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Abstract

LLM-based agentic applications have shown in-
creasingly remarkable capabilities in complex
workflows but incur substantial costs due to exten-
sive planning and reasoning requirements. Exist-
ing LLM caching techniques (like context caching
and semantic caching), primarily designed for
serving chatbots, are insufficient for agentic ap-
plications where outputs depend on external data
and environmental contexts. We propose agen-
tic plan caching, a novel approach that extracts,
stores, adapts, and reuses structured plan tem-
plates from planning stages of agentic applica-
tions across semantically similar tasks to reduce
the cost of serving. Unlike traditional semantic
caching, our system extracts plan templates from
completed agent executions at test-time, employs
keyword extraction to match new requests against
cached plans, and utilizes lightweight models to
adapt these templates to task-specific plans with
contexts. Evaluation across multiple real-world
agentic applications shows that our system can
reduce costs by 46.62% on average while main-
taining performance, offering a more efficient so-
lution for serving LLM-based agents that comple-
ments existing LLM serving infrastructures.

1. Introduction

Agentic applications based on Large Language Models
(LLMs) have shown early promise in replicating human per-
formance on a broad range of workflows, from coding (Jain
et al., 2024; Jimenez et al., 2023; Yang et al., 2024) to
web navigation (Deng et al., 2023; He et al., 2024; Zhou
et al., 2023) to open-ended research (gem; ope, b). Many
of these LLM-based agents follow a two-stage pipeline
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that alternates between (Yao et al., 2023; Sarukkai et al.,
2025): (1) Plan — reasoning about what to do next, and (2)
Act — executing those plans. While effective, these agents
incur significant costs due to the complexity of executed
workflows (Kwa et al., 2025; Zhang et al., 2024b) and need
to interact with external tools and environments (Patil et al.,
2024). Specifically, the Plan stage is often implemented via
test-time compute techniques (Brown et al., 2024; Snell
et al., 2024) like chain-of-thought reasoning (Wei et al.,
2022), which can require numerous LLM queries and ac-
cess to expensive LLMs (e.g., reasoning models). This re-
sults in substantial costs for executing agentic workflows via
APIs (Chen et al., 2023; Narayan et al., 2025) or locally (Liu
et al., 2024c¢).

To reduce LLM costs, methods have been developed to
optimize responses to individual queries (Kwon et al.,
2023; Zheng et al., 2024). In particular, caching has
emerged as a popular approach, with two primary imple-
mentations: Context caching (e.g., KV cache reuse and
prompt caching (Gim et al., 2024; Yao et al., 2025; Yang
et al., 2025)) stores internal model states to speed up sub-
sequent generations, while semantic caching (Bang, 2023;
Schroeder et al., 2025; ama, b) stores and reuses (input, out-
put) pairs to accelerate the serving of queries that are similar
to historical queries.

These caching techniques, however, have significant limita-
tions when applied to Plan-Act agents. These agents often
require making data-dependent decisions, i.e., LLM outputs
depend on external data or contextual information that varies
between runs. For example, in data analysis applications,
the same high-level query ("summarize key statistics of this
dataset") will result in similar high-level plans, but differ-
ent specific details depending on the characteristics of the
dataset provided. Similarly, in web or GUI navigation tasks,
the same high-level query ("delete the top comment") will
require similar sequences of actions (e.g., "click the menu
button, scroll down"), but the specifics may differ depending
on screen size and window position (e.g., "click coordinates
(130, 493), scroll down 38 pixels"). In such cases, conven-
tional caching fails because it does not separate the core
intent of the query from the dynamic context. Agents may
benefit from local (i.e., individual query-level) optimiza-
tions, but miss opportunities for global improvements that
leverage patterns across the entire task execution.
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To overcome these limitations, we propose agentic plan
caching, which reduces the serving costs of LLM-based
agents that follow the Plan-Act paradigm by adapting and
reusing prior execution plans across semantically similar
workflows. Our key insight is that the Plan stage, which
incurs the majority of LLM compute cost, is often repeated
(within or across workflows) despite yielding outputs that
could be reused in future requests while maintaining per-
formance. When an agent completes an execution of a
workflow, we extract structured plan templates from the
agent execution log. When a similar request arrives, we
employ keyword extraction to identify the most impor-
tant semantic target of the query, then match it against the
cache to retrieve the most relevant plan template. Our ap-
proach differs from semantic caching by avoiding query-
based cache lookups, which we found sub-optimal for agent
applications. Whenever additional planning is required, we
utilize a lightweight model to adapt the cached structured
plan template into more detailed plans with task-specific
contexts (e.g., fiscal year and company name in financial
data-intensive reasoning (Narayan et al., 2025)), rather than
employing an expensive model.

Although several memory architectures have been pro-
posed to help agents store and learn from past experiences
(Sumers et al., 2023; Xu et al., 2025; Wang et al., 2024b;
Packer et al., 2023), these efforts primarily focus on using
such memories to improve the agent’s accuracy on complet-
ing workflows (e.g., with fewer hallucinations (ama, a) or
with higher task success rate (Wang et al., 2024b)) rather
than to reduce the cost of serving the agent. To our knowl-
edge, the use of historical experiences to more efficiently
serve LLM-based agents remains underexplored, particu-
larly for applications where outputs depend on input data or
environmental conditions external to the query itself.

We evaluate agentic plan caching on two applications and
find that it reduces costs by 46.62% (on average) while
maintaining 96.67 % of optimal accuracy. The agentic
plan caching we propose is compatible with existing LLM
serving and agent frameworks, and can be used jointly with
existing caching techniques as well.

In summary, we make the following contributions:

1. Analysis of Caching Techniques for Serving LLMs:
We conduct a comprehensive analysis of existing caching
techniques for LLM serving (context caching and seman-
tic caching), and point out why they are insufficient for
the era of agentic Al applications.

2. Proposal of Agentic Plan Caching: We propose the
idea of agentic plan caching, which shifts the focus from
query-level caching (suitable for chatbots) to task-level
caching (targeting LLM-based agents). We design and
implement a novel caching system that extracts, stores,
adapts and reuses agent-generated plans at test-time.

3. Evaluation of Caching Techniques: We evaluate our
agentic plan caching system on top of real-world agent ar-
chitecture and two datasets/benchmarks, and find that our
approach can reduce cost by 46.62% (on average), while
maintaining 96.67% of optimal application performance.

2. Background and Motivation
2.1. Plan-Act Agents

The rise of large language models (LLMs) has driven
the rapid expansion of agentic Al applications. Unlike
single-model tasks like chatbots (Chiang et al., 2024),
math (Hendrycks et al., 2021), or coding (Chen et al., 2021),
these applications coordinate multiple models and queries to
solve complex tasks, like data-intensive reasoning (Narayan
et al., 2025), software engineering (Zhang et al., 2025; Wei
et al., 2024), web navigation (Zhou et al., 2023), etc.

Many such agentic Al applications, like multi-agent sys-
tems (Wang et al., 2024a; Guo et al., 2024) and cloud-edge
LLM systems (Zhang et al., 2024a; Narayan et al., 2025) ,
follow a two-stage pipeline loop (similar to the ReAct-agent
loop (Yao et al., 2023)), as shown in Figure 3(a): (1) Plan
and (2) Act. In the Plan stage, a planner LLM generates
a strategy (e.g., task decomposition, information retrieval)
that guides subsequent actions of acting LLMs. In the Act
stage, the actor LLM acts accordingly based on devised
plans and external context or environment, and passes down
the response to the planner LLM for the next step.

However, due to the use of multiple LLMs and queries,
especially with advanced models like reasoning or multi-
modal LLMs, these agentic applications can incur signifi-
cant costs (Jin et al., 2024b; Pan et al., 2025), particularly in
terms of token ingestion/generation. Optimizing these costs
is crucial for scaling agentic Al applications.

2.2. LLM Caching: Methods and Limitations

Caching is one of the most widely-adopted techniques for
reducing the serving cost of LLM applications. The goal
of caching is to eliminate redundant computation. Con-
text caching (Gim et al., 2024; Yao et al., 2025; Yang
et al., 2025), also known as KV cache reuse or prompt
caching, involves storing and reusing the key-value pairs
generated during the prefill phase of LLM inference. Se-
mantic caching (Bang, 2023; Schroeder et al., 2025; ama,
b), on the other hand, stores input-output pairs of previous
LLM invocations. This relies on the fact that many prompts
share similar underlying intents and thus expected outputs
despite having different wording (Schroeder et al., 2025).

We find that existing caching techniques, primarily designed
for serving chatbots (at query-level) instead of agents (at
task-level), have three major limitations as described below.
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Figure 1. Agentic Plan Caching Framework. We show: (a) cache hit workflow, (b) cache miss workflow, and (c) plan template generation

upon cache miss.

1) Model-Specific Constraints. Context caching relies
on KV cache as the medium for storing and reusing knowl-
edge (Liu et al., 2024b; Gim et al., 2024; Yang et al., 2025).
These KV caches are inherently model-dependent and not
easily transferable across different models (Wu et al., 2025;
Liu et al., 2024a), since even identical text prompts produce
model-specific KV caches. While this limitation is negligi-
ble for chatbots that consistently use a single model with
the same system prompt, it becomes a problem for agentic
Al applications that typically employ multiple LLMs across
various processing stages.

2) Data-Dependent Outputs. Semantic caching stores
input-output pairs from previous LLM calls, assuming out-
puts depend solely on input prompts (Bang, 2023; Schroeder
et al., 2025). While this holds for chatbots, many agen-
tic Al applications are data-dependent: Outputs depend
not only on input queries but also on external data (e.g.,
data-intensive reasoning (Narayan et al., 2025)) or dynamic
environments (e.g., web or GUI agents (Zhou et al., 2023;
Wornow et al., 2024b;a)). This dependency complicates
the reuse of cached responses even when input prompts are
semantically similar.

3) Limited Adaptability. Both context and semantic
caching lack flexibility for handling slight variations in in-
put. Context caching requires exact text matches. Semantic
caching, while more accommodating, does not capture the
transformation process from prompt to response. This could
hinder adaptation to similar queries with minor differences

(e.g., numeric values or variable names in mathematical rea-
soning (Cobbe et al., 2021), coding tasks (Jain et al., 2024)),
a common challenge in agentic Al

3. The Agentic Plan Caching Framework

We provide an end-to-end overview of the agentic plan
caching framework in Figure 1. The process begins with a
cost-effective language model (e.g., GPT-40-mini) extract-
ing a keyword that captures the higher-level intent of the
input task query (e.g., "compute the average of all numbers
listed in an external document" — "mean calculation"). This
keyword is then used to search the plan cache, which stores
(keyword, plan template) pairs, potentially resulting in a
cache hit or miss.

For a cache hit (Figure 1(a)), a small planner LM ("Small
LM") adapts the retrieved plan template for the current exe-
cution by incorporating context-specific information (e.g.,
user information, environment variables). For a cache miss
(Figure 1(b)), a large planner LM ("Large LM") generates a
new plan from the input task query. The adapted or gener-
ated plan, along with the task context (e.g., external data or
web/GUI environment), is then passed to the "Actor LM",
which produces a response. The response is evaluated by the
"Planner LM" to determine if further iterations are needed.
If the task is complete, the final output is generated, con-
cluding the agent’s execution.

In the case of a cache miss, once the agent successfully com-
pletes execution with correct outputs, the system generates a
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Figure 2. Main Results across Four Baselines and Agentic Plan Caching.

plan template that can be reused in future invocations of the
agent through the following two-step process: (1) A rule-
based filter extracts critical information from the execution
log while discarding irrelevant details, such as verbose rea-
soning steps; (2) A lightweight LLM-based filter removes
context-specific elements (e.g., entity names, numeric val-
ues), producing a generalized template ("Plan Template")
and relevant keywords for caching (Figure 1(c)).

In the Appendix, we provide additional algorithmic details
and discuss the motivation behind design choices.

4. Results

We evaluate our agentic plan caching framework across two
datasets focused on data-intensive reasoning, covering long-
context financial data (FinanceBench (Islam et al., 2023))
as well as tabular mathematical data (Tabular Math Word
Problems (Lu et al., 2022)).

Our key findings are:

o Reduced Cost: Agentic plan caching reduces LLM serv-
ing costs by an average of 46.62% (§4.2).

e High Accuracy: We maintain 96.67% of application-
level performance compared to the accuracy-optimal base-
line (§4.2).

e Low Overhead: On average, keyword extraction and
cache generation account for only 1.04% of the overall
cost of running each benchmark (§D.3).

4.1. Experiment Setup

Our agentic plan caching system is built on the Minion ar-
chitecture (Figure 3(a)) from the Minions project (Narayan
et al., 2025), a sequential Plan-Act LLM framework that
can be readily generalized. The Minion architecture is com-

posed of a large (cloud-hosted) planner LM for reasoning
and task decomposition and a smaller (locally hosted) actor
LM with access to additional context for plan execution.
Given a task query, the planner LM and the actor LM collab-
orate iteratively (as in Figure 3(a)) to produce a final output.
We set the maximum number of iterations to be 10.

We evaluate our system on two data-intensive reasoning
benchmarks: FinanceBench (Islam et al., 2023) (financial
and long-context data reasoning) and Tabular Math Word
Problems (Lu et al., 2022) (tabular and mathematical data
reasoning). Implementation details and dataset specifics are
provided in the Appendix.

Evaluation Metrics We assess application-level perfor-
mance using GPT-4o as the evaluation model, as LLM-based
evaluation is more effective than exact matches or F1 scores
for numeric evaluation and long-form responses (Chen et al.,
2025; Goldie et al., 2025; Zheng et al., 2023). Cost is calcu-
lated based on input/output tokens and the latest API pricing
from commercial LLM providers (OpenAl API (ope, a)
and TogetherAl API (tog)). Additional details on evalua-
tion models, prompts, and API pricing are included in the
Appendix.

Language Models For the main results (§4.2), we use
GPT-40 (gpt, a) as the planner LM and LLaMa-3.2-8B (lla)
as both the small planner LM and actor LM. For keyword ex-
traction and cache generation, we use GPT-40-mini (gpt, b).
To demonstrate broader applicability, we include a sensitiv-
ity analysis with a wider range of models in the Appendix.

Baselines
baselines:

We evaluate our system against the following

e Accuracy-Optimal: No caching is applied. The large
planner LM is always used to establish the best achievable
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application performance.

e Cost-Optimal: No caching is applied. The small planner
LM is consistently used to assess the lowest possible cost.

e Semantic Caching: We implement a query-level seman-
tic caching method based on previous work (Bang, 2023;
Schroeder et al., 2025). Following the approach of GPT-
Cache (Bang, 2023)!, we cache and reuse responses to
individual queries, determining cache hits based on query-
level similarity.

e Full-History Caching (discussed in §B.2): Inspired
by knowledge caching in retrieval-augmented genera-
tion (Yao et al., 2025; Jin et al., 2024a), this baseline
caches the complete agent execution log, including inputs
and outputs of all LLM agent components. Cache hits are
determined by keyword-level similarity. Upon a hit, the
cached execution log is used as an in-context example for
the small planner LM to generate new plans.

4.2. Results Analysis

Main Results As shown in Figure 2, agentic plan caching
reduces cost by 46.62% on average while maintaining
96.67% of application-level performance compared to the
accuracy-optimal baseline. We note that:

e Semantic Caching: Despite cost savings at lower sim-
ilarity thresholds, semantic caching suffers from a high
rate of false-positive cache hits, leading to substantial per-
formance degradation. Additional case studies of false-
positive hits are provided in the Appendix.

o Full-History Caching: While full-history caching pre-
serves past plans and actions that might help plan
generation for similar tasks, it underperforms agentic
plan caching in accuracy (72.00% vs. 85.50% in Fi-
nanceBench) and incurs higher costs ($1.99 vs. $1.86).
This is due to the small planner LM’s difficulty in pro-
cessing lengthy and unfiltered histories, emphasizing
the necessity of our LLM-based filter to extract concise,
reusable plan templates.

5. Conclusion

In this work, we introduce agentic plan caching, which
shifts the focus from query-level caching (suitable for chat-
bots) to task-level caching (targeting LLM-based agents).
By implementing agentic plan caching and evaluating it
on two real-world agent workloads, we demonstrate that
our approach reduces LLM serving costs by 46.62% on
average while maintaining 96.67% of optimal application
performance. Furthermore, the overhead introduced by plan
caching remains minimal, accounting for only 1.04% (on

'We do not use the official GPTCache release as it (1) lacks sup-
port for post-GPT-4 OpenAl models and (2) relies on a deprecated
version of the OpenAl API.

average) of the total serving cost.
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A. Extended Discussion of Background and Motivation

e N
Costco Wholesale Corporation
[ Context }— consolidated balance sheets...
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[ Q ] __________ What is FY2019 working capital
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—>[ Planner LM ] - ~N
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(a) Plan-Act LLM application
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(b) Comparison of different LLM caching techniques

Figure 3. Plan-Act LLM Applications and Caching Techniques. (a) A typical Plan-Act agent pipeline loop and (b) a comparison of
LLM caching methods, with cached components highlighted in yellow.
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B. Extended Discussion of Framework Design

B.1. Algorithms for Framework Design

In this section, we provide more algorithmic details of the agentic plan caching framework. To start with, the end-to-end
workflow is provided in Algorithm 1. The cases of cache hit / miss are demonstrated in Algorithm 2 and Algorithm 3.

Algorithm 1 Agentic Plan Caching: End-to-End Framework

Require: Query ¢, Context ctx, Cache C'
Ensure: Output o, Updated Cache C’

1: keyword < ExtractKeyword(q) > Extract keyword using a small LM
2: if keyword € C then > Cache hit (Figure 1(a))
3: 0, C' + HandleCacheHit(q, ctz, C[keyword], C) > Algorithm 2
4: else > Cache miss (Figure 1(b))
5: 0,C" « HandleCacheMiss(q, ctx, keyword, C) > Algorithm 3
6: end if

7: return o, C’ > Return response and possibly updated cache

Algorithm 2 Cache Hit

Require: Query ¢, Context ctz, Plan Template template, Plan Cache C
Ensure: Output o, Cache C'

1:
2:

R e A A

responses < ()
plan, o + LightLM(q, template, responses)
lightweight model
Assert: o is None
while o0 is None do
response < ActorLM(q, ctx, plan)
responses < responses U response

plan, o + LightLM(q, template, responses)

end while
return o, C

> Initialize actor LM response to be empty

> Adapt the retrieved template to be a task-specific plan using a

> Execute the plan based on context

> Generate the final output or a new adapted plan

Algorithm 3 Cache Miss

Require: Query g, Context ctx, Plan Template template, Plan Cache C
Ensure: Output o, Updated Cache C’

I T S Y
W AW N

—_ =
e AN R A AR ANl > s

:log < 0

responses + ()

plan, o < PlannerLM(q, responses)

Assert: o is None

while o is None do
response < ActorLM(gq, ctz, plan)
responses < responses U response
log < log U {(plan, ctx, response)}
plan, o < PlannerLM(q, responses)

end while

log < log U {o}

: template < GenerateTemplate(log, keyword)
0+ C

: C'lkeyword) < template

: return o, C’

> Initialize the execution log to be empty
> Initialize actor LM response to be empty
> Generate initial plan with full model

> Execute the plan based on context

> Update the log
> Generate the final output or a new plan

> Update the log
> Create reusable plan template based on execution log

> Store template in cache

10
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B.2. Design Choices

Why Keyword Extraction? A common method for identifying similar queries in a cache is to assess semantic or textual
similarity, as seen in frameworks like GPTCache (Bang, 2023) which use embeddings for similarity searches. However, we
find that query-based similarity matching, despite its popularity, is insufficient for detecting cache hits/misses for agentic
plan caching. This is because it might overemphasize context-specific details (e.g., names of individuals or companies)
rather than the broader intent of queries, which makes it difficult to establish an effective similarity threshold (Schroeder
et al., 2025). This often results in a high number of false positives (irrelevant cache hits) or false negatives (missed reuse
opportunities). In contrast, extracting keywords that reflect the higher-level intent of queries provides a more reliable
indicator of whether two queries would result in similar agentic plans, as illustrated in Figure 4.

Il Query-Based (threshold=0.7)
[ Query-Based (threshold=0.8)
Il Query-Based (threshold=0.9)

1.0 I Keyword-Based

0.5

0.0 X

False Positive Rate = False Negative Rate

Figure 4. Query-Based v. Keyword-Based Cache Search. Keyword-based cache search achieves lower levels of false positive and false
negative rates than query-based similarity cache search across different thresholds. This suggests that semantic similarity of queries alone
may not effectively capture shared task intents and reusable plans.

Exact Matching v. Fuzzy Matching Our system uses exact matches (between keywords) to minimize false positives.
While fuzzy search (Ji et al., 2009) (identifying cache hits based on similar but not identical keywords) could handle
approximate key similarities and is feasible to integrate, we opted against it and leave it for future exploration for two main
reasons: (1) Determining fuzzy matches based on semantic or textual similarity of keywords would reintroduce challenges
faced by semantic caching, such as setting effective similarity thresholds, and (2) although lightweight LMs could potentially
enable fuzzy matching, cache lookups must remain fast and cost-effective, particularly in low-hit-rate scenarios.

Caching Plan Template v. Caching Full Execution History One naive approach to reuse historical experience is to cache
and reuse past agent execution logs (containing all inputs and outputs from planner and actor LMs) as in-context learning
examples for the small planner LM. However, in our experiments (§4.2), we find that small planner LMs, usually based
on small language models (e.g., we use LLaMa-3.2-8B), struggle to handle long-context and unfiltered agent execution
logs even when containing reusable plan information. This motivates us to filter agent execution logs into high-quality plan
templates, and re-adapt them so that small planner LMs can better take advantage of their information.

11
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C. Extended Description of Experiment Setup
C.1. Platform

The prototype of our agentic plan caching framework, which we use to run our experiments, is implemented on a Runpod
server with dual-socket Intel Xeon Gold 6342 CPUs (96 vCPUs, 2.80GHz base clock, 3.5GHz max turbo) and 512MB total
L1, 60MB L2, and 72MB L3 cache. The server supports AVX-512 and runs in a 2x48-core NUMA configuration. For
memory, the server is equipped with 503GB of system RAM and no swap space.

C.2. LLM API Usage and Pricing

All language model inferences in our prototype are performed via third-party APIs. While it is feasible to run inference
locally when model weights are available, we use API access to quantify cost in dollar terms for this study. If metrics
such as latency or throughput were preferred, running all inferences locally would help eliminate variability introduced by
external services, especially when they are hosted remotely. We use the Python APIs for OpenAl (v1.74.0), Together Al
(v1.5.8), and Anthropic (v0.49.0). For all experiments, we set temperature to 0 (if supported) and max_tokens to
4096. Table 1 lists the per-token pricing of all models used in our experiments at the time of evaluation.

Model Name API Provider $/Million Input Tokens  $ / Million Output Tokens
GPT-40 (gpt-40) OpenAl 2.50 10.00
GPT-40-mini (gpt-40-mini) OpenAl 0.15 0.60
Claude 3.5 Sonnet (claude—-3-5-sonnet-20240620) Anthropic 3.00 15.00
Llama-3.1-8B (Meta-Llama-3.1-8B-Instruct-Turbo) Together Al 0.18 0.18
Llama-3.2-3B (L1lama—-3.2-3B-Instruct-Turbo) Together Al 0.06 0.06
Qwen-2.5-7B (Qwen2.5-7B-Instruct-Turbo) Together Al 0.30 0.30

Table 1. LLM API pricing used in our experiments.

C.3. Datasets

FinanceBench. We use an augmented version of the FinanceBench test split from HuggingFace?. Following the Minions
project, we filter for numerical reasoning questions and randomly sample 200 questions for evaluation. Each question
requires long-context financial reasoning and is paired with a company-specific document essential for answering. The
planner LM does not have access to the financial document, while the actor LM does.

TabMVP. We sample 200 questions from the test split of the TabMVP dataset provided by the authors®. Each question
involves numeric reasoning and is paired with a required table; the question cannot be answered without the associated
tabular data. The planner LM does not have access to the tabular data, while the actor LM does.

C4. Prompts

C.4.1. AGENT PROMPTS

We use the same prompts from the Minion protocol in the Minions project (Narayan et al., 2025).

C.4.2. LLM-AS-A-JUDGE PROMPT

As discussed in the results section (§4), standard metrics like exact match or F1 score are often inadequate for evaluating
numeric or long-form responses. For LLM-as-a-judge evaluation, we provide the prompt used to assess answer correctness.
We closely follow the FinanceBench dataset’s original evaluation criteria and define rules for acceptable numeric deviations
according to what the FinanceBench dataset paper proposes, specifying what qualifies as a correct answer. These rules are
applied consistently across both FinanceBench and TabMWP evaluations.

Mttps://huggingface.co/datasets/virattt/financebench
3https ://github.com/lupantech/PromptPG/blob/main/data/tabmwp/problems_testlk. json
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Correctness Evaluation Prompt: You are a judge that grades numeric answers to data-intensive reasoning problems.
This is the question: {task}.

This is the reference answer: {gt_answer}.

This is the answer given by a language model: {response}.

Please grade it. Requirements:

(1) Please allow minor deviations, such as

(i) giving the answer in billions when the unit was given in the question as millions.

(i) giving the answer in percentage when the ground truth answer is floating point.

Please also allow small rounding errors or small numerical errors.

(2) Incorrect answers vary, from calculations that are off by small margins to several orders of magnitude, and from
making up legal information to giving the wrong direction for an effect (e.g. reporting negative growth when it is actually
positive).

(8) Just answer '1’ for correct answers, or ‘0’ for incorrect answers.

C.4.3. KEYWORD EXTRACTION PROMPT

Keyword Extraction Prompt: Can you help me summarize what is the 'task’ or ’keyword’ describing the higher-level
goal or intent of this query? Please answer only with the task / keyword, which must be independent from problem-
specific details.

{query}

C.4.4. CACHE GENERATION PROMPT

Cache Generation Prompt: You will see a filtered JSON trace that shows the complete workflow of how a planner
language model solves a complex task by collaborating with an actor language model. Clean up the element of each
item in the workflow, so that we can reuse this trace as a reference template (independent from problem-specific
variables like company name or fiscal year) when we meet similar tasks later.

Requirements:

(1) the first element in each "workflow" item can only be "message”, "output”, or "answer",

(2) the task and the workflow should not contain problem-specific details or numbers, and

(3) return the result in JSON format that can be parsed by Python’s json.loads().

IMPORTANT: The workflow must maintain the sequence of message->loop(output->message/answer) to ensure
proper functioning. Always start with a "message" and end with an "answer".

JSON trace: {trace}

C.4.5. CACHE ADAPTATION PROMPT

Cache Adaptation Prompt: You are an intelligent language model that works with another model to solve complex
tasks, like data-intensive reasoning questions.

Please construct a follow-up action plan (in the form of a message) based on the task and the reference template.
Reference task: {cached_task}

Reference follow-up action plan (as a message): {next_item_in_cached_template}

Your task is to adapt the reference follow-up message to the current context, maintaining the same inquiry structure
but customizing it for the specific details of the current question and model output. Make sure the message asks for
information not contained in past messages.

Format your response as a JSON object with a "reasoning" field set to "N/A" and a "message" field containing your
action plan message.

Current task: {task}

Past action plans (as messages): {past_messages}

Past actor responses: {past_actor_responses}

Current message:
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D. Extended Results
D.1. Ablation Study: How Different Caching Methods Impact Accuracy

Cache-Miss v. Cache-Hit Accuracy To assess the impact of caching on application performance, we compare cache-miss
and cache-hit accuracy across semantic caching, full-history caching, and agentic plan caching (Figure 5). For semantic and
full-history caching, cache-hit accuracy is significantly lower than cache-miss accuracy, indicating a performance trade-off
despite potential cost savings. In contrast, agentic plan caching maintains consistent accuracy regardless of cache-use status,
demonstrating its ability to preserve application performance without degradation.

I Cache Miss B Cache Hit B Cache Miss B Cache Hit I Cache Miss B Cache Hit
100 100 100
—_ —_ -32% _
g 75 -56% -46% g 75 21% g 75
& & &
c 50 c 50 c 50
—~ — —~
3 3 3
o 25 o 25 o 25
< < <
0 0 0
FinanceBench TabMWP FinanceBench TabMWP FinanceBench TabMWP
(a) Semantic caching (b) Full-history caching (c) Agentic plan caching

Figure 5. Accuracy Comparison across Caching Methods. While semantic caching with threshold=0.9 in (a) and full-history caching in
(b) experience notable accuracy drops during cache hits, agentic plan caching in (c) maintains stable performance across datasets.

D.2. Sensitivity Analysis: Results with More Models

We evaluate the robustness of agentic plan caching under different choices of large planner LMs, small planner LMs, and
actor LMs. Our key findings are:

e Consistent Gains Across Models: Agentic plan caching consistently reduces cost and maintains high accuracy across a
variety of model choices, beyond those presented in §4.

e Model Selection Matters: Despite consistent gains of our method, choosing the right model remains crucial. For example,
in most cases, Claude 3.5 Sonnet outperforms GPT-40 in accuracy as the large planner LM but incurs significantly higher
cost (Table 2). Similarly, smaller or cheaper models do not always yield better accuracy-cost tradeoffs. For example,
using Llama-3.2-3B as the actor LM often leads to both higher cost and lower accuracy compared to Llama-3.1-8B due to
insufficient response quality that triggers more Plan-Act iterations (Table 4).

Fi Bench TabMWP
Method Large Planner LM Small Planner LM Actor LM Haneebene “bMW
Cost| / AccuracyT Cost| / Accuracy?
Accuracy-Optimal GPT-40 - Llama-3.1-8B $4.03/91.00% $3.35/83.00%
Accuracy-Optimal Claude 3.5 Sonnet - Llama-3.1-8B $5.77 1 94.50% $5.09 / 85.50%
Cost-Optimal Llama-3.1-8B - Llama-3.1-8B $0.21/ 54.00% $0.19/55.50%
Cost-Optimal Llama-3.2-3B - Llama-3.1-8B $0.09 / 63.00% $0.08 / 57.00%
Full-History Caching GPT-40 Llama-3.1-8B Llama-3.1-8B $1.99/72.00% $2.24/62.50%
Full-History Caching Claude 3.5 Sonnet Llama-3.1-8B Llama-3.1-8B $3.13/68.00% $2.80 / 65.00%
Agentic Plan Caching (Ours) GPT-40 Llama-3.1-8B Llama-3.1-8B $1.86/85.50% $2.03 / 82.00%

Agentic Plan Caching (Ours) Claude 3.5 Sonnet Llama-3.1-8B Llama-3.1-8B $2.56 / 88.00% $2.73 /1 81.50%

Table 2. Sensitivity Analysis of Large Planner LM: Results.
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Fi Bench TabMWP
Method Large Planner LM Small Planner LM Actor LM Hafieebene “bMW
Cost| / AccuracyT Cost| / Accuracy?
Full-History Caching GPT-40 Llama-3.1-8B Llama-3.1-8B $1.99/72.00% $2.24/62.50%
Full-History Caching GPT-40 Qwen-2.5-7B Llama-3.1-8B $2.34/72.50% $2.15/67.50%
Full-History Caching GPT-40 Llama-3.2-3B Llama-3.1-8B $1.93/67.00% $1.67 /56.00%
Agentic Plan Caching (Ours) GPT-40 Llama-3.1-8B Llama-3.1-8B $1.86/ 85.50% $2.03 /7 82.00%
Agentic Plan Caching (Ours) GPT-40 Qwen-2.5-7B Llama-3.1-8B $1.66/90.00% $1.75/80.50%
Agentic Plan Caching (Ours) GPT-40 Llama-3.2-3B Llama-3.1-8B $1.62/84.00% $1.88 /80.00%

Table 3. Sensitivity Analysis of Small Planner LM: Results.

Method Large Planner LM Small Planner LM Actor LM FinanceBench TabMWP

Cost]. / Accuracyt Cost] / Accuracyt
Accuracy-Optimal GPT-40 - Llama-3.1-8B $4.03/91.00% $3.35/83.00%
Accuracy-Optimal GPT-40 - Qwen-2.5-7B $3.97/91.00% $3.06 / 87.50%
Accuracy-Optimal GPT-40 - Llama-3.2-3B $4.16/ 81.50% $4.43 / 74.00%
Cost-Optimal Llama-3.1-8B - Llama-3.1-8B $0.21/54.00% $0.19/55.50%
Cost-Optimal Llama-3.1-8B - Qwen-2.5-7B $0.23 / 58.50% $0.17 7 65.50%
Cost-Optimal Llama-3.1-8B - Llama-3.2-3B $0.17 / 53.00% $0.24 7 57.00%
Full-History Caching GPT-40 Llama-3.1-8B Llama-3.1-8B $1.99/72.00% $2.24/62.50%
Full-History Caching GPT-40 Llama-3.1-8B Qwen-2.5-7B $2.31/70.50% $1.77 /1 60.50%
Full-History Caching GPT-40 Llama-3.1-8B Llama-3.2-3B $2.20/60.00% $2.22/58.00%
Agentic Plan Caching (Ours) GPT-40 Llama-3.1-8B Llama-3.1-8B $1.86/ 85.50% $2.03/ 82.00%
Agentic Plan Caching (Ours) GPT-40 Llama-3.1-8B Qwen-2.5-7B $1.77 7 90.50% $1.76 / 84.00%
Agentic Plan Caching (Ours) GPT-40 Llama-3.1-8B Llama-3.2-3B $1.85/80.00% $2.18 /73.00%

Table 4. Sensitivity Analysis of Actor LM: Results.

15



Cost-Efficient Serving of LLM Agents via Test-Time Plan Caching

D.3. Cost Analysis

Cost Breakdown We analyze the additional overhead introduced by the agentic plan caching mechanism through a cost
breakdown analysis (Table 5). On average, keyword extraction and cache generation account for only 1.04% of the total cost.
This minimal overhead is achieved because: (1) extracting higher-level goals or intents from task queries can be effectively
handled by lightweight models at the scale of GPT-40-mini or smaller, and (2) cache generation leverages rule-based
methods to extract templates and uses a lightweight language model only for filtering out query-specific or context-specific
details, which is a task well-suited to compact models.

Worst-Case Cache Overhead We assess the overhead incurred under the worst-case scenario, where the cache hit rate is
zero. As shown in Table 5, even in this scenario, the cost from keyword extraction and cache generation is minimal (1.31%
on average). In practical deployment, a potential mitigation strategy is to dynamically disable caching when hit rates remain
persistently low.

FinanceBench TabMWP
Component
Main Results Worst Case Main Results Worst Case
Large Planner LM $1.7544 (94.17%) $3.9227 (97.36%) $1.9823 (97.76%) $3.3292 (98.33%)
Small Planner LM $0.0168 (0.90%) - $0.0095 (0.47%) -
Actor LM $0.0705 (3.78%) $0.0529 (1.31%) $0.0170 (0.84%) $0.0128 (0.38%)
Cache Overhead $0.0213 (1.15%)  $0.0535 (1.33%)  $0.0190 (0.93%)  $0.0438 (1.29%)

- Keyword Extraction

- Cache Generation

$0.0050 (0.27%)
$0.0163 (0.88%)

$0.0050 (0.13%)
$0.0485 (1.20%)

$0.0025 (0.12%)
$0.0165 (0.81%)

$0.0025 (0.07%)
$0.0413 (1.22%)

Total

$1.8630 (100%)

$4.0291 (100%)

$2.0278 (100%)

$3.3858 (100%)
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Table 5. Cost Analysis. We show the breakdown of agentic plan caching costs, including main results and worst-case overhead.



Cost-Efficient Serving of LLM Agents via Test-Time Plan Caching

E. Example Agent Workflows and Cached Plan Templates

This section illustrates example agent workflows and their corresponding cached plan templates for data-intensive reasoning
tasks. We begin with a simple single-turn task (more complex multi-turn examples are presented in our experiments):

Task: What is FY2019 working capital ratio for Costco? Define working capital ratio as total current assets divided by
total current liabilities. Round your answer to two decimal places. Give a response to the question by relying on the
details shown in the statement of financial position.

Context: {costco_financial_ documents}

Below is the full agent workflow between a large planner LM and an actor LM, executed without caching (prompts omitted
for brevity):

Planner: 1. Decompose the Task: The task requires calculating the working capital ratio for Costco for FY2019. This
involves two main components: identifying the total current assets and the total current liabilities for FY2019 from the
statement of financial position.

2. Explain Each Component:

- Identify Total Current Assets: This is important because it represents the resources that Costco can convert into
cash within a year. Knowing this figure is essential for calculating the working capital ratio.

- Identify Total Current Liabilities: This represents the obligations that Costco needs to settle within a year. This figure
is crucial for determining the working capital ratio as it provides the denominator in the calculation.

- Calculate Working Capital Ratio: This step involves dividing the total current assets by the total current liabilities. The
result will give us the working capital ratio, which is a measure of Costco’s short-term financial health.

3. Formulate a Focused Message: The next step is to ask the small language model for the specific figures of total
current assets and total current liabilities for Costco in FY2019. This will allow us to perform the calculation.

4. Conclude with a Final Answer: Once we have the figures, we can calculate the working capital ratio and provide the
final answer rounded to two decimal places.

Generated plan (as a message to the actor LM): Please provide the total current assets and total current liabilities for
Costco for FY2019 from the statement of financial position.

Actor: Based on the provided statement of financial position for Costco Wholesale Corporation as of September 1,
2019, the total current assets and total current liabilities are:

- Total current assets: $23,485 million

- Total current liabilities: $23,237 million

Planner: 1. What information we have gathered: We have obtained the total current assets and total current liabilities
for Costco as of September 1, 2019. The total current assets are $23,485 million, and the total current liabilities are
$23,237 million.

2. Whether it is sufficient to answer the question: Yes, this information is sufficient to calculate the working capital ratio
for Costco for FY2019.

3. If not sufficient, what specific information is missing: Since we have both the total current assets and total current
liabilities, no additional information is needed.

4. If sufficient, how we would calculate or derive the answer: To calculate the working capital ratio, we divide the total
current assets by the total current liabilities. The formula is:

Working Capital Ratio = Total Current Assets / Total Current Liabilities

Substituting the given values: Working Capital Ratio = $23,485 million / $23,237 million

Calculating this gives us approximately 1.01 when rounded to two decimal places.

Conclusion: The working capital ratio for Costco for FY2019 is 1.01.

The following plan template is extracted from this successful workflow and stored in the cache:

Keyword: working capital ratio

Plan Template: 1. Plan (round 1): Retrieve total current assets and total current liabilities from the statement of
financial position.

2. Expected response from actor LM (round 1): Total current assets and total current liabilities.

3. Plan (round 2): The working capital ratio can be determined by:

Working Capital Ratio = Total Current Assets / Total Current Liabilities.

Later, for tasks with the same extracted keyword, such as the example below:
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Task: What is FY2021 working capital ratio for Best Buy? Define working capital ratio as total current assets divided
by total current liabilities. Round your answer to two decimal places. Please base your judgments on the information
provided primarily in the statement of financial position.

Context: {bestbuy_financial_documents}

We reuse the cached plan template and adapt it using a small planner LM:

Planner: (Using cached plan template) Please provide the total current assets and total current liabilities for Best Buy
in FY2021 from the statement of financial position, so | can calculate the working capital ratio.

Actor: According to the Consolidated Balance Sheets, the total current assets for Best Buy in FY2021 are $12,540
million, and the total current liabilities are $10,521 million.

Planner: (Using cached plan template) The FY2021 working capital ratio for Best Buy is calculated by dividing the
total current assets by total current liabilities. With total current assets of $12,540 million and total current liabilities of
$10,521 million, the working capital ratio is $12,540 million / $10,521 million = 1.19. Therefore, the working capital
ratio is 1.19, rounded to two decimal places.

Using the cached template significantly shortens the agent execution log, reducing token usage for expensive planner LMs.
This efficiency gain comes from:

e Avoiding redundant planning for repeated tasks.
e Knowing when sufficient information has been gathered to terminate the workflow, thus avoiding unnecessary Plan-Act
iterations.
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F. Extended Discussion of Related Work, Limitations, Societal Implications, and Future Work
F.1. Related Work

Agent Memory Prior work has explored augmenting LLM agents with external memory to (1) reduce hallucinations
through context-aware responses (ama, a) and (2) enable complex, long-horizon tasks (Wang et al., 2024b). Some studies
focus on defining memory formats (Yao et al., 2023) and managing memory efficiently (Packer et al., 2023; Xu et al., 2025).
While our caching system can be adapted as a form of agent memory, it diverges by targeting serving cost reduction rather
than enhanced capability, a largely unexplored area.

LLM Serving Engines Existing LLM serving engines like vLLM (Kwon et al., 2023) and SGLang (Zheng et al., 2024)
optimize general query inference at scale through techniques such as KV cache management and request scheduling. Our
approach is compatible with these systems, extending their capabilities to incorporate cost-effective caching for agentic Al
scenarios.

F.2. Limitations, Societal Implications, and Future Work

Limitations and Challenges First, we focus on two-stage Plan-Act agent architecture in this work. More complex
multi-agent systems could present new challenges for maintaining cache consistency across multiple components. Second,
for highly dynamic workloads with frequent task variations, the benefits of caching may diminish as historical plans may be
less applicable. Finally, our evaluation primarily emphasizes cost reduction. Future work could consider additional system
metrics such as latency, throughput, and computational overhead.

Broader Impact and Societal Implications We believe that the proposed agentic plan caching framework has broader
implications for Al accessibility and democratization. By reducing LLM serving costs, this framework could enable smaller
enterprises, academic institutions, and individual developers to deploy agentic Al systems without incurring prohibitive API
costs. Additionally, plan caches generated by advanced, commercial LLMs could potentially be shared or adapted for use
with open-source models (as shown in our experiments), facilitating greater access to state-of-the-art agentic capabilities
without direct reliance on expensive, closed-source APIs (e.g., from OpenAl). This approach also raises questions about
the long-term impact on data privacy, especially in cases where plan caches contain sensitive or proprietary information.
Ensuring cache privacy and data security in LLM agents requires further research.

Future Directions Several future directions could extend the utility of agentic plan caching. First, more advanced cache
look-up and plan adaptation methods (like retrieval-augmented generation) might further enhance the relevance of cached
plans in complex workflows. Second, enabling user-configurable cache parameters (e.g., cache size, eviction strategies, fuzzy
matching policies) could provide more control over caching strategies and allow for tailored cost-performance trade-offs.
Finally, integrating the idea of agentic plan caching into existing LLM and agent serving frameworks at production scale
would further enhance its applicability and impact. Overall, we hope this work inspires further research on optimizing the
efficiency and cost-effectiveness of agentic Al systems.
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