
voxel location. STGP suffers from the same issue as in Figure 2, where the pre-specified kernel is
too smooth for the Z-shape and recycle shape (top-left). SBIOS uses the same kernel, but the binary
selection parameter δ(sj) has a spatially independent prior, and can get a clearer edge compared to
STGP and better selection, but the latent GP kernel is still too smooth that the edge of the recycle
shape and Z-shape tends to be 0. In the ST-CAR plot, although the functional parameters ξk, ηi
are all assigned GP prior with the same kernel as STGP and SBIOS, we can still see that ST-CAR
can give a very clear edge for all 4 shapes. This demonstrates that ST-CAR prior is very flexible
to different correlation patterns without much tuning on the neighborhood matrix B or correlation
coefficient ρ, especially for the high SNR cases.

Table A1a provides the numerical result on the IonS model based on 100 replications in six different
settings. Because the predictive MSE on the outcome averaged over all voxel locations is very close
for all methods, we do not report it here. Instead, we focus on the estimation of the coefficient α.
The proposed ST-CAR prior with the SSVI algorithm gives the lowest RMSE except for Case 2
and 6, for which the STGP has the lowest RMSE, although STGP has a much larger FDR in both
cases. To control the FDR below 10%, we use the Benjamini-Hochberg (BH) adjusted p-values on
MUA and set a threshold such that α(sj) with the adjusted p-value below 0.1 are selected as active
voxels. For ST-CAR, STGP, and SBIOS, we compute the proportion of the active voxels selected
by MUA, and apply the same proportion to get the cutoff on PIP. In this way, we select roughly
the same proportion of voxels as active. Based on the result in Table A1a, this selection method
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Table A1: Numeric result for IonS simulation, under 100 replications.

(a) IonS: Comparison of estimation accuracy. The evaluation criteria include false discovery rate (FDR), true
positive rate (TPR), overall accuracy (ACC), and root mean squared error (RMSE), all multiplied by 100.

Case 1. n = 600, p = 1600, σ2
M = 5 Case 2. n = 600, p = 900, σ2

M = 5
Criteria ST-CAR MUA STGP SBIOS Criteria ST-CAR MUA STGP SBIOS
FDR 5.8 7.98 16.88 6.3 FDR 4.95 8.23 12.75 4.69
TPR 95.41 93.2 94.18 94.94 TPR 84.34 81.42 85.01 84.61
ACC 97.86 96.95 94.89 97.66 ACC 96.27 95.19 94.9 96.36
RMSE 7.86 9.35 10.53 10.79 RMSE 7.88 9.4 6.85 7.36

Case 3. n = 1000, p = 1600, σ2
M = 5 Case 4. n = 600, p = 1600, σ2

M = 10
Criteria ST-CAR MUA STGP SBIOS Criteria ST-CAR MUA STGP SBIOS
FDR 7.1 8.1 19.24 7.97 FDR 5.07 8.06 14.87 4.12
TPR 98.38 97.32 95.57 97.53 TPR 85.31 82.61 90.84 86.19
ACC 98.13 97.69 94.43 97.76 ACC 96.06 94.96 94.88 96.42
RMSE 6.44 7.21 10.16 10.35 RMSE 10.32 13.14 11.21 11.74

Case 5. n = 600, p = 6400, σ2
M = 5 Case 6. n = 1000, p = 6400, σ2

M = 20
Criteria ST-CAR MUA STGP SBIOS Criteria ST-CAR MUA STGP SBIOS
FDR 5.97 7.84 20.78 6.04 FDR 5.93 7.93 19.94 2.95
TPR 93.64 91.78 97.19 93.62 TPR 81.83 80.09 96.64 84.46
ACC 97.35 96.55 93.9 97.33 ACC 95.06 94.32 94.18 96.16
RMSE 8.52 9.19 9.79 10.25 RMSE 13.84 14.19 9.76 10.72

(b) Computation time for IonS simulation, averaged over 100 replications.

Computation time Total time (seconds) Number of iterations per second
Case ST-CAR STGP SBIOS ST-CAR STGP SBIOS
Case 1. n = 600, p = 1600, σ2

M = 5 73.7 588.4 717.4 137.5 3.4 7.3
Case 2. n = 600,p = 900, σ2

M = 5 55 381.6 874.5 186 5.3 6.3
Case 3. n = 1000, p = 1600, σ2

M = 5 117.3 1062.1 1968.4 88.9 1.9 3.1
Case 4. n = 600, p = 1600,σ2

M = 10 82.9 621.8 1214.1 122.7 3.2 4.9
Case 5. n = 600, p = 6400,σ2

M = 5 409.2 2190.3 1049.8 24.7 0.9 5.3
Case 6. n = 600, p = 6400,σ2

M = 20 596.7 5090.2 1733.2 17 0.4 3.2

can control the FDR for ST-CAR and SBIOS to be below 10%, whereas for STGP, the FDR is still
over 10%. The MUA has the worst power (TPR) in all scenarios after controlling for FDR. The total
running time shown in Table A1b also shows a great improvement in the computational speed for the
SSVI algorithm when compared with other MCMC sampling algorithms. On average, STGP takes
7.6 times longer compared to SSVI, and SBIOS takes 10.4 times longer compared to SSVI. In the
Supplemental Material, we also provide additional results of using CAVI under ST-CAR prior and
compare the performance with SSVI. SSVI still slightly outperforms CAVI in the IonS regression in
terms of both estimation and computation speed.

For a more comprehensive comparison between different estimation algorithms (Gibbs, CAVI,
SSVI) under ST-CAR prior, we include a small low-dimensional comparison for the SonI regres-
sion in the Supplemental Material. The result suggests that CAVI tends to have better estimation
accuracy in SonI regression where the signal-to-noise ratio is low.

A.5 POSTERIOR DERIVATION

For the fully conjugate posterior derivations, the hierarchical model of applying the sparse-mean
prior on the scalar-on-image regression can be written as

Yi =

p∑
j=1

β(sj)Mi(sj) + γTXi + ϵi ϵi
iid∼N(0, σ2

Y ), σY ∼ C+(1)

β(sj)
ind∼ N(Tν(µj), σ

2
β), σβ ∼ C+(1)

µj | µ[−j] ∼N(µ̄N (j), τ
2
j ), τ2µ,j = σ2

µ/wj+, σ2
µ ∼ C+(1)

γ ∼N(0, σ2
γIq), σγ ∼ C+(1)
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Based on this hierarchical model, we can derive the posterior distributions of each parameter. Note
that the posterior for most of the parameters is straightforward, except for µj , which involves the
soft-thresholding operator Tν . The posterior of µj can be expressed in terms of a mixture of trun-
cated normal distributions with 3 components.

A.5.1 PROOF OF PROPOSITION 1

Proof. The posterior of µj can be expressed as

log π(µj | β, µ[−j], σµ, σβ) ∝ −
1

2σ2
β

(β(sj)− Tν(µj))
2 − wj+

2σ2
µ

(
µj − µ̄N (j)

)2
(6)

π(µj | . . . ) = P+
j ·N[ν,+∞)(µ

+
j , Vj) + P 0

j ·N[−ν,ν](µ̄N (j), V0) + P−
j ·N(−∞,−ν](µ

−
j , Vj)

where N[a,b](µ, σ
2) is notation for the truncated normal distribution supported on [a, b] with mean µ

and variance σ2. The middle component is just the truncated normal on [−ν, ν] with the prior mean
µ̄N (j) and variance V0 =

wj+

σ2
µ

. For the other two components,

Vj =

(
1

σ2
β

+
wj+

σ2
µ

)−1

, µ+
j = Vj

{
1

σ2
β

(β(sj) + ν) +
wj+

σ2
µ

µ̄N (j)

}
,

µ−
j = Vj

{
1

σ2
β

(β(sj)− ν) +
wj+

σ2
µ

µ̄N (j)

}
The density of this 3 component mixture can be expressed as

π(µj | . . . ) =
1

Zj
(Z+

j f+
j + Z0

j f
0
j + Z−

j f−
j )

where Z+
j , Z0

j , Z
−
j , Zj represent different normalizing constant, and

f+
j , f0

j , f
−
j represent the density functions of 3 truncated normal distributions

N[ν,+∞)(µ
+
j , Vj),N[−ν,ν](µ̄N (j), V0),N(−∞,−ν](µ

−
j , Vj) respectively. Hence the mixing

probabilities can be represented as

P+
j =

Z+
j

Zj
, , P 0

j =
Z0
j

Zj
, P−

j =
Z−
j

Zj
.

Now denote f̃∗, ∗ ∈ {−, 0,+} as the RHS in equation 6 supported on x ∈
(−∞,−ν), [−ν, ν], (ν,+∞) respectively.

log(Z+
j ) = log f̃+

j − log f+
j , x ∈ (ν,+∞)

= − 1

2σ2
β

(β(sj) + ν − µj)
2 − wj+

2σ2
µ

(
µj − µ̄N (j)

)2
−

{
log

1√
Vj

− 1

2Vj

(
µj − µ+

j

)2 − log

(
1− Φ

(
ν − µ+

j√
Vj

))}

log(Z0
j ) = log f̃0

j − log f0
j , x ∈ [−ν,+ν]

= − 1

2σ2
β

(β(sj))
2 − wj+

2σ2
µ

(
µj − µ̄N (j)

)2
−
{
log

1√
V0

− 1

2V0

(
µj − µ̄N (j)

)2 − log

(
1− Φ

(
ν − µ̄N (j)√

V0

))}
log(Z−

j ) = log f̃−
j − log f−

j , x ∈ (−∞,−ν)

= − 1

2σ2
β

(β(sj)− µj − ν)
2 − wj+

2σ2
µ

(
µj − µ̄N (j)

)2
−

{
log

1√
Vj

− 1

2Vj

(
µj − µ−

j

)2 − log

(
1− Φ

(
ν − µ−

j√
Vj

))}
Hence the entire density function is complete.
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A.5.2 VARIATIONAL INFERENCE: Q-DENSITIES FOR SCALAR-ON-IMAGE REGRESSION

In the following derivation, we denote the vector Y ∈ Rn , matrix M ∈ Rn×p, X ∈ Rn×q to denote
the outcome and design matrices.

Q-density for β using SVD

First, we use Singular Value Decomposition (SVD) on M and re-express the scalar-on-image re-
gression model as follows.

Let the compact SVD of M ∈ Rn×p be M = UDV T where U ∈ Rn×n, V T ∈ Rn×p, and
UTU = UUT = In, V TV = In. Let β̃ = β − Tν(µ), Ỹ = Y −MTν(µ)−Xγ = Mβ̃ + ϵ.

Now apply the rotation matrix U on both sides, Ỹ ∗ = UT Ỹ = DV Tβ + ϵ. The q-density for β̃ is
now a normal density with mean and variance

Varq(β̃| ∼) =

(
Eq

(
1

σ2
β

)
Ip + Eq

(
1

σ2
Y

)
V DTDV T

)−1

,

Eq(β̃| ∼) = Varq(β̃| ∼)
(
Eq

(
1

σ2
Y

)
V DT Ỹ ∗

)
.

Note that Eq(β̃| ∼) can be further simplified,

Eq(β̃| ∼) = V D

(
1

τ2
In +D2

)−1

Ỹ ∗

where τ2 =
Eq

(
1

σ2
Y

)
Eq

(
1

σ2
β

) . Then Eq(β| ∼) = Eq(β̃| ∼) + Tν(µ).

The q-density for σβ is as follows. Note that we use the hierarchical expression to sample half-
Cauchy prior σβ ∼ C+(1): σ2

β ∼ IG( 12 ,
1
aβ

), aβ ∼ IG( 12 , 1).

log π(σ2
β | ∼) ∝ −

1

2σ2
β

p∑
j=1

(β(sj)− Tν(µj))
2 − p

2
log(σ2

β)−
(
1

2
+ 1

)
log σ2

β −
1

aβ

1

σ2
β

Hence the q-density for σ2
β follows IG

(
p+1
2 , 1

2

∑p
j=1 Eq (β(sj)− Tν(µj))

2
+ 1

aβ

)
. Note that

Eq∥β − Tν(µ)∥22 = Tr(Var(β)) + ∥Eq(β) − Tν(µ)∥22, and the marginal variance Varq(β(sj)) =[
Eq

(
1
σ2
Y

)∑n
i=1 Mi(sj)

2 + Eq

(
1
σ2
β

)]−1

.

The q-density for aβ is IG
(
1, 1 + E

{
1
σ2
β

})
.

Q-density for γ The q-density of γ follows the multivariate normal distribution with mean and
variance

Varq(γ| ∼) =
{
Eq

(
1

σ2
Y

)
XTX + Eq

(
1

σ2
γ

Iq

)}−1

E(γ| ∼) = Varq(γ| ∼)

{
Eq

(
1

σ2
Y

)∑
i

(
Yi −MT

i β
)
Xi

}
To speed up the computation, we use eigen-decomposition XTX = QΛXQT , and the variance
update can be written as

Varq(γ| ∼) = Qdiag
{
Eq

(
1

σ2
Y

)
ΛX + Eq

(
1

σ2
γ

)}−1

QT .

Similarly, the q-density for σ2
γ follows IG

(
q+1
2 , 1

2Eq∥γ∥22 + Eq

(
1
aγ

))
.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

The q-density for aγ is IG
(
1, 1 + E

{
1
σ2
γ

})
.

Q-density for σY

σ2
Y

q∼ IG
(
n+ 1

2
,
1

2
Eq∥Y −Mβ −Xγ∥2 + Eq

(
1

aY

))
aY

q∼ IG
(
1, 1 + Eq

(
1

σ2
Y

))
ELBO derivation

ELBO =Eq

{
log π(Y |M,X, β, γ, σ2

β , σ
2
γ , σ

2
Y )
}

− Eq

{
log q(β) + log q(γ) + log q(σ2

β) + log q(σ2
γ) + log q(σ2

Y )
}

=Eq {log π(Y | ∼)}
+ Eq {log π(β| ∼)− log q(β)}+ Eq {log π(µ)| ∼)− log q(π(µ))}
+ Eq

{
log π(σ2

β | ∼)− log q(σ2
β)
}
+ Eq {log π(aβ | ∼)− log q(aβ)}

+ Eq {log π(γ| ∼)− log q(γ)}+ Eq

{
log π(σ2

γ | ∼)− log q(σ2
γ)
}
+ Eq {log π(aγ | ∼)− log q(aγ)}

Eq

{
log π(σ2

Y | ∼)− log q(σ2
Y )
}
+ Eq {log π(aY | ∼)− log q(aY )}

In the implementation, we separately compute each part of the ELBO and add them together.

ELBOlogL =Eq

{
log π(Y |M,X, β, γ, σ2

β , σ
2
γ , σ

2
Y )
}

=
n

2
Eq

(
1

σ2
Y

)
− 1

2
Eq

(
1

σ2
Y

)
Eq∥Y −Mβ −Xγ∥22

Here, denote EqSSE = Eq∥Y −Mβ −Xγ∥22,

EqSSE = ∥Y −MEqβ −XEqγ∥22 + Tr
{
MTMVarq (β)

}
+ Tr

{
XTXVarq (γ)

}
.

With the eigen decomposition on XTX ,

Tr
{
XTXVarq (γ)

}
= Tr

{
ΛXdiag

{
Eq

(
1

σ2
Y

)
ΛX + Eq

(
1

σ2
γ

)}−1
}

A.6 SENSITIVITY ANALYSIS TO CHOOSE HYPERPARAMETERS

In addition, Table A3 provides additional sensitivity analysis results on SonI when the bandwidth is
26. Table A4 provides additional sensitivity analysis results on IonS when the bandwidth is 9 and
the decay rate parameter γ is 0.35.

A.7 ABCD DATA ANALYSIS USING ELASNET AND MUA

In this section, we perform the baseline methods ElasNet for SonI regression and MUA for IonS
regression as a sanity check on the ABCD data analysis.

For SonI using Elastic Net with α = 0.5 and λ chosen with cross-validation, we visualize the point
estimation on β in Figure A2a. The Elastic Net has no straight forward uncertainty quantification
method such as p-values, hence we can only compare the point estimates. As expected, the scale of
β using Elastic Net is also very small, and there are only a few small areas with β near or greater
than 0.001, as highlighted by the red areas.

For IonS using MUA, we note that after using BH-adjusted p-values in the MUA, none of the p-
values can pass below the 0.05 threshold, which means MUA cannot identify any signal with a
reasonable adjusted p-value. Nonetheless, we still visualize the point estimation of α on the whole
brain. Based on Figure A2b, we can see that the MUA estimates of α with large positive effects
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Table A2: Sensitivity Analysis on SonI and IonS regressions.

(a) SonI for varying ν and initial value for σ2
β . The Elastic Net and STGP results are shown as a comparison.

Bandwidth=9 in the ST-CAR model. Additional sensitivity analysis where bandwidth=26 and varying decay
rate γ for σ2

β is available in the Appendix.

σ2
β 10−5 10−5 10−5 10−5 5× 10−5 10−5 5× 10−6

ElasNet STGP
ν 0.003 0.005 0.007 0.01 0.005 0.005 0.005
test pMSE 0.58 0.5 0.48 0.48 0.61 0.5 0.55 0.53 0.5
Test R2 0.16 0.28 0.30 0.30 0.12 0.28 0.20 0.23 0.28
train pMSE 0.17 0.24 0.27 0.29 0.11 0.24 0.21 0.45 0.49
Train R2 0.75 0.65 0.61 0.58 0.84 0.65 0.70 0.35 0.29

(b) IonS for varying ν, initial value for σ2
α, and decay rate γ for σ2

α. The total test pMSE is the summation of
all voxel-level pMSE. Bandwidth is 26. Additional sensitivity results where bandwidth=9 are available in the
appendix.

initial σ2
α 1 0.1 0.01 0.1 0.1 0.1 0.1 0.1 0.1

MUAν 0.005 0.005 0.005 0.001 0.01 0.05 0.005 0.005 0.005
Decay rate γ 0.35 0.35 0.35 0.35 0.35 0.35 0.25 0.45 0.55
total test pMSE 47357.74 47351.78 47354.06 47354.13 47351 47354.1 47354.12 47350.7 47352.68 47487.05

Table A3: Additional sensitivity analysis for SonI when the bandwidth is 26, on three parameters:
(i) the initial value of σ2

β , (ii) the thresholding parameter ν in ST-CAR prior, (iii) the decay rate γ in
the decay rate function for σ2

β where (σ2
β)

(t) = a(b+ t)−γ .

σ2
β 5× 10−6 1× 10−5 5× 10−5 1× 10−4 1× 10−5 1× 10−5 1× 10−5 1× 10−5 1× 10−5

ν 0.007 0.007 0.007 0.007 0.005 0.01 0.012 0.007 0.007
γ 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.25 0.45
test pMSE 0.54 0.51 0.56 0.64 0.52 0.52 0.51 0.52 0.51
train pMSE 0.29 0.37 0.31 0.22 0.33 0.4 0.41 0.36 0.37

pick up lots of noises, and compared with A1, the ST-CAR’s estimate of active α is a subarea of the
MUA’s estimate and is validated by high PIP (> 0.95).

In addition, we present the β estimation by ST-CAR after thresholding by PIP > 0.25 in Figure
A3. In fact, both Figure A2a and Figure A3 demonstrate the true signals are very sparse in the SonI
problem. ST-CAR still tends to identify more active voxels than ElasNet, and some active areas still
overlap on the sagittal plane (first plot from the right) with ElasNet result.

A.8 SCIENTIFIC EVIDENCE FOR THE MOTIVATION FOR ABCD STUDY

For the two scientific problems mentioned in Section 5, we provide more scientific evidence on the
importance of this SonI and IonS problem in this section.

Recent studies (Cermakova et al., 2023; Halabicky et al., 2023) have demonstrated that parental
education levels are significantly associated with children’s cognitive abilities, including specific
cognitive functions such as working memory. In particular, children’s cognitive functions are often
associated with their brain development, which fMRI captures during tasks like the working memory
task in the ABCD study.

We chose to use general cognitive ability as the outcome because it provides a comprehensive as-
sessment of a child’s overall cognitive function, which encompasses not only working memory but
also other critical skills such as reading, spelling, and math abilities (Alloway & Alloway, 2008).
These abilities are often correlated and influenced by common neural processes, making general
cognitive ability a robust and representative measure for examining broader cognitive development.
By using this summary outcome, we can account for the cumulative effect of parental education on
multiple facets of cognitive performance, providing a more holistic view of the relationship between
socioeconomic factors and brain development.
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Table A4: Additional sensitivity analysis for IonS when the bandwidth is 9, γ = 0.35 in the decay
rate function, on two parameters: (i) the initial value of σ2

β , (ii) the thresholding parameter ν in
ST-CAR prior

σ2
α 1 0.1 0.01 0.1 0.1

λ 0.01 0.01 0.01 0.005 0.05
total test pMSE 47362.8 47351.85 47356.9 47354.97 47353.58

(a) SonI-ElasNet: values of β (Red) w. color range [0.0005,0.001].

(b) IonS-MUA: point estimates of α (Red) w. color range [0.05,0.1].

Figure A2: Visual illustration of β in SonI and α using MUA in IonS.

A.9 TABLES OF STANDARD DEVIATION FOR TABLE 1 AND A1A

In this section, we present the tables of standard deviations over 100 replicates for the mean values
presented in Table 1 and A1a respectively, shown in Table A5.

A.10 ADDITIONAL SIMULATION RESULTS

In the first simulation A1, we provide a low dimensional comparison on the SonI regression between
three different implementation of the ST-CAR model, the Gibbs sampler, the CAVI algorithm, and
the SSVI algorithm.

In the second simulation A2, we provide the additional to results to the simulation II IonS with a
further comparison between CAVI and SSVI in high-dimensional settings.

A.10.1 SIMULATION A1: LOW DIMENSIONAL COMPARISON (SONI)

We compare the proposed Gibbs, CAVI, SSVI with ST-CAR prior to the classical penalized re-
gression method glmnet, and a Bayesian method where β is assigned a Soft-thresholded Gaussian
Process prior (Kang et al., 2018) implemented in the BIMA package.

Figure A3: SonI: values of β ∗ I(PIP > 0.25) (Red) w. color range [0.0005,0.001].
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Table A5: Standard deviation result for SonI simulation, under 100 replications.

(a) SonI: standard deviations over 100 replicates. The evaluation criteria for estimation includes false discovery
rate (FDR), true positive rate (TPR), overall accuracy (ACC), and root mean squared error (RMSE), all multi-
plied by 100. The evaluation criteria for predictive performance includes training and testing predictive MSE,
denoted as Train and Test pMSE respectively

Case 1. n = 600, p = 1600, σ2
Y = 1 Case 2. n = 600,p = 900, σ2

Y = 1
ST-CAR ElasNet STGP T-LoHo ST-CAR ElasNet STGP T-LoHo

FDR 0.41 0.47 1.37 9.34 FDR 0.40 1.38 1.32 12.86
TPR 1.37 7.69 1.53 1.23 TPR 0.47 0.95 1.42 0.70
ACC 0.20 1.04 0.36 3.08 ACC 0.10 0.26 0.28 5.10
RMSE 11.00 30.45 13.44 9.46 RMSE 5.51 7.12 13.00 6.56
Test pMSE 0.37 1.19 0.49 0.68 Test pMSE 0.10 0.05 0.24 0.29
Train pMSE 1.28 9.32 1.09 1.29 Train pMSE 0.20 0.33 0.56 0.45

Case 3. n = 1000, p = 1600, σ2
Y = 1 Case 4. n = 600, p = 1600,σ2

Y = 5
ST-CAR ElasNet STGP T-LoHo ST-CAR ElasNet STGP T-LoHo

FDR 0.95 0.46 0.89 4.40 FDR 0.29 0.50 1.13 12.86
TPR 0.00 0.73 0.60 0.31 TPR 3.02 7.01 2.61 2.05
ACC 0.17 0.13 0.19 0.91 ACC 0.40 0.95 0.43 7.18
RMSE 4.27 6.53 12.04 5.83 RMSE 14.65 33.31 14.72 12.51
Test pMSE 0.07 0.06 0.32 0.23 Test pMSE 0.62 2.60 0.89 0.97
Train pMSE 0.17 0.50 0.47 0.36 Train pMSE 2.47 10.40 1.75 1.74

Case 5. n = 6000, p = 10000, σ2
Y = 5 Case 6. n = 6000, p = 10000, σ2

Y = 10
ST-CAR ElasNet STGP T-LoHo ST-CAR ElasNet STGP T-LoHo

FDR 0.24 0.15 0.57 12.85 FDR 0.80 0.62 0.61 14.36
TPR 0.07 0.25 0.09 0.17 TPR 0.10 0.36 0.09 0.19
ACC 0.04 0.05 0.13 9.76 ACC 0.13 0.12 0.14 10.27
RMSE 2.26 3.00 6.43 2.30 RMSE 3.14 3.94 6.44 2.48
Test pMSE 0.18 0.23 1.40 1.54 Test pMSE 0.31 0.40 1.76 1.42
Train pMSE 0.32 1.33 1.58 1.88 Train pMSE 0.50 2.17 1.67 1.92

(b) IonS: standard deviations over 100 replicates. The evaluation criteria for estimation includes false discovery
rate (FDR), true positive rate (TPR), overall accuracy (ACC), and root mean squared error (RMSE), all multi-
plied by 100. The evaluation criteria for predictive performance includes training and testing predictive MSE,
denoted as Train and Test pMSE respectively

Case 1. n = 600, p = 1600, σ2
M = 5 Case 2. n = 600, p = 900, σ2

M = 5
Criteria ST-CAR MUA STGP SBIOS Criteria ST-CAR MUA STGP SBIOS
FDR 1.49 1.55 1.42 1.49 FDR 2.16 2.44 2.35 2.12
TPR 1.31 1.45 0.88 1.25 TPR 3.26 3.11 2.01 3.04
ACC 0.36 0.44 0.42 0.35 ACC 0.66 0.68 0.63 0.57
RMSE 0.24 0.32 0.12 0.15 RMSE 0.28 0.35 0.25 0.22

Case 3. n = 1000, p = 1600, σ2
M = 5 Case 4. n = 600, p = 1600, σ2

M = 10
Criteria ST-CAR MUA STGP SBIOS Criteria ST-CAR MUA STGP SBIOS
FDR 1.42 1.44 1.27 1.47 FDR 1.48 1.76 1.55 1.35
TPR 0.55 0.65 0.56 0.61 TPR 2.16 1.95 1.29 2.15
ACC 0.35 0.38 0.40 0.38 ACC 0.45 0.47 0.43 0.41
RMSE 0.16 0.20 0.07 0.08 RMSE 0.33 0.46 0.17 0.21

Case 5. n = 600, p = 6400, σ2
M = 5 Case 6. n = 1000, p = 6400, σ2

M = 20
Criteria ST-CAR MUA STGP SBIOS Criteria ST-CAR MUA STGP SBIOS
FDR 0.73 0.74 0.79 0.77 FDR 0.88 0.68 0.90 0.65
TPR 0.80 0.89 0.28 0.75 TPR 1.22 1.23 0.41 1.19
ACC 0.21 0.25 0.26 0.21 ACC 0.29 0.26 0.28 0.22
RMSE 0.26 0.29 0.04 0.08 RMSE 0.28 0.32 0.06 0.12

The Frequentist penalized regression is implemented using R package glmnet(Friedman et al.,
2010b) with lasso penalty (α = 1), using 10-fold cross-validation.

The BIMA method requires a pre-specified kernel function, and the posterior sampling algorithm is
Metropolis-adjusted Langevin algorithm (MALA). In this simulation we sue the exponential square
kernel

κ(s, s′; a, b) = cor{β(s), β(s′)} = exp{−a(s2 + s′
2
)− b(s− s′)2}
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where a = 0.01, b = 10, and used L = 66 basis functions.

For the four Bayesian methods (Gibbs, CAVI, SSVI, BIMA), we set the thresholding parameter
ν = 0.1. To evaluate the variable selection accuracy, for the variational inference ST-CAR meth-
ods (CAVI, SSVI), we use the mixing probabilities shown in 2 to define the posterior inclusion
probability(PIP)

PIP (β(sj)) = 1− P 0
j

where both CAVI and SSVI can trace the mixing probability P 0
j . We use the converged value at the

last iteration of P 0
j in CAVI to compute PIP. Since SSVI is a stochastic method, we use the averaged

P 0
j over the last 2000 iterations to compute its PIP. For the MCMC methods (Gibbs,BIMA), we

directly use the posterior sample of Tν(µj) (for Gibbs) or β(sj) (for BIMA) being nonzero over
the last 20% of iterations as the posterior inclusion probability. For the final selection reported in
Table A6, we use the true generating image β, and set a threshold t on PIP: if PIP (β(sj)) < t,
β(sj) = 0, otherwise β(sj) equals the posterior sample mean or the variational mean. By tuning t,
we can control the FDR to be below 10%.

(a) Case 1

(b) Case 2

Figure A4: Illustration of estimated β under 2 different cases.

Simulation I provides a relatively low-dimensional small-scale example, where n = 200, p = 400.
We simulate two testing image cases for β in equation 3, as shown in Fig A4a-A4b. In case 1, the
true image intensity has a smooth transition from 1 to 0, and the voxels around the edge of the signal
tend to have low signal-to-noise ratio, but the signal region is a smooth round shape that can be
easily estimated by smooth Gaussian process. In case 2, the true image of β is a sharp triangular
shape, but the edge voxels of the signal has a sharp contrast to 0, with higher signal to noise ratio
compared to case 1.

Table A6 provides the simulation results of the posterior mean estimates of β, with mean and
standard deviation computed across 100 replications. SSVI has the best time efficiency across 4
Bayesian methods.

A.10.2 SIMULATION A2: HIGH-DIMENSIONAL COMPARISON BETWEEN CAVI AND SSVI
(IONS)

In the second simulation A2, we provide the additional to results to the simulation II IonS with a
further comparison between CAVI and SSVI in high-dimensional settings. Table A7 provides the
additional result on the performance of CAVI compared to SSVI.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table A6: Simulation results based on 100 replications, with standard deviation in the bracket. All
values are timed by 100 except for time (in seconds). FDR (false discovery rate) is the proportion of
times that zero coefficients are identified as nonzero among all identified nonzero coefficients. Power
is the proportion of times that nonzero coefficients are identified as nonzero among all nonzero
coefficients. Accuracy is the proportion of times the prediction is correct. RMSE is the root mean
square error over all voxels.

Case1 Gibbs CAVI SSVI BIMA glmnet
FDR 5.4 (3) 7.8 (2) 7.8 (2) 13.5 (1) 3.0 (3)
Power 80.0 (7) 94.4 (3) 84.9 (4) 100.0 (0) 24.1 (7)
Accuracy 92.6 (2) 95.9 (1) 93.3 (1) 95.3 (0) 77.0 (2)
RMSE 9.1 (2) 5.4 (1) 11.0 (1) 0.5 (0) 19.7 (3)
time 97.7 (5) 43.2 (10) 12.7 (0) 29.4 (1) 1.2 (0)

(a) Case 1

Case2 Gibbs CAVI SSVI BIMA glmnet
FDR 8.0 (3) 3.7 (0) 2.0 (2) 16.6 (3) 0.0 (0)
Power 100.0 (0) 100.0 (0) 97.0 (2) 100.0 (0) 94.7 (4)
Accuracy 98.8 (0) 99.5 (0) 99.3 (0) 97.4 (1) 99.3 (1)
RMSE 4.2 (1) 1.9 (0) 7.3 (1) 2.2 (0) 1.8 (1)
time 101.4 (11) 15.9 (5) 12.9 (1) 21.7 (1) 1.2 (0)

(b) Case 2

Table A7: Additional Simulation results to Simulation II. Comparison between CAVI and SSVI for
ST-CAR prior, based on 100 replications.

FDR TPR ACC
Case SSVI CAVI SSVI CAVI SSVI CAVI
Case 1. n = 600, p = 1600, σ2

M = 5 5.8 6.89 95.41 95.15 97.86 96.94
Case 2. n = 600,p = 900, σ2

M = 5 4.95 6.23 84.34 84.05 96.27 95.32
Case 3. n = 1000, p = 1600, σ2

M = 5 7.1 7.91 98.38 98.31 98.13 97.32
Case 4. n = 600, p = 1600,σ2

M = 10 5.07 5.64 85.31 84.79 96.06 95.85
Case 5. n = 600, p = 6400,σ2

M = 5 5.97 11.72 93.64 94.18 97.35 91.3
Case 6. n = 600, p = 6400,σ2

M = 20 5.93 8.57 81.83 83.58 95.06 91.73

RMSE Total time
(seconds)

Number of iteratios
per second

Case SSVI CAVI SSVI CAVI SSVI CAVI
Case 1. n = 600, p = 1600, σ2

M = 5 7.86 9.13 73.7 239.3 137.5 41.3
Case 2. n = 600,p = 900, σ2

M = 5 7.88 9.17 55 155.8 186 63.8
Case 3. n = 1000, p = 1600, σ2

M = 5 6.44 7.11 117.3 429.8 88.9 23.1
Case 4. n = 600, p = 1600,σ2

M = 10 10.32 12.7 82.9 255.4 122.7 39.2
Case 5. n = 600, p = 6400,σ2

M = 5 8.52 8.99 409.2 1282.8 24.7 6.7
Case 6. n = 600, p = 6400,σ2

M = 20 13.84 13.72 596.7 2641.5 17 3.4
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