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Abstract

Reward specification is one of the most tricky problems in Reinforcement Learn-
ing, which usually requires tedious hand engineering in practice. One promising
approach to tackle this challenge is to adopt existing expert video demonstrations
for policy learning. Some recent work investigates how to learn robot policies from
only a single/few expert video demonstrations. For example, reward labeling via
Optimal Transport (OT) has been shown to be an effective strategy to generate a
proxy reward by measuring the alignment between the robot trajectory and the
expert demonstrations. However, previous work mostly overlooks that the OT
reward is invariant to temporal order information, which could bring extra noise to
the reward signal. To address this issue, in this paper, we introduce the Temporal
Optimal Transport (TemporalOT) reward to incorporate temporal order information
for learning a more accurate OT-based proxy reward. Extensive experiments on the
Meta-world benchmark tasks validate the efficacy of the proposed method. Our
code is available at: https://github.com/fuyw/TemporalOT.

1 Introduction

Reinforcement Learning (RL) [51] has achieved great success across a wide array of applications [40].
However, it typically requires a large number of interactions with the environment [26, 35], which
limits its practical application in the robotic control [9, 49]. A large body of work has been developed
to address this issue from different aspects [52], i.e., using curiosity-based intrinsic reward to
encourage exploration [2, 47], leveraging better representation pretrained on large scale robotics
datasets [33, 38], incorporating external knowledge from the Vision-Language Models (VLMs) [13,
32], and imitating the behaviors from pre-collected expert demonstrations [50, 62].

Reward specification plays a central role in RL [6]. Since the goal of the RL agent is to maximize the
expected cumulative rewards, the reward signal directly influences the learned behaviors [8]. One
major challenge in applying RL to real-world problems is how to design the reward functions [10].
A well-designed reward function can guide the agent towards desirable behaviors more efficiently,
while a poorly designed one could lead to sub-optimal behaviors [25]. However, designing a good
reward function is a nontrivial task [11], which requires related expert domain knowledge and (or)
time-consuming hand reward engineering [48]. The lack of a good reward function is one of the main
bottlenecks for the low sample-efficiency issue in RL [58].

Imitation Learning (IL) has been proven to be an effective technique to learn control policies without
the oracle task reward [24]. Given an expert demonstration dataset, IL formulates the policy learning
as a supervised learning paradigm [27]. The IL objective aims to learn a policy that mimics the
expert behaviors via minimizing a distance measure of the learned policy and an approximated expert
policy [23, 28]. Depending on if the RL agent can learn from further online interactions, IL can be
crudely classified as offline IL and online IL [29]. In offline IL, the RL agent purely learns from a
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fixed dataset of collected expert experiences. In online IL, the RL agent usually learns a proxy reward
function to relabel the collected online trajectories with respect to the expert demonstrations [53].

One notable weakness of IL is that it generally requires a diverse and high-quality demonstration
dataset to achieve desired performances [5]. Recently, some researchers found that Optimal Transport
(OT) [18, 44] based proxy reward function enables us to learn effective robot policies with only
a few expert demonstrations [30, 31]. In this paper, we follow this line of research in applying
OT-based proxy rewards to online IL without using any task reward information. In particular, we first
revisit the efficacy of OT-based proxy reward in RL and then discuss some challenges of the existing
methods due to the overlook of temporal order information. To mitigate this issue, we introduced the
Temporal Optimal Transport (TemporalOT) reward, which incorporates temporal order information
to the OT-based proxy reward via using context embeddings and a mask mechanism.

The primary contributions of this work can be summarized as follows:

• we pointed out a weakness of existing OT-based proxy reward methods for imitation learning
due to the overlook of temporal order information;

• we designed a simple yet effective algorithm to incorporate temporal order information into
OT-based proxy reward via using context embeddings and a mask mechanism;

• experiments show that the proposed method outperforms other SOTA algorithms.

2 Background

2.1 Reinforcement Learning

In this work, we consider the standard Markov Decision Process (MDP) [46] setting M =
(S,A, R, P, ρ0, γ), where S and A are state and action spaces, R : S × A → R is a reward
function, P : S ×A → ∆(S) is the state-transition probability function, ρ0 : S → R+ is the initial
state distribution and γ ∈ [0, 1) is a discount factor. Our goal is to learn a policy π(a|s) : S → ∆(A)
that maximizes the expected cumulative discounted rewards Eπ[

∑∞
t=0 γ

tr(st, at)] where s0 ∼ ρ0,
st+1 ∼ P (·|st, at) and at ∼ π(·|st). In partially observable MDP (POMDP) [19], we can only
receive an observation oi ∈ O, i.e., image observation, of the current state si.

To solve this optimization problem, value-based RL methods typically learn a state-action value
function Qπ(s, a) := Eπ [

∑∞
t=0 γ

trt|s0 = s, a0 = a], which is defined as the expected return under
policy π. For convenience, we adopt the vector notation Q ∈ RS×A, and define the one-step Bellman
operator T π : RS×A → RS×A such that T πQ(s, a) := r(s, a) + γEs′∼P,a′∼π[Q(s′, a′)]. The
Q-function Qπ is the fixed point of T π such that Qπ = T πQπ [51]. Similarly, we define the
optimality Bellman operator as follows T Q(s, a) := r(s, a) + γEs′∼P [maxa′ Q(s′, a′)] and the
optimal Q-value function Q∗ is the fixed point of T Q∗ = Q∗. In deep RL, we use neural networks
Qθ(s, a) to approximate the Q-functions by minimizing the empirical Bellman error:

E(s,a,r,s′)

[
(r + γmax

a′
Qπ

θ̂
(s′, a′)−Qπ

θ (s, a))
2
]
, (1)

where we sample transitions (s, a, r, s′) from a replay buffer and Qπ
θ̂
(s, a) is the target network.

2.2 Inverse Reinforcement Learning

Inverse Reinforcement Learning (IRL) aims to infer the underlying reward function from expert
demonstrations [39], which further facilitates an RL agent to learn the policy. One key assumption
of IRL is that the observed behaviors are optimal such that the observed trajectories maximize the
cumulative rewards [17]. Due to the ability to avoid the manual reward specification, IRL holds the
promise for practical real-world RL applications. Denote M as an MDP and πE as an expert policy,
the IRL problem is to find an optimal reward function R∗ such that:

E

[ ∞∑
t=0

γtR∗(st, at)
∣∣πE

]
≥ E

[ ∞∑
t=0

γtR∗(st, at)
∣∣π] ,∀π ∈ Π, (2)

where Π is the feasible policy set. That is, the expert policy πE will achieve the maximum expected
cumulative discounted reward than any other policy.
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Figure 1: An illustration of the pipeline of applying OT-based reward in RL. In this toy ex-
ample, we rollout two agent for five steps of transitions. Both agents start from the initial state
and take same actions a0 and a1 at the first two states. Then the two agents take different ac-
tions aa2 and ab2 to generate different trajectories τa = (o0, a0, o1, a1, o2, a
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5) The OT rewards for (o0, a0) and (o1, a1) in τa and τ b

are different even though the state-action pairs are exactly the same.

2.3 Optimal Transport

Optimal Transport is an optimization problem which aims to find an optimal mapping that transforms
one probability distribution into another with the least cost. OT has a wide application in various
domains such as economics [14], physics [15], and machine learning [1]. Consider two probability
distributions p ∈ Rn, q ∈ Rm and a joint distribution µ(p, q) on product space X×Y , the Wasserstein
distance [54] between p and q is defined as:

W(p, q) = inf
µ

∫
X×Y

c(x, y)dµ, (3)

where c(x, y) is the cost function for moving mass form x to y. In the RL scenario, p and q are
usually in the state space S or the observation space O [21]. For example, given an expert trajectory
τE = (oE1 , · · · , oET ) and an agent trajectory τ = (o1, · · · , oT ) where oi is the image observation at
step i, the Wasserstein distance between τE and τ is defined in the following discrete form:

W(τ, τE) = min
µ∈RT×T

T∑
i=1

T∑
j=1

c(oi, o
E
j )µ(i, j),

s.t.
T∑

i=1

µ(i, j) =

T∑
j=1

µ(i, j) =
1

T
.

(4)

where µ ∈ RT×T is called the transport plan, and we denote the optimal transport plan as µ∗.

3 Method

In this section, we first revisit the application of OT-based proxy reward in RL. In particular, we point
out the influence of temporal order information, which has been overlooked in most prior work. Next,
we introduce the main idea and formulation of the proposed method based on these observations.

3.1 A Recap of OT Reward in RL

3.1.1 OT reward helps to rank states and actions

In RL, we usually adopt the Wasserstein distance to measure the similarity of two trajectories [31],
as illustrated in Figure 1. Given an agent trajectory τ = (o1, · · · , oT ) and an expert trajectory
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Figure 2: Why OT reward could be useful? When the OT reward is generally correct, it helps
to rank the goodness of different states and induce the policy to take better actions. (left) In the
toy example, two agents takes different action aa2 and ab2 at o2 and thereafter. The goodness of aa2
and ab2 is measured by the OT reward computed w.r.t. to the observation of the next state oa3 and ob3.
(right) A comparison of the true OT reward curves for trajectory τa and τ b, where o0/o1/o2/o3/o4/o5
correspond to observations at the 0/20/40/60/80/100-th step. We can observe that the OT reward for
trajectory b is generally larger, which shows that the OT reward is generally correct.

τE = (oE1 , · · · , oET ), we first compute the optimal transport plan µ∗ in Eqn.(4) using some iterative
optimization algorithms, i.e., Sinkhorn algorithm [4]. Then, the OT-based proxy reward at the i-th
step is defined as follows:

rOT
i = −

T∑
j=1

c(oi, o
E
j )µ

∗(i, j), (5)

where c(oi, oEj ) is a cost function that measures the similarity between oi and oEj . One popular choice

in prior work is the cosine similarity based cost function c(oi, o
E
j ) = 1− ⟨f(oi),f(oEj )⟩

∥f(oi)∥∥f(oEj )∥ , where f(oi)
is the latent representation of observation oi extracted by a visual encoder [3].

Similar to the curiosity-based exploration bonus [2], OT reward is used to distinguish the goodness of
different states. We consider the toy example in Figure 1, two agents start from the same state with
observation o2 and take different actions aa2 and ab2, respectively. Then the goodness of aa2 and ab2 at
o2 is measured by the OT reward computed w.r.t. the observation oa3 and ob3 at the next step. As long
as the OT reward can rank rOT

3 (oa3 , τ
E) and rOT

3 (ob3, τ
E) correctly, then the policy will be able to

learn a better action at o2. From Figure 2 (right), we can observe that the OT reward for the better
trajectory b is generally larger, which validates the previous explanations.

3.1.2 Two Key Observations

Notably, there are two key observations of OT reward that have been less discussed in prior work:

1. The OT reward is order invariant.

2. The OT reward at step i is influenced by the later steps so that two transitions with the same
state-action pair could have different OT rewards.

Our first observation is that the standard OT-reward is order invariant. As shown in Eqn.(5), the order
information is discarded and the frames from the demo trajectory are treated as bag-of-temporally-
collapsed frames. In our view, collapsing the temporal axis drops arguably one of the most important
characteristic features of temporal order information. More concretely, consider a demo trajectory
of τ1 = (o1, o1, o2), meaning the agent first stays in the first state and then moves to the second
state. Our goal is to imitate this behavior. However, if we discard the order information as in Eqn.(5),
from the perspective of OT reward, there is no ability to differentiate between τ1 and some other
undesired trajectories, i.e., τ2 = (o1, o2, o1) which first moves to the second state and then moves
back to the first state. Therefore, discarding the temporal order information in reward calculation
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makes the reward on top of it under-constrained, thereby increasing the likelihood of convergence
toward undesired solutions.

Our second observation is that the OT reward is non-stationary during the training. As the Eqn.(5)
shows that OT reward rOT

i depends on the optimal transport plan µ∗(i, j), which depends on the
entire trajectory. Therefore, the OT reward for each state is a function of the entire agent trajectory. As
illustrated in Figure 1, even though trajectory τa and trajectory τ b have the same first two transitions,
their OT rewards have different values. This is very different from the standard RL setting, where
reward is usually determined with a fixed state-action pair. Such a non-stationary OT reward could
have a pitfall that makes the optimization of RL objective in Eqn.(1) to be less stable.

Inspired by these two observations, we found that the current OT-based RL methods usually overlook
the temporal order information of the trajectories. In this work, we aim to investigate how to improve
the current OT-based RL methods by incorporating temporal order information.

3.2 Temporal Optimal Transport Reward (TemporalOT)

In this subsection, we present the Temporal Optimal Transport (TemporalOT) reward. We first
explain our motivations for the model design, and then introduce the details of the proposed method.

3.2.1 Motivation for the Model Design

The pipeline of a standard OT-based reward calculation usually consists of two stages:

(Stage-1) first define a transport cost function c(·, ·) between two states;

(Stage-2) then solve an OT optimization problem in Eqn.(4) to approximate the optimal transport
plan µ∗ and compute the OT reward rOT in Eqn.(5) for each state in a trajectory τ .

After the OT-reward calculation step, the transition will be relabeled with the OT-reward for training
an RL agent as in Eqn.(1). Our method aims to improve both stages of OT-reward calculation. Firstly,
previous methods usually use a pair-wise cosine similarity based cost function in Stage-1, which
sometimes could be inaccurate and noisy. Secondly, previous methods ignore the temporal order
information in Stage-2 as discussed in Section 3.1.2. We will introduce two simple solutions to
address these two points, respectively.

3.2.2 Context Embedding-based Cost Matrix for Improving Stage-1

To learn a more accurate transport cost function, we introduce a context embedding based cost matrix.
Unlike previous methods that use a pair-wise cosine similarity as the transport cost, we adopt a
group-wise cosine similarity that we define the transport cost between agent observation oi and expert
observation oEj as following:

ĉ(oi, o
E
j ) =

1

kc

kc−1∑
h=0

(
1−

⟨f(oi+h), f(o
E
j+h)⟩

∥f(oi+h)∥∥f(oEj+h)∥

)
, (6)

where kc is the parameter of the context length and f(·) is a fixed visual encoder. The goal of the
context cost matrix Ĉ is to facilitate expert progress estimation by taking nearby information into
consideration. For example, we use kc = 3 in Figure 3 and the transport cost between o1 and oE2 is
ĉ(o1, o

E
2 ) = 1− [cos(f(o1), f(o

E
2 )) + cos(f(o2), f(o

E
3 )) + cos(f(o3), f(o

E
4 ))]/3.

3.2.3 Temporal-masked Optimal Transport Objective for Improving Stage-2

The prevalent OT reward ignores the temporal order information and takes the information of every
step in the trajectory into consideration, as shown in the Eqn.(5). As pointed out by some previous
work, the OT reward is not always correct where noisy OT rewards could distract the agent from
learning some key early behaviors [30]. To mitigate this issue, we introduce a concise solution by
adding a temporal mask to the cost matrix.

For an agent trajectory τ = (o1, · · · , oT ) and an expert trajectory τE = (oE1 , · · · , oET ), we denote
the context cost matrix as Ĉ ∈ RT×T and the transport plan as µ ∈ RT×T . The row sum and column
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Figure 3: An illustration of the proposed TemporalOT method. (left) Instead of using a pair-wise
cosine similarity as the transport cost, we use a group-wise cosine similarity to learn a more accurate
cost matrix. (right) We use a temporal mask to enforce the OT reward to focus on a narrow scope to
avoid potential distractions from observations outside of the mask window.

sum of µ equal to the constraint s = [ 1T , · · · ,
1
T ] ∈ RT . We proposed to introduce a temporal mask

M ∈ RT×T to the transport plan, where M(i, j) ∈ [0, 1]. We can express the masked optimal
transport objective in the following vector form [16]:

µ∗ = argmin
µ

⟨M ⊙ µ, Ĉ⟩F − ϵH(M ⊙ µ), s.t. µ1 = µT1 = s, (7)

where ⟨·, ·⟩F is the Frobenius norm and we add an entropy regularizer H(·) of the masked transport
plan M ⊙ µ. We can solve Eqn.(7) by the Lagrangian:

L(µ, α, β) = ⟨M ⊙ µ, Ĉ⟩F + ϵ
(
⟨M ⊙ µ, log(M ⊙ µ)⟩F − 1T (M ⊙ µ)1

)
−

⟨α, (M ⊙ µ)1− s⟩F − ⟨β, (M ⊙ µ)⊤1− s⟩F ,
(8)

where α and β are two Lagrangian multipliers. By using different temporal mask, we can control
what kind of temporal order information we use in the OT reward. For example, M = 1 degrades to
the original OT reward without temporal order information, and a lower triangle matrix corresponds
to the causal mask in the Transformer decoder [55], which indicates that we only concern the past
steps observations. In our method, we use a variant of the diagonal matrix:

M(i, j) =

{
1, if j ∈ [i− km, i+ km],

0, otherwise,
(9)

where km is a window size parameter that controls the scope we use in the masked OT rewards. A
smaller mask window size km refers to a closer match w.r.t. to the expert demonstration. We select a
diagonal-like matrix because we follow previous learning from demonstration literature to assume
that the agent has a similar movement speed as the expert [30]. Under this assumption, we adopt the
distance between the time step indexes to represent temporal affinity information. Figure 3 illustrates
the main ideas of the proposed TemporalOT method.

4 Experiments

In this section, we aim to answer the following questions: (1) How does the proposed TemporalOT
method perform compared with other baselines? (2) Are the proposed context-embedding based cost
function and temporal mask useful? (3) How do the key parameters influence the performances? (4)
Is TemporalOT effective with both state-based and pixel-based observations?

4.1 Experimental Setup

We implement TemporalOT-RL in PyTorch [42] based on the official ADS implementation1. We use a
pretrained ResNet50 [20] network as the fixed visual encoder to extract the image embedding for each
pixel observation. Unlike the original ADS experiments which use a fixed goal in each task, we adopt
a more challenging setting where the goal position changes for each episode. Moreover, we only
provide two expert video demonstrations to the RL agent. For the experiment results, we evaluate the
RL agent for 100 trajectories every 20000 steps. We report the mean and standard deviation of the
evaluation success rate across 5 random seeds. We define one trajectory to be successful if the RL
agent solves the task at the last step. More detailed information is available in the Appendix B.

1https://github.com/dwjshift/IL_ADS
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Table 1: Experiment results of success rate on the Meta-world benchmark.

Environment TaskReward BC GAIfO OT0.99 OT0.9 ADS TemporalOT

Basketball 0.0 (0.0) 0.2 (0.4) 0.0 (0.0) 0.0 (0.0) 76.6 (27.4) 42.2 (44.5) 94.4 (4.7)
Button-press 14.0 (18.5) 1.7 (2.4) 1.0 (1.1) 88.8 (2.5) 85.2 (3.3) 89.0 (3.8) 92.4 (3.6)
Door-lock 86.2 (12.4) 4.6 (7.0) 8.8 (12.2) 3.0 (5.5) 2.8 (2.0) 3.2 (2.7) 33.4 (2.8)
Door-open 0.0 (0.0) 10.7 (10.3) 2.2 (1.7) 46.2 (33.6) 30.2 (34.5) 52.0 (42.7) 78.4 (12.4)
Hand-insert 0.8 (1.6) 2.3 (2.1) 8.6 (4.4) 29.0 (9.7) 11.2 (2.3) 35.0 (5.3) 36.8 (6.6)
Lever-pull 0.0 (0.0) 0.8 (1.6) 3.4 (1.9) 15.4 (15.5) 35.6 (12.8) 21.2 (12.0) 53.6 (7.7)
Push 1.0 (0.7) 0.4 (0.8) 0.0 (0.0) 14.2 (7.5) 7.0 (2.6) 17.2 (5.6) 8.4 (1.7)
Stick-push 0.0 (0.0) 0.0 (0.0) 18.8 (22.9) 0.0 (0.0) 48.8 (41.5) 20.0 (40.0) 97.6 (2.6)
Window-open 85.6 (12.2) 1.6 (2.7) 4.0 (4.7) 54.0 (28.0) 22.4 (22.9) 43.6 (20.5) 55.2 (2.3)

Average 20.8 2.5 5.2 27.8 35.5 35.9 61.1

Figure 4: Ablation for model components. Both proposed components are useful.

4.2 Baselines

We compare the following baseline methods. (1) TaskReward: training a backbone RL agent from
DrQ-v2 [56] with the oracle task reward rtask

i = δsuccess. The reward is 1 when the task is solved and
otherwise the reward is 0. (2) BC: a naive behavior cloning agent which has the access of the expert
action. (3) GAIfO: another IL baseline which learns a discriminator to provide proxy reward [53]. (4)
OT: we use an online version of OTR [31] agent where we first rollout the RL agent to collect online
trajectories and then relabel the reward with OTR for RL training. (5) ADS: a variant of OT baseline
which adaptively adjusts the discount factor w.r.t. a progress tracker [30].

4.3 Results on the Meta-world Benchmark Tasks

We first validate the effectiveness of TemporalOT on nine Meta-world [57] tasks. Experiment results
are shown in Table 1. We can observe that TemporalOT generally outperforms the other baselines
without using the task rewards. Moreover, the TaskReward baseline only shows good performance on
the Door-lock and Window-open tasks. The main reason is that the RL agent fails to collect the first
successful trajectory. For example, the goal of the Basketball task as shown in Figure 1 is to pick
up the basketball and move to a target position above the rim. With the oracle sparse task reward,
the RL agent only receives a nonzero reward until it first successfully solves the task. Under such
circumstances, it is particularly challenging to collect the first successful trajectory with only zero
task rewards and random action explorations. On the other hand, we can observe that the two IL
baselines, BC and GAIfO [53], perform much worse than other OT-reward based baselines. This
is because we only provide two expert video demonstrations with a few hundred samples, where
the IL-based methods suffer from an over-fitting issue. We further compare two OT agent baselines,
where OT0.99 uses γ = 0.99, and OT0.9 uses γ = 0.9. We have a similar conclusion as in ADS that
using a smaller discount factor is helpful to learn early behaviors in some tasks that strongly rely on
the progress dependency, i.e., Basketball. TemporalOT outperforms the recent SOTA baseline ADS
in 8 out of 9 tasks, which proves the effectiveness of the proposed method.

4.4 Ablation Studies on Different Model Components

We further conduct ablation studies to validate the effectiveness of the proposed context cost matrix
and temporal mask in TemporalOT. In Figure 4, no-mask refers to a variant of TemporalOT without
mask and no-context refers to a variant of TemporalOT without the context cost matrix. We can
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Figure 5: Influences of key parameters. A medium number of context length kc or mask length km
performs the best. The agent performs better with more expert demonstrations.

Figure 6: Results with pixel-based inputs. TemporalOT is also effective with pixel-based inputs.

observe that removing any of the two components will lead to a degraded performance. Moreover,
the more important component varies depending on the task. For example, the temporal mask is more
important in the Door-open task, and the context cost matrix is more important in the Stick-push task.

4.5 Ablation Studies on Different Key Parameters

We then validate the efficacy of different key parameters, i.e., the context length kc for the context
embedding, window size km for the temporal mask, and the demonstration number NE . From
Figure 5, we can observe that a medium number of kc and km performs the best and a larger NE

improves the performances. A large context length kc does not perform well because it will distract the
OT reward from the current step and introduce extra reward noise. A smaller mask window size km
makes the learning more difficult because it only receives information from nearby observations, and
a larger kc will gradually degrade to the naive OT reward. Further, having more expert demonstrations
is helpful in mitigating the potential over-fitting issue and improving the final performance.

4.6 Results with Pixel-based Observations

We also evaluate the proposed method with pixel-based observations, where we follow the same DrQ-
v2 model setting as the ADS baseline. Figure 6 shows the results of the comparison of TemporalOT
with ADS. We can observe similar conclusions as in Table 1 that our proposed TemporalOT method
also outperforms the ADS baseline with pixel-based inputs, where TemporalOT usually converges
faster than ADS and (or) achieves a higher final success rate. Moreover, we can observe that
sometimes the pixel-based agent learns faster than its dense state-based counterpart, which indicates
that the agent can extract more effective representations from the pixel inputs.

4.7 Visualization for Bad Cases

In this subsection, we visualize some bad cases of OT-based RL agents to provide readers more
insights about when OT-based RL agents are less useful. Figure 7 plots a typical bad case for the
OT/ADS/TemporalOT agents in the Hand-insert task. The top row is the expert trajectory, and the
second row is the agent trajectory. The goal of the Hand-insert task is to move the brown block to a
target position in the hole. We can observe that the RL agent mainly focuses on imitating the arm
behaviors which ends in the target position, but it ignores the brown block. The main reason for the
this bad case is that the color of brown box is very close to the table background which sometimes
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Figure 7: Bad case analysis. Compared with the expert trajectory (top), the agent focused on
imitating the arm behavior (bottom) and missed the details, i.e., grasping the block.

make it difficult for the pretrained visual encoder to capture the subtle information. More bad case
analyses are available in the Appendix A.2.

5 Related Work
Learning with a Few Demonstrations. There is a large body of work on leveraging demonstrations
for policy learning, ranging from the basic behavior cloning [12, 45] to demonstration-aided RL [43].
There is also work on leveraging demonstration data for offline pre-training [60, 36, 61], to either
warm-start the policy [36] or help with exploration [61, 37, 22]. However, the amount of demonstra-
tions required for a high-quality pre-training is typically large. In this work, we focus on the setting
where only a small number of demonstrations are provided [5], thus greatly relieving the burden of
generating demonstrations. Optimal Transport based imitation is a recently emerged approach in this
direction, which will be reviewed in the subsequent section.

Optimal Transport-based Reward for Imitation and RL. Optimal Transport (OT) has been shown
to be effective for imitation learning [18, 31]. Optimal Transport Reward Labeling (OTR) [31] uses
Sinkhorn distance [4] to compute a similarity metric for a trajectory w.r.t. an expert demonstration
and uses this metric as rewards for offline RL datasets without rewards [31]. Automatic Discount
Scheduling (ADS) [30] uses a similar OT-based approach for reward calculation. The core idea of
ADS is to incorporate a scheduling of the discount factor for online RL to mitigate the potentially
distracting OT reward from temporally distant states. Our work aligns with previous work in this
category, and addresses some common issues that are shared by previous methods.

6 Limitations
Since our work is closely related to IL, our method shares some common limitations of IL. For
example, the success of our method heavily depends on high-quality expert video demonstrations.
If we are facing a new task without any available expert demonstrations, our method will be less
useful. Moreover, if the given demonstrations are sub-optimal or biased, the learned policies will
inherit these flaws as well. Moreover, the performance of the proposed method relies on the quality of
the pretrained visual encoder. If the pretrained visual encoder fails to capture some key information
in the pixel observation, then our method will also fail to take such key details into consideration.
Another limitation of our work is that the computation cost of the proposed method is related to the
number of the given expert video demonstrations. A larger number of expert demonstrations will
increase the computation cost when we compute the optimal transport plan.

7 Conclusion
This paper studies the problem of learning effective robot policies with expert video demonstrations.
We focus on a challenging setting where there are only two demonstrations available and the environ-
ment does not provide any task reward. Following the line of research of OT-based proxy reward, we
first discuss some challenges of the existing methods due to the overlook of temporal information.
Further, we introduced a new method named TemporalOT, which incorporates temporal information
to existing baseline by using a context-embedding based cost matrix and a mask mechanism. Experi-
ments on nine Meta-world benchmark tasks showcase the effectiveness of the proposed method. One
interesting future direction is to extend the current method to a camera-view invariant agent, where
we can learn policies w.r.t. expert video demonstrations from different camera views.
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Appendix

A Additional Experiment Results

A.1 Evaluation Curves

Figure 8 shows the evaluation curves corresponding to the results in Table 1. We can observe that
TemporalOT generally outperforms the other baselines which do no use the task reward.

Figure 8: Evaluation curves on the Meta-world benchmark tasks.

A.2 Bad Case Analysis

In this subsection, we analyze more bad cases in different tasks. Similar to Figure 7, we visualize
the expert trajectory (top) and an agent trajectory (bottom) of some typical bad cases in different
tasks. We can observe that the robot arm generally displays a similar behavior as demonstrated in the
expert trajectory. The agent did not solve these tasks because it – (A) failed to grab the handle in the
Door-open task; (B) failed to touch the knob in the Door-unlock task; (C) failed to pick the red block
in the Push task; (D) failed to pick up the blue stick in the Stick-push task.

A.3 Pretraining with Expert Data

In this subsection, we validate the effectiveness of using imitation learning, i.e., behavior cloning
(BC), to first initialize the robot policy and then fine-tune it with TemporalOT. In this experiment, we
use action-inclusive expert demonstrations to pretrain the robot policy with behavior cloning loss.
Table 2 shows the results on the Door-open task. The BC baseline is a pure offline method where the
parameters are fixed after pretraining. TemporalOT-P is the variant that fine-tunes a pretrained BC
policy using TemporalOT. We can observe that incorporating pretraining helps to improve the sample
efficiency. Moreover, we can notice a small success rate drop (which recovers later) at the initial
phase when we transit from offline to online training from step 0 to step 4e4. This is an initial-dipping
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Figure 9: Visualization of more bad cases in the (A) Door-open task, (B) Door-unlock task, (C) Push
task and (D) Stick-push task.

phenomenon as also being reported in previous offline RL literature and can be improved by designing
more specific offline-to-online RL methods [59, 60].
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Table 2: Pretraining with action-inclusive demonstrations is helpful.

0 2e4 4e4 6e4 8e4 1e5 5e5 1e6

BC 10.8 - - - - - - -
TemporalOT 0 2.0 0 0 5.0 16.6 57.8 78.4
TemporalOT-P 10.8 6.8 25.0 42.8 48.6 55.4 70.8 82.0

Table 3: Experiment results of success rate for demonstrations with different speed.

1x 2x 3x 4x

Basketball 94.4 (4.7) 91.8 (8.9) 77.2 (8.4) 43.8 (29.5)
Button-press 89.0 (3.8) 72.4 (3.0) 65.6 (5.4) 57.8 (7.4)
Door-open 78.4 (12.4) 76.2 (10.4) 49.4 (20.3) 20.4 (9.2)

A.4 Ablation Studies for Expert Demonstration with Different Speed

Our work inherits an implicit assumption from learning from demonstration literature that the agent
has a similar movement speed as the expert agent. Under this assumption, we use the distance
between the time step indexes to represent temporal affinity information in the temporal mask. If
the discrepancy between expert-agent movement speed is large, then the assumption will be broken.
To validate how does such discrepancy influence the model performance, we run experiments using
expert demonstrations with different speed. We generate an N times faster expert demonstration by
sampling the original expert trajectory every N steps. Table 3 shows the results of using expert demo
with different speed. We can observe that as the discrepancy between the expert-agent movement
speed increases, the final success rate decreases. Using a double speed demonstration in the Basketball
task and Door-open task achieves a slightly worse performance than the original demonstration.
However, using a three times faster or four times faster expert demonstration performs quite badly.
This is because a faster expert trajectory corresponds to a shorter sequence of demonstration frames,
where it is more likely that the important information is dropped.

A.5 Ablation Studies for Different Visual Encoders

In this subsection, we compare the effectiveness of using different visual encoders in TemporalOT.
In particular, we compare three different ResNet variants (ResNet18, ResNet50, ResNet152) using
the checkpoints from torchvision [34]. From Figure 10 (left), we can observe that ResNet50 and
ResNet152 encoders show similar final performances. Here, ResNet18 underperforms the other two
encoders because it is quite weak, such that sometimes it fails to capture the key information of the
image. The results in the Figure 10 (left) indicate that a reasonably good visual encoder is usually
enough to extract effective visual embeddings for computing OT rewards in RL.

A.6 Ablation Studies for Different Mask Designs

In this subsection, we try a variant of TemporalOT that uses a dynamic mask in computing the
OT rewards. Unlike Eqn.(9) where the masked position M(i, j) always follows a fixed rule that
j ∈ [i− km, i+ km], we introduce the following dynamic counterpart,

M(i, j) =

{
1, if j ∈ [c− km, c+ km],

0, otherwise,
(10)

where the mask window center c = argminj Ĉ(i, j) and j ∈ [0, i]. Eqn.(10) means we select
an index j in the expert trajectory that has the lowest transport cost w.r.t. the current observation
oi. We further add a constraint j ∈ [0, i] to avoid looking into distant future steps as pointed in
Section 3.2.3. The experiment results in Figure 10 (right) show that the learning-based temporal
mask in Eqn.(10) slightly outperforms our previous rule-based temporal mask in Eqn.(9). Since the
main focus of this work is to use a simple and easy to understand design to illustrate the benefits
of incorporating temporal information into OT rewards in RL, we leave the investigation of more
sophisticated dynamic temporal masks to the future work.
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Figure 10: More ablation studies. (left) A comparison of different visual encoders. (right) Using a
dynamic temporal mask slightly improves the performance.

B Experimental Setup

B.1 Evaluation Environments

In the experiments, we focus on the Meta-world benchmark tasks [57]. Figure 11 shows the nine
selected environments that we use in the experiments. In each environment, the robot arm aims to
solve a specific task. We use the same task length parameter from the ADS paper [30]. The task
lengths for the Basketball task and Lever-pull task are 175 steps and the task lengths for the other
tasks are 125 steps. The goals for the nine selected tasks are as following:

• Basketball task: the arm aims to grasp the orange basketball and move to a target position
above the rim.

• Button-press task: the arm aims to push down the red button.
• Door-lock task: the arm aims to rotate the knob to a target angle.
• Door-open task: the arm aims to open the door to a target position.
• Hand-insert task: the arm aims to move a brown block to a target position in the hole.
• Lever-pull task: the arm aims to move the lever to a target height.
• Push task: the arm aims to move the red cylinder to a target position on the table.
• Stick push task: the arm aims to grab the blue stick and push the bottle to a target position.
• Window open task: the arm aims to open the window to a target position.

B.2 Implementation Details

Our code is based on the official implementation of ADS in PyTorch [41]. We also use the Meta-
world environment [57] provided in the ADS codebase. For the fixed pretrained visual encoder,
we use the Resnet50 [20] network trained on the ImageNet dataset [7]. In particular, we adopt the
official Resnet50 checkpoint provided by Torchvision [34]. For the other main softwares, we use the
following package versions:

1. Python 3.9.19
2. numpy 1.26.4
3. torch 2.2.2
4. torchvision 0.17.2
5. pot 0.9.3
6. dm-control 1.0.17
7. dm_env 1.6
8. mujoco-py 2.1.2.14
9. cython 3.0.0a10

10. gym 0.22.0

The pseudo-code of TemporalOT is summarized in Algorithm 1.
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Figure 11: Visualization of the nine evaluation tasks in the experiments.

Algorithm 1 Temporal Optimal Transport Reward (TemporalOT)
Input: a fixed pretrained visual encoder f , NE expert video demonstrations, temporal mask
window size km, context embedding length kc, trajectory length T , total trajectory number N ,
experience replay buffer D.
Output: trained RL agent π(a|s).
for i = 1 to N do

Unroll policy π(a|s) to collect a trajectory τ = (o1, · · · , oT ).
Compute visual embeddings using of the trajectory (f(o1), · · · , f(oT )).
for j = 1 to NE do

Compute the context cost matrix Ĉ as in Eqn.(6) for the j-th expert demonstration.
Compute the masked OT reward Rj

τ = (rj0, · · · , r
j
T ) with Eqn.(9).

end for
Select the expert demonstration with the largest trajectory OT reward sum as the final OT reward
rOT
τ = (rOT

0 , · · · , rOT
T ).

Save the labeled transition (oi, ai, r
OT
i , oi+1) to the replay buffer.

Update the RL agent with sampled transitions as in Eqn.(1).
end for

B.3 Parameter Settings

In the experiments, we mainly follow the parameter settings as in the ADS baseline. Some of the key
parameters are summarized in the Table 4.
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Table 4: Summarization of hyper-parameters.

Parameter Value

Total environment step 1e6
Adam learning rate 1e-4
Batch size 512
Target network τ 0.005
Discount factor γ 0.9

Expert demo number NE 2
Context length kc 3
Mask window size km 10

DrQ buffer size 1.5e5
DrQ action repeat 2
DrQ frame stack 3
DrQ image size (84, 84, 3)
DrQ embedding dimension 50
DrQ CNN features (32, 32, 32, 32)
DrQ CNN kernels (3, 3, 3, 3)
DrQ CNN strides (2, 1, 1, 1)
DrQ CNN padding VALID
DrQ actor network (1024, 1024, 1024)
DrQ critic network (1024, 1024, 1024)

B.4 Computation Resources

We run our experiments on a workstation with an NVIDIA GeForce RTX 3090 GPU and a 12th Gen
Intel(R) Core(TM) i9-12900KF CPU. The average wall-clock running time for TemporalOT on the
state-based experiment and pixel-based experiment are 1 hour and 3 hours, respectively.

C Solution of the Masked OT Objective

In this section, we provide the solution of the masked OT objective in the Eqn.(7).

µ∗ = argmin
µ

⟨M ⊙ µ,C⟩F − ϵH(M ⊙ µ), s.t. µ1 = µT1 = s,

To compute the optimal transport plan µ∗, we first write its Lagrangian as follows:

L(µ, α, β) = ⟨M ⊙ µ,C⟩F + ϵ
(
⟨M ⊙ µ, log(M ⊙ µ)⟩F − 1T (M ⊙ µ)1

)
−

⟨α, (M ⊙ µ)1− s⟩F − ⟨β, (M ⊙ µ)⊤1− s⟩F .
We set the partial derivative of the Lagrangian to zero:

∂L

∂µi,j
= Mi,jCi,j + ϵMi,j log(Mi,jµi,j)−Mi,jαi −Mi,jβj = 0.

If Mi,j = 1, then we have:

log(µi,j) =
αi

ϵ
+

βj

ϵ
− Ci,j

ϵ
.

We can express it in the matrix form:

M ⊙ µ = diag(u)Kdiag(v),

where u = eα/ϵ, K = M ⊙ e−C/ϵ, and v = eβ/ϵ. The constraints can be expressed as:

diag(u)Kdiag(v)1 = (diag(u)Kdiag(v))⊤1 = s.

We can later use the Sinkhorn algorithm [4] to iteratively compute u and v:

u(l+1) =
s

Kv(l)
,

v(l+1) =
s

K⊤u(l+1)
.
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D Broader Societal Impacts

In this work, we investigate the application of OT-based proxy reward in learning effective robot
policies with a few expert video demonstrations. Since there are usually no available task rewards in
real-world scenarios, our method holds promise for the advancement of real-world RL applications.
On the other hand, the proposed method aims to learn a policy that behaves similarly to the given
demonstrations. Once the given expert demonstration contains some dangerous behaviors, our method
is also likely to learn the dangerous behaviors, which will lead to some negative societal impacts. To
mitigate such potential negative societal impacts, we can introduce an extra safety reward to prevent
the agent from learning dangerous behaviors.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We summarized the contributions and scope in the abstract and introduction,
and the claims match the experimental results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed about the limitations of this work in Section 6, where we
discussed about the assumptions, factors that influence the performance of the approach,
and the computation cost.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: We provided some theoretical result for Eqn.(7) in the Appendix C.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide details of the experiments in the Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We will release the code and data.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provided details of the experiments in the Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We reported the mean and standard deviation of the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We describe the computational cost of the experiments in Appendix B.4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We followed the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discussed about both potential positive societal impacts and negative
societal impacts of this work in the Appendix D.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: we have cited the original paper and our code follows the MIT License.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We will release the code with documentation.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA] .
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] .
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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