
Published as a conference paper at ICLR 2024

ZIPIT! MERGING MODELS FROM DIFFERENT TASKS
without Training

George Stoica∗ Daniel Bolya*

Jakob Bjorner Pratik Ramesh Taylor Hearn Judy Hoffman
Georgia Tech

{gstoica3,dbolya,jbjorner3,pramesh39,thearn6,judy}@gatech.edu

ABSTRACT

Typical deep visual recognition models are capable of performing the one task
they were trained on. In this paper, we tackle the extremely difficult problem of
combining distinct models with different initializations, each solving a separate
task, into one multi-task model without any additional training. Prior work
in model merging permutes one model to the space of the other then averages
them together. While this works for models trained on the same task, we find that
this fails to account for the differences in models trained on disjoint tasks. Thus,
we introduce “ZipIt!”, a general method for merging two arbitrary models of the
same architecture that incorporates two simple strategies. First, in order to account
for features that aren’t shared between models, we expand the model merging
problem to allow for merging features within each model by defining a general
“zip” operation. Second, we add support for partially zipping the models up until
a specified layer, naturally creating a multi-head model. We find that these two
changes combined account for 20-60% improvement over prior work, making it
more feasible to merge models trained on disjoint tasks without retraining.

1 INTRODUCTION

Ever since AlexNet (Krizhevsky et al., 2017) popularized deep learning in computer vision, the field
has thrived under the reign of massive models with an ever increasing number of parameters. Many
vision problems once considered difficult or impossible are now benchmark tasks: classification
with tens of thousands of classes (Deng et al., 2009; Zhou et al., 2017; Gemmeke et al., 2017), fast
instance segmentation (He et al., 2017; Bolya et al., 2019), realistic image generation (Karras et al.,
2018; Ho et al., 2020; Rombach et al., 2022), and more.

There are an abundance of independent, carefully tuned models out there for many tasks. However,
if we want to expand an existing model’s capabilities, we run into many potential issues. If we try
training the model on an additional task, we face catastrophic forgetting (Kirkpatrick et al., 2017;
Li & Hoiem, 2017; De Lange et al., 2021). If we evaluate the same model on different data without
adaptation, we often find it doesn’t generalize to out of domain samples (Blanchard et al., 2011;
Muandet et al., 2013; Wang et al., 2022). We can try so called “intervention” strategies (Wang et al.,
2022; De Lange et al., 2021) to mitigate these effects, but these often require further training which
can be expensive (Dosovitskiy et al., 2020; Zhai et al., 2022; Dehghani et al., 2023). Instead, it would
be nice if we could expand a model’s capacity to solve new tasks by simply “zipping” it with other
models trained on those tasks without additional training.

Combining multiple models into one has recently started to gain traction in the vision community.
Model Soups (Wortsman et al., 2022a) can add multiple models finetuned from the same pretrained
initialization to improve accuracy and robustness. Git Re-Basin (Ainsworth et al., 2022) generalizes
further to models trained on the same data but with different initializations, though with a significant
accuracy drop. REPAIR (Jordan et al., 2022) improves on Git Re-Basin by adding new parameters
and adjusting model batch norms where applicable. However, all of these methods only combine
models trained on the same task. In this paper, we take this line of work to a logical extreme: merging
differently initialized models trained on completely separate tasks (see Fig. 1ab). We show that this
is an incredibly difficult problem for prior work and employ two simple strategies to make it feasible.

∗Equal Contribution. Code: https://github.com/gstoica27/ZipIt.

1

https://github.com/gstoica27/ZipIt

Published as a conference paper at ICLR 2024

Figure 1: Setting and ZipIt! (a) Prior work merges differently initialized models from the same
dataset with the same label sets: e.g., merging two models both trained to classify dog breeds. (b)
Our setting expands this to merging models from different datasets with different label sets: e.g.,
merging a model that classifies dog breeds with one that classifies bird species. (c) ZipIt! merges
these models without retraining by identifying shared features.

First, we note that prior work focuses on permuting one model to the other when merging them.
This creates a 1-1 mapping between the two models, inherently assuming that most features across
them are correlated. Since this isn’t necessarily the case for models trained on different tasks, we
cannot rely on permutation alone. Instead, we generalize model merging to support “zipping” any
combination of correlated features within and across each model. We find that on some tasks, this
alone improves accuracy by up to 20% vs. permutation-based approaches. Moreover, we prove that
merging within models can yield a better result in the theoretical setting of Entezari et al. (2021).

Second, existing methods merge the entire network. While this might work for extremely similar
models trained in the same setting, the features of models trained on disjoint tasks become less
correlated over the course of the network (Kornblith et al., 2019). To solve this, we introduce partial
zipping, where we only “zip” up to a specified layer. Afterward, we feed the merged model’s outputs
to the remaining unmerged layers of the original networks, creating a multi-head model. Depending
on task difficulty, this can improve accuracy by over 15% while still keeping most layers merged.

Incorporating both of these strategies, we introduce ZipIt! (Fig. 1c), a general method for “zipping”
any number of models trained on different tasks into a single multitask model without retraining. By
deriving a general graph-based algorithm for merging and unmerging (Sec. 4), we can zip models of
the same architecture together, merge features within each model, and partially zip them to create a
multi-task model. We validate our approach by merging models trained on entirely disjoint sets of
CIFAR (Krizhevsky et al., 2009) and ImageNet (Deng et al., 2009) categories, as well as merging
several models trained on completely independent datasets into one, significantly outperforming prior
work (Sec. 5). Finally, we ablate and analyze our method’s capabilities on these scenarios (Sec. 6).

2 RELATED WORK

Model merging combines the weights of two or more models into a one. Our work differs from prior
work in that we adapt mode connectivity techniques to target models trained on disjoint tasks (Fig. 1).

Merging Finetuned Models. If two models are finetuned from the same pretrained checkpoint, they
often lie in the same error basin (Neyshabur et al., 2020). Several works (Huang et al., 2017; Izmailov
et al., 2018; Von Oswald et al., 2020; Wortsman et al., 2022b; Ilharco et al., 2022b; Don-Yehiya et al.,
2023) have exploited this property to average together the weights of a model at different stages
of training. Tarvainen & Valpola (2017); Cai et al. (2021); Grill et al. (2020); Caron et al. (2021);
Baevski et al. (2022) use an “exponential moving average” of training checkpoints as a teacher for
self-supervised learning. Other works merge models initialized from the same pretrained base, but
that were finetuned independently, either by simply averaging their weights (McMahan et al., 2017;
Wortsman et al., 2022a; Choshen et al., 2022; Ramé et al., 2022), permuting one model to the other
(Ashmore & Gashler, 2015; Yurochkin et al., 2019; Wang et al., 2020), combining meaningful weight
regions (Ilharco et al., 2022a; Gueta et al., 2023; Yadav et al., 2023; Sung et al., 2023), or maximizing
an objective (Matena & Raffel, 2021). Our setting differs, as we do not assume the same initialization.

Merging Differently Initialized Models. Merging models with different initializations is a much
more challenging problem. Works in this space often rely on mode connectivity (Freeman & Bruna,
2016; Garipov et al., 2018; Draxler et al., 2018; Frankle et al., 2020), attempting to interpolate
between models along a low loss path (e.g., Tatro et al. (2020); Singh & Jaggi (2020); Liu et al.
(2022)). Most recent work follow the intuition, later formalized by Entezari et al. (2021), that

2

Published as a conference paper at ICLR 2024

Figure 2: Task Loss Landscapes for models in Tab. 1b. Model A and Model B lie in low loss
basins for their own tasks, but not for the other task. Thus, any interpolation between Model A and
a permuted Model B (e.g., Git Re-basin) lies outside the minima for both tasks and thus performs
poorly. In contrast, ZipIt! improves the merge by finding a model that lies in a low loss basin for both.

models permuted to the same loss basin can be merged by averaging their weights. Most notably,
Git Re-Basin (Ainsworth et al., 2022) permutes models by comparing the similarity between their
weights. REPAIR (Jordan et al., 2022) improves the accuracy of Git Re-Basin by instead computing
the correlation between their intermediate layer feature activations, and adding several batch norms to
the network. Peña et al. (2022) find permutations using global rather than local optimization, though
they don’t support skip connections. Some of these works (e.g., Singh & Jaggi (2020); Ainsworth
et al. (2022)) evaluate on on a setting where each model sees varying numbers of instances per class.
And Peña et al. (2022) evaluates on a continual learning setting with disjoint categories, but their
method requires training optimization. Similarly, He et al. (2018) merges models of different tasks,
but requires jointly finetuning after each layer merge. As far as we are aware, we present the first
general method to successfully merge models trained on disjoint tasks without additional training.

3 BACKGROUND AND MOTIVATION

Model merging stems from mode connectivity (Garipov et al., 2018), where it is conjectured that
models trained with SGD on the same dataset lying in the same loss basin (i.e., region or mode of low
loss) can be combined into a single model that’s just as performant as the original models. If these
models can be combined well by linearly interpolating their weights, they are said to be linearly mode
connected (LMC) (Garipov et al., 2018; Entezari et al., 2021). Our work is similar to finding LMC,
but across different datasets with disjoint label sets (i.e., separate tasks as in De Lange et al. (2021)).

Consider a model L as a collection of layers Li ∈ L, each of which may have some parameters (e.g.,
Wi, bi for a linear layer). If LA and LB are finetuned from the same checkpoint, several works (e.g.,
Izmailov et al. (2018); Wortsman et al. (2022a)) find merging them is as easy as linearly interpolating
their weights (i.e., they are LMC). E.g., if Li is a linear layer, the new weight matrix W ∗

i is simply

W ∗
i = γWA

i + (1− γ)WB
i (1)

with an interpolation constant γ ∈ [0, 1], usually set to 1/2. However, if LA and LB were not finetuned
from the same checkpoint, they often do not lie in the same mode (Entezari et al., 2021; Ainsworth
et al., 2022) and cannot be interpolated. Indeed, Eq. 1 typically results in random accuracy.

To fix this, Entezari et al. (2021) conjecture that large enough models are likely LMC modulo
permutation. This is because (1) many neural networks can be permuted internally without affecting
their outputs and (2) permutation can move two models into the same basin, allowing much of the
lost accuracy to be recovered. More concretely, let Pi be a permutation matrix that permutes outputs
of layer LB

i to the space of LA
i . Then for each layer, permutation works apply

W ∗
i = γWA

i + (1− γ)PiW
B
i PT

i−1 (2)

Note that here we permute the output space of WB
i , but we also need to permute its input space to

undo the permutation from the previous layer (hence the use of PT
i−1).

Problems with Permutation. Eq. 2 relies on the likelihood of model B lying in the same basin as
model A after permutation being high. However, this is far less likely when the models are trained

3

Published as a conference paper at ICLR 2024

on different tasks, as each model optimizes for basins containing distinct task-specific information.
In this case the optimal permutation of model B to model A still lies in a strong basin on task B but
doesn’t lie in a basin on task A, as shown in Figure 2. This causes the interpolated model to perform
worse than either the two original models. Thus, we explore alternative merging methods.

4 ZIPIT!

In this work, we treat model merging as combining the checkpoints (i.e., collection of weights) of
multiple models into a single checkpoint that can perform all the tasks of its constituents. We do this
by merging the layers of the models together. For instance, suppose Li ∈ L is a linear layer with
parameters Wi ∈ Rni×mi , bi ∈ Rni with input features x ∈ Rmi and outputs features fi ∈ Rni :

fi = Li(x) = Wix+ bi (3)

Our goal is to take LA
i ∈ LA from model A and LB

i ∈ LB from model B and merge them into a
layer L∗

i that combines their feature spaces such that information from both fA
i and fB

i is retained
in f∗

i . We accomplish this by merging each layer of one model with the corresponding layer in the
other, both merging features in one across both layers or within the same layer. This is in contrast to
permutation-based merging method, which only combine features across layers.

Why should we merge within? Features of models trained on different tasks may be dissimilar, as
the models solve different problems. Forcibly combining these dissimilar features can yield merges
that don’t perform well on either original task (Fig 2). Instead, those features may be more compatible
with others within the same model, which would better retain performance when combined.

In fact, we can prove that methods which allow merges within each model (as well as across both)
perform equal to or better than those which only merge across models (e.g., permutation-reliant
approaches) in a limited but prevalent setting. Specifically, we obtain a tighter bound over Theorem 3.1
from Entezari et al. (2021) when redundancy exists within a model and is leveraged. Both Theorem
3.1 and our Theorem 1 (see Appendix G for formalization and proof) bound the degree to which the
loss of a merged two-layer model with d-input dimensions and h-intermediate dimensions increases
compared to the losses of the original models. Theorem 3.1 bounds this increase to Õ(h−1/(2d + 4)).
However, if features within a model are redundant, then we reduce the bound to

Loss Increase of Merged Model ≤

Õ

((
h

1−2Γ

)− 1
2d+4

)
Γ < 0.5

0 otherwise
(4)

with Γ ∈ [0, 1] measuring what portion of features are redundant. This bound is 2d+4
√
1− 2Γ ≤ 1

times that of Theorem 3.1 when Γ < 0.5 (equal only when Γ = 0) and explicitly zero when Γ ≥ 0.5.

How do we merge features? In prior work, each of the merged features f∗
i is the result of combining

one feature from fA
i and one from fB

i . However in our case, we can also merge features by combining
two from just fA

i or two from just fB
i . To account for this, we concatenate fA

i and fB
i into a single

feature vector: fA
i ∥fB

i ∈ R2ni . Then, like prior work (e.g. Li et al. (2015); Jordan et al. (2022)), we
define feature similarity as the pairwise correlation between between neuron activations over a small
set of images (without labels). However, unlike those works, we compute correlations between every
activation in the full concatenated space fA

i ∥fB
i . Our approach thus measures the similarity of every

feature fA
i and fB

i to all features in both models, rather than solely between fA
i and fB

i .

Next, if two features are well correlated, we can average them without losing much information. Thus,
we can construct f∗

i by finding ni pairs of similar features in fA
i ∥fB

i and averaging them together.
By default, we do this greedily: i.e., iteratively match the features with the highest correlation without
replacement; though we explore extensions to this in Sec. 4.3 and test other methods in Tab. 4. Then
we can use these matches to construct f∗

i . Formally, we define a “merge matrix” Mi ∈ Rni×2ni s.t.

f∗
i = Mi

(
fA
i ∥fB

i

)
(5)

Mi averages the matched features, with each match corresponding to one output feature in f∗
i . For

instance, if uth match is between indices s, t ∈ {1, . . . , 2ni} of fA
i ∥fB

i , then the uth row of Mi would
be 1/2 at columns s and t and 0 elsewhere. This results in f∗

i [u] =
1
2 (f

A
i ∥fB

i)[s] + 1
2 (f

A
i ∥fB

i)[t].

4

Published as a conference paper at ICLR 2024

Figure 3: ZipIt! merges models layer-wise by exploiting redundancy in their features. (a) Output
features fA and fB from two disjoint layers are (b) paired with other features based on the similarity
of their activations. (c) We produce a merge matrix M to combine the pairs into a single shared
output feature space, and a corresponding unmerge matrix U that undoes this operation. (d) We then
propagate U up the network to align the next layer’s input space, and simultaneously receive the
previous layer’s U to align our input space. (e) We apply Eq. 8 to “zip” the layers together using the
M for the output and U for the input, producing a single layer (f). We then repeat (a) on the next layer.

Thus, applying Mi has the effect of interpolating with γ = 1/2 but is more general (e.g., allows for
merging more than 2 models at once, see Sec. 4.3).

What about the next layer? After merging features in one layer, we now have the problem that the
next layers, LA

i+1, L
B
i+1, are incompatible with f∗

i . Instead, we need to undo the merge operation
before passing the features to the next layer. Thus, we define an “unmerge” matrix Ui ∈ R2ni×ni s.t.

Uif
∗
i ≈ fA

i ∥fB
i (6)

Ui is the pseudoinverse of Mi and in the case of the matching from earlier is simply 2Mi
T . Note that

strict equality is unlikely here. Like in prior work, merging models is a lossy operation.

We split this unmerge matrix in half along its rows into UA
i , UB

i ∈ Rni×ni that act individually to
produce fA

i and fB
i . With this, we can evaluate the next layers using the merged features:

fA
i+1 ≈ LA

i+1(U
A
i f∗

i) fB
i+1 ≈ LB

i+1(U
B
i f∗

i) (7)

4.1 THE “ZIP” OPERATION

We now have all the necessary pieces, and can derive a general operation to merge LA
i and LB

i at an
arbitrary point in the network (Fig. 3). First, we compute Mi and Ui by matching features between
fA
i and fB

i . We then pass Ui to the next layer and receive Ui−1 from the previous layer. Using Mi

and Ui−1, we “fuse” the merge and unmerge operations into the layer’s parameters. For a linear layer:

W ∗
i = MA

i WA
i UA

i−1 +MB
i WB

i UB
i−1 (8)

where MA
i and MB

i are Mi split along its columns. b∗i has the same equation but without unmerging.

Note the similarity between Eq. 8 and Eq. 2. This isn’t a coincidence: if we only allowed merging
across models and not within models, our “zip” operation would be identical to Git Re-Basin’s
permute-then-interpolate approach. Thus, Eq. 8 can be thought of as a generalization of prior work.

4.2 ZIP PROPAGATION

However, most modern neural networks are not simply collections of linear layers stacked on top
of each other. In practice, we cannot combine merge and unmerge matrices into every layer of the
network, as a local zip (Eq. 8) expects the layer to have a weight matrix—i.e., the layer has to have
separate input and output spaces so that we can unmerge the input space and merge the output space.
Other layers (e.g., BatchNorm, ReLU) don’t have such a weight matrix.

5

Published as a conference paper at ICLR 2024

Figure 4: Zip Propagation. We propagate Mi

backward until we hit a layer with weights, merg-
ing merging element-wise layers (e.g., Batch-
Norm) along the way.

Figure 5: Partial Zip. (a) If we stop zipping
early and (b) apply the latest U from the zip
propagation to the inputs of the first unmerged
layer in each model, (c) we get a multi-head
model with a head for each task.

Thus, we “propogate” Mi and Ui through these layers. For instance, in Fig. 4, we show a common
stack of layers found in a typical ConvNet. Following Jordan et al. (2022), we compute Mi and Ui

using the activations of the network (i.e., after each ReLU). We can’t fuse Mi with the ReLU layer, as
it doesn’t have any parameters. Similarly, we can merge the parameters of the preceding BatchNorm
layer (i.e., in the same way as bias). But it doesn’t have a weight matrix, so we also can’t fuse Mi

into it. Only once we’ve reached the Conv layer can we fuse Mi and Ui into it using Eq. 8 (in this
case, treating each kernel element as independent).

Similar care needs to be taken with skip connections, as every layer that takes input from or outputs
to a skip connection shares the same feature space. However, this too can be dealt with during
propagation—we just need to propagate Mi backward and Ui forward to each layer connected by the
same skip connection. In general, we can define propagation rules to handle many different types of
network modules (see Appendix C).

4.3 EXTENSIONS

Partial Zip. We don’t always want to zip every layer of the two networks, especially if their output
spaces are incompatible, or if doing so would lose too much accuracy. Instead, we can perform a
partial zip. That is, we zip most of the layers together, but leave the later ones unzipped (Fig. 5).

Implementing this operation is simple in our framework: zip as normal until the specified layer i,
then the remaining unzipped layers will receive Ui through zip propagation. If we apply UA

i to LA
i+1

and UB
i to LB

i+1, the remaining unzipped layers will form “heads” that expect merged features as
input. We can then ensemble the heads or choose one to evaluate at runtime.

Repeated Matching (α). In some cases, we’d like to merge more than two models together. To do
this, we allow “repeated matches”. That is, when two features are matched in our greedy algorithm,
they are removed and replaced with the resulting merged feature. To ensure that one feature doesn’t
get merged endlessly, we set the correlations of the new feature to be the minimum of the old features’
similarities weighted by α ∈ (0, 1]. We find a small value of α typically works best.

Same-model Budget (β). To demonstrate the effectiveness of same-model merges, we introduce
a “budget” parameter β ∈ [0, 1] that denotes what percent of total merged features can come from
models merging within themselves, with each model receiving an equal portion of this budget. Note
that a budget of 0 results in Eq. 2, as in that case no features can be merged within models.

5 RESULTS

There is no standard benchmark to evaluate merging approaches on models from distinct tasks, so
we construct our own. We evaluate our approach in two different settings. (1) A versatile test-bed:
disjoint category splits of the same dataset (i.e., same dataset and different label sets). (2) A very
challenging setting: completely different datasets and tasks (i.e., different datasets and label sets).

Experimental Details. For each experiment where we sample multiple disjoint splits of categories,
we hold one split out for hyperparameter search and report mean and standard deviation on the rest.
For experiments with models trained on different datasets, we subsample the validation set into a
validation and test set to use for the same purpose. To compute correlations, we use a portion of the

6

Published as a conference paper at ICLR 2024

Accuracies (%)
Method FLOPs (G) Joint Task A Task B Avg
Model A 0.68 48.2±1.0 97.0±0.6 45.1±8.6 71.0±4.4

Model B 0.68 48.4±3.8 49.1±9.3 96.1±1.1 72.6±4.9

W. Avg (Eq. 1) 0.68 43.0±1.6 54.1±1.4 67.5±1.2 60.8±4.5

Git Re-Basin‡ 0.68 46.2±0.8 76.8±8.9 82.7±5.1 79.8±6.5

Permute (Eq. 2) 0.68 58.4±6.8 86.6±2.1 87.4±1.1 87.4±1.4

ZipIt!20/20 0.68 79.1±1.1 92.9±1.1 91.2±1.4 92.1±1.0

Ensemble 1.37 87.4±2.6 97.0±0.6 96.1±1.1 96.6±0.4

ZipIt!13/20 0.91 83.8±3.1 95.1±0.7 94.1±1.5 94.6±0.6

(a) CIFAR-10 (5+5). ResNet-20 (4× width).

Accuracies (%)
Method FLOPs (G) Joint Task A Task B Avg
Model A 2.72 41.6±0.3 82.9±0.7 24.8±0.4 53.9±0.5

Model B 2.72 41.6±0.2 25.1±1.2 82.8±0.2 54.0±0.6

W. Avg (Eq. 1) 2.72 17.0±1.7 23.8±6.9 24.8±5.9 24.3±1.9

Git Re-Basin‡ 2.72 40.9±0.2 57.3±1.5 56.7±0.7 57.0±0.8

Permute (Eq. 2) 2.72 42.8±0.7 61.6±1.4 60.5±0.5 61.0±0.8

ZipIt!20/20 2.72 54.9±0.8 68.2±0.8 67.9±0.6 68.0±0.4

Ensemble 5.45 73.5±0.4 82.9±0.7 82.8±0.2 82.8±0.4

ZipIt!13/20 3.63 70.2±0.4 80.3±0.8 80.1±0.7 80.2±0.6

(b) CIFAR-100 (50+50). ResNet-20 (8× width).

Table 1: CIFAR Results. ZipIt! vs. baselines on combining a model trained on half the classes
(Task A) with one trained on the other half (Task B) without extra training. We report both joint
(10/100-way) and per-task (5/50-way) accuracy. ZipIt! significantly outperforms its baseline and
closes in on the upper bound (ensemble accuracy). ‡ refers to Ainsworth et al. (2022).

training set for each dataset as in Li et al. (2015) (see Appendix B). For a fair comparison, we reset
the batch norms for all methods (including the original models) using the training data (following
the recommendation in Jordan et al. (2022)). For our method, ZipIt!n/m indicates that n out of the m
layers in the network have been zipped (Sec. 4.3). Note, all our models have different initializations.

Evaluation. For the setting with disjoint class splits of the same dataset, we evaluate performance
in two ways: joint accuracy and per task accuracy. For joint accuracy, we evaluate each model over
all classes in the combined dataset. For per task accuracy, we compute the accuracy of each task
individually (i.e., supposing we had task labels at runtime) and then report the average. The former is
similar to a continual learning setting where we want to augment the knowledge of the model, while
the latter is akin to a multi-task setting where we know which task we’re using at test time. For the
scenario where we merge models trained on different datasets, we use the per task accuracy metric,
as the label spaces are not comparable.

Baselines. In addition to the default Weight Matching version of Git Re-Basin (Ainsworth et al.,
2022), we compare to two baselines: Weight Averaging (Eq. 1) and Permute (Eq. 2) with γ = 1/2
using our framework (i.e., we set Mi and Ui such that Eq. 8 is equivalent). For Permute, we use linear
sum assignment to find optimal permutations (following Li et al. (2015)). Note that our Permute is a
strong baseline we create using our framework and is more accurate than Git Re-Basin in our settings.
It’s also similar to REPAIR (Jordan et al., 2022), but without adding extra parameters to the model.
Finally, with perfect merging, the merged model’s outputs would be identical to the originals. Thus
we include Ensemble as an upper bound (executing and concatenating the results of both models).

5.1 CIFAR-10 AND CIFAR-100

We train 5 pairs of ResNet-20 (He et al., 2016) from scratch with different initializations on disjoint
halves of the CIFAR-10 and CIFAR-100 classes (Krizhevsky et al., 2009). While ZipIt! supports
“partial zipping” to merge models with different outputs (in this case, disjoint label sets), prior methods
without retraining do not. To make a fair comparison, we train these CIFAR models with a CLIP-style
loss (Radford et al., 2021) using CLIP text encodings of the class names as targets. This way, both
models output into the same CLIP-space regardless of the category. Note, this means the models are
capable of some amount of zero-shot classification on the tasks they were not trained on.

CIFAR-10 (5+5). In Tab. 1a, we merge models trained on disjoint 5 class subsets of CIFAR-10
using ResNet-20 with a 4× width multiplier (denoted as ResNet-20×4). In joint classification (i.e.,
10-way), Git Re-Basin is unable to perform better than using either of the original models alone,
while our Permute baseline performs slightly better. In stark contrast, our ZipIt! performs a staggering
32.9% better than Git Re-Basin and 20.7% better than our baseline. If allow the last stage of the
network to remain unzipped (i.e., zip up to 13 layers), our method obtains 83.8%, which is only 3.6%
behind an ensemble of model A and model B (which is practically the upper bound for this setting).
We also achieve similar results when merging VGG11 models in this setting (Appendix D).

CIFAR-100 (50+50). We find similar results on disjoint 50 class splits of CIFAR-100 in Tab. 1b, this
time using an 8× width multiplier instead. Like with CIFAR-10, Git Re-Basin fails to outperform
even the unmerged models themselves in joint classification (i.e., 100-way), and this time Permute is
only 1.2% ahead. ZipIt! again significantly outperforms prior work with +14% accuracy over Git
Re-Basin for all layers zipped, and a substantial +29.2% if zipping 13/20 layers. At this accuracy,

7

Published as a conference paper at ICLR 2024

ZipIt!13/20 is again only 3.3% behind the ensemble for joint accuracy and 2.6% behind for average
per task accuracy, landing itself in an entirely different performance tier compared to prior work.

5.2 IMAGENET-1K (200+200)
Accuracies (%)

Method FLOPs (G) Joint Task A Task B Avg
Model A 4.11 37.2±2.0 74.3±4.0 0.5±0.1 37.4±2.0

Model B 4.11 35.3±1.6 0.5±0.1 70.5±3.2 35.5±1.6

W. Avg (Eq. 1) 4.11 0.3±0.1 0.6±0.1 0.7±0.1 0.6±0.1

Git Re-Basin‡ 4.11 3.1±1.2 5.3±2.6 5.7±2.4 5.5±1.7

Permute (Eq. 2) 4.11 8.6±5.8 10.1±4.4 15.3±11.1 12.7±7.7

ZipIt!50/50 4.11 8.6±4.7 12.4±5.9 14.7±7.8 13.5±6.6

Ensemble 8.22 63.3±4.9 74.3±4.0 70.5±3.2 72.4±2.5

ZipIt!22/50 6.39 55.8±4.1 65.9±2.5 64.1±3.0 65.0±2.3

ZipIt!10/50 7.43 60.9±4.1 70.7±3.0 69.0±2.9 69.9±1.9

Table 2: ImageNet-1k (200+200) Results. Merg-
ing ResNet-50 models trained from scratch on
disjoint 200 category subsets (Task A and B) of
ImageNet-1k. Prior work performs poorly, but
ZipIt! makes this task feasible. ‡Ainsworth et al. (2022).

To test our method on the much harder setting of
large-scale data, we train 5 differently initialized
ResNet-50 models with cross entropy loss on
disjoint 200 class subsets of ImageNet-1k (Deng
et al., 2009). To compare to prior work that
doesn’t support partial zipping, we initialize the
models with capacity for all 1k classes, but only
train each on their subset.

In Tab. 2 we show results on exhaustively merg-
ing pairs from the 5 models. To compute joint
(i.e., 400-way) accuracy, we softmax over each
task’s classes individually (like in Ahn et al.
(2021)), and take the argmax over the combined
400 class vector. On this extremely difficult task, Git Re-Basin only obtains 3.1% for joint accuracy
(with random accuracy being 0.25%). Both the Permute baseline and ZipIt! with all layers zipped
perform better, but with each at 8.6%, are still clearly lacking. Note that we find the same-model
merging budget β to not matter for this set of models (see Fig. 6), which suggests that there’s not a
lot of redundant information within each model in this setting. Thus, ZipIt! chooses to merge mostly
across models instead, performing similarly to the permute baseline. We find this same trend in
CIFAR with smaller models (see Fig. 6), and may be an artifact of model capacity. The story changes
when we increase the capacity of the merged model by partial zipping: ZipIt!10/50 reaches close to
upper bound ensemble accuracy on this extremely difficult task, while saving on FLOPs.

5.3 MULTI-DATASET MERGING

We now take our model merging framework one step further by merging differently initialized
models trained on completely separate datasets and tasks. We present two settings: merging multiple
classification datasets and merging semantic segmentation with image classification.

Per-Task Accuracies (%)
Method FLOPs (G) SD OP CUB NAB Avg

Merging Pairs
W. Avg (Eq. 1) 4.11 12.9 18.2 13.9 0.2 11.3
Permute (Eq. 2) 4.11 46.2 47.6 35.6 13.5 35.7
ZipIt!49/50 4.11 46.9 50.7 38.0 12.7 37.1
Ensemble 8.22 72.7 81.1 71.0 77.2 75.5
ZipIt!22/50 6.39 62.6 71.2 62.8 53.0 62.4
ZipIt!10/50 7.42 66.5 75.8 65.6 66.8 68.7

Merging All 4
W. Avg (Eq. 1) 4.12 0.8 3.0 0.6 0.3 1.2
Permute (Eq. 2) 4.12 15.7 26.1 14.0 5.3 15.3
ZipIt!49/50 4.12 21.1 33.3 8.6 3.9 16.8
Ensemble 16.4 72.7 81.2 71.0 77.2 75.5
ZipIt!22/50 11.0 50.2 55.9 44.0 32.0 45.5
ZipIt!10/50 14.1 63.5 70.8 63.7 63.1 65.3

Table 3: Multi-Dataset Results. Merging
ResNet-50 models trained on completely differ-
ent datasets: Stanford Dogs (SD), Oxford Pets
(OP), CUB200 (CUB), and NABirds (NAB). We
report average per-task accuracy over merging
model pairs, and all four.

Image Classification Datasets. Merging ResNet-
50 models trained on: Stanford Dogs (Khosla
et al., 2011), Oxford Pets (Parkhi et al., 2012),
CUB200 (Welinder et al., 2010), and NABirds
(Van Horn et al., 2015). In Tab. 3, we show the
average per task accuracy from exhaustively merg-
ing each pair and the much more difficult setting
of merging all four at once. We report the accuracy
of our baselines by applying them up until the last
layer, but we can’t compare to prior work as they
don’t support this setting. As in all our previous
experiment we merge without retraining.

For pairs of models, ZipIt! slightly outperforms
our permute baseline across all tasks and performs
similarly when merging all 4 models at once. How-
ever, if we add capacity to the merged model
through partial zipping, we perform up to 33%
better on merging pairs and 50% better on merging all four models than the permute baseline. Partial
zipping is a significant factor to obtain strong performance, especially with more than 2 models.

Multiple Output Modalities. In Appendix F, we combine across modalities by merging the
ResNet-50 backbone of a DeeplabV3 (Chen et al., 2017) segmentation model with an ImageNet-1k
classification model. The resulting combined model can perform both semantic segmentation and
image classification. Even with half of layers merged, ZipIt! retains good performance on both tasks.

8

Published as a conference paper at ICLR 2024

Figure 6: Varying β and Model Scale. Left: We find when the model has enough capacity for the
task, a high budget (Sec. 4.3) improves performance. Right: ZipIt! makes effective use of extra
model capacity to quickly reach the ensemble on CIFAR-100 (50+50) when we increase the width of
ResNet-20 models. In contrast, our baselines only slightly benefit from the extra scale.

6 ANALYSIS

Merging within Models. A critical piece of ZipIt! compared to prior work is the ability to merge
within models, not just across models. In Sec. 4.3, we introduce a budget parameter β to limit the
number of same-model merges, and here use CIFAR-100 (50+50) and ImageNet-1k (200+200) to
illustrate its effectiveness (Fig. 6a). On CIFAR, same-model merges are very important, with the
optimal budget being above 0.8, meaning 80% of merges are allowed to be within the same model.
This is not the case, however, on ImageNet, where the difficulty of the task means there likely are
much fewer redundant features within each model.

Model Scale. In Fig. 6b, we test the effect of model scale directly by evaluating joint accuracy
on our CIFAR-100 (50+50) setting with ResNet-20 models of increasing width. Here, we explic-
itly see that when the width of the models are too small for the task (e.g., < 4×), ZipIt! and
the Permute baseline perform identically (though both much better than Git Re-Basin). How-
ever, when the scale increases, ZipIt! trends toward the ensemble upper bound of 75%, while
both the Permute baseline and Git Re-Basin plateau at around 45%. This corroborates Eq. 4
and indicates our method uses the extra model capacity effectively, much better than prior work.

Algorithm A↔A/B↔B? Acc Time
Identity (Eq. 1) ✗ 43.0±3.1 1.8 ms
Permute (Eq. 2) ✗ 58.4±1.3 28 ms
K-Means ✓ 29.1±5.5 19 sec

Zip (Eq. 8)
Optimal Match ✓ 79.6±1.7 11 min
Greedy Match ✓ 79.0±1.8 1.1 sec
Greedy, α=0.1 ✓ 79.1±2.1 1.2 sec

Table 4: Comparing Matching Algorithms to use
for Mi on CIFAR-10 (5+5) joint 10-way accuracy.
Permuting B→A as in prior work (Eq. 2) performs
poorly. We significantly improve by merging fea-
tures within each model (Eq. 8). Our greedy ap-
proach is nearly as accurate as the optimal algo-
rithm while being two orders of magnitude faster.

Matching Algorithm. In Tab. 4, we compare
matching algorithms used to compute Mi in
Eq. 8. Using either the identity (weight aver-
aging) or a permutation (as in prior work) un-
derperforms on CIFAR-10 (5+5) joint 10-way
classification. In contrast, we obtain up to 21.2%
higher accuracy if we allow both permutations
and merging within models. However, doing this
optimally is difficult, as the standard linear sum
assignment algorithm assumes bipartite matches.
We could use a optimal graph-based solver (e.g.,
Hagberg et al. (2008)) instead, but doing so is
prohibitively slow (11 minutes to transform a
ResNet-20×4 model). Thus, we find matches
greedily by repeatedly taking the most corre-
lated pair of features without replacement. This performs almost as well, and is multiple orders of
magnitude faster. If we allow repeated matches (Sec. 4.3), we obtain a slightly better result. Like
Bolya et al. (2023), we find that matching is better for merging features than clustering (K-Means).

7 CONCLUSION

In this paper, we tackle the extremely difficult task of merging models trained on completely disjoint
tasks without additional training. We find that prior work underperforms in this setting and posit
that they neither fully (1) exploit model similarities nor (2) account for model dissimilarities. We
introduce ZipIt!, a general framework for merging models that addresses these issues, and show it to
significantly outperform prior work across several difficult settings, comprehensively analyzing each.

9

Published as a conference paper at ICLR 2024

Reproducibility Statement. To ensure reproducibility, we will release code for our algorithm,
experiments, and baselines. We also include algorithm details in Section 4 and further in Appendix C,
experimental details in Section 5 and Appendix B, and a proof of our Theorem 1 in Appendix G.

Acknowledgements. This work was supported in part by funding from NSF CAREER #2144194,
ARL, Google, and NSF GRFP. All views and conclusions expressed in this work are those of the
authors and not a reflection of these sources.

REFERENCES

Hongjoon Ahn, Jihwan Kwak, Subin Lim, Hyeonsu Bang, Hyojun Kim, and Taesup Moon. Ss-il:
Separated softmax for incremental learning. In ICCV, 2021.

Samuel K Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models
modulo permutation symmetries. arXiv:2209.04836, 2022.

Stephen Ashmore and Michael Gashler. A method for finding similarity between multi-layer
perceptrons by forward bipartite alignment. In IJCNN, 2015.

Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, and Michael Auli. Data2vec: A
general framework for self-supervised learning in speech, vision and language. In ICML, 2022.

Gilles Blanchard, Gyemin Lee, and Clayton Scott. Generalizing from several related classification
tasks to a new unlabeled sample. In NeurIPS, 2011.

Daniel Bolya, Chong Zhou, Fanyi Xiao, and Yong Jae Lee. Yolact: Real-time instance segmentation.
In ICCV, 2019.

Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Feichtenhofer, and Judy
Hoffman. Token merging: Your vit but faster. ICLR, 2023.

Zhaowei Cai, Avinash Ravichandran, Subhransu Maji, Charless Fowlkes, Zhuowen Tu, and Stefano
Soatto. Exponential moving average normalization for self-supervised and semi-supervised
learning. In CVPR, 2021.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In ICCV, 2021.

Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking atrous
convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587, 2017.

Leshem Choshen, Elad Venezian, Noam Slonim, and Yoav Katz. Fusing finetuned models for better
pretraining. arXiv:2204.03044, 2022.

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Aleš Leonardis, Gregory
Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification
tasks. TPAMI, 2021.

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer,
Andreas Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Scaling vision
transformers to 22 billion parameters. arXiv:2302.05442, 2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In CVPR, 2009.

Shachar Don-Yehiya, Elad Venezian, Colin Raffel, Noam Slonim, and Leshem Choshen. ColD
fusion: Collaborative descent for distributed multitask finetuning. Association for Computational
Linguistics, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
is worth 16x16 words: Transformers for image recognition at scale. arXiv:2010.11929, 2020.

10

Published as a conference paper at ICLR 2024

Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and Fred Hamprecht. Essentially no barriers
in neural network energy landscape. In ICML, 2018.

Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The role of permutation
invariance in linear mode connectivity of neural networks. arXiv:2110.06296, 2021.

M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The pascal visual object
classes (voc) challenge. International Journal of Computer Vision, 88(2):303–338, June 2010.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode
connectivity and the lottery ticket hypothesis. In ICML, 2020.

C Daniel Freeman and Joan Bruna. Topology and geometry of half-rectified network optimization.
arXiv:1611.01540, 2016.

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G Wilson. Loss
surfaces, mode connectivity, and fast ensembling of dnns. NeurIPS, 2018.

Jort F Gemmeke, Daniel PW Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence, R Channing
Moore, Manoj Plakal, and Marvin Ritter. Audio set: An ontology and human-labeled dataset for
audio events. In ICASSP, 2017.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. NeurIPS, 2020.

Almog Gueta, Elad Venezian, Colin Raffel, Noam Slonim, Yoav Katz, and Leshem Choshen. Knowl-
edge is a region in weight space for fine-tuned language models. arXiv:2302.04863, 2023.

Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network structure, dynamics, and
function using networkx. In Proceedings of the 7th Python in Science Conference, 2008.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. 2016.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In ICCV, 2017.

Xiaoxi He, Zimu Zhou, and Lothar Thiele. Multi-task zipping via layer-wise neuron sharing. NeurIPS,
2018.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. NeurIPS, 2020.

Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E Hopcroft, and Kilian Q Weinberger.
Snapshot ensembles: Train 1, get m for free. arXiv:1704.00109, 2017.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. arXiv:2212.04089,
2022a.

Gabriel Ilharco, Mitchell Wortsman, Samir Yitzhak Gadre, Shuran Song, Hannaneh Hajishirzi, Simon
Kornblith, Ali Farhadi, and Ludwig Schmidt. Patching open-vocabulary models by interpolating
weights. NeurIPS, 2022b.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wilson.
Averaging weights leads to wider optima and better generalization. UAI, 2018.

Keller Jordan, Hanie Sedghi, Olga Saukh, Rahim Entezari, and Behnam Neyshabur. Repair: Renor-
malizing permuted activations for interpolation repair. arXiv:2211.08403, 2022.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In CVPR, 2018.

Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Fei-Fei Li. Novel dataset for
fine-grained image categorization: Stanford dogs. In CVPR Workshop on Fine-Grained Visual
Categorization (FGVC), 2011.

11

Published as a conference paper at ICLR 2024

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. PNAS, 2017.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. In ICML, 2019.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. Communications of the ACM, 2017.

Yixuan Li, Jason Yosinski, Jeff Clune, Hod Lipson, and John Hopcroft. Convergent Learning: Do
different neural networks learn the same representations? arXiv:1511.07543, 2015.

Zhizhong Li and Derek Hoiem. Learning without forgetting. TPAMI, 2017.

Chang Liu, Chenfei Lou, Runzhong Wang, Alan Yuhan Xi, Li Shen, and Junchi Yan. Deep neural
network fusion via graph matching with applications to model ensemble and federated learning. In
ICML, 2022.

Michael Matena and Colin Raffel. Merging models with fisher-weighted averaging.
arXiv:2111.09832, 2021.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics. PMLR, 2017.

Krikamol Muandet, David Balduzzi, and Bernhard Schölkopf. Domain generalization via invariant
feature representation. In ICML, 2013.

Behnam Neyshabur, Hanie Sedghi, and Chiyuan Zhang. What is being transferred in transfer learning?
NeurIPS, 2020.

Omkar M. Parkhi, Andrea Vedaldi, Andrew Zisserman, and C. V. Jawahar. Cats and dogs. In CVPR,
2012.

Fidel A Guerrero Peña, Heitor Rapela Medeiros, Thomas Dubail, Masih Aminbeidokhti, Eric Granger,
and Marco Pedersoli. Re-basin via implicit sinkhorn differentiation. arXiv:2212.12042, 2022.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In ICML, 2021.

Alexandre Ramé, Kartik Ahuja, Jianyu Zhang, Matthieu Cord, Léon Bottou, and David Lopez-Paz.
Recycling diverse models for out-of-distribution generalization. arXiv:2212.10445, 2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In CVPR, 2022.

Berfin Simsek, François Ged, Arthur Jacot, Francesco Spadaro, Clement Hongler, Wulfram Gerstner,
and Johanni Brea. Geometry of the loss landscape in overparameterized neural networks: Symme-
tries and invariances. In Proceedings of the 38th International Conference on Machine Learning.
PMLR, 2021.

Sidak Pal Singh and Martin Jaggi. Model fusion via optimal transport. NeurIPS, 2020.

Yi-Lin Sung, Linjie Li, Kevin Lin, Zhe Gan, Mohit Bansal, and Lijuan Wang. An empirical study of
multimodal model merging, 2023.

Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged consistency
targets improve semi-supervised deep learning results. NeurIPS, 2017.

Norman Tatro, Pin-Yu Chen, Payel Das, Igor Melnyk, Prasanna Sattigeri, and Rongjie Lai. Optimizing
mode connectivity via neuron alignment. NeurIPS, 2020.

12

Published as a conference paper at ICLR 2024

Grant Van Horn, Steve Branson, Ryan Farrell, Scott Haber, Jessie Barry, Panos Ipeirotis, Pietro
Perona, and Serge Belongie. Building a bird recognition app and large scale dataset with citizen
scientists: The fine print in fine-grained dataset collection. In CVPR, 2015.

Johannes Von Oswald, Seijin Kobayashi, Joao Sacramento, Alexander Meulemans, Christian Henning,
and Benjamin F Grewe. Neural networks with late-phase weights. arXiv:2007.12927, 2020.

Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman Khazaeni.
Federated learning with matched averaging. arXiv:2002.06440, 2020.

Jindong Wang, Cuiling Lan, Chang Liu, Yidong Ouyang, Tao Qin, Wang Lu, Yiqiang Chen, Wenjun
Zeng, and Philip Yu. Generalizing to unseen domains: A survey on domain generalization. TKDE,
2022.

P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and P. Perona. Caltech-UCSD
Birds 200. Technical Report CNS-TR-2010-001, California Institute of Technology, 2010.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In ICML, 2022a.

Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Simon Kornblith, Rebecca Roelofs,
Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok Namkoong, et al. Robust
fine-tuning of zero-shot models. In CVPR, 2022b.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin Raffel, and Mohit Bansal. Resolving interference
when merging models. arXiv:2306.01708, 2023.

Masanori Yamada, Tomoya Yamashita, Shin’ya Yamaguchi, and Daiki Chijiwa. Revisiting permuta-
tion symmetry for merging models between different datasets, 2023.

Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Greenewald, Nghia Hoang, and
Yasaman Khazaeni. Bayesian nonparametric federated learning of neural networks. In ICML,
2019.

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers.
In CVPR, 2022.

Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Scene
parsing through ade20k dataset. In CVPR, 2017.

13

Published as a conference paper at ICLR 2024

A PARTIAL ZIPPING

In Fig. 7 we plot the average per task accuracy by the number of layers zipped in ResNet-20×8 for
CIFAR-100 (50+50) and ResNet-50 for ImageNet-1k (200+200). Note that to avoid adding extra
unmerge modules into the network, our stopping point while unzipping has to be the end of a stage.

In Table 5, we show the average neuron correlations at each partial-zipping stage between the layers
of ResNet-20 (8×) models trained on the CIFAR-100 (50+50) task. We collect results using the same
models used in Table 1b, and compute correlations as described in Section 4. Overall, we find the
correlations between models consistently decreases through successive partial zipping locations. This
corroborates the finding of Kornblith et al. (2019) that model layers become increasingly dissimilar
with depth, as they encode more task-specific features. Coupling Table 5 with Figure 7a, we observe
a direct correlation between layer-(dis)similarities and performance decrease. This illustrates the
importance of layer similarity between two networks and strong performance.

B DATA USAGE

(a) CIFAR-100
(50+50)

(b) ImageNet-1k
(200+200)

Figure 7: Varying Partial Zip. By leaving some
layers unzipped (Sec. 4.3), we can recover a sig-
nificant amount of performance while still merg-
ing most of the model.

Average Stage Correlations
Layer 7⁄20 Layer 13⁄20 Layer 19⁄20

0.50±0.01 0.37±0.00 0.27±0.00

Table 5: CIFAR-100 (50+50) Zipping Correla-
tions. We show the average correlations between
two ResNet-20 (8× width) models at each partial
zipping stage. Correlations consistently decrease
at each successive stage, indicating that the lay-
ers of the two models increasingly diverge.

(c) CIFAR-100
(50+50)

(d) ImageNet-1k
(200+200)

Figure 8: Data Usage. How much data do we
need to use to compute activations? We find that
only a few hundred images are needed to obtain
the best performance. Data augmentation is not
always useful.

In our approach, we use a sample of the training
set in order to compute activations and match fea-
tures together. For the main paper, we used the full
training set for CIFAR, 1% of the training set for
ImageNet, and the number of images in the small-
est training set for the Multi-Dataset classification
experiment (so that we could use the same number
of images from each dataset). In each case, we
used the same data augmentations from training.

That begs the question: how much data do we
actually need, and how necessary are data aug-
mentations? Here we ablate the amount of data
used for our CIFAR-100 (50+50) ResNet-20 (8×
width) and ImageNet (200+200) Resnet-50 (22⁄50

layers) experiments. In Fig. 8, we test how much
data is actually necessary to obtain a good accu-
racy on CIFAR and ImageNet with or without data
augmentation.

We ultimately find that the amount of data doesn’t
actually matter that much. In the main paper, we
use the entire training set for CIFAR-100 with a
batch size of 500 (100 batches, or 50,000 images),
but it seems like as little as 2 batches (100 images)
produces the same result. Similarly on ImageNet,
using 0.05% of the data (640 images) produces
the same result as 5% (64,048 images).

In fact, the main consideration is whether or not
to use data augmentation. For less diverse datasets
like CIFAR-100, data augmentation seems es-
sential (giving an almost 4% boost in average
task accuracy), and well above the variance of
results without augmentation. However, for Ima-
geNet, which has much more diverse images, data
augmentation actually hurts slightly on average—
though the two are within variance. Note that
despite this result, for consistency we use data
augmentation in all experiments.

14

Published as a conference paper at ICLR 2024

C ZIP PROPAGATION DETAILS

In the main paper we described general rules for zip propagation—namely, propagate through layers
until you reach a module with a weight matrix. Here, we describe rules more concretely for each
layer type needed to define most convnets.

Linear. Apply Mi and Ui. Stop propagation.

Conv. Apply Mi and Ui to each kernel location (i.e., move the k × k kernel dimensions to the batch
dimension). Stop propagation.

BatchNorm. Apply Mi to all parameters (weight, bias, mean, variance), squaring it for the variance
term. Continue propagation. As Jordan et al. (2022) points out, we cannot compute the correct
variance without knowing the covariance between the two models (which we don’t have access to).
Thus, we reset batch norms after merging to evaluate the variance correctly.

LayerNorm. Apply Mi to all parameters (weight, bias). Continue propagation. Since LayerNorm
computes mean and standard deviation on the fly, we don’t need to do anything special.

ReLU. Nothing to merge. Continue propagation. Note that passing the merge matrix unchanged
through the ReLU layers is an approximation, since we’re using a linear merge operation on nonlinear
features. Addressing this issue could be an interesting topic for future work, as even the permute
and add approach of prior work has this issue (ReLU is invariant to permutation, but certainly not
adding).

Avg / Max Pool. Nothing to Merge. Continue propagation.

Skip Connection. Continue propagation through every input to the skip connection (using the same
Mi and Ui for each).

D CROSS ENTROPY ON CIFAR

Accuracies (%)
Method FLOPs (G) Joint Task A Task B Avg
Model A 10.88 37.9 74.15 1.7 36.4
Model B 10.88 36.7 2.2 75.2 38.7
W. Avg 10.88 2.7 5.0 4.9 4.9
Git Re-Basin‡ 10.88 3.1 5.8 5.3 5.6
Permute 10.88 20.0 30.8 32.8 31.8
ZipIt!20/20 10.88 27.9 40.1 39.7 39.9
Ensemble 21.76 60.5 74.2 75.2 74.7
ZipIt!13/20 14.52 38.6 51.8 52.0 51.9
ZipIt!7/20 18.14 47.0 60.6 60.5 60.6

Table 6: CIFAR-100 (50+50) Cross Entropy.
ZipIt! vs. baselines using ResNet-20 (16×
width). Merging the entire model as in prior
work produces bad results when using cross-
entropy, hence we use CLIP in the main draft.
If we use partial zipping, we can recover a lot
of the lost performance. ‡ refers to (Ainsworth
et al., 2022)

In the main paper, we train our CIFAR models
with a CLIP (Radford et al., 2021) loss (using
CLIP embeddings of class names as targets). This
ensures that the output spaces of the two models
are aligned, which is necessary to get good accu-
racy for prior work that merge the entire model
together.

ResNet. In Tab. 6, we show results for CIFAR-100
(50+50) where we train with the normal one-hot
targets (i.e., like we did for ImageNet), instead.
Immediately, we see that accuracies of the merged
models are much lower across the board, with no
method able to outperform just using one of the
original models when merging the entire network.
In fact, Git Re-Basin (Ainsworth et al., 2022) does
almost no better than weight averaging, which gets
close to random accuracy. While ZipIt! without partial zipping also performs worse than the original
models, it still greatly outperforms all prior work. And with partial zipping, ZipIt! is able to exceed
the accuracy of the original models.

Thus, in the case of using cross-entropy loss, partial zipping is extremely important. Merging the
entire model as in prior work fails, since the later layers of the model are incompatible with each
other due to each model having a different output space. Partial zipping, on the other hand, can
mitigate that issue.

15

Published as a conference paper at ICLR 2024

Accuracies (%)
Method FLOPs (G) Joint Task A Task B Avg
Model A 0.15 44.6 89.2 21.0 55.1
Model B 0.15 44.0 23.1 88.1 55.6
W. Avg 0.15 10.2 20.8 20.9 20.9
Permute 0.15 25.4 47.2 48.5 47.8
ZipIt!22/22 0.15 33.2 53.8 59.9 56.5
Ensemble 0.30 66.6 89.2 88.1 88.6
ZipIt!14/22 0.17 35.2 56.7 60.2 58.4
ZipIt!7/22 0.27 44.5 66.0 65.1 65.5

Table 7: CIFAR-10 (5+5) CE with VGG. ZipIt!
vs. baselines using VGG11 (1× width) using
Cross Entropy instead of CLIP loss. ZipIt!
displays the same behavior here as it does for
ResNet-20 with low width.

VGG. In the main paper, we use ResNets for each
experiment, since they are easy to train and pro-
duce strong results. However, in principle ZipIt!
can work on any architecture. For completeness,
in Tab. 7, we show results on the CIFAR-10 (5+5)
setting with VGG11 (1× width). Note that this is a
much smaller and weaker model than the ResNet-
20s we use in the main paper, so its results on
CIFAR-10 aren’t as strong. Furthermore, we con-
ducted this experiment with a cross entropy loss,
so merging the entire model performs worse than
the original models.

Despite this, we observe a very similar trend to the ResNet-20 models in that ZipIt! outperforms all
baselines and that partial zipping is important for reaching the accuracy of the original models (in
this case, matching not exceeding). In fact, these results continue a more general trend in that ZipIt!
greatly benefits from larger model scales, making effective use of the extra capacity. In this case, the
scale of the model is quite small, so there is not as much room in the weights to store the potentially
disjoint features of both models.

E IMAGENET WITH 1.5X WIDTH

Accuracies (%)
Method FLOPs (G) Joint Task A Task B Avg

1× Width
Ensemble 8.22 63.3 74.3 70.5 72.4
ZipIt!50/50 4.11 8.6 12.4 14.7 13.5
ZipIt!37/50 4.92 33.1 41.8 42.3 42.0
ZipIt!22/50 6.39 55.8 65.9 64.1 65.0
ZipIt!10/50 7.43 60.9 70.7 69.0 69.9

1.5× Width
Ensemble 32.6 67.8 76.7 72.6 74.7
ZipIt!50/50 16.3 9.7 13.2 16.0 14.6
ZipIt!37/50 19.5 49.0 56.2 56.7 56.4
ZipIt!22/50 25.5 64.1 71.6 70.4 71.0
ZipIt!10/50 29.7 66.8 74.9 72.1 73.5

Table 8: ImageNet-1k (200+200) Width Com-
parison. We show how ZipIt! is able to make use
of the extra model width when merging models
together. For instance, merging 37 layers goes
from 33% joint accuracy with 1× width to 49%
with 1.5×, while the ensemble only improves by
4%. These models use cross-entropy, so merging
the entire network results in poor performance.

In the main paper, we show that ZipIt! scales very
well with increased width of the model for the
CIFAR-100 (50+50) setting. While CIFAR-100
is a challenging dataset on its own, the natural
question is if that same trend occurs the much
harder ImageNet-1k (200+200) setting.

In Tab. 8, we test this by comparing ZipIt! on
the original 1× width ResNet-50 in the main pa-
per with a 1.5× width one. In all cases, except
for the fully zipped model (likely because of the
Cross-Entropy loss), ZipIt! enjoys a large jump
in performance from the extra width. For 37 lay-
ers, 33.1% joint accuracy becomes 49.0%. For 22
layers, 55.8% becomes 64.1%. And for 10 layers,
60.9% becomes 66.8%, now only 1% away from
the ensemble. Thus, even in this much more chal-
lenging setting, ZipIt! is able to make full use of
the extra model capacity.

F MERGING MODELS WITH DIFFERENT OUTPUT MODALITIES

Accuracy (%) mIoU (%)
Method ImageNet-1k Pascal VOC
W. Avg 0.8 3.3
ZipIt!49/50 23.1 6.0
Ensemble 77.8 76.8
ZipIt!37/50 47.7 35.0
ZipIt!22/50 60.9 64.4
ZipIt!10/50 64.9 71.7

Table 9: PASCAL VOC and ImageNet-1k
merging models with different output modali-
ties using a DeepLabV3 ResNet-50 backbone
and ImageNet-1k Resnet-50 model.

In this experiment we use ZipIt! to merge two
models with different initializations trained on
different tasks with different output modalities:
semantic segmentation and image classification.
Specifically, we merge the ResNet-50 backbone
of a DeepLabV3 (Chen et al., 2017) model fine-
tuned on the Pascal VOC (Everingham et al.,
2010) dataset, with a ResNet-50 model trained
on ImageNet-1k. While the DeepLabV3 back-
bone was itself pre-trained on ImageNet-1k, it
was further finetuned on Pascal VOC and does not
share the initialization of our classification model.
Table 9 shows the results of combining the two
ResNet-50 models with ZipIt! at various partial

16

Published as a conference paper at ICLR 2024

merging locations. We evaluate the performance of each merged by reporting its ImageNet-1k
accuracy, and its Pascal VOC mIoU as is standard. Overall, we observe that ZipIt! is capable of
merging nearly half the number of ResNet-50 layers between both models while still maintaining
good performance on both tasks, all without any training.

G A TIGHTER BOUND FOR LINEAR MODE CONNECTIVITY

In this section we demonstrate that merging models by supporting feature merges both across and
within each, yields a tighter bound than Theorem 3.1 in (Entezari et al., 2021) in its limited setting.
We first introduce necessary background from prior work, including Theorem 3.1 and a particular
formalization for within-model merging borrowed from (Simsek et al., 2021). Second, we introduce
Theorem 1, which produces a tighter bound on Theorem 3.1 when merging within models is allowed,
and prove its validity (Section G.2 & G.3). Third, we provably extend Theorem 1 to a less restrictive
setting, retaining its bounds (Section G.4).

G.1 BACKGROUND

We first introduce Theorem 3.1 from (Entezari et al., 2021). Second, we formalize a restricted version
of within-model merging necessary for our proof using the definitions from (Simsek et al., 2021).

G.1.1 THOEREM 3.1

The Theorem. Let f{v,W}(x) = vTσ(Wx), f{v′,W′}(x) = v′Tσ(W′x) be two fully-connected
networks with h hidden units where σ(·) is ReLU activation, v ∈ Rh and W ∈ Rh×d are the
parameters and x ∈ Rd is the input. If each element of W and W′ is sampled uniformly from
[−1/

√
d, 1/

√
d] and each element of v and v′ is sampled uniformly from [−1/

√
h, 1/

√
h], then

for any x ∈ Rd such that ∥x∥2 =
√
d, with probability 1 − δ over W,W′,v,v′, there exist a

permutation such that

|f{αv+(1−α)v′′,αW+(1−α)W′′}(x)− αf{v,W}(x)− (1− α)f{v′,W′}(x)| = Õ(h− 1
2d+4) (9)

where v′′,W′′ are permuted version of v′,W′, α ∈ [0, 1] is an arbitrary interpolation constant, and
the left-hand-side of the equality is the amount an interpolated model differs in output compared to
the interpolation of the original models. (Entezari et al., 2021) show that minimizing this quantity
is analogous to minimizing the barrier (as defined by Entezari et al. (2021)) in this setting. This
is important because it states that achieving a zero output difference is equivalent to achieving
zero-barrier, which implies that two models are linearly mode connected (LMC).

Implications Theorem 3.1 states that given any two two-layer models with different random initial-
izations, there exists a permutation for one model such that applying the permutation makes it linearly
mode connected to the second with high probability, given that the networks are wide enough (i.e. h
is large enough). In other words, it states that any two randomly initialized two-layer networks are
LMC modulo permutation with high likelihood. Entezari et al. (2021) use this result to conjecture
that most well-trained neural networks with the same architecture and trained on the same task are
also LMC modulo permutation with high likelihood.

Notably however, permutations only allow for merging across models. We will show how adding the
ability to merge within models leads to a tighter bound than Theorem 3.1 with the same likelihood.

G.1.2 A RESTRICTED FORMALIZATION OF MERGING WITHIN MODELS

The Formalization. Let θh = {v,W} represent a parameter-set such that f{v,W} = fθh
, and

likewise let θ′
h = {v′,W′}, s.t. , f{v′,W′} = fθ′

h
. Given θh, let Θh denote the set of all parameter-

sets with functional equivalence to θh. This means that ∀θ ∈ Θh, and ∀x ∈ {x ∈ Rd| ∥x∥2 =√
d}, fθ(x) = fθh

(x). Similarly, let Θ′
h be the set of all parameter-sets with functional equivalence

to θ′
h. Following θh, let θr be an arbitrary parameter-set for f which has r hidden units instead.

Assume θh can be reduced to some θr, r ≤ h in a function-invariant manner using the definition of

17

Published as a conference paper at ICLR 2024

zero-type neurons from (Simsek et al., 2021). This means that there are h − r total combinations
of (1) rows in W that are copies of one another whose corresponding v elements sum to 0, and
(2) some zero-elements in v. Thus, following Simsek et al. (2021) there exists a function-and-loss-
preserving affine transformation that reduces θh to θr. We denote this function as Mh→r ∈ Rr×h,
with Mh→r(θh) = θr. Note that when r = h, Mh→r can simply be the identity transformation.

By definition, θh lies in the expansion manifold of θr (Simsek et al., 2021). This means there is a
similarly defined affine transformation Ur→h ∈ Rh×r that can expand θr back to arbitrary θ̃h ∈ Θh

lying on the expansion manifold. One simple way is to extend θr to θ̃h by filling the remaining
h − r v elements with 0 and the h − r W rows with arbitrary values. Because the associated v
elements for each W row are zero, the values of each row don’t impact the function output. Note
that because h ≥ r, Ur→h can assign θr into arbitrary new indices in θh. Thus, Ur→h act as both a
permutation and expansion transformation. Let T = U ◦M = Ur→h(Mh→r(θh)) be the coupling
of the reduction and expansion affine-transformations that produce new networks of width h from θr.
By definition, any T is a permutation when M is the identity and U is the permutation matrix. For
the remainder of this section, we assume that T further contains a permutation (i.e. T = P ◦ U ◦M
for some permutation matrix P ∈ Rh×h).

We will leverage the concept of zero-type neurons presented in (Simsek et al., 2021) to obtain a
tighter bound on Theorem 3.1.

A Note on Novelty. While we borrow ideas from Simsek et al. (2021), our Theorem is a differs in
theoretical application. First, Simsek et al. (2021) restrict their attention to overall connectivity across
points within expansion manifolds. This is important because our Theorem and proof do not require
models to lie on the same expansion manifold to be linearly mode connected. Second, our models
need not be reducible to the same r. That is, we allow for arbitrary reducibility between any two
network parameter-sets. Our theorem also differs from Theorem 3.1 in (Entezari et al., 2021) in that
we extend function-invariant transformations beyond the permutation matrix, and show that tighter
bounds are achievable in the process. Furthermore, we show that uniformity assumptions may be
relaxed while retaining the same bounds (Section G.4).

G.2 A THEORETICAL RESULT

We now introduce Theorem 1, an extension of Theoerem 3.1 that yields a strictly tighter bound when
the transformations T from Section G.1.2 are included and r < h, and exactly as tight when r = h.
We leave the proof to the next section.

Theorem 1. Let f{v,W}(x) = vTσ(Wx), f{v′,W′}(x) = v′Tσ(W′x) be two fully-connected
networks with h hidden units where σ(·) is ReLU activation, v ∈ Rh and W ∈ Rh×d are the
parameters and x ∈ Rd is the input. If each element of W and W′ is sampled uniformly from
[−1/

√
d, 1/

√
d] and each element of v and v′ is sampled uniformly from [−1/

√
h, 1/

√
h], then

for any x ∈ Rd such that ∥x∥2 =
√
d, with probability 1 − δ over W,W′,v,v′, there exist

transformations T, T ′ such that

|f{αṽ+(1−α)ṽ′,αW̃+(1−α)W̃′}(x)− αf{v,W}(x)− (1− α)f{v′,W′}(x)|

≤

Õ

((
h2

(r+r′)−h

)− 1
2d+4

)
, (r + r′)− h > 0

0 , otherwise
(10)

where ṽ,W̃ are transformed versions of v,W from T and ṽ′,W̃′ are transformed versions of
v′,W′ from T ′ respectively. 0 < r, r′ ≤ h are the hidden unit amounts each network can be reduced
to via its respective M,M ′ transformation before being expanded back to width h via P ◦U,P ′ ◦U ′,
where P, P ′ are permutation matrices.

Implications. Theorem 1 states that when redundancy exists and can be leveraged in a network,
one can find a transformation that yields strictly lower barrier than with permutation with any h.
Moreover, it approaches zero-barrier faster with increase in h compared to permutations. Although
it only explicitly holds for random initializations—like Theorem 3.1, this theoretical intuition is
supported by our experimental observations. For instance it explains why algorithms like ZipIt!

18

Published as a conference paper at ICLR 2024

appear to converge to the ensemble exponentially faster than permutation methods in Figure 6b).
The ensemble achieves zero-barrier, and ZipIt! is faster to approach it than permutation counterparts
because it can reduce models with minimal deduction in performance.

G.3 THEOREM 1 PROOF

We now derive our proposed Theorem 1. Theorem 1 is very similar to Theorem 3.1— we just add the
reducibility property from Section G.1.2. Thus, our derivation is nearly identical to their Appendix D
proof. We fully derive the novel components of Theorem 1 for clarity, while referring to Appendix D
in (Entezari et al., 2021) for the remaining identical derivations to avoid redundancy.

Let θh = {v,W} and θ′
h = {v′,W′} respectively as defined in Section G.1. Suppose each can be

reduced to some θr,θ
′
r respectively with r ≤ h, via an appropriate Mh→r,Mh→r′ transformation.

Further, let Ur→h, Ur′→h be as defined in Section G.1, expanding Mh→r(θh),Mh→r′(θh) back to
width h by filling in all h− r, h− r′ dimensions in v,v′ with 0 respectively and all h− r, h− r′

dimensions in W,W′ with some specific values. Finally, let T, T ′ be transformations defined in
Section G.1 with T = P ◦ U ◦M,T ′ = P ′ ◦ U ′ ◦M ′ respectively.

Let θ̃h = T (θh), θ̃′
h = T ′(θ′

h) be the new parameter-sets obtained from T, T ′ respectively, and let
θ̃h = {ṽ,W̃} and θ̃′

h = {ṽ′,W̃′}. By definition, θ̃h ∈ Θh, and θ̃′
h ∈ Θ′

h. From the definitions of
T, T ′, W has h− r zero ṽ elements and W′ has h− r′ zero-ṽ′ elements. Now, let us suppose that
the corresponding h− r rows in W̃ are set to copy rows in W̃′, and similarly h− r′ rows in W̃′ rows
are set to copy rows in W̃. Now, interpolating between any non-zero element and a zero-element is
equivalent to simply scaling the non-zero element: z : α0 + (1− α)z = (1− α)z. Thus, so long as
h ≤ (h− r) + (h− r′), we can achieve perfect interpolation by placing h− r elements from θ̃′

h into
the zero-elements of θ̃h and h− (h− r) ≤ h− r′ elements from θ̃h into the zero-elements of θ̃′

h.
This yields the zero-part of our piece-wise bound. However, the proof is more involved for the second
case when h > (h− r) + (h− r′) → (r + r′)− h > 0. We continue the proof for this case below.

First, note that we only need to worry about the (r + r′)− h rows in W,W′ that cannot necessarily
be matched with perfect interpolation as shown above. Let K , and K′ be the set of these rows
for each network respectively, where |K| = |K′| = (r + r′) − h. These are the only rows within
the two models that must still be considered. For any given ξ > 0, we consider the set Sξ =

{−1/
√
d+ ξ,−1/

√
d+3ξ, . . . , 1/

√
d− ξ}d, a discretization of the Rd which has size (1

ξ
√
d
)d1. For

any s ∈ Sξ , let Cs(W̃) be the set of indices of rows in K of W̃ that are closest in Euclidean distance
to s than any other element in Sξ:

Cs(W̃) = {i|wi ∈ K, s = arg mins′∈Sξ
∥wi − s′∥∞}

Cs(W̃
′) = {i|wi ∈ K′, s = arg mins′∈Sξ

∥wi − s′∥∞}

where for simplicity we assume that arg min returns a single element. These are the same definitions
and assumptions as in (Entezari et al., 2021).

Now for every s ∈ S consider a random 1-1 matching (permutation) of elements in
Cs(W̃) and Cs(W̃

′). Whenever |Cs(W̃)| ̸= |Cs(W̃
′)|, we will inevitably have unmatched in-

dices because permutations only allow 1-1 mappings. Let I , and I ′ denote the set of total unmatched
indices from K, and K′ respectively. If |Cs(W̃)|− |Cs(W̃

′)| ≥ 0, we add these extra indices that are
not matched to I and otherwise we add them to I ′. Because K , and K′ are the same size, |I| = |I ′|
after adding all unmatched indices across all Cs. Thus, by definition |I| = |I ′| ≤ (r + r′)− h.

Pick an arbitrary s ∈ S . Since each element of K and K′ is sampled uniformly from [−1/
√
d, 1/

√
d],

for each row in the respective sets, the probability of being assigned to each s ∈ Sξ is a multinomial
distribution with equal probability for each s: 1/|Sξ|. Pick an arbitrary s. |Cs(W̃)| is the sum over
all indicator variables W s

i = 1{wi ∈ Cs(W̃)}, and the expected value of this sum, E|[Cs(W̃)|] =
[(r + r′) − h]/|Sξ| as there are (r+ r′)−h total rows. Let (r+ r′)−h = n. Since each W s

i is between

1Like (Entezari et al., 2021), we choose ξ such that it is a factor of 1/
√
d.

19

Published as a conference paper at ICLR 2024

[0, 1], we can use Hoeffding’s Inequality to bound the size of Cs(W̃) with high probability

P (|Sn − E[Sn]| ≥ t) ≤ 2 exp

(
−2t2

n

)
(Hoeffding’s Inequality) (11)

P (||Cs(W̃)| − E[|Cs(W̃)|]| ≥ t) ≤ 2 exp

(
−2t2

n

)
∵ Sn = |Cs(W̃)| (12)

P

(
||Cs(W̃)| − (r + r′)− h

|Sξ|
| ≥ t

)
≤ 2 exp

(
−2t2

n

)
(13)

P

(
||Cs(W̃)| − (r + r′)− h

|Sξ|
| ≥ t

)
≤ 2 exp

(
−2t2

(r + r′)− h

)
∵ n = (r + r′)− h (14)

Let n = (r + r′) − h. By taking a union bound over all elements of K and K′, with probability
1− δ/3, the following holds for all choices of s:

n

|Sξ|
−
√

n

2
log (12|Sξ|/δ) ≤ |Cs(W̃)|, |Cs(W̃

′)| ≤ n

|Sξ|
+

√
n

2
log (12|Sξ|/δ) (15)

Note this derivation almost exactly follows (Entezari et al., 2021), except that we have n ≤ h, yielding
a tighter size-bound.

Using Eq. (15), we can obtain a bound on the cardinality differences between Cs(W̃) and Cs(W̃
′)

by subtracting the minimum value of one from the maximum value of the other:

||Cs(W̃)| − |Cs(W̃
′)|| ≤ sup(|Cs(W̃)|)− inf(|Cs(W̃)|) (16)

||Cs(W̃)| − |Cs(W̃
′)|| ≤

(
n

|Sξ|
+

√
n

2
log(12|Sξ|/δ)

)
−
(

n

|Sξ|
−
√

n

2
log(12|Sξ|/δ)

)
(17)

||Cs(W̃)| − |Cs(W̃
′)|| ≤ 2

√
n

2
log(12|Sξ|/δ) (18)

Using Eq. (18) we can bound the size of I, I ′ with probability 1− δ/3 as follows:∑
s∈Sξ

||Cs(W̃)| − |Cs(W̃
′)| ≤

∑
s∈Sξ

2

√
n

2
log(12|Sξ|/δ) (19)

∑
s∈Sξ

||Cs(W̃)| − |Cs(W̃
′)| ≤ 2|Sξ|

√
n

2
log(12|Sξ|/δ) (20)

|I|+ |I ′| =
∑
s∈Sξ

||Cs(W̃)| − |Cs(W̃
′)| ≤ 2|Sξ|

√
n

2
log(12|Sξ|/δ) (21)

|I| = |I ′| = 1

2

∑
s∈Sξ

||Cs(W̃)| − |Cs(W̃
′)| ≤ |Sξ|

√
n

2
log(12|Sξ|/δ) ∵ |I| = |I ′| (22)

Note, our Eq. (22) equivalent to Eq. (6) in (Entezari et al., 2021), but in terms of n instead of h.

The remainder of our derivation exactly follows (and achieves identical bounds to) (Entezari et al.,
2021) until directly after their substitution of ξ. To avoid writing an identical derivation, we refer
readers to their derivation following Eq. (6) in their Appendix D until the substitution of ξ, and
instead pick up immediately before the substitution of ξ:

Let ϵ ≥ 0 denote the value of |fαṽ+(1−α)ṽ′,αW+(1−α)W̃′}(x)−αf{v,W}(x)− (1−α)f{v′,W′}(x)|.
Following the derivation of (Entezari et al., 2021), we bound ϵ as follows:

ϵ = |f{αṽ+(1−α)ṽ′},{αW+(1−α)W̃′}(x)− αf{v,W}(x)− (1− α)f{v′,W′}(x)|

≤

√
2 log(12/δ) log(12h/δ)

(
|I|
h

+ ξ2d

)
(23)

20

Published as a conference paper at ICLR 2024

Setting ξ = ϵ/
√
4d log(12/δ) log(12h/δ) gives the following bound on h:

h ≤ 4 log(12/δ) log(12h/δ)|I|
ϵ2

≤
4 log(12/δ) log(12h/δ)|Sξ|

√
n
2 log(12|Sξ|/δ)

ϵ2

Therefore, we have:

h2 ≤

(
4 log(12/δ) log(12h/δ)|Sξ|

√
n
2 log(12|Sξ|/δ)

ϵ2

)2

(24)

≤

(
4 log(12/δ) log(12h/δ)|Sξ|

√
log(12|Sξ|/δ)

ϵ2

)2 (n
2

)
∵ |Sξ)| =

(
1

ξ
√
d

)d

(25)

≤
(
4 log(12/δ) log(12h/δ)

ϵ2

)d+2

(log(12/δ) + d log(1/ϵ))(n) (26)

h2

n
≤
(
4 log(12/δ) log(12h/δ)

ϵ2

)d+2

(log(12/δ) + d log(1/ϵ)) (27)

Using the inequality in equation (27), we have ϵ = Õ((h
2

n)−
1

2d+4) = Õ((h2

r+r′−h)
− 1

2d+4).

Thus, we obtain the following piece-wise bound over the barrier:

|f{αṽ+(1−α)ṽ′,αW̃+(1−α)W̃′}(x)− αf{ṽ,W̃}(x)− (1− α)f{ṽ′,W̃′}(x)|

≤

Õ

((
h2

(r+r′)−h

)− 1
2d+4

)
, (r + r′)− h > 0

0 , otherwise

□

G.4 UNIFORMITY IS NOT NEEDED: AN EXTENSION OF THEOREM 1

Although Theorem 1 demonstrates a tighter bound compared to Theorem 3.1 is possible when
merging within a model is allowed, its reliance on W,v,W′,v′ being uniform random variables
is unnecessary. Instead, we can assume that W,W′ are sampled from an arbitrary probability
distribution that is bounded on [−1/

√
d, 1/

√
d]. Similarly, assume that v,v′ is sampled from an

arbitrary probability distribution that is both centered and bounded on [−1/
√
h, 1/

√
h]. Note how

for both v, and W any continuous probability distribution is valid, so long as it satisfies the stated
conditions. We formalize this as follows:

Theorem 1.1. Let fv,W(x) = vTσ(Wx), fv′,W′(x) = v′Tσ(W′x) be two fully-connected
networks with h hidden units where σ(·) is ReLU activation, v ∈ Rh and W ∈ Rh×d are the
parameters and x ∈ Rd is the input. If each element of W and W′ is sampled from an continuous
probability distribution that is bounded on [−1/

√
d, 1/

√
d], and each element of v and v′ is sampled

from an continuous probability distribution that is centered and bounded on [−1/
√
h, 1/

√
h], then

for any x ∈ Rd such that ∥x∥2 =
√
d, with probability 1 − δ over W,W′,v,v′, there exist

transformations T, T ′ such that

|f{αṽ+(1−α)ṽ′,αW̃+(1−α)W̃′}(x)− αf{v,W}(x)− (1− α)f{v′,W′}(x)|

≤

Õ

((
h2

(r+r′)−h

)− 1
2d+4

)
, (r + r′)− h > 0

0 , otherwise
(28)

where ṽ,W̃ are transformed versions of v,W from T and ṽ′,W̃′ are transformed versions of v′,W′

from T ′ respectively. 0 < r, r′ ≤ h are the hidden unit amounts each network can be reduced to via
its respective M,M ′ transformation before being expanded back to width h via U,U ′.

21

Published as a conference paper at ICLR 2024

Proof. The proof for Theorem 1.1 is takes a very similar form to Theorem 1, with two differences.
For what follows, we assume the same notation and definitions as in Section G.3 up to Eq. (11), with
one change: each element of K,K′ need not be assigned to each s ∈ Sξ with equal probability.

Despite this change, for a given s ∈ Sξ, we can use the Hoeffding’s Inequality to bound the size of
Cs(W̃) with high probability:

P (|Sn − E[Sn]| ≥ t) ≤ 2 exp

(
−2t2

n

)
(29)

P (||Cs(W̃)| − E[|Cs(W̃)|]| ≥ t) ≤ 2 exp

(
−2t2

n

)
(30)

(31)

Despite E[|Cs(W̃)|] no longer being equal for each s, we can take the union bound (1) over the rows
of W̃,W̃′ and (2) for each s ∈ Sξ to obtain,

||Cs(W̃)| − |Cs(W̃
′)|| ≤ 2

√
n

2
log(12|Sξ|/δ) (32)

with probability 1− δ/3. Thus, we achieve the same bound on the size of I, I ′ as in Section G.3.

The second difference is that ṽ is no longer sampled uniformly from [−1/
√
h, 1/

√
h]. However, this

does not affect anything because we assume E[ṽ] = 0. Noting these changes, we can follow the
derivation in Section G.3 and achieve the same bounds.

G.5 SIMPLIFYING VARIABLES IN THEOREM 1

Theorem 1 can be simplified to match its introduction in Section 4. First, let τ, τ ′ denote the
proportions of features from h that are reduced under the M,M ′ transformation in each model. By
definition, τ, τ ′ ∈ [0, 1]. Then, we can define r, and r′ in terms of τ, τ ′, and h:

r = h(1− τ), and r′ = h(1− τ ′)

This means (r + r′) − h = h(1 − τ − τ ′) ≤ h(1 − 2min(τ, τ ′)). Let Γ = min(τ, τ ′), then we
achieve h(1− 2Γ) in the denominator of our bound, which simplifies to what is written in Section 4.

H EXPERIMENTS IN SETTINGS OF CONCURRENT WORKS

Table 10 shows the results of merging 16× width ResNet20 models trained with cross-entropy loss on
the CIAR5+5 task. This setting is equivalent to that of Table 2 from the concurrent work of (Yamada
et al., 2023), except for two important differences. First, Yamada et al. (2023) add the REPAIR Jordan
et al. (2022) algorithm to each merging method, which significantly improves the performance of
each merging algorithm by adding new parameters to the merged model.

Accuracies (%)
Method FLOPs (G) Joint Task A Task B Avg
Model A 10.88 46.7±0.6 94.4±0.8 18.4±3.1 56.4±1.7

Model B 10.88 40.2±9.6 22.3±6.9 93.8±1.7 58.0±2.9

W. Avg 10.88 30.4±2.4 46.2±13.4 47.0±9.3 46.6±3.9

Git Re-Basin ‡ 10.88 27.3±0.5 46.3±1.6 46.3±9.3 38.9±7.7

Permute 10.88 45.4±5.3 81.3±7.9 79.5±10.0 80.4±3.8

ZipIt!20/20 10.88 66.0±3.9 88.0±0.9 86.7±4.0 87.4±2.0

Ensemble 21.76 80.0±2.4 94.4±0.8 93.8±1.7 94.1±0.7

ZipIt!19/20 10.89 72.0±2.5 90.0±1.3 88.2±3.2 89.1±1.7

ZipIt!13/20 14.52 73.4±2.7 91.5±0.9 89.6±3.4 90.5±1.6

ZipIt!7/20 18.14 75.5±2.9 92.7±1.0 90.7±3.3 91.7±1.5

Table 10: CIFAR-10 (5+5) Cross Entropy.
ZipIt! vs. baselines using ResNet-20 (16×
width). Merging with ZipIt! up to the last layer
(ZipIt!19/20) nearly achieves the ensemble “Task
Avg.” performance with half the FLOPs and
vastly outperforms the nearest baseline. Partially
merging, brings ZipIt! even closer to the ensem-
ble. ‡ refers to (Ainsworth et al., 2022)

Second, Yamada et al. (2023) include merging
methods that require training in their Table 2. In
contrast, we report the performance of each merg-
ing method using its original capabilities (i.e.,
without REPAIR), and without any training (as
it is outside our setting). Thus, all results shown in
Table 10 are a lower-bound to what is achievable
either with REPAIR, or with training. To make Ta-
ble 10 as close to Table 2 in (Yamada et al., 2023)
as possible, we report “Joint Acc” as the average
of each method’s logits for the ensemble. To the
best of our knowledge, “Joint Acc” is thus the
same metric used by (Yamada et al., 2023). Over-
all, we observe that ZipIt! fully-merged outper-
forms the nearest baseline by over 20% in “Joint
Acc”, and zipping up to the classification layers

22

Published as a conference paper at ICLR 2024

(ZipIt!19/20) nearly matches the ensemble “Task Avg.” accuracy without requiring any training.
Interestingly, Git Re-Basin performs especially poorly in this setting, likely requiring REPAIR to
achieve the performance reported in Table 2 by (Yamada et al., 2023).

23

