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Abstract001

Multiple-choice question (MCQ) benchmarks002
are widely used for evaluating Large Language003
Models (LLMs), yet their reliability is under-004
mined by benchmark contamination. In this005
study, we reframe contamination as an inher-006
ent aspect of learning and seek to disentan-007
gle genuine capability acquisition from superfi-008
cial memorization in LLM evaluation. First,009
by analyzing model performance under dif-010
ferent memorization conditions, we uncover011
a counterintuitive trend: LLMs perform worse012
on memorized MCQs than on non-memorized013
ones, indicating the coexistence of two distinct014
learning phenomena, i.e., rote memorization015
and genuine capability learning. To disentangle016
them, we propose TrinEval, a novel evaluation017
framework that reformulates MCQs into an al-018
ternative trinity format, reducing memorization019
while preserving knowledge assessment. Ex-020
periments validate TrinEval’s effectiveness in021
reformulation, and its evaluation reveals that022
common LLMs may memorize by rote 20.5%023
of knowledge points (in MMLU on average ).024

1 Introduction025

The rapid advancement of Large Language Mod-026

els (LLMs), driven primarily by large-scale pre-027

training on massive datasets, has endowed these028

models with remarkable proficiency across diverse029

tasks (Ouyang et al., 2022; OpenAI, 2024; Touvron030

et al., 2023). As LLMs continue to improve, evalu-031

ating their genuine capacities has emerged as a fun-032

damental challenge, necessitating proper method-033

ologies to ensure fairness and robustness (Ganguli034

et al., 2023; Liu et al., 2023b).035

Among the developed methods, multiple-choice036

question (MCQ) benchmarks have become a stan-037

dard approach for evaluation. Typically, LLMs038

are presented with a question and a fixed set of039

answer choices, requiring them to select the most040

appropriate option (see Fig. 1 for illustration). This041

MCQ Evaluation

             Question: The color of a pixel can be represented using the RGB (Red, 
             Green, Blue) color model, which stores values for red, green, and blue, 
             each ranging from 0 to 255. How many bits (binary digits) would be 
             needed to represent a color in the RGB model?

             Options: A) 8  B) 16  C) 24  D) 32

             Answer: C

Rote Memorization Option Content 
Extraction

(√: Exactly Match
×: Otherwise)

       : A) 8 √  B) 16 √  C) 24 √  D) 32 √

Predict     

        : B ×

Genuine Capability 
Learning        : A) 64 ×  B) 32 ×  C) 24 √  D) 8 ×        : C √

Figure 1: MCQ-based LLM evaluation. We observe
that LLMs tend to underperform on memorized MCQs.

format enables straightforward performance mea- 042

surement through accuracy metrics and could cover 043

a wide range of subjects. However, despite their 044

widespread adoption, MCQ-based evaluation raises 045

concerns about reliability due to benchmark con- 046

tamination (Li and Flanigan, 2024; Kim et al., 047

2024), i.e., test data unintentionally appears in train- 048

ing corpora and models may exploit memorized 049

content rather than demonstrating genuine under- 050

standing, inflating their apparent capabilities. For 051

instance, Zhou et al. (2023) discovers that smaller 052

models with deliberate pre-exposure could outper- 053

form their larger counterparts, thereby contradict- 054

ing widely accepted scaling laws. 055

To mitigate the issue, Zhou et al. (2023) advo- 056

cates the removal of benchmark datasets from pre- 057

training corpora. However, this strategy conflicts 058

with the fundamental objective of large-scale pre- 059

training, which aims to maximize model perfor- 060

mance by exposing LLMs to as much data as pos- 061

sible. From a broader perspective, human learning 062

also involves problem-solving through practicing 063

on similar questions, e.g., exam preparation. While 064

rote memorization of specific questions and an- 065

swers merely lead to short-term success, repeated 066

practicing can also facilitate deeper conceptual un- 067

derstanding. Inspired, rather than viewing bench- 068

mark contamination as a flaw to be eradicated, 069

which is a nearly impossible task at scale (Sainz 070

et al., 2023; Bordt et al., 2024), we argue that it 071
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is an inherent aspect of learning and should be ac-072

counted for in evaluation. Therefore, this study073

shifts its focus to evaluating LLMs in the presence074

of contamination, aiming to distinguish genuine ca-075

pability gains from superficial memorization effects.076

The explicit disentangling of these two learning ef-077

fects remains largely unexplored in MCQ-based078

evaluation, yet we believe it marks a crucial step079

towards developing more rigorous and unbiased080

evaluation methodologies.081

To investigate the effects of superficial memo-082

rization in LLM evaluation, we compare model083

performance under different memorization condi-084

tions. Inspired by membership inference attacks085

(MIA) (Carlini et al., 2022a, 2021), we define su-086

perficial memorization as an LLM’s ability to ver-087

batim reproduce content, e.g., MCQs in our case.088

Using this criterion, we partition the MMLU bench-089

mark (Hendrycks et al., 2020)1 into memorized and090

non-memorized subsets and evaluate three open-091

source LLMs2 on both. Surprisingly, results reveal092

a consistent yet counterintuitive trend: LLMs per-093

form worse on memorized MCQs than on those not094

(see Fig. 1 for illustration and Fig. 2 for results).095

This challenges the assumption that memorization096

improves model performance and suggests the co-097

existence of two distinct learning phenomena in098

LLMs: rote memorization, where models recall099

content verbatim without true understanding, and100

genuine capability learning, where they internalize101

underlying knowledge.102

The preliminary investigation has several limita-103

tions. First, the binary classification of MCQs as104

either memorized or non-memorized oversimplifies105

the nuances of memorization, potentially overlook-106

ing intermediate cases. Second, we rely on accu-107

racy to measure performance, which is inherently108

unreliable. Third, our analysis could not reveal109

the mutual effects between rote memorization and110

capability learning. To address these challenges,111

we propose TrinEval, a novel evaluation frame-112

work designed to provide a more reliable measure113

of LLM performance by minimizing the influence114

of rote memorization. TrinEval employs a query-115

based probing (q-probing) mechanism (Allen-Zhu116

and Li, 2023) that reformulates MCQs into an alter-117

native trinity format, i.e., entity-attribute-context.118

This could prevent direct content recall while pre-119

1Selected for its popularity and documented data contami-
nation in widely used LLMs (Sainz et al., 2023).

2Llama2-7B (Touvron et al., 2023), Mistral-7B-v0.2 (Jiang
et al., 2023) and Vicuna-v1.5-7B (Zheng et al., 2023b).

serving knowledge assessment. 120

Through experiments, we demonstrate that 121

TrinEval’s reformulation is knowledge-preserving, 122

i.e., maintaining testing problems’ inherent knowl- 123

edge requirements without introducing extra cues, 124

and could effectively reduce memorization. Com- 125

bined with a continuous superficial memoriza- 126

tion quantification metric, TrinEval reveals the in- 127

robustness of LLMs’ capability learning, e.g., with 128

MMLU, tested open-sourced LLMs only mastered 129

19.6% of knowledge points while 20.5% are mem- 130

orized by rote in the meanwhile, shedding light on 131

the necessity for further optimization. 132

2 Related Work 133

2.1 LLM Evaluation on MCQ Benchmarks 134

The rapid advancement of LLMs has driven their 135

expansion into diverse domains, necessitating ro- 136

bust and fair evaluation methodologies (Zheng 137

et al., 2023b; Hu et al., 2025) and platforms (Con- 138

tributors, 2023; Chiang et al., 2024). Among these, 139

evaluating on MCQ benchmarks emerges as a 140

widely adopted approach due to the ease of val- 141

idation and standardized comparison across mod- 142

els (Hendrycks et al., 2020; Wang et al., 2024; 143

Zhong et al., 2023; Huang et al., 2024). 144

However, MCQ-based evaluations are not with- 145

out limitations. Biases in LLM responses have 146

been extensively studied (Dai et al., 2024), reveal- 147

ing issues such as social biases (Salewski et al., 148

2024; Liu et al., 2023a) and order sensitivity (Ak- 149

ter et al., 2023). To mitigate the latter, Pride (Zheng 150

et al., 2023a) estimates the option positional bias 151

after option permutation. To examine mastery of 152

knowledge, Zhao et al. (2023) applies a hypothesis 153

testing method and checks rephrased-context con- 154

sistency for a given question. Benchmark contam- 155

ination is arguably the most severe challenge for 156

MCQ-based evaluations, which may result in mis- 157

leadingly inflated performance (Zhou et al., 2023; 158

Li and Flanigan, 2024). To address this, prior stud- 159

ies have explored data filtering, frequently-updated 160

test sets (White et al., 2025), and data perturba- 161

tion (Li et al., 2024). 162

In this paper, instead of attempting to elimi- 163

nate contamination, we evaluate LLMs under its 164

presence, aiming to distinguish genuine capability 165

gains from superficial memorization effects. This 166

marks a new perspective of LLM evaluation, reveal- 167

ing the extent to which models truly understand 168

concepts rather than merely memorizing data. 169

2



2.2 LLM Memorization170

Membership inference attacks (MIA) are com-171

monly used to determine whether a specific sample172

was present in a model’s training data. Initially173

studied in smaller models, Carlini et al. (2022b) in-174

vestigates deep learning memorization mechanisms175

by identifying and removing easily detectable mem-176

orized samples. In the context of LLMs, MIA has177

been employed to assess privacy risks, revealing178

that both open- and closed-source models can leak179

sensitive personal data when provided with related180

prompts (Kim et al., 2024).181

Beyond privacy concerns, Carlini et al. (2022a)182

formally defines LLM memorization as a model’s183

ability to verbatim generate text sequences follow-184

ing a prefix prompt. Using this definition, sev-185

eral studies (Sainz et al., 2023; Bordt et al., 2024;186

Carlini et al., 2021) have examined mainstream187

LLMs, confirming widespread test data leakage188

across popular benchmarks. To quantify memoriza-189

tion strength, researchers (Shi et al., 2023; Zhang190

et al., 2024; Oren et al., 2023; Carlini et al., 2019)191

have further explored methods such as analyzing192

token probability distributions in generated out-193

puts. However, while these studies extensively ana-194

lyze LLM memorization, few explicitly investigate195

how memorization influences an LLM’s problem-196

solving ability. In contrast, our work focuses on197

their interplay, presenting a more rigorous approach198

to fair and reliable LLM evaluation.199

3 Methodology200

3.1 Pre-investigation of LLM Capability w.r.t.201

Memorization202

Benchmark contamination often leads to inflated203

performance estimate. This phenomenon is com-204

monly attributed to models memorizing specific205

questions and answers rather than demonstrating206

genuine problem-solving abilities. However, the207

extent to which and how memorization influences208

LLM performance remains unclear. To disentan-209

gle genuine capability acquisition from superficial210

memorization, we conduct a preliminary investiga-211

tion into how LLMs perform under different memo-212

rization conditions. By examining model accuracy213

on memorized vs. non-memorized subsets, we aim214

to reveal the role of memorization in LLM evalua-215

tion and establish a foundation for more rigorous216

assessment methodologies.217

Formally, we define an MCQ as x =218

{xQ, xO, xW }, where xQ, xO, and xW refer to219

Llama/0s Llama/5s Mistral/0s Mistral/5s Vicuna/0s Vicuna/5s
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Figure 2: Model performance on memorized and non-
memorized subsets of MMLU, where ‘0s’ and ‘5s’ stand
for zero- and five-shot prompting, respectively.

the question, options, and ground-truth answer, re- 220

spectively. Following the memorization definition 221

from Carlini et al. (2022a), we say an MCQ x is 222

memorized by LLM G if G can extract/generate the 223

content of options xO exactly given question xQ. 224

In practice, we incorporate meta-information (e.g., 225

benchmark name) and 5-shot examples to recall 226

memory and use greedy decoding (i.e., temperature 227

fixed to 0) during extraction (Bordt et al., 2024; 228

Sainz et al., 2023) (refer to Appendix A for the 229

complete prompt). Using MMLU (Hendrycks et al., 230

2020) as the evaluation benchmark, we divide the 231

test set MCQs into memorized and non-memorized 232

subsets, where the memorized subset consists of 233

909–982 questions (accounting for 6.5%–7.0% of 234

the total 14,006) depending on the tested LLMs 235

Llama2-7B, Mistral-7B-v0.2, and Vicuna-v1.5-7B. 236

The detailed statistics of questions across subsets 237

are given in Table 1 of Appendix A, and we also 238

observe that the majority of memorized questions 239

are those relatively simple, i.e., not in MMLU- 240

PRO (Wang et al., 2024). 241

We then compute the accuracy (ACC) of tested 242

LLMs by subsets as a proxy of model performance 243

under different memorization conditions. The re- 244

sults of both zero- and five-shot prompting are re- 245

ported in Fig. 2, from which we observe a con- 246

sistent yet somehow counterintuitive trend: LLMs 247

exhibit 47.2% lower accuracy on average on memo- 248

rized MCQs compared to non-memorized ones, re- 249

gardless of LLMs and prompting techniques. This 250

finding challenges the commonly held assumption 251

that memorization directly improves model perfor- 252

mance. In addition, it also implies the coexistence 253

of two distinct learning paradigms within LLMs, 254

which we term rote memorization and genuine ca- 255

pability learning, respectively. 256

However, our pre-investigation has its limita- 257
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tions. The binary classification of memorization258

potentially overlooks more nuanced forms of learn-259

ing. Additionally, using ACC as the performance260

metric does not truly capture model capacity. We261

address these two issues in the following subsec-262

tions, which then ensure a disentangle analysis of263

rote memorization and capability learning.264

3.2 Quantifying LLM Memorization265

For quantifying the memorization of LLMs, prior266

research (Shi et al., 2023; Zhang et al., 2024) sug-267

gests that outlier tokens, which exhibit higher gen-268

eration probabilities, are more likely to be found269

in memorized samples. Building on this idea, we270

develop a metric that utilizes the bottom K% of to-271

ken probabilities within the generated sequence as a272

measure of memorization. Formally, the memoriza-273

tion score Fm(x,G) of LLM G on text sequence x274

is computed as follows:275

Fm(x,G) =
1

|MK(x)|
∑

xi∈MK(x)

log pG(xi|x1:i−1),

(1)276

where pG(xi|x1:i−1) denotes the generation proba-277

bility of token xi by G given its prefix subsequence278

as context, and set MK(x) includes the K% of279

tokens with the lowest probabilities. The higher280

Fm is, the more likely x is memorized by the LLM,281

i.e., the least memorized content could still been282

extracted with a high probability.283

3.3 Measuring LLM Capability with TrinEval284

We next present TrinEval, a novel evaluation frame-285

work designed to provide a more reliable measure286

of LLM performance by minimizing the influence287

of rote memorization.288

To understand how LLMs store and manipulate289

knowledge, Allen-Zhu and Li (2023) created a fic-290

tional biography dataset that enumerates various at-291

tributes (e.g.,, names, jobs, universities) and trained292

LLMs on this dataset. They employed a linear293

query-based probing method to uncover correla-294

tions between the entity token embeddings and the295

associated attributes, revealing that where LLMs296

encode knowledge, e.g., under person names or297

sequence of the knowledge mention, is crucial for298

robust mastery of knowledge. This insight leads us299

to believe that entity tokens, which should ideally300

store related knowledge, are the target for evaluat-301

ing an LLM’s genuine capability.302

However, applying this method to real-world303

datasets, such as MMLU, presents challenges. Un-304

like controlled datasets with explicitly defined at- 305

tributes, real-world data includes a far broader 306

range of possible knowledge. As a result, we can- 307

not enumerate all potential attributes and directly 308

apply linear probing. To this end, we propose 309

TrinEval, a verbal query probing method that refor- 310

mulates MCQs around a knowledge-centric trinity: 311

knowledge entity, attribute, and context. TrinEval 312

is a pluggable augmentation on any MCQ bench- 313

marks and could expose the genuine capability of 314

LLMs by verifying whether they have correctly en- 315

coded knowledge. We next explain the elements in 316

the trinity and how to reformulate. 317

Knowledge entity. We suppose that if an LLM 318

has mastered some knowledge, the key informa- 319

tion pertinent to the knowledge should be encoded 320

within a few subject tokens, namely knowledge en- 321

tity, to support efficient retrieval. By isolating these 322

tokens, TrinEval ensures that only the essential in- 323

formation is considered. 324

Attribute. The attribute acts as a verbal probe 325

to guide the model focusing on the specific fea- 326

ture or property of the knowledge entity being in- 327

quired. This mechanism allows TrinEval to isolate 328

and assess the model’s understanding of the critical 329

aspects of the questioning subject. 330

Context. In a certain portion of questions, the 331

conditions or background context can significantly 332

influence the solution approach. By explicitly in- 333

cluding context in the evaluation process, TrinEval 334

helps the model account for relevant situational de- 335

tails that might otherwise be overlooked, ensuring 336

that the model’s answer is based on a comprehen- 337

sive understanding of the problem. 338

By extracting the core and necessary question 339

information in this trinity format, the reformu- 340

lation by TrinEval is knowledge-preserving for 341

the purposes of assessment. In the meanwhile, it 342

completely destructs the original token sequence, 343

effectively reducing the influence of memoriza- 344

tion. We will empirically verify these properties 345

through experiments. The reformulation is com- 346

pleted by a two-round reflection-based prompting 347

method, with detailed procedure (Alg. 1) and re- 348

lated prompts available in Appendix B. Given an 349

MCQ x = (xQ, xO, xW ), it first queries a capa- 350

ble reformulation LLM to derive the knowledge 351

entity xE , attribute xA, and Context xC from the 352

original x. The LLM is instructed that the triplet 353

should be sufficient for answering the question cor- 354

rectly, without including the answer option itself, 355

ensuring the integrity of the evaluation. The same 356
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LLM then assesses whether the triplet contains all357

necessary information and no redundant details,358

in the meanwhile, yields a rationale xL as reflec-359

tion (Shinn et al., 2024; Yao et al., 2022). If it does,360

the triplet is returned as the re-formulated question.361

Otherwise, the reformulation model refines the ex-362

traction, taking as input xE , xA, xC , and xL, and363

re-evaluates the updated triplet.364

Finally, prompting with the extracted xE , xA,365

and xC as well as options xO, we inspect the gen-366

eration probability of the ground-truth answer xW367

as the first token to measure capability:368

Fc(x,G) = pG(xW |xE , xA, xC , xO). (2)369

As can be seen, the Fc metric retains the necessary370

knowledge-centric information while discarding371

unnecessary biases, especially the rote memoriza-372

tion of LLMs, which leads to the quantification of373

genuine capability of LLMs.374

4 Experiments375

In this section, we conduct extensive experiments376

to answer the following questions:377

Q1. Is TrinEval knowledge-preserving in order to378

fulfill knowledge assessment?379

Q2. Can TrinEval reduce memorization effects dur-380

ing capability evaluation?381

Q3. What does TrinEval reveal about LLMs’ rote382

memorization and genuine capability?383

4.1 Experiment Setup384

Models. We utilize API-based commercial LLMs,385

specifically gpt-4o-2024-08-06 (GPT) (OpenAI,386

2024) and qwen-max-2024-09-19 (Qwen) (Yang387

et al., 2024; Team, 2024) for question reformula-388

tion by TrinEval. Model evaluation is conducted389

on open-source LLMs due to limited budgets, and390

we experiment with three popular LLMs including391

Llama2-7B (Llama) (Touvron et al., 2023), Mistral-392

7B-v0.2 (Mistral) (Jiang et al., 2023), and Vicuna-393

v1.5-7B (Vicuna) (Zheng et al., 2023b). All the394

three LLMs are accessed from Huggingface and395

implemented with transformers library, we thus396

could obtain the log-probability of output token for397

fine-grained study. Throughout our tests, we use398

the default generation parameters and adopt greedy399

decoding to enhance reproducibility.400

Benchmarks. We evaluate LLM on the widely401

used MMLU (Hendrycks et al., 2020) benchmark.402

MMLU consists of 57 subjects from areas includ-403

ing STEM, humanities, social sciences, and others,404

（a）Validation with Qwen （b）Validation with GPT

Figure 3: Knowledge-preserving validation for the re-
formulation by TrinEval. We obtain 4,343 and 4,645
qualified MCQs with Qwen and GPT, respectively, after
reformulation. We then test Qwen and GPT in these
qualified subsets and the green and blue circles stand for
the correctly answered MCQs in TrinEval and original
formats, respectively.

enabling comprehensive evaluation of LLM capac- 405

ity. As there are duplicated MCQs across differ- 406

ent subjects, we eliminate them and obtain 14,006 407

MCQs as the test set. 408

Evaluation. With commercial LLMs, we evalu- 409

ate model performance by extracting answers with 410

regular expressions. For open-source LLMs, we 411

access the output probability of the first generated 412

token (e.g., option IDs A/B/C/D) to obtain a quan- 413

titative performance result. 414

4.2 Q1. Is TrinEval Knowledge-preserving? 415

We first verify whether the reformulation by 416

TrinEval is knowledge-preserving in order to fulfill 417

knowledge assessment. To achieve this, our pri- 418

mary objective is to validate that the reformulation 419

approach (1) does not lose key information that 420

results in previous correctly-answered questions 421

being answered incorrectly and (2) does not intro- 422

duce anomalous or unexpected information that 423

results in inflated performance. 424

Upon completing the complete TrinEval refor- 425

mulation process, we ultimately obtained 4,343 426

MCQs and their corresponding knowledge entities, 427

attributes, and contexts that met our criteria us- 428

ing Qwen, as well as 4,645 qualified MCQs and 429

their respective triplets using GPT. We then instruct 430

Qwen and GPT to answer these respective ques- 431

tions in both the original (baseline) and restated 432

triplet form. The prompts and an MCQ example 433

are available in Table 2 in Appendix and the results 434

are shown in Fig. 3. 435

We can observe that for Qwen, 92.95% of cor- 436

rectly answered MCQs in the TrinEval format main- 437

tain their accuracy in the original format, while 438

for GPT, 90.05% of qualified MCQs are answered 439
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(b) Evocation with Mistral and dev-fsp.
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(c) Evocation with Vicuan and dev-fsp.
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(d) Evocation with Llama2 and seq-fsp.
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(e) Evocation with Mistral and seq-fsp.
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(f) Evocation with Vicuan and seq-fsp.

Figure 4: The results of memorization evocation under various dataset-related information context, with blue and
green curves referring to the memorization difference ∆Fm in the TrinEval and original formats, respectively. In the
x-axis, ‘clean’, ‘meta’, ‘dev-fsp’, and ‘seq-fsp’ stand for without dataset-related context, with the name of the dataset,
with few-shot prompt from the training set, and with few-shot prompt from the test set ahead of the current testing
question. These curves indicate the growing memorization metric ∆Fm with the stronger dataset-related information
in general. However, the ∆Fm by TrinEval under the strongest memory evocation context are consistently lower
than those in the original format, e.g., ‘clean’.

correctly, with 95% of these maintaining accuracy440

in the original format. That is, for both Qwen441

and GPT, we can infer that the correctly answered442

MCQs from the qualified ones in TrinEval format443

can be regarded as a subset of the correctly an-444

swered MCQs with the original MCQ format. This445

proves that the proposed TrinEval reformulation446

method does not incorporate extra information that447

leads to additional capability of LLMs. On the448

other hand, the intersection MCQs between the cor-449

rectly answered in two formats also make up of450

around 95% of the MCQs correctly answered in451

the original MCQ format, which proves that the452

TrinEval incorporates all the necessary information453

to answer the question. In conclusion, our TrinEval454

effectively retains the LLMs’ problem-solving ca-455

pability compared to the original MCQ text.456

4.3 Q2. Can TrinEval Reduce Memorization?457

In this subsection, we aim to validate whether the458

proposed TrinEval can eliminate the unnecessary459

memorization of LLMs, and thus demonstrate en-460

hanced robustness against various perturbations. To461

answer this question, following Bordt et al. (2024),462

we deliberately incorporate the dataset-related in-463

formation into the context and evaluate whether the464

TrinEval reformulation can suppress the growing465

memorization level with memorization evocation466

of different extent and can reveal the genuine capa-467

bilities of LLMs.468

We incorporate the dataset-related information 469

into the context, i.e., the name of the dataset, and 470

the few-shot prompt of samples within the same 471

dataset for the memorization-evocation perturba- 472

tion. Here we use Llama, Mistral, and Vicuna as the 473

tested LLMs since we access the output probabili- 474

ties to compute the memorization metric Fm. As 475

there is no specific zero point of Fm indicating the 476

absolute-no memorization of MCQs given an LLM, 477

in order to better visualize the difference between 478

the proposed TrinEval and the original MCQ base- 479

line format, we take the Fm with vanilla MCQ (i.e., 480

original MCQ format without any dataset-related 481

prompt) as the baseline and visualize the averaged 482

difference between the Fm of the tested format and 483

the baseline. 484

Specifically, for the memorization-evocation per- 485

mutation, we progressively enhance the prompt 486

context for memory evocation, starting from merely 487

providing the dataset name, to offering samples 488

within the same dataset as few-shot prompts (in- 489

cluding the training set of the dataset-dev, and the 490

preceding samples adjacent to the test sample-seq), 491

and finally to providing both as context. Here for 492

each tested MCQ, we calculate the difference be- 493

tween the Fm given the corresponding memoriza- 494

tion evocation prompt and the Fm with the vanilla 495

MCQ baseline. Fig. 4 shows the curve based on 496

the average difference of each MCQ. 497

From this figure, as stated by Bordt et al. (2024), 498
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(a) Fm v.s. Fc with Llama2 based on
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(b) Fm v.s. Fc with Mistral based on
Qwen-extracted triplets.
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(c) Fm v.s. Fc with Vicuna based on
Qwen-extracted triplets.
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(d) Fm v.s. Fc with Llama2 based on
GPT-extracted triplets.

Weak       Strong
Capability Fc

W
ea

k
 

  
   

St
ro

ng
M

em
or

iza
tio

n 
F m

120 152 173 232 252

135 163 188 209 234

154 186 176 194 219

221 180 195 184 149

299 248 197 110 75

75

100

125

150

175

200

225

250

275
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Figure 5: The distribution of MCQs based on Memorization metric Fm v.s. the Capability metric Fc. According to
the values of Fm and Fc, we separate the MCQs equally into five groups and visualize the distribution of MCQs
with the heatmap from weak to strong.

we can see that Fm is growing with the stronger499

dataset-related context. When providing more spe-500

cific context related with the test dataset, the LLMs501

tend to exhibit stronger memorization of the MCQs.502

Specially, for all three open-source LLMs, the503

∆Fm curve of TrinEval is below the curve of the504

original MCQ baseline. More importantly, the Fm505

of TrinEval with the strongest memorization evoca-506

tion is still below the vanilla MCQ baseline, which507

proves that TrinEval can effectively eliminate the508

memorization from LLMs.509

4.4 Q3. TrinEval’s Findings on Memorization510

and Capability511

In this subsection, we aim to explicitly study the512

relationship between the memorization and the ca-513

pability of LLMs with the metrics Fm and Fc. As514

the commercial-API-based LLMs do not provide515

the output probability of the whole vocabulary, we516

mainly use the open-source LLMs to compute these517

two metrics. After obtaining the Fm and Fc of each518

MCQ, we separate all the qualified MCQs into 5519

equal groups. Finally, we utilize the heatmap to520

reveal the relationship between the capability and521

the memorization of the tested LLMs.522

As shown in Fig. 5, most of the MCQs con-523
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Figure 6: Averaged the distance of each MCQs between
the closest 1% MCQs’ embeddings. ‘Rote Memoriza-
tion’ refers to MCQ within lower left 2× 2 squares that
typically exhibits high memorization metric Fm and low
capability Fc while the ‘Genuine Capability Learning’
stands for the MCQ lies within the upper right 2 × 2
squares that has lower probability to be exactly retrieved
but can be solved by LLMs.
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centrate on the lower left corner and the upper524

right corner of the heatmap. Specifically, for Fm525

v.s. Fc with Llama2 based on Qwen-extracted526

triplets, MCQs within the lower left 2× 2 squares527

and the upper right 2 × 2 squares make up of the528

38.57% of all the tested MCQs with a Pearson-529

correlation of -0.7755 (p-value < 0.05), while530

the MCQs within the lower left and upper right531

3 × 3 squares make up of the 74.17% of all the532

tested MCQs with a Pearson-correlation of -0.8124533

(p-value < 0.05). For the results with Mistral534

based on Qwen-extracted triplets, MCQs within535

the lower left and upper right 2× 2 squares make536

up of the 44.90% of all the tested MCQs with a537

Pearson-correlation of -0.8722 (p-value < 0.05),538

while the MCQs within the lower left and upper539

right 3 × 3 squares make up of the 80.82% of all540

the tested MCQs with a Pearson-correlation of -541

0.8794 (p-value < 0.05). More results are shown542

in Tab. 3. This evidence indicates that MCQs with543

lower memorization levels tend to exhibit better544

problem-solving capabilities of LLMs, while those545

with higher memorization levels are associated with546

reduced performance in solving tasks.547

Next, we hypothesize that the LLMs are po-548

tential rote learners through the human mem-549

ory system, which has been characterized by550

two fundamental components: Long-Term Mem-551

orization (LTM) and Short-Term Memorization552

(STM) Shiffrin (2003). Neurobiological studies553

reveal that STM relies on transient synaptic pro-554

tein synthesis with limited temporal persistence555

and functional scalability. In contrast, LTM is con-556

structed through stabilized neuronal memory traces557

that constitute an enduring knowledge framework.558

This neural architecture not only supports STM op-559

erations as a cognitive substrate but also enables560

sophisticated information generalization across di-561

verse contexts. As illustrated in Allen-Zhu and562

Li (2023) and Ovadia et al. (2023), LLMs trained563

with multiple rephrased corpus tend to perform564

better than LLMs trained with only the original565

corpus. When providing only one format of train-566

ing corpus, similar to the STM system, LLMs tend567

to memorize the corpus at token-level rather than568

knowledge-level. In other words, LLMs encode569

these corpora at a shallow level with the original570

format. After questions are rephrased with meth-571

ods like our proposed TrinEval, the input corpus572

seems connected with the known knowledge like573

the LTM for structured storage and enables sophis-574

ticated information generalization. We show more575

detailed results in Appendix C. 576

To further validate our hypothesis, we compute 577

the embeddings of the MCQs within the qualified 578

MMLU dataset and average the distance between 579

the other closest 1% MCQs. We visualize the mean 580

distance of MCQs within the lower left and upper 581

right 2× 2 squares in Fig. 5. The results are shown 582

in Fig. 6. We surprisingly find that the averaged 583

distance of the Genuine Capability Learning MCQs 584

(i.e., MCQs within the upper right 2× 2 squares) 585

is almost half as much as the distance of the Rote 586

Memorization MCQs (i.e., MCQs within the lower 587

left 2× 2 squares). The result hints that the memo- 588

rized MCQs are sparsely encoded by MCQs while 589

the unmemorized ones share common embeddings, 590

which is again coincident with the findings of the 591

STM and LTM. 592

Though it is well believed that memorization 593

may lead to a better but cheating performance of 594

LLMs, we prove that the more LLMs memorize, 595

the worse they are at solving problems. 596

5 Conclusion 597

This study provided a novel perspective on bench- 598

mark contamination in LLM evaluation, reframing 599

it as an inherent aspect of learning. This perspective 600

leaded us to explore the relationship between mem- 601

orization and genuine capability in LLMs. Through 602

our empirical investigation, we observed a surpris- 603

ing result: LLMs performed worse on memorized 604

MCQs compared to those not, suggesting that su- 605

perficial memorization may undermine problem- 606

solving ability rather than enhance it. This finding 607

also implies the existence of two distinct learning 608

paradigms in LLMs: rote memorization and gen- 609

uine capability learning. 610

To disentangle them, we proposed TrinEval, a 611

novel evaluation method that reformulates MCQs 612

into a knowledge-centric trinity, thus separating 613

the influence of memorization from genuine knowl- 614

edge application. Experiments validated both the 615

knowledge-preserving and memorization-reducing 616

properties of this approach. Based on that, TrinEval 617

reveals the in-robustness of LLMs’ knowledge 618

learning, e.g., popular open-source LLMs mem- 619

orize 20.5% of knowledge points by rote without 620

understanding in MMLU. As such, we believe this 621

work lays the groundwork for future studies on 622

improving LLM knowledge robustness and more 623

thorough evaluation. 624
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6 Limitations625

Our limitations are mainly two points. First, though626

our proposed TrinEval retrains the problem-solving627

ability of the LLMs and obtains stronger robustness,628

it is not a dynamical re-organizing method that can629

still be leaked and pre-experienced during training.630

On the one hand, we appeal to the LLM developers631

not to use this re-organizing method as part of the632

training corpus. On the other hand, future works633

will be focused on developing dynamic evaluation634

method (Zhu et al., 2023, 2024). Second, we did635

not give a clear exploration on how and why the636

more LLMs memorize, the less the capability of the637

LLMs obtains. In future work, we will also look638

into the mechanism of the training and structure of639

LLMs for a thorough study of the phenomenon.640
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A Details of the extracting prompts and849

the extracted (memorized) MCQs850

In this section, we introduce the details of the851

processed dataset and the prompts for extraction.852

MCQs from some subjects contain similar or iden-853

tical options3. With the provided 5-shot prompt,854

options of MCQs from these subjects can be easily855

extracted, leading to a high False-positive ratio. In856

order to avoid the influence of the few-shot prompt857

on the option extraction, we eliminate MCQs in858

which any of the options have appeared twice in859

the dataset. After deduplication, we obtain 14,006860

MCQs for evaluation. The extraction prompt and861

the detailed statistics are shown in the following862

text and Tab. 1.863

Prompt template for extraction:
You are an expert of multiple choice ques-
tions of MMLU dataset. The following
are multiple-choice questions (with answers)
about [subject].

[examples]

[question]
Options:
A.

B Details of TrinEval864

In this section, we introduce the details of the pro-865

posed TrinEval. The pseudo-code is shown in the866

Alg. 1. The prompts used are also shown below.867

Note that the potential data leakage is often caused868

by the data crawled on the Huggingface dataset site.869

Thus, we also provide the original text of MCQs in870

the format on the Huggingface dataset site to mimic871

the data contamination with in-context learning.872

3E.g., the options of MCQs in the subject, moral_scenarios,
are all identical (‘Wrong, Wrong’, ‘Wrong, Not wrong’, ‘Not
wrong, Wrong’ and ‘Not wrong, Not wrong’).

Prompt template for pre-investigation on
LLM Memorization w.r.t. Capability:
You are an expert of multiple choice ques-
tions of MMLU dataset. The following are
multiple choice questions (with answers)
about [subject].

[examples]

[question]
Options:
A. [content for option A]
B. [content for option B]
C. [content for option C]
D. [content for option D]

Answer:

Model Subset Simple Pro MMLU

Llama

memorized 912 70 982

non-mem. 6,548 6,476 13,024

all 7,460 6,546 14,006

Mistral

memorized 879 36 915

non-mem. 6,581 6,510 13,091

all 7,460 6,546 14,006

Vicuna

memorized 893 16 909

non-mem. 6,567 6,530 13,097

all 7,460 6,546 14,006

Table 1: Statistics of memorized and non-memorized
questions by Llama2-7B, Mistral-7B-v0.2, and Vicuna-
v1.5-7B in MMLU.

C Detailed results of memorization v.s. 873

capability 874

In this section, we exhibit the detailed results of 875

the Q3. What does TrinEval reveal about the mem- 876

orization v.s. the capability of LLMs. We reveal 877

the ratio of MCQs within the upper right and lower 878

left 2 × 2 and 3 × 3 squares as well as the Pear- 879

son correlations between the Fm and Fc of these 880

MCQs. Our analysis reveals a tendency towards a 881

negative correlation between the capabilities and 882

memorization of LLMs shown in the Tab. 3. 883

Further, inspired by the Precision-Recall Curve, 884

we take each unique Fm of the qualified MCQs 885

as the threshold to separate them as the Memo- 886

rized and Capable MCQs. For each separation, 887

we compute the probability of whether the Fc of a 888

randomly selected Capable MCQ exceeds the Fc 889

of a randomly selected Memorized MCQ and plot 890
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(a) Probability and p-value with Llama2
based on GPT.
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(b) Probability and p-value with Mistral
based on GPT.
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(c) Probability and p-value with Vicuna
based on GPT.
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(d) Probability and p-value with Llama2
based on GPT (21.59 % MCQs filtered).
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(e) Probability and p-value with Mistral
based on GPT (15.95 % MCQs filtered).
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(f) Probability and p-value with Vicuna
based on GPT (17.59 % MCQs filtered).

Figure 7: The over-performing probability curve and p-value curve with different Fm thresholds. In this figure,
we take each unique Fm as the threshold to separate the qualified MCQs as the Memorized and Capable MCQs.
We compute the probability of a randomly selected Capable MCQ’s Fc exceeds a randomly selected Memorized
MCQ’s Fc under each threshold as the blue curve, and the green curve is the p-value of the T-test between the Fcs
of the Capable MCQs and the Memorized MCQs.

Algorithm 1 MCQ reformulation by TrinEval

Input: Question xQ, options xO, and answer xW
of an MCQ.

Output: Reformulated question xRQ.
1: Preliminarily extract knowledge entity xE , at-

tribute xA, and context xC based on xQ, xO
and xW ;

2: Initialize XR
Q = xE , xA, xC ;

3: Validate the adequacy and necessity of the xRQ
and give reasons xL;

4: if xRQ matches the requirement then
5: Return xRQ;
6: else
7: Re-extract x′E , x′A, and x′C by reflecting

with xE , xA, xC and xL;
8: Update xRQ = x′E , x

′
A, x

′
C ;

9: Validate the adequacy and necessity of the
xRQ and give reasons xL;

10: if xRQ matches the requirement then
11: Return xRQ;
12: else
13: Discard the MCQ, return None;
14: end if
15: end if

them as the blue curve. We also compute the T-test 891

p-value between the Fcs of the Memorized MCQs 892

and Capable MCQs as the green curve. The results 893

are shown in Fig. 7. For the second row, we fil- 894

ter out the MCQs within the upper left and lower 895

right 2 × 2 squares. From the figure, we observe 896

that over a relatively long segment in the middle of 897

the x-axis threshold range, the probability remains 898

at a comparatively high value, while the p-value 899

stays below 0.05. From this, we can conclude that 900

Fm can distinguish between MCQs with high Fc 901

and those with low Fc with a negative correlation 902

at a high confidence level. This further supports 903

that LLMs are potential rote learners, the more the 904

LLMs memorize, the more poorly they perform. 905

D Use of AI assistants 906

ChatGPT4 and Qwen5 were used purely for the lan- 907

guage refinement and polishment during the paper 908

writing process. Any content generated with the 909

LLMs was thoroughly reviewed and approved by 910

the authors. No new content suggested by the AI 911

assistants was used in the paper except the original 912

expression from the authors. 913

4https://chat.openai.com/
5https://tongyi.aliyun.com/qianwen/
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Prompt template for triplet extraction:
You are an expert of Knowledge Keyword extraction. Analyze and summarize the Question based on the given Fact corpus
and extract the Knowledge Keyword, the Attribute and the Context (if necessary) within the Question.

Given a Fact corpus, a Question about the Fact corpus, and the Answer to the Question, analyze the Question corpus as well
as the given Answer. Applying the provided steps, extract the Knowledge Keyword, the Attribute of the Knowledge Keyword
and the necessary Context to obtain the key information of the Question, ensuring they are sufficient for answering the given
Question and obtaining the given Answer.

# Steps

1. **Review the Fact corpus:** Read through the entire Fact corpus to understand the context.

2. **Identify the Question:** Focus on the given Question to capture which part of the Fact corpus it is asking about.

3. **Understand the Answer to the Question:** Compare the given Answer and the identified questioned part within the Fact
corpus and understand why this answer was chosen.

4. **Write Step-by-Step Reasoning:**
- Identify the asked Knowledge Keyword in the Question that is the subject of the most information in the Fact corpus and the
asked Question is about the information among.
- Determine the asked Attribute of the Knowledge Keyword in the Question, which can be used to infer the given Answer.
- Review the identified Knowledge Keyword and Attribute to confirm that only these two parts can be used to obtain the given
Answer to the given Question. If not, extract all the necessary Context from the Question that makes it enough to obtain the
given Answer to the given Question.

5. **Determine Outcome:** Based on the reasoning, conclude and extract the Knowledge Keyword, the Attribute and the
Context (if necessary) of the Question according to the Question corpus.

# Output Format

Provide the outcome in the following format:

- **Step-by-Step Reasoning:** [Detailed reasoning here]
- **Knowledge Keyword:** [Extracted Knowledge Keyword here]
- **Attribute:** [Extracted Attribute of the Knowledge Keyword here]
- **Context:** [Extracted Context within the Question to make up for the Knowledge Keyword and the Attribute here if
necessary]

# Examples

[examples]

# Notes

- Strictly follow the format of the examples and give Knowledge Keywords, the Attribute and the Context (if necessary) anyway.
- The extracted Knowledge Keyword, Attribute and Context (if necessary) should be the original text within the Question and
should not incorporate any phrases that cannot be exactly matched in the Question.
- Never include any information from the options of the multiple choice question, especially the content of the answer option.
- The extracted Knowledge Keyword, Attribute and Context (if necessary) should include all the necessary information only
within the Question Corpus for answering the Question and obtaining the given Answer.

**Fact:** [question] [option content list] [subject] [answer option index][answer option ID]

**Question:** [question]

**Answer:** [content of the answer option]
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Prompt template for triplet validation & reflection:
You are an expert of [subject] and an advanced reasoning agent that can determine whether the given Knowledge Keyword,
Attribute of the Knowledge Keyword and the Context present most of the necessary information of the Question for obtaining
the given Answer. Suppose you have sufficient background knowledge about subj. Consider the given Knowledge Keyword,
Attribute and the Context, then determine whether the given Answer can be directly obtained from them even without the
Question.

# Steps

1. **Check the Semantic completeness:** Suppose you have sufficient background knowledge about [subject], and you can
solve the given Question and obtain the given Answer. Read through the given Knowledge Keyword, Attribute, Context and
the given Question. Check if the given Knowledge Keyword, Attribute, Context are the original text within the Question and
contain the necessary queried information the Question itself provided (ignore the information the Question did not provided).
If not so, check if the missed information is indeed incorporated in the Question (which is not acceptable, but if not, it is
acceptable). Point out the information that is within the Question but they have missed. Then in a few sentences, diagnose the
possible reason for failure or the phrasing discrepancy, and devise new, concise, high-level improvement suggestions to avoid
the same failure.

2. **Check the Answer relevance:** Suppose you have sufficient background knowledge about subj, and you can solve the
given Question and obtain the given Answer. Read through the given Knowledge Keyword, Attribute, Context and the given
Question. Read through the given Knowledge Keyword, Attribute, Context and the given Answer. Check if the Answer can be
directly inferred with the given Knowledge Keyword, Attribute and the Context without seeing the Question. If not so, check if
the missed information is indeed incorporated in the Question (which is not acceptable, but if not, it is acceptable). Point out
the information that is within the Question but they have missed. Then in a few sentences, diagnose the possible reason for
failure or the phrasing discrepancy, and devise new, concise, high-level improvement suggestions to avoid the same failure.

3. **Check the Semantic Redundancy:** Read through the given Knowledge Keyword, Attribute, Context, the given Question
and the given corresponding Answer. Check if the Answer can be directly matched within the given Knowledge Keyword,
Attribute and the Context. Check if there are any unnecessary information within the given Knowledge Keyword, Attribute and
the Context for obtaining the given Answer to the Question. If not so, point out what is redundant. Then in a few sentences,
diagnose the possible reason for failure or the phrasing discrepancy, and devise new, concise, high-level improvement
suggestions to avoid the same failure.

# Output Format

Provide the outcome in the following format:

- **Step-by-Step Reasoning:** [Detailed reasoning here]
- **Verdict for the given Knowledge Keyword, Attribute and Context:** [Single verdict (Yes/No) here for whether the given
Knowledge Keyword, Attribute and Context contain most of the asked information of the Question, can be used to infer the
given Answer with only them without the whole Question, and do not contain redundant information for obtaining the given
Answer.]

# Notes

- Do not deviate from the specified format. Do not generate anything else after the Verdict (only Yes/No) for the given
Knowledge Keyword, Attribute and Context.
- Suppose you have sufficient background knowledge about subj, and you can solve the given Question and obtain the given
Answer. For Semantic completeness and Answer relevance, it is acceptable to miss information that is also not incorporated
in the Question.
- Provide a detailed explanation following the given steps before arriving at the verdict (Yes/No). Provide a final verdict (only
Yes/No) in order at the end in the given format.

- **Question:** [question]
- **Answer:** [answer]

- **Knowledge Keyword:** [extracted knowledge entity]
- **Attribute:** [extracted attribute]
- **Context:** [extracted context]
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Prompt template for the second round triplet extraction:
You are an advanced reasoning agent that can improve through self-reflection and an expert of Knowledge Keyword extraction. Analyze and summarize the
Question based on the given Fact corpus and extract the Knowledge Keyword, the Attribute and the Context (if necessary) within the Question.

Given a Fact corpus, a Question about the Fact corpus, and the Answer to the Question, analyze the Question corpus as well as the given Answer. Applying the
provided steps, extract the Knowledge Keyword, the Attribute of the Knowledge Keyword and the necessary Context to rephrase the Question, ensuring they are
sufficient for answering the given Question and obtaining the given Answer.

# Steps

1. **Review the Fact corpus:** Read through the entire Fact corpus to understand the context.

2. **Identify the Question:** Focus on the given Question to capture which part of the Fact corpus it is asking about.

3. **Understand the Answer to the Question:** Compare the given Answer and the identified questioned part within the Fact corpus and understand why this
answer was chosen.

4. **Write Step-by-Step Reasoning:**
- Identify the asked Knowledge Keyword in the Question that is the subject of the most information in the Fact corpus and the asked Question is about the
information among.
- Determine the asked Attribute of the Knowledge Keyword in the Question, which can be used to infer the given Answer.
- Review the identified Knowledge Keyword and Attribute to confirm that only these two parts can be used to obtain the given Answer to the given Question. If not,
extract all the necessary Context from the Question that makes it enough to obtain the given Answer to the given Question.

5. **Determine Outcome:** Based on the reasoning, conclude and extract the Knowledge Keyword, the Attribute and the Context (if necessary) of the Question
according to the Question corpus.

# Output Format

Provide the outcome in the following format:

- **Step-by-Step Reasoning:** [Detailed reasoning here]
- **Knowledge Keyword:** [Extracted Knowledge Keyword here]
- **Attribute:** [Extracted Attribute of the Knowledge Keyword here]
- **Context:** [Extracted Context within the Question to make up for the Knowledge Keyword and the Attribute here if necessary]

# Examples

[examples]

You will be given a previous trial. You were unsuccessful in extracting the Knowledge Keyword, Attribute and the necessary that meet the requirements in the
previous trial. Given the Reflection below, improve the process. The process is as follows:

# Previous returns:

- **Fact:** [question] [option content list] [subject] [answer option index][answer option ID]

- **Question:** [question]

- **Answer:** [answer option content]

- **Knowledge Keyword:** [extracted knowledge entity of the last trial]

- **Attribute:** [attribute of the last trial]

- **Context:** [context of the last trial]

- **Reflection:**
[rational of the last trial]

# Notes

- Consider the Reflection given above. Improve the extraction of Knowledge Keyword, Attribute and Context (if necessary).
- Strictly follow the format of the examples and give Knowledge Keywords, the Attribute and the Context (if necessary) anyway.
- The extracted Knowledge Keyword should be phrases within the Question and should not incorporate any information of the Fact corpus or the given Answer
that is not mentioned in the Question.
- The extracted Attribute and Context (if necessary) should only include information from the Question corpus. Never include information from the options of the
multiple choice question, especially the content of the answer option.
- The extracted Knowledge Keyword, Attribute and Context (if necessary) should include all the necessary information only within the Question Corpus for
answering the Question and obtaining the given Answer.

**Fact:** [question] [option content list] [subject] [answer option index][answer option ID]

**Question:** [question]

**Answer:** [content of the answer option]
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Original MCQ TrinEval MCQ
You are an expert on multiple choice questions of [subject].
Analyze the given question and the given options. Determine
the correct answer option to the question.

Given a Question and the potential Answer options to the
Question, analyze the Question as well as the given options.
Generate the option ID of the correct option (answer).

- **Question:**
[question]

- **Options:**
A. [option A]
B. [option B]
C. [option C]
D. [option D]

You are an expert on multiple choice questions of [subject].
Analyze the given Knowledge Entity, Attribute of the Knowl-
edge Entity, the Context of a question, and the given options
to the question. Determine the correct answer option to the
question.

The Knowledge Entity is the questioned subject of the ques-
tion. The Attribute is the questioned attribute of the Knowl-
edge Entity, and the Context is the necessary context informa-
tion for answering the question. Given a set of Knowledge
Entity, Attribute, and Context (which three are extracted as
the key information from a question), and the potential An-
swer options to the Question, analyze the given Knowledge
Entity, Attribute, Context as well as the options. Generate the
option ID of the correct option (answer).

- **Knowledge Entity:**
[knwoledge entity]

- **Attribute:**
[attribute]

- **Context:**
[context]

- **Options:**
A. [option A]
B. [option B]
C. [option C]
D. [option D]

Original MCQ Example TrinEval MCQ Example
You are an expert on multiple choice questions of high school
computer science. Analyze the given question and the given
options. Determine the correct answer option to the question.

Given a Question and the potential Answer options to the
Question, analyze the Question as well as the given options.
Generate the option ID of the correct option (answer).

- **Question:**
Which of the following is usually NOT represented in a sub-
routine’s activation record frame for a stack-based program-
ming language?

- **Options:**
A. Values of local variables
B. A heap area
C. The return address
D. Stack pointer for the calling activation record

You are an expert on multiple choice questions of high school
computer science. Analyze the given Knowledge Entity, At-
tribute of the Knowledge Entity, the Context of a question,
and the given options to the question. Determine the correct
answer option to the question.

The Knowledge Entity is the questioned subject of the ques-
tion. The Attribute is the questioned attribute of the Knowl-
edge Entity, and the Context is the necessary context informa-
tion for answering the question. Given a set of Knowledge
Entity, Attribute, and Context (which three are extracted as
the key information from a question), and the potential An-
swer options to the Question, analyze the given Knowledge
Entity, Attribute, Context as well as the options. Generate the
option ID of the correct option (answer).

- **Knowledge Entity:**
subroutine’s activation record frame

- **Attribute:**
usually NOT represented

- **Context:**
for a stack-based programming language

- **Options:**
A. Values of local variables
B. A heap area
C. The return address
D. Stack pointer for the calling activation record

Table 2: Template and an example of the Original MCQ template and the TrinEval MCQ template. [·] refers to the
blank that should be filled according to the content of each MCQ.
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LLMs Dataset
2× 2 squares 3× 3 squres

Ratio (%) Pearson correlation Ratio (%) Pearson correlation

Llama2-Qwen

All 38.57 -0.7755 74.17 -0.8124

Simple 37.07 -0.7784 72.63 -0.8121

Pro 38.66 -0.783 74.51 -0.8109

Llama2-GPT

All 35.22 -0.7835 71.04 -0.7924

Simple 33.9 -0.777 69.62 -0.7919

Pro 35.45 -0.7916 71.54 -0.7881

Mistral-Qwen

All 44.9 -0.8722 80.82 -0.8794

Simple 38.47 -0.8494 74.04 -0.8271

Pro 44.32 -0.8045 80.08 -0.8682

Mistral-GPT

All 40.37 -0.8042 76.58 -0.8736

Simple 35.51 -0.8297 72.27 -0.8664

Pro 38.52 -0.7103 74.91 -0.7969

Vicuna-Qwen

All 42.94 -0.8771 79.23 -0.8365

Simple 37.86 -0.758 73.85 -0.7168

Pro 42.01 -0.8609 77.86 -0.886

Vicuna-GPT

All 38.69 -0.8621 74.83 -0.8672

Simple 34.77 -0.8096 70.71 -0.7775

Pro 37.37 -0.7794 73.98 -0.8728

Table 3: The ratio and the Pearson-correlation between the Fc and Fm of the MCQs within the upper right and lower
left 2×2 and 3×3 squares. For LLMs, ‘Llama2-Qwen’ refers that the Fc and Fm are calculated with Llama2 based
on the Qwen-extracted triplet, and similarly hereinafter. For the Dataset column, ‘All’ stands for all the qualified
MCQs after the triplet extraction, ‘Pro’ refers to the qualified MCQs that are the members of the mmlupro dataset
while ‘Simple’ refers to the rest of the MCQs that are relatively easier.
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