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ABSTRACT

Guidance methods have demonstrated significant improvements in cross-modal
audio generation, including text-to-audio (T2A) and video-to-audio (V2A) gen-
eration. The popularly adopted method, classifier-free guidance (CFG), steers
generation by emphasizing condition alignment, enhancing fidelity but often at
the cost of diversity. Recently, autoguidance (AG) has been explored for audio
generation, encouraging the sampling to faithfully reconstruct the target distribution
and showing increased diversity. Despite these advances, they usually rely on a
single guiding principle, e.g., condition alignment in CFG or score accuracy in
AG, leaving the full potential of guidance for audio generation untapped. In this
work, we explore enriching the composition of the guidance method and present a
mixture-of-guidance framework, AudioMoG. Within the design space, AudioMoG
can exploit the complementary advantages of distinctive guiding principles by
fulfilling their cumulative benefits. With a reduced form, AudioMoG can consider
parallel complements or recover a single guiding principle, without sacrificing
generality. We experimentally show that, given the same inference speed, Au-
dioMoG approach consistently outperforms single guidance in T2A generation
across sampling steps, concurrently showing advantages in V2A, text-to-music,
and image generation. These results highlight a “free lunch” in current cross-modal
audio generation systems: higher quality can be achieved through mixed guiding
principles at the sampling stage without sacrificing inference efficiency. Demo
samples are available at: audiomog.github.io.

1 INTRODUCTION

Audio generation conditioned on text and video information, known as text-to-audio (T2A) and
video-to-audio (V2A) generation, has witnessed significant advancements in recent studies. Typically,
these systems generate an audio latent in a small space compressed from the audio waveform or the
mel-spectrogram, indicated by the learned text embeddings (Kreuk et al., 2022; Liu et al., 2023; 2024a;
Huang et al., 2023b; Evans et al., 2024) or encoded video representations (Xu et al., 2024; Wang et al.,
2024a; Du et al., 2023; Luo et al., 2023). Recent efforts have enhanced cross-modal audio generation
quality through various perspectives, such as data augmentation (Huang et al., 2023b;a), condition
information (Jeong et al., 2024; Wang et al., 2024b; Liu et al., 2023; Li et al., 2024a; Evans et al.,
2024), generative models (Kreuk et al., 2022; Liu et al., 2023; 2024a), network architecture (Huang
et al., 2023a; Evans et al., 2024; Hung et al., 2024), and compression networks (Liu et al., 2023;
Evans et al., 2024; 2025). However, most of these improvements require retraining the model from
scratch or with significant overhead.

At the sampling stage, guidance methods have proven effective in enhancing the overall audio
generation quality, where classifier-free guidance (CFG) (Ho & Salimans, 2022) is popularly adopted
in modern cross-modal audio generation systems (Liu et al., 2023; 2024a; Cheng et al., 2025). By
emphasizing the indication of condition signals, namely text or video, CFG can improve the audio
generation results under an appropriate guidance scale, while it may therefore sacrifice generation
diversity. Recently, autoguidance (AG) (Karras et al., 2024a) is proposed in class-conditioned image
generation and has been extended to audio generation by ETTA (Lee et al., 2025). Different from CFG
strengthening condition alignment, it guides the diffusion model with a weaker version, encouraging
the generation process to faithfully reconstruct the target distribution.
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Figure 1: Overall framework of our proposed AudioMoG, which illustrates the mechanism of
AudioMoG and its degraded forms—Hierarchical Guidance exploits cumulative advantages from
both methods for optimal performance, Parallel Guidance introduces complementary directions, and
CFG or AG provides a single-directional guidance.

While these guidance methods are advantageous over unguided diffusion sampling, they usually
strengthen the generation direction with a single guiding principle, e.g., condition alignment in CFG
and score accuracy in AG. It remains underexplored if stronger generation results can be achieved by
mixing distinctive guidance methods, while maintaining inference efficiency. In this work, we explore
enriching the composition of the guidance method and present a mixture-of-guidance framework,
named AudioMoG, to simultaneously consider distinctive guiding principles rather than depend
solely on one of them. Firstly, we revisit the design of guidance strategies in audio generation, where
we analyze the behaviors and limitations of the widely-used CFG and recent AG, respectively. We
demonstrate that, CFG enhances synthesis quality through an entangled effect of score correction
and condition alignment amplification, which complicates independent control over quality and
diversity—particularly as improvements in the unconditional model diminish the correction signal. In
comparison, AG employs a weaker conditional model to isolate the score correction effect, achieving
more accurate score estimation to enable quality improvements, though its effectiveness can be
sensitive to the choice of the weak model (Karras et al., 2024a; Lee et al., 2025).

Based on these insights, we demonstrate the mechanism of AudioMoG, an improved sampling
framework that can fully exploit the complementary advantages of diverse guidance methods. Within
the design space, AudioMoG can fulfill the cumulative advantage by progressively harnessing the
strengths of diverse guiding principles, reaching the performance of further refining condition-aligned
term empowered by CFG with AG, or strengthening both conditional and unconditional score estima-
tion results with AG before CFG. As a degraded form, AudioMoG can fulfill parallel complements or
ultimately recover the guidance method considering a single principle, such as CFG or AG, without
sacrificing the generality as a mixture framework. Especially, in AudioMoG, we empirically observe
that the bad version of the model can be trained using the same network architecture as the good ver-
sion but with fewer iterations, or even taken directly from earlier checkpoints, avoiding the dedicated
design proposed in AG (Karras et al., 2024a) or the sensitivity for audio generation mentioned in
ETTA (Lee et al., 2025). Our contributions are summarized as follows.

• We present a mixture-of-guidance framework for audio generation, achieving improved synthesis
quality while maintaining the inference efficiency in comparison with the single guiding principle.

• Within the design space, AudioMoG can fulfill the cumulative advantages of diverse guidance
methods, progressively expressing their strengths, as well as allowing parallel complements or a
single principle as a degraded form.

• Experimental validation on diverse cross-modal audio generation and image generation tasks
demonstrates that under the same inference speed, AudioMoG consistently outperforms both CFG
and AG. Compared to CFG, we improve FAD from 1.76 to 1.38 in T2A (Evans et al., 2024), from
0.73 to 0.68 in V2A, and from 2.36 to 1.92 in text-to-music generation. Compared to AG, we
improve FID from 1.60 to 1.47 in image generation (Karras et al., 2024b).
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2 PRELIMINARIES

In this section, we introduce the foundation of latent diffusion models and guided audio generation.

Diffusion-based audio generation system. In T2A and V2A generation systems, audio signals x
are first compressed into a small latent space z with a compression network. Then, latent diffusion
models are popularly adopted to learn the generation of audio latent from a simple prior distribution,
e.g., the standard Gaussian noise distribution N (0, I), conditioned on the text prompt or video input.
At the training stage, a forward process is introduced to transform the audio latent at t = 0 into a
noisy latent with

zt =
√
ᾱtz0 +

√
1− ᾱtϵ, (1)

where
√
ᾱt is predefined to control the signal-to-noise ratio in forward process; ϵ ∼ N (0, I) is the

added Gaussian noise and shares the same distribution with the prior distribution p(zT ) at t = T . At
each training iteration, a noise predictor is optimized with

argmin
θ

E(z0,c),ϵ ∥ϵ− ϵθ (zt, t, c)∥22 , (2)

where c is the text embedding or encoded video features to indicate audio generation. Given the
well-trained noise predictor, a reverse process iteratively reconstructs the audio latent from the prior
distribution with

pθ(z0:T−1|zT , c) = p(zT )

T∏
t=1

pθ(zt−1|zt, c). (3)

In sampling, each reverse transition pθ(zs|zt, c) at the time steps 0 ≤ s < t ≤ T follows a Gaussian
distribution N (zs, µs|t(zt, t, c), σ

2
s|tI). The mean and variance are parameterized as

µs|t(zt, t, c) =
√

ᾱs|t(zt −
1− ᾱt|s√
1− ᾱt

ϵθ(zt, t, c)), σ2
s|t = (1− ᾱt|s)

1− ᾱs

1− ᾱt
, (4)

where ᾱt|s = ᾱt/ᾱs. Given sufficient sampling steps, audio latent z0 is reconstructed and then
decoded into audio signals x with a decoding system.

Classifier-Free Guidance. CFG (Ho & Salimans, 2022) is one of the most commonly used strategies
in diffusion models for conditional generation. During training, the conditional signal c is randomly
replaced with the null condition ∅ with a fixed probability puncond (a.k.a., random label dropout),
allowing the model to learn both conditional and unconditional noise predictors, ϵθ(zt, t, c) and
ϵθ(zt, t). At inference time, CFG combines the two predictors as follows:

ϵCFG(zt, t, c) = ϵθ(zt, t) + w (ϵθ(zt, t, c)− ϵθ(zt, t)) , (5)
where w ≥ 1 denotes the guidance scale that adjusts the strength of the conditional signal. When
w = 1, CFG recovers the conditional diffusion model ϵθ(zt, t, c). Larger values of w encourage
samples to align more closely with the conditioning signal, potentially enhancing generation quality.

Autoguidance. AG (Karras et al., 2024a) proposes guiding a diffusion model using a weaker version
of itself:

ϵAG(zt, t, c) = ϵθbad(zt, t, c) + w (ϵθ(zt, t, c)− ϵθbad(zt, t, c)) , (6)
where θbad refers to the weak model with smaller size or less training, and c can be replaced with ∅.
The underlying motivation stems from the observation that the score-matching objective in diffusion
models promotes mode coverage, often leading to noisy or inaccurate estimates. By contrastive
amplification of the difference between a strong and weak model, AG seeks to improve the score
estimation quality. Following a similar rationale, recent works (Kasymov et al., 2024; Phunyaphibarn
et al., 2025; Zhong et al., 2025) guide the fine-tuned model using the pre-fine-tuned one. While
the specific formulations differ, the core principle remains consistent: leveraging the weak-strong
discrepancy to guide improvement.

3 AUDIOMOG

3.1 ANALYSIS

2D toy example. We first provide an analysis of the CFG and AG methods to illustrate their respective
guiding principle. We adopt a 2D toy example introduced in Karras et al. (2024a), where a small

3
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(a) Ground truth (b) No guidance (c) Classifier-free guidance

(d) Autoguidance (e) PG (f) HG

Figure 2: Illustration of guidance methods on the fractal-like 2D distribution from Karras et al.
(2024a). (a) Ground truth distribution (orange class). (b) Unguided conditional sampling generates
outliers. (c) Classifier-Free Guidance (w = 3) with a well-trained unconditional model struggles to
remove outliers. (d) Autoguidance (w = 3) improves score estimation and removes outliers without
reducing diversity. (e) Parallel Guidance exhibits mode dropping similar to CFG. (f) Hierarchical
Guidance eliminates outliers and provides more controllable condition alignment.

denoiser is trained on synthetic data to learn conditional diffusion. The 2D dataset is designed
to exhibit low local dimensionality, characterized by highly anisotropic and narrow support, as
well as a hierarchical emergence of local detail as shown in Figure 2a, mimicking real-world data
manifolds (Karras et al., 2024a). As shown in Figure 2b, the denoiser network learns a suboptimal
score function, leading to scattered and unlikely outliers under unguided generation, i.e., conditional
diffusion sampling. Additional details on the experimental setup are provided in Appendix E.

CFG effects. For guided generation results, CFG improves sample quality by contrasting the
conditional and unconditional models. The unconditional model is arguably relatively under-trained
due to the inherent difficulty of the unconditional task and the low label dropout rate (e.g., 10% for
audio generation in Liu et al. (2023); Deepanway et al. (2023); Evans et al. (2024)). Consequently,
the CFG effect in Equation 5 is mixed, as formulated in the following guidance decomposition:

∇x log p(x|c)−∇x log p(x|∅) = [∇x logEcp(x|c)−∇x log p(x|∅)] +∇x log p(c|x). (7)

Namely, with an under-trained unconditional model, the CFG direction entangles two components:
(1) score correction from weak-strong contrast that eliminates dispersed outliers, and (2) condition
alignment amplification that may skew the distribution and reduce diversity. The quality improvement
observed with CFG can be ideally attributed to the first factor. However, the entanglement makes
it difficult for CFG to independently control diversity and quality, as a better unconditional model
yields weaker signals for score correction. This effect is visualized in Figure 2c, where CFG with a
sufficiently trained unconditional model fails to eliminate dispersion.

AG effects. On the other hand, AG avoids this entanglement by employing a weaker but still
conditional version of the model, thus isolating the improvement direction without losing diversity as
shown in Figure 2d. However, its effectiveness hinges on the availability of a suitably degraded weak
model. Constructing such a model in practice can be nontrivial (Karras et al., 2024a; Lee et al., 2025;
Jeon, 2025; Hyung et al., 2025), especially when model degradation does not align well with real
score estimation errors and the weak-strong contrast cannot provide meaningful directions. In such
cases, incorporating additional sources of guidance may be necessary to achieve more robust quality
gains. For example, when training data quality is suboptimal, CFG often yields sharper and more
prompt-consistent generations due to its “lower-temperature” behavior (Bradley & Nakkiran, 2024),
creating a more favorable distribution that can complement AG.

4
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Motivation. As discussed above, previous guidance methods, CFG and AG, guide the sampling
process with diverse principles, both showing advantages over unguided generation. CFG enhances
consistency with conditional information, and AG removes dispersion by mitigating errors. The
effectiveness of CFG has been extensively validated in audio generation across various data represen-
tations (Liu et al., 2023; Evans et al., 2025), conditional modalities such as text (Deepanway et al.,
2023; Huang et al., 2023a), video (Luo et al., 2023; Xu et al., 2024), and network architectures (Liu
et al., 2023; Evans et al., 2025; Li et al., 2024a; Hung et al., 2024). However, CFG can still yield
suboptimal results due to its overemphasis on condition information. Particularly, it may miss relevant
sound events or fail to accurately generate uncommon audio events. Recent work ETTA (Lee et al.,
2025) has explored AG on T2A generation, showing increased generation diversity but observing
strong sensitivity to the choice of weak model. Given that either CFG or AG has shown quality
improvement for audio generation, while both consider a single guiding principle, we explore a
mixture-of-guidance framework, aiming at composing guidance methods to fulfill stronger results
by exploiting their complementary advantages, e.g., cumulative benefits, even without sacrificing
sampling efficiency.

3.2 FRAMEWORK

General setting. AudioMoG presents a mixture-of-guidance strategy as follows, involving M
guidance methods:

ϵMoG(zt, t, c) =

N∑
i=1

wiϵi(zt, t, c), s.t.
N∑
i=1

wi = 1, (8)

where ϵi is a denoiser network and wi ∈ R is the corresponding weight. When M = 1, AudioMoG
considers a single guidance method, which extrapolates two denoising results as mentioned in (Karras
et al., 2024a). Given M ≥ 2, AudioMoG starts exploiting the complementary advantages of different
guidance methods. However, this inevitably increases the complexity, which may result in longer
inference time, as the framework considers both the terms required by different methods and the
additionally produced interaction terms, e.g., the unconditional and bad term when combining CFG
and AG. Hence, even though a MoG framework may yield stronger performance by considering
more guiding principles and leveraging their complementary benefits, an essential consideration is
the balance between synthesis quality and inference speed.

To improve guided audio generation, we empirically observe that combining two distinctive guidance
methods, both of which have proven more advantageous than unguided conditional sampling, shows
potential to achieve improved synthesis quality without sacrificing inference speed.

Hierarchical guidance. When considering a mixture of two guidance methods, the MoG framework
shown by Equation 8 exploits their complementary advantages by linearly combining four noise
predictors (i.e., M = 2, N = 4), which can be viewed as hierarchically combining two guidance
methods (denoted by HG). Taking CFG and AG as examples for guided audio generation, AudioMoG
can be interpreted from two perspectives 1. Firstly, we can interpret it as refining the CFG method
with the AG guiding principle as follows:

ϵCFG(zt, t, c) = ϵθ(zt, t) + w1(ϵθ(zt, t, c)− ϵθ(zt, t)),

ϵbadCFG(zt, t, c) = ϵθbad(zt, t) + w2(ϵθbad(zt, t, c)− ϵθbad(zt, t)),

ϵHG(zt, t, c) = ϵbadCFG(zt, t, c) + w3(ϵCFG(zt, t, c)− ϵbadCFG(zt, t, c)).

(9)

Namely, the good and bad terms under the AG framework (Karras et al., 2024a) have been first
enhanced by explicitly emphasizing condition alignment, and then AG further strengthens the result
towards faithfully reconstructing the target distribution. Alternatively, as proven in Appendix A, it
can be interpreted as applying the CFG method to more accurate score estimation results. Namely,
the conditional and unconditional terms under the CFG framework (Ho & Salimans, 2022) have been
first improved by AG to achieve higher score accuracy. This naturally outperforms previous works
that solely depend on CFG: applying CFG to scores not yet refined by AG.

Other forms: parallel guidance, CFG, and AG. By controlling the weighting strategy for Equa-
tion 8, AudioMoG can show other forms exhibiting a different mechanism when exploiting the

1HG in CFG-AG or AG-CFG orders yields equivalent guidance family, as proven in Appendix A.

5
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Table 1: Objective metrics for text-to-audio generation on AudioCaps test set. The best perfor-
mance for each metric is highlighted in bold, while the second-best is marked with an underline.

Model FAD ↓ KL ↓ IS ↑ FD ↓ CLAP ↑
GT / / / / 0.52

AudioGen (Kreuk et al., 2022) 3.13 2.09 / / /
AudioGen-Large (Kreuk et al., 2022) 1.82 1.69 / / /
Make-An-Audio (Huang et al., 2023b) 1.61 1.61 7.29 18.32 /
TANGO-AF&AC-FT-AC (Kong et al., 2024) 2.54 / 11.04 17.19 /
AudioLDM-Large-Full (Liu et al., 2023) 1.96 1.59 8.13 23.31 0.43
AudioLDM 2 (Liu et al., 2024a) 2.09 1.79 8.14 26.44 0.50
AudioLDM 2-Large (Liu et al., 2024a) 1.89 1.54 8.55 26.18 0.53
Stable Audio Open (Evans et al., 2025) / 2.14 / / 0.35

CFG-only, w = 7 1.76 1.44 13.46 20.94 0.54
MoG-PG, w1 = 4.6, w2 = 0.2 1.54 1.47 13.47 18.50 0.53
MoG-HG, w1 = 4.0, w2 = 3.3, w3 = 1.2 1.38 1.44 13.58 18.87 0.54

Table 2: Subjective metrics for text-to-audio generation on AudioCaps samples. Rated for overall
quality and text relevance, with higher scores indicating better performance.

Metric GT AudioLDM AudioLDM 2 CFG-only MoG-HG

OVL ↑ 3.23± 0.58 2.26± 0.53 2.76± 0.47 3.20± 0.51 3.64 ± 0.48
REL ↑ 3.43± 0.62 2.34± 0.61 2.90± 0.55 3.40± 0.59 3.90 ± 0.54

complementary advantages. When the interaction terms in Equation 8 are removed (i.e., M = 2,
N = 3), AudioMoG degrades to employing CFG and AG in parallel (denoted by PG), which can be
written as:

ϵPG(zt, t, c) = ϵθ(zt, t) + w1(ϵθ(zt, t, c)− ϵθ(zt, t)) + w2(ϵθ(zt, t, c)− ϵθbad(zt, t, c)). (10)

While PG qualitatively demonstrated by (Karras et al., 2024a) offers a simple and effective integration
of CFG and AG, it implicitly assumes their compatibility at each sampling step. However, as discussed
above, these two methods guide the model in potentially interfering directions: emphasizing the
condition can lead to mode collapse, while correcting from weak references may introduce semantic
drift. Thus, it may not be able to fully exploit their complementary advantages in comparison with
exploiting the cumulative benefits, as demonstrated by experiments in Section 4.

It is also worth noting that, when further removing the terms in Equation 8, AudioMoG can recover
the guidance method considering a single guiding principle, e.g., CFG or AG, indicating that MoG
can be seen as a unified framework to incorporate diverse guidance methods.

4 EXPERIMENTS

4.1 T2A EXPERIMENT SETUP

Datasets. We use AudioSet (Gemmeke et al., 2017), FSD50k (Fonseca et al., 2021) and Clotho
v2 (Drossos et al., 2020). To maintain consistency throughout the dataset, each track in these databases
was segmented into 10-second clips and resampled at 16 kHz. The details of these datasets are further
introduced in the Appendix F.1. To compare with prior work, we evaluated our models on the widely
used AudioCaps benchmark (Kim et al., 2019), which consists of about 1K 10-second audio clips.

Model configurations. We use FLAN-T5(Chung et al., 2024) as the text encoder for our base model,
and we train a Variational Autoencoder (VAE) (Kingma et al., 2013) that compresses the original
waveform into the latent representation. A more detailed description of the model configurations
and compression networks is provided in the Appendix F.3. We trained the model for 1 M iterations
with a batch size of 8 per GPU. We used the AdamW optimizer (Loshchilov & Hutter, 2017) with a
learning rate of 5e-5 and a condition drop puncond = 0.1 for CFG. The bad model was trained under
the same configuration as the main model, but with only 0.1 M iterations. During inference, we use
DPM++ 2M SDE (Lu et al., 2022).

Evaluation metrics. We conduct a comprehensive evaluation of our models using both objective
and subjective evaluations to assess audio generation quality, text-audio alignment, and inference

6
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Table 3: Objective metrics for video-to-audio generation on VGGSound test set.

Model FAD ↓ KL ↓ IS ↑ FD ↓ IBS ↑ Align acc ↑
GT / / / / 32.9 83.6

IM2WAV (Sheffer & Adi, 2023) 6.41 2.54 / / 19.0 74.3
Diff-Foley (Luo et al., 2023) 5.79 3.12 10.8 21.90 20.4 89.9
FoleyGen (Mei et al., 2024) 1.65 2.35 / / 26.1 73.8
VTA-LDM (Xu et al., 2024) 2.01 2.37 10.4 12.80 26.2 77.0
FoleyCrafter (Zhang et al., 2024) 2.32 2.54 9.9 18.10 27.7 83.6
V2A-Mapper (Wang et al., 2024a) 0.90 2.68 12.5 8.35 22.4 78.3
VAB-Encodec (Su et al., 2024) 2.69 2.58 / / / /
VATT w/o text (Liu et al., 2024b) 2.35 2.25 / / / 82.8

CFG-only, w = 3 0.73 2.28 17.1 4.48 32.8 85.8
MoG-PG, w1 = 2.7, w2 = 0.15 0.70 2.22 16.8 4.14 32.9 86.1
MoG-HG, w1 = 2.7, w2 = 2.5, w3 = 1.2 0.68 2.20 17.2 4.06 33.1 86.6

Table 4: Comparison between different guid-
ance methods on T2A.

Method FAD ↓ KL ↓ IS ↑ FD ↓
No guidance 7.31 2.45 5.86 38.42

CFG-only 1.96 1.91 7.47 17.40
AG-only 2.30 1.91 7.41 17.57
MoG-PG 1.67 1.54 13.52 19.01
MoG-HG 1.38 1.44 13.58 18.87

Table 5: Comparison between different guid-
ance methods on V2A.

Method FAD ↓ KL ↓ IS ↑ FD ↓
No guidance 1.28 2.49 10.2 8.06

CFG-only 0.74 2.31 15.8 5.17
AG-only 1.06 2.37 11.4 6.84
MoG-PG 0.71 2.22 16.9 4.59
MoG-HG 0.68 2.20 17.2 4.06

efficiency. Objective metrics include Fréchet Audio Distance (FAD) (Kilgour et al., 2019), Kullback-
Leibler (KL) divergence (Kullback & Leibler, 1951), Inception Score (IS) (Salimans et al., 2016),
Fréchet Distance (FD) (Heusel et al., 2017), and LAION-CLAP score (Wu et al., 2023). For subjective
evaluation, we recruited 20 human raters to score two aspects: (i) overall perceptual quality (OVL),
and (ii) semantic relevance to the input text (REL). Both scores are rated on a 1–5 scale. More details
are introduced in Appendix F.5 and F.6, respectively.

4.2 MAIN RESULTS

T2A generation results. We conduct a comparison study of audio generation quality across GT
(i.e., ground-truth audio) and a range of systems, including AudioGen, AudioGen-Large (Kreuk
et al., 2022), Make-An-Audio (Huang et al., 2023b), TANGO-AF&AC-FT-AC (Kong et al., 2024),
AudioLDM-Large-Full (Liu et al., 2023), AudioLDM 2, AudioLDM 2-Large (Liu et al., 2024a),
and Stable Audio Open (Evans et al., 2025). The descriptions of these models are further detailed
in the Appendix F.2. For AudioGen and AudioLDM, we report the metrics as presented in their
original papers, and for the rest of the methods, we cite the results from ETTA (Lee et al., 2025). To
demonstrate the effectiveness of our method, we further evaluate the base model using only CFG.
The best results are achieved when the CFG scale is set to w = 7. For a fair comparison, we fix
the number of function evaluations (NFE) to 400 2 for both our method and the CFG-only baseline,
ensuring equal inference cost. All evaluations are conducted on the AudioCaps test set using standard
objective metrics for quantitative comparison. The main results are summarized in Table 1. We have
the following conclusions:

Under equal inference resources, our method uniformly outperforms CFG-only. In terms of audio
quality, our proposed methods demonstrate significantly improved performance compared to CFG-
only under the same inference budget. Specifically, both PG and HG outperform CFG-only across
all objective metrics. Our results show that improved quality can be achieved without increasing
inference cost. Notably, our HG-improved variant gives an updated result, achieving a FAD of 1.38,
KL of 1.44, IS of 13.58, and a CLAP score of 0.54.

2This corresponds to 200 sampling steps for CFG and 100 for HG. For PG, we instead keep the number of
sampling steps consistent with HG, yielding an NFE of 300, as we observed that further increasing it leads to
slight performance degradation for PG.
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Figure 3: Performance comparison of HG and CFG-only across different NFEs. As shown, HG
consistently outperforms CFG-only across all settings.

HG is better than PG. Furthermore, we observe that HG consistently outperforms PG. While both
methods significantly surpass the CFG-only baseline, HG achieves better performance than PG across
all evaluated metrics. For example, HG achieves a lower FAD and KL than PG, indicating better
distributional fidelity. Moreover, the higher CLAP score indicates that HG achieves better text-audio
alignment than PG. We hypothesize these improvements stem from the structured formulation of HG,
which avoids the potential conflicts present in PG.

V2A generation results. To further investigate the potential of AudioMoG, we also fine-tune the
T2A model to V2A with CLIP features (Radford et al., 2021) and validate it on the VGGSound
(Chen et al., 2020) test set. We evaluated our models using several metrics to assess audio quality,
video-audio semantic alignment and temporal alignment, including FAD, KL, IS, FD, ImageBind
Score (IBS) (Girdhar et al., 2023) and temporal alignment accuracy (Align acc) introduced in Diff-
Foley (Luo et al., 2023). Then we compare our results with GT and a variety of strong systems,
including IM2WAV (Sheffer & Adi, 2023), Diff-Foley (Luo et al., 2023), FoleyGen (Mei et al.,
2024), VTA-LDM (Xu et al., 2024), FoleyCrafter (Zhang et al., 2024), V2A-Mapper (Wang et al.,
2024a), VAB-Encodec (Su et al., 2024), and VATT (Liu et al., 2024b). The comparative results are
summarized in Table 3. A comprehensive improvement across most metrics, including the critical
issue of temporal alignment in V2A, demonstrates that our method uniformly enhances cross-modal
audio generation. More details about the V2A experiment are provided in Appendix G.

Text-to-music and image generation results. To further demonstrate the effectiveness of our
proposed method, we also perform our approach on text-to-music generation with our DiT base
model, and conditional image generation on the public EDM (Karras et al., 2024b) checkpoint. The
results are shown in Appendix C and D respectively, which again verifies the efficacy of MoG across
different tasks and modalities.

Diverse samplers. In audio generation tasks, we use DPM++ solver, while in image generation, we
use the Heun sampler, demonstrating the robustness of our methods on different samplers.

4.3 ADDITIONAL RESULTS

Comparison across various NFEs. We compare the performance of HG and CFG-only under
different numbers of function evaluations (NFE), each using their respective optimal settings. Specifi-
cally, we examine NFE values of 100, 200, 300 and 400, and report the results in Figure 3. Across
all NFE levels, HG consistently outperforms CFG-only in terms of FAD and IS. This consistent
superiority indicates that our method is more robust across varying computational budgets, main-
taining high-quality generation even under stricter inference constraints. These results highlight the
strong adaptability and scalability of HG, which delivers reliable quality improvements regardless
of available inference resources, while also unlocking higher performance ceilings when additional
computation is allowed.

Comparison in the same guidance scale. To validate the effectiveness of our approach, we compare
different guidance methods on both T2A and V2A. For NFE, we fix it to 300 for PG and 400 for the
rest. For the guidance scale, we set w1 = w3 = 1, w3 = 1, w1 = w2 = 1 and w2 = 1 in the HG
setting, which corresponds to no guidance, CFG-only, AG-only and PG, respectively. The remaining
guidance scales are consistent with HG in Table 1 and Table 3 (AG-only also achieves the best
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CFG PG HG

Prompt: Loud gunshots and explosions with 
men speaking, water splashing, wind blowing, 
and thunder roaring

Prompt: Humming of an engine with sirens 
ringing

Prompt: A young girl talking as a woman is 
talking

Figure 4: Case study comparing the spectrogram outputs of different guidance strategies
(CFG, PG, HG) under various text prompts. HG consistently demonstrates superior harmonic
structure modeling and clearer spectral patterns compared to PG and CFG. While PG shows moderate
improvements, CFG often struggles to capture harmonics and yields blurrier, less structured results,
particularly for complex prompts. These examples visually highlight the effectiveness of hierarchical
guidance in improving fidelity and temporal structure.

performance at this scale). The results are shown in Table 4 and Table 5. We observe that HG and PG
outperform no guidance, CFG-only and AG-only across FAD, KL and IS, indicating that combining
guidance directions yields better performance than using either one alone. Furthermore, HG surpasses
PG on both tasks, further confirming the advantage of the hierarchical guidance structure.

Impact of guidance scales. We further investigate the influence of guidance scales in PG and HG on
the audio generation quality. Our analysis reveals that these parameters have an effect on the balance
between fidelity and diversity in the generated audio. Detailed experimental results and discussions
are provided in Appendix B.

Case study. Apart from the objective and subjective evaluations, we conduct a case study as shown
in Figure 4. For each of the guidance methods, CFG, PG, and HG, we provide three test text prompts.
As shown, CFG is prone to produce less structured results. In comparison, PG has shown improved
quality and HG produces the strongest outcome. These results are consistent with our objective test
results and the human evaluations. We provided more generation results in Appendix I.

5 RELATED WORK

Diffusion-based cross-modal audio generation, such as T2A and V2A generation systems, primarily
employ CFG during sampling, while it may suffer from sub-optimal synthesis quality as discussed.
Recent work (Chidambaram et al., 2024) has theoretically justified the empirical finding that a
large guidance scale which can ensure synthesis quality may result in reduced generation diversity.
To address this issue, recent works (Karras et al., 2024a; Hong et al., 2023; Li et al., 2025; Sadat
et al., 2024) carefully design different weaker models to replace the unconditional term in CFG, as
noted in Jeon (2025). Among them, AG is representative as its general formulation, and has been
extended to diverse data modalities and generation tasks (Phunyaphibarn et al., 2025; Jeon, 2025;
Hyung et al., 2025; Lee et al., 2025). In this work, we propose a mixture-of-guidance framework,
exploiting complementary advantages of different guidance methods, aiming at improving guided
audio generation quality without sacrificing inference efficiency.

6 CONCLUSION

In this work, we introduce AudioMoG, an improved sampling framework for audio generation.
We start from an analysis of CFG and AG methods, demonstrating their respective principle on
outperforming unguided diffusion generation. Then, we propose the mixture-of-guidance framework,
introducing its mechanism which exploits the cumulative benefits of diverse guidance methods.
Comprehensive experiments demonstrate the superiority of AudioMoG over the popularly adopted
CFG on T2A generation under the same inference budgets, as well as achieving improvement over
both CFG and AG across V2A, T2M, and image generation tasks without increasing inference time.
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A PROOF OF HG

Theorem 1. Embedding AG into CFG is equivalent to embedding CFG into AG. Namely,
ϵcAG(zt, t, c) = ϵθbad(zt, t, c) + w1(ϵθ(zt, t, c)− ϵθbad(zt, t, c))

ϵucAG(zt, t) = ϵθbad(zt, t) + w2(ϵθ(zt, t)− ϵθbad(zt, t))

ϵHG(zt, t, c) = ϵucAG(zt, t) + w3(ϵcAG(zt, t, c)− ϵucAG(zt, t))

(11)

and
ϵCFG(zt, t, c) = ϵθ(zt, t) + ŵ1(ϵθ(zt, t, c)− ϵθ(zt, t))

ϵbadCFG(zt, t, c) = ϵθbad(zt, t) + ŵ2(ϵθbad(zt, t, c)− ϵθbad(zt, t))

ϵ̂(zt, t, c) = ϵbadCFG(zt, t, c) + ŵ3(ϵCFG(zt, t, c)− ϵbadCFG(zt, t, c))

(12)

are equivalent guidance, as long as w3 /∈ {0, 1} and ŵ3 /∈ {0, 1} (HG degenerates to CFG-only or
AG-only in these cases) i.e., for any fixed ϵθ and ϵθbad ,

{ϵ|∃w1, w2 ∈ R, w3 /∈ {0, 1}, s.t.ϵ = ϵHG(zt, t, c)}
={ϵ|∃ŵ1, ŵ2 ∈ R, ŵ3 /∈ {0, 1}, s.t.ϵ = ϵ̂HG(zt, t, c)}

(13)

Proof. Let the two sets in Equation 13 be denoted as S1 and S2. Substituting the first two equations
of Equation 11 into the third gives:

ϵHG(zt, t, c) = w3ϵcAG(zt, t, c) + (1− w3)ϵucAG(zt, t, c)

= w3 (w1ϵθ(zt, t, c) + (1− w1)ϵθbad(zt, t, c))

+ (1− w3) (w2ϵθ(zt, t) + (1− w2)ϵθbad(zt, t))

= w1w3ϵθ(zt, t, c) + w2(1− w3)ϵθ(zt, t)

+ w3(1− w1)ϵθbad(zt, t, c) + (1− w2)(1− w3)ϵθbad(zt, t)

(14)

Likewise, Equation 12 gives
ϵ̂HG(zt, t, c) = ŵ3ϵCFG(zt, t, c) + (1− ŵ3)ϵbadCFG(zt, t, c)

= ŵ3 (ŵ1ϵθ(zt, t, c) + (1− ŵ1)ϵθ(zt, t))

+ (1− ŵ3) (ŵ2ϵθbad(zt, t, c) + (1− ŵ2)ϵθbad(zt, t))

= ŵ1ŵ3ϵθ(zt, t, c) + ŵ3(1− ŵ1)ϵθ(zt, t)

+ ŵ2(1− ŵ3)ϵθbad(zt, t, c) + (1− ŵ2)(1− ŵ3)ϵθbad(zt, t)

(15)

For most cases ϵθ(zt, t), ϵθ(zt, t, c), ϵθbad(zt, t) and ϵθbad(zt, t, c) are linearly independent, thus
Equation 14 and 15 implies 

w1w3 = ŵ1ŵ3

w2(1− w3) = ŵ3(1− ŵ1)

w3(1− w1) = ŵ2(1− ŵ3)

(1− w2)(1− w3) = (1− ŵ2)(1− ŵ3)

(16)

For Equations 16, adding the first and third equations yields
w3 = ŵ1ŵ3 + ŵ2(1− ŵ3) (17)

Substitute into the first and second equations and we can figure out (This division is valid since
w3 /∈ {0, 1})

w1 =
ŵ1ŵ3

ŵ1ŵ3 + ŵ2(1− ŵ3)

w2 =
ŵ3(1− ŵ1)

1− ŵ1ŵ3 − ŵ2(1− ŵ3)

(18)

Therefore, S2 ⊆ S1. Notice that Equations 16 is symmetric under the exchange of w1 and ŵ1, w2

and ŵ2, w3 and ŵ3, so similarly

ŵ1 =
w1w3

w1w3 + w2(1− w3)

ŵ2 =
w3(1− w1)

1− w1w3 − w2(1− w3)

ŵ3 = w1w3 + w2(1− w3)

(19)

deducing that S1 ⊆ S2. Then we have S1 = S2, which completes the proof.
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(a) FAD w.r.t. w1 and w2 (b) IS w.r.t. w1 and w2 (c) CLAP w.r.t. w1 and w2

Figure 5: Impact of different guidance scales in PG. (a)(b)(c) stands for the relations of FAD, IS
and CLAP with w1 and w2, respectively. The best configurations are denoted with stars.
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(c) FAD and IS w.r.t. w3

Figure 6: Impact of different guidance scales in HG. (a) Sweep over w1 while keeping w2 and
w3 unchanged. (b) Sweep over w2 while keeping w1 and w3 unchanged. (c) Sweep over w3 while
keeping w1 and w2 unchanged. The best configurations are denoted with dashed lines.

B IMPACT OF GUIDANCE SCALES

To further demonstrate the effectiveness of AudioMoG, we investigate the impact of different guidance
scales in PG and HG on the generation results.

The PG setting. We study the guidance scales w1 in the range 4.3 ∼ 5.0 and w2 in 0.0 ∼ 0.3. We
keep the NFE fixed at 300 following the main paper and evaluated FAD, IS and CLAP. The results
are shown in Figures 5a-5c. Noticing that PG degrades to CFG-only when w2 = 0, we can see that
PG indeed reaches a higher performance ceiling and achieves the best results around our choice,
w1 = 4.6 and w2 = 0.2. Excessively increasing or decreasing w1 and w2 will result in a loss of
quality, showing alike convex pattern in the following HG setting.

The HG setting. We adopt the setting in the main paper, with the baseline configuration of w1 = 4.0,
w2 = 3.3, and w3 = 1.2, while keeping the NFE fixed at 400. We evaluated both FAD and IS
as primary metrics, and the results are summarized in Figures 6a-6c. For w1 (Figure 6a), we can
see as w1 increases from 3.0 to 4.0, FAD decreases substantially, reaching a minimum around
w1 = 4.0, indicating improved overall sample fidelity. However, further increasing w1 beyond this
point slightly worsens FAD. Meanwhile, IS increases steadily and saturates at w1 ≥ 4.0, reflecting
stronger condition adherence and sample specificity. For w2 and w3, we observe similar convex
patterns (Figure 6b, 6c). Both FAD and IS achieve their best values around w2 = 3.3 and w3 = 1.2.
Therefore, all three scales exhibit non-monotonic behaviors, and each has an optimal value range
where both fidelity and diversity metrics are simultaneously optimized. These results validate the
necessity of tuning each guidance component, as also noted in Karras et al. (2024a), and highlight
that balanced guidance from multiple perspectives is crucial for high-quality audio generation.

C TEXT-TO-MUSIC GENERATION RESULTS

C.1 BASELINE METHODS

To present comprehensive evaluation results, we introduce 10 text-to-music (T2M) baseline models
for comparison:

17
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Table 6: Objective metrics for text-to-music generation on MusicCaps dataset.

Model FAD ↓ IS ↑ FD ↓
Riffusion (Forsgren & Martiros, 2022) 13.40 / /
Mubert (Mubert-Inc., 2022) 9.60 / /
MusicLM (Agostinelli et al., 2023) 4.00 / /
Mousai (Schneider et al., 2023) 7.50 / /
MeLoDy (Lam et al., 2023) 5.41 / /
Stable Audio Open (Evans et al., 2025) 3.51 2.93 36.42
MusicGen w/o melody (Copet et al., 2023) 3.40 / /
AudioLDM 2-Large (Liu et al., 2024a) 2.93 2.59 16.34
AudioLDM 2-Full (Liu et al., 2024a) 3.13 / /
TANGO-AF (Kong et al., 2024) 2.21 2.79 22.69
Jen-1 (Li et al., 2024b) 2.00 / /

CFG-only, w = 7 2.36 3.10 14.39
MoG-PG, w1 = 2.0, w2 = 0.2 1.98 4.35 14.88
MoG-HG, w1 = 1.6, w2 = 1.6, w3 = 1.2 1.92 4.39 14.09

Riffusion (Forsgren & Martiros, 2022) is a unique model that generates music by converting spec-
trogram images into audio. It fine-tunes the Stable Diffusion model on spectrograms, allowing it to
produce short music loops based on text prompts.

Mubert (Mubert-Inc., 2022) is an AI-driven music generation platform that creates royalty-free
music tailored for various content needs. It offers tools for content creators, artists, and developers to
generate and integrate AI-generated music into their projects.

MusicLM (Agostinelli et al., 2023) is a model introduced by Google that generates high-fidelity
music from text descriptions. It utilizes a sequence-to-sequence modeling approach to capture
long-term structure in music generation.

Mousai (Schneider et al., 2023) is a two-stage latent-diffusion system for text-to-music generation.
Stage 1 compresses 48 kHz stereo audio with a Diffusion-Magnitude Autoencoder (DMAE), and
Stage 2 is a text-conditioned latent diffusion (TCLD) model that can produce multi-minute, prompt-
aligned musical pieces.

MeLoDy (Lam et al., 2023) is an LM-guided diffusion framework that inherits the highest-level LM
from MusicLM for semantic modeling, and applies a novel dual-path diffusion (DPD) model and an
audio VAE-GAN to efficiently decode the conditioning semantic tokens into waveform, resulting in
cutting sampling cost by more than 95 % while maintaining state-of-the-art text–music alignment
and audio quality.

MusicGen (Copet et al., 2023) is an open-source model developed by Meta that generates music
from text prompts. It employs a transformer-based architecture trained on a large dataset of music to
produce diverse and high-quality audio samples.

Jen-1 (Li et al., 2024b) is a universal high-fidelity model for text-to-music generation. It incorporates
both autoregressive and non-autoregressive training, enabling tasks like text-guided music generation,
inpainting, and continuation.

C.2 EXPERIMENT RESULTS

We conduct a comprehensive analysis of generated music quality across the above systems. For
Riffusion, Mubert and MusicLM, we report the metrics from MusicLM. For Stable Audio Open,
AudioLDM2-Large and Tango-AF, we cite the results from ETTA. For Mousai, as it is not evaluated
in ETTA, we report it from AudioLDM 2. For other baselines, we report the metrics as presented
in their original papers. Similar to T2A, we further evaluate our baseline model using only CFG,
which also achieves the best result when w = 7, and fix NFE to 400. All evaluations are conducted
on MusicCaps dataset. The results are detailed in Table 6. It can be shown that HG not only surpasses
CFG-only but also achieves SOTA in all metrics.
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D IMAGE GENERATION RESULTS

This section presents the experimental results for the conditional ImageNet 512×512 generation task,
using the EDM2-S checkpoints from (Karras et al., 2024b). Image generation was performed over 16
deterministic steps with a second-order Heun sampler, maintaining the same inference speed with
a single guidance method (Karras et al., 2024a). The optimal guidance strengths were determined
through a grid search on a reduced sample size (N = 8192). Subsequently, the model’s performance
was evaluated on a larger set of samples (N = 50000) to obtain robust estimates of the Fréchet
Inception Distance (FID) and the Fréchet DINOv2 Distance (FD_DINOv2).

Table 7: Conditional image generation results on ImageNet-512.

Model FID ↓ FDDINOv2 ↓
CFG-only 2.40 96.90
AG-only 1.60 57.35
MoG-PG 1.60 53.01
MoG-HG 1.47 49.92

E 2D TOY DATASET EXPERIMENT DETAILS

This section outlines the setup of the 2D toy dataset experiment used in the analysis presented in
Section 3.1. Unless otherwise specified, the experiment details strictly follow the setup in (Karras
et al., 2024a).

Dataset. The dataset is a synthetic, fractal-like 2D distribution composed of two classes. Each class
is represented as a Gaussian mixture model Mc = (ϕi, µi,Σi), where ϕi denotes the mixture weight,
µi the mean, and Σi the 2× 2 covariance matrix of the i-th Gaussian component.

Models. We employ simple multi-layer perceptrons (MLPs) as denoiser models, consistent with the
setup in (Karras et al., 2024a).

Training. To ensure comparability, we use the pre-trained models provided by (Karras et al., 2024a).
The URLs of model checkpoints can be found at: https://github.com/NVlabs/edm2/
blob/main/toy_example.py.

Sampling. For the visualizations in Figure 2, we use the following guidance weights: w = 3 for
both CFG and AG; w1 = 2, w2 = 2 for PG; and w1 = w2 = 1.5, w3 = 2 for HG. The models
ϵθ(zt, t, c) and ϵθ(zt, t) use checkpoints trained with hidden dimension d = 64 and training iteration
M = 4096, while the bad models ϵθbad(zt, t, c) and ϵθbad(zt, t) use checkpoints with d = 32 and
M = 512.

F TEXT-TO-AUDIO EXPERIMENT DETAILS

F.1 DATASETS

We present the datasets used to train our baseline model in Table 8. AudioCaps (Kim et al., 2019) is a
benchmark dataset for audio captioning that contains 50,000 audio clips from AudioSet paired with
human-written textual descriptions. We only used its training set. AudioSet (Gemmeke et al., 2017)
is a large-scale weakly labeled dataset released by Google, comprising over 2 million 10-second
audio clips across more than 600 sound event categories. The BBC Sound Effects Library [link]
provides over 30,000 professionally recorded sound effects covering a wide variety of acoustic
scenes and events. Clotho v2 (Drossos et al., 2020) is designed for audio captioning tasks and
contains approximately 5,000 audio clips, each annotated with five crowdsourced textual descriptions.
VGGSound (Chen et al., 2020) is a large-scale dataset consisting of over 200,000 10-second video
clips from YouTube, covering 310 diverse sound classes. FreeSound [link] is a collaborative platform
that hosts a wide range of user-contributed audio samples, frequently used for environmental sound
classification and retrieval. FSD50K (Fonseca et al., 2021) is a large-scale dataset derived from
FreeSound, containing over 50,000 audio clips annotated with strong and weak labels for sound
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event detection. FMA (Defferrard et al., 2016), the Free Music Archive dataset, includes full-length
high-quality music tracks and is widely used in music information retrieval research. The Million
Song Dataset (MSD) (Bertin-Mahieux et al., 2011) offers metadata and pre-computed audio features
for one million popular music tracks to support large-scale music recommendation and analysis.
MagnaTagATune (MTT) (Law et al., 2009) is a music tagging dataset that contains 25,000 audio
clips annotated with multiple descriptive tags for genre, instrument, and mood classification tasks.

Table 8: Statistics for the datasets used in the paper.

Dataset Hours (h) Source
AudioCaps 109 (Kim et al., 2019)
AudioSet 5800 (Gemmeke et al., 2017)
BBC Sound Effects Library 300 link
Clotho v2 152 (Drossos et al., 2020)
VGGSound 550 (Chen et al., 2020)
FreeSound 6246 link
FSD50k 108 (Fonseca et al., 2021)
FMA 900 (Defferrard et al., 2016)
MSD 7333 (Bertin-Mahieux et al., 2011)
MTT 200 (Law et al., 2009)

F.2 BASELINE METHODS

We employ 6 strong T2A baseline methods for comparison.

AudioLDM is a latent diffusion model for text-to-audio (T2A) generation presented by (Liu et al.,
2023). It performs the diffusion process in the latent space of a pretrained audio VAE, while
conditioning on text embeddings produced by the CLAP text branch. This design enables a T2A
training process without paired data and produces audio that is semantically consistent with the input
description.

AudioLDM2 is an improved version of the AudioLDM model, introduced by (Liu et al., 2024a).
It incorporates several improvements, including leveraging the Language of Audio (LOA) encoder
and finetuning a GPT-2 model to translate any modality to LOA. These improvements result in
higher-quality audio generation that better aligns with the input text.

AudioGen is a text-to-audio generation model introduced by (Kreuk et al., 2022). It employs an
autoregressive transformer architecture to generate audio samples conditioned on textual descriptions.
The model is trained on a large-scale dataset of audio-text pairs, enabling it to produce high-quality
audio outputs that align with the given textual input.

Make-An-Audio is a diffusion-based text-to-audio generation model proposed by (Huang et al.,
2023b). It introduces a pseudo prompt enhancement with the distill-then-reprogram approach,
including a large number of concept compositions by opening up the usage of language-free audios
to alleviate data scarcity. Therefore, it enables high-fidelity, prompt-aligned outputs.

TANGO-AF&AC-FT-AC (Kong et al., 2024) pre-trains the TANGO architecture on the synthetic-
caption AF-AudioSet plus AudioCaps, followed by fine-tuning on AudioCaps alone. Leveraging
high-quality synthetic captions significantly improves text-to-audio alignment and overall audio
realism.

Stable Audio Open (Evans et al., 2025) is an open-source text-to-audio generation model developed
by Stability AI. It leverages a diffusion-based architecture trained on a diverse dataset of audio-text
pairs. The model is designed to generate high-fidelity audio samples conditioned on textual input,
supporting various applications such as music generation, sound effect synthesis, and more.

F.3 MODEL CONFIGURATIONS

Our diffusion model is built upon the Diffusion Transformer (DiT) (Peebles & Xie, 2023) architecture,
following a latent diffusion modeling (LDM) (Rombach et al., 2022) paradigm that offers strong
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generative capabilities and effective context modeling. The backbone of the diffusion network adopts
a DiT structure with 24 layers and 24 attention heads, each with an embedding dimension of 1536.
The model supports both cross-attention and global conditioning: cross-attention is applied to all types
of conditional inputs, while global conditioning specifically handles duration-related control signals.
The internal token dimension of the diffusion model is set to 64, with a conditional token dimension
of 768 and a global condition embedding dimension of 1536. The generated latent representation has
the same dimensionality as io_channels, which is 64.

F.4 COMPRESSION NETWORKS

To train the audio autoencoder, we adopt a variational autoencoder (VAE) (Kingma et al., 2013)
architecture based on the Oobleck framework (Evans et al., 2025) at a sampling rate of 16kHz.
The model is trained from scratch on large-scale publicly available text-audio paired datasets. The
encoder and decoder are symmetric, each using a base channel size of 128, with channel multipliers
1, 2, 4, 8, 16 and strides 2, 2, 4, 4, 10. The encoder maps the input waveform into a 128-dimensional
latent representation, while the decoder reconstructs the waveform from a 64-dimensional latent code.
Snake activation is applied throughout the network, and no final tanh activation is used in the decoder.
The overall downsampling ratio is 640, and both input and output are mono-channel waveforms. The
bottleneck is implemented as a variational layer.

F.5 OBJECTIVE METRICS

We introduce the objective metrics employed in our evaluation, including Fréchet Audio Distance
(FAD) (Kilgour et al., 2019), Kullback-Leibler (KL) divergence (Kullback & Leibler, 1951), Inception
Score (IS) (Salimans et al., 2016), Fréchet Distance (FD) (Heusel et al., 2017), and LAION-CLAP
score (Wu et al., 2023). FAD, adapted from FID (Heusel et al., 2017), measures the distributional gap
between generated and reference audio using VGGish embeddings (Hershey et al., 2017), and serves
as our primary indicator of audio fidelity. KL divergence evaluates the difference in acoustic event
posteriors between ground truth and generated audio, computed using the PANN tagging model (Kong
et al., 2020). IS reflects both diversity and specificity of the generated samples, based on entropy over
class predictions. FD, while similar in formulation to FAD, is computed in more general embedding
spaces and tends to be less stable in audio tasks. We include it for completeness but primarily rely on
FAD for fidelity assessment. The CLAP score is calculated as the cosine similarity between CLAP
embeddings of the generated audio and the corresponding text. We use the AudioLDM evaluation
toolkit to compute all objective metrics.

F.6 SUBJECTIVE EVALUATION

We randomly selected 20 samples from the AudioCaps test set for the subjective evaluation. Each
group includes the results from AudioLDM, AudioLDM2, CFG-only, HG, and the ground truth (GT),
with the order of samples within each group randomly shuffled. Each group was rated by 20 human
raters. In our evaluation, both overall quality (OVL) and text relevance (REL) are rated on a scale
from 1 to 5. For OVL, raters assess the perceptual quality of the audio, while for REL, they rate the
relevance of the audio to the given text condition. The minimum rating increment for all scores is 1
point. A screenshot of our evaluation interface is shown in Figure 7.

G VIDEO-TO-AUDIO EXPERIMENT DETAILS

G.1 DATASETS

Apart from T2A and T2M generation, we conduct experiments for video-to-audio(V2A) generation.
We utilize the benchmark datasets AudioSet (Gemmeke et al., 2017) and VGGSound (Chen et al.,
2020) for model training. To compare with previous work, we evaluated our models on the VGGSound
test set, which consists of about 15K 10-second audio clips.
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Figure 7: Screenshot of our subjective evaluations.

G.2 MODEL CONFIGURATIONS

We use CLIP (Radford et al., 2021) embeddings to extract the visual features, and we leverage
the same VAE as in T2A. The diffusion backbone shares the same core architecture as the T2A
counterpart, being built upon the DiT within the LDM paradigm. Most hyperparameters remain the
same with T2A, but we increased the conditional token dimension to 1024 to better accommodate
high-dimensional visual embeddings, and the global condition embedding dimension is set to 2048.

We fine-tuned from a T2A model that was trained for 2M iterations with a batch size of 8 per GPU.
For the good model, we conducted 1.3M finetuning iterations, while for the bad model, we fine-tuned
for 0.3M iterations, both using a batch size of 8 per GPU. The optimizer and sampler settings are the
same as those used in the T2A model.

G.3 BASELINES METHODS

We introduce 8 V2A baseline models for comparison.

IM2WAV is an image-guided open-domain audio generation system introduced by (Sheffer & Adi,
2023). It employs two Transformer language models operating over a discrete audio representation
derived from a VQ-VAE (Van Den Oord et al., 2017) model. The system first generates a low-level
audio representation using a language model, then upsamples the audio tokens with an additional
language model to produce high-fidelity audio. Visual conditioning is achieved through CLIP
embeddings, and CFG is applied to steer the generation process.

Diff-Foley is a synchronized V2A synthesis method utilizing a latent diffusion model (LDM),
presented by (Luo et al., 2023). It incorporates contrastive audio-visual pretraining (CAVP) to learn
temporally and semantically aligned features, which are then used to train the LDM on spectrogram
latent space. The model employs cross-attention modules and "double guidance" to enhance sample
quality, achieving state-of-the-art performance in V2A tasks.

FoleyGen is an open-domain V2A generation system based on a language modeling paradigm,
introduced by (Mei et al., 2024). It leverages a neural audio codec for bidirectional conversion
between waveforms and discrete tokens. A single Transformer model, conditioned on visual features
extracted from a visual encoder, facilitates the generation of audio tokens. The model addresses
temporal synchronization challenges by exploring novel visual attention mechanisms.
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VTA-LDM is a V2A generation framework developed by (Xu et al., 2024), building upon the LDM
framework. It employs a CLIP-based vision encoder to extract frame-level video features, which
are temporally concatenated and mapped using a projector as the generation condition. The model
focuses on generating semantically and temporally aligned audio content corresponding to video
inputs.

FoleyCrafter (Zhang et al., 2024) is a text-based V2A generation framework designed to produce
high-quality, semantically relevant, and temporally synchronized audio for videos. It extends state-of-
the-art T2A generators by incorporating a semantic adapter for semantic alignment and a temporal
adapter for precise audio-video synchronization, ensuring realistic sound effects that align with visual
content.

V2A-Mapper is a lightweight solution for V2A generation proposed by (Wang et al., 2024a). It
connects foundation models by translating visual CLIP embeddings into auditory CLAP embeddings,
bridging the domain gap between visual and audio modalities. Conditioned on the translated CLAP
embedding, a pretrained audio generative model (AudioLDM) is used to produce high-fidelity and
visually-aligned sound, requiring minimal training parameters.

VAB-Encodec (Su et al., 2024) is a unified audio-visual framework that learns latent representations
and enables vision-to-audio generation within the same model. It tokenizes 48 kHz audio with a
pretrained Encodec tokenizer and encodes video frames with an image encoder. During pre-training
the model performs visual-conditioned masked-audio-token prediction; at inference it iteratively
decodes audio tokens conditioned on visual features, yielding fast and semantically aligned sound.

VATT is a multi-modal generative framework for V2A generation through text, presented by (Liu
et al., 2024b). It comprises two modules: VATT Converter, a large language model fine-tuned for
instructions that maps video features to the LLM vector space; and VATT Audio, a transformer that
generates audio tokens from visual frames and optional text prompts using iterative parallel decoding.
The framework allows for controllable audio generation and audio captioning based on video inputs.

For Diff-foley, VTA-LDM and FoleyCrafter, we generate 10-second audio samples using their official
implementations. For V2A Mapper, it supplies pre-generated audio samples for evaluation. As the
official implementations of FoleyGen, VAB-Encodec and VATT are unavailable, we compare our
results with their official reported results. The IM2WAV results are adopted from VATT.

G.4 METRICS

We introduce additional metrics utilized in our V2A evaluation apart from FAD, KL, IS and FD,
including Imagebind Score (IBS) and temporal alignment accuracy (Align acc), which primarily
measures audio-visual alignment.

ImageBind Score (IBS) assesses the semantic alignment between generated audio and the corre-
sponding video by computing the cosine similarity between their embeddings in a shared multimodal
space. This metric leverages the ImageBind model (Girdhar et al., 2023), which aligns multiple
modalities—including images, audio, and text—into a unified embedding space, facilitating cross-
modal retrieval and evaluation . A higher IBS indicates a stronger semantic correlation between the
audio and video content.

Temporal Alignment Accuracy (Align Acc) measures the synchronization between generated audio
and video by evaluating the model’s ability to produce audio events that are temporally aligned with
visual events. Introduced in Diff-Foley (Luo et al., 2023), this metric involves training a classifier to
distinguish between correctly aligned audio-video pairs and misaligned ones. The classifier is trained
on three types of pairs: true pairs (correctly aligned), temporally shifted pairs, and mismatched pairs
from different videos. Align Acc is computed as the percentage of correctly identified true pairs,
providing a quantitative measure of temporal synchronization.

By incorporating both IBS and Align Acc, we offer a comprehensive evaluation of the semantic and
temporal alignment between generated audio and video, ensuring that the audio not only matches the
content but also aligns accurately in time.
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H DETAILED RELATED WORKS

H.1 TEXT-TO-AUDIO (T2A) GENERATION

T2A systems generate audio samples conditioned on natural language prompts. At the beginning,
DiffSound (Yang et al., 2023), AudioGen (Kreuk et al., 2022) explore autoregressive-based gen-
eration methods in the compressed space of mel-spectrogram and waveform respectively. Then,
AudioLDM (Liu et al., 2023) and Make-An-Audio (Huang et al., 2023b) develop latent diffusion
models in the compressed space of mel-spectrogram, improving overall T2A generation quality.
Tango (Deepanway et al., 2023) improves the text encoder of diffusion-based T2A systems with
a language model. AudioLDM 2 (Liu et al., 2024a) employs an autoregressive-based method to
predict the AudioMAE (Huang et al., 2022) features from various input modalities, and then uses
a latent diffusion model to generate audio from AudioMAE features. Tango2 (Majumder et al.,
2024) and Tangoflux (Hung et al., 2024) utilize reinforcement strategies including direct preference
optimization (Rafailov et al., 2023) and CLAP-guided reward shaping (Wu et al., 2023) to improve
the human preference and semantic-textual alignment. Recently, Stable Audio (Evans et al., 2024)
designs transformer-based scalable latent diffusion models in the space directly compressed from
the audio waveform. ETTA (Lee et al., 2025) elucidates the design space of diffusion-based T2A
systems.

These innovative methods have improved T2A generation quality from generative methods, compres-
sion networks, and network architectures, while the innovations on guidance methods have not been
carefully investigated in previous works.

H.2 VIDEO-TO-AUDIO (V2A) GENERATION

Recent advances in video-to-audio (V2A) generation can be broadly divided into two categories: (1)
enhancing V2A via pre-trained text-to-audio (T2A) models, and (2) introducing auxiliary temporal
representations to improve temporal alignment. In the first category, methods such as V2A-Mapper
(Wang et al., 2024a) and FoleyCrafter (Mei et al., 2024) build upon established T2A systems
like AudioLDM (Liu et al., 2023). These approaches either align video features with the original
conditioning space of T2A models or introduce additional adapters to inject visual information as
supplementary conditions. For example, V2A-Mapper proposes a mapping strategy that translates
video features into audio CLAP embeddings, enabling AudioLDM to perform V2A synthesis.
Similarly, FoleyCrafter integrates dedicated adapters to incorporate visual cues into the conditioning
process of T2A models.

The second category includes methods such as TiVA (Wang et al., 2024b), ReWaS (Jeong et al.,
2024), SyncFusion (Comunità et al., 2024), and SonicVisionLM (Xie et al., 2024), which incorporate
explicitly designed temporal features to enhance synchronization between video and audio. TiVA
employs downsampled Mel spectrograms as auxiliary representations that carry temporal structure,
and utilizes a transformer-based predictor to estimate these features for guiding V2A generation.
SyncFusion and SonicVisionLM leverage onset positions and audio timestamps, respectively, as
temporal control signals during synthesis. ReWaS introduces energy as a continuous temporal
representation, providing a more fine-grained condition along the time axis to better regulate V2A
output. At the sampling stage, CFG is popularly employed in these methods. In our paper, we explore
a novel sampling algorithm to increase generation quality in a training-free and computationally
lightweight manner, which is orthogonal to previous innovations.

H.3 GUIDANCE METHODS

CFG. In previous diffusion-based T2A generation (Liu et al., 2023; 2024a; Huang et al., 2023b;a;
Evans et al., 2024; 2025; Lee et al., 2025) and V2A generation works (Sheffer & Adi, 2023; Luo et al.,
2023; Mei et al., 2024; Xu et al., 2024; Wang et al., 2024a; Su et al., 2024; Liu et al., 2024b) , CFG (Ho
& Salimans, 2022) is commonly adopted to improve the audio generation quality at the inference stage.
To achieve optimal results, its guidance scale is investigated in different methods (Hung et al., 2024).
However, as demonstrated in recent work (Lee et al., 2025), CFG sacrifices the diversity of generation
results and may suffer from suboptimal synthesis quality. Previous theoretical analysis (Chidambaram
et al., 2024) demonstrates that for any non-zero level of score estimation error, a large CFG strength
causes the sampler to diverge from the data distribution’s support, formally explaining the empirical
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phenomenon of distortion at high guidance scales. Our analysis reveals that when CFG uses a bad
unconditional model, it inherently introduces a score correction term. This may explain the empirical
finding that a small unconditional model can effectively guide a large conditional model (Karras et al.,
2024b). However, in standard CFG, this beneficial correction term is entangled with the conditional
alignment term, making it difficult to find a guidance strength that simultaneously ensures outlier
removal and quality enhancement.

Guidance with weak models. Recently, AG (Karras et al., 2024a) proposes a method to guide a
diffusion model with the bad version of itself, demonstrating stronger synthesis quality than CFG
in image domain. Several works (Phunyaphibarn et al., 2025; Jeon, 2025; Hyung et al., 2025) has
extended this idea to the scenarios of fine-tuning diffusion models to a specific task (Phunyaphibarn
et al., 2025), motion synthesis (Jeon, 2025), and video generation (Hyung et al., 2025). Other
works adopt similar ideas to construct a weak model. For instance, SAG (Hong et al., 2023) applies
Gaussian blurring to the model input, SG (Li et al., 2025) alters the denoising timestep to obtain
an output with higher noise levels, while ICG (Sadat et al., 2024) randomly samples a condition to
replace the null embedding in CFG. Among these guidance methods, AG is the most representative.
It provides a theoretical justification for its efficacy, positing that it reduces the score estimation
error induced by the "mass-covering" or "mean-seeking" behavior of the score matching training
objective. However, the advantages of AG have not been observed for audio generation. As recently
mentioned in ETTA (Lee et al., 2025), AG is sensitive to the choice of the bad model, prohibiting their
application on audio synthesis. In this work, we explore the advantages of AG for audio generation,
and propose a novel sampling algorithm, MoG, yielding cumulative advantages of AG and CFG to
outperform either of them on audio synthesis.

I MORE GENERATED SAMPLES

We shown more text-to-audio and video-to-audio generation results in Figure 8 and 9, respectively.
As shown in Figure 8, HG and PG consistently achieve more accurate harmonic modeling and
superior temporal alignment compared to CFG in the first example. Their outputs exhibit well-defined
harmonic stacks and consistent overtone structures, even in complex or polyphonic cases in the third
example. Moreover, HG and PG maintain precise timing across events, effectively capturing the
onset and duration of audio elements in the second example. In contrast, CFG often fails to organize
harmonics coherently and produces temporally smeared results. These comparisons clearly illustrate
the advantage of our methods in reinforcing both spectral clarity and temporal fidelity. In Figure 9,
HG generates significantly clearer high-frequency content and overall higher-quality audio compared
to CFG in the first example. The resulting audio exhibits more natural brilliance and detail in the
upper frequency range, enhancing perceptual realism. For the second example, HG demonstrates
superior temporal alignment, accurately synchronizing audio events with visual cues, while CFG
shows noticeable temporal drift and inconsistent timing. These comparisons further highlight the
strengths of our method in improving both spectral resolution and temporal coherence in V2A
generation. For more generated samples, please refer to our demo page: audiomog.github.io.

J BROADER SOCIETAL IMPACT

Generative audio modeling presents substantial potential for misuse, which could result in harmful
societal consequences. Principal concerns involve the dissemination of disinformation and the
reinforcement of stereotypes and existing biases. Although our improvements enhance the realism
and quality of generated samples, thereby potentially making misuse more convincing, they do not
introduce any new capabilities or applications beyond those that already exist.

K LICENSES

• EDM2 models (Karras et al., 2024b;a): Creative Commons BY-NC-SA 4.0 license

• Stable Audio Tools (Evans et al., 2024): MIT license

• AudioLDM-Eval (Liu et al., 2023): MIT license

• CLIP (Radford et al., 2021): MIT license
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CFG PG HG

Prompt: Water pours, a horn 
honks, and a man speaks

Prompt: Loud gunshots and 
explosions with men speaking, 
water splashing, wind blowing, 
and thunder roaring

Prompt: A train emits the steam 
whistle sound with a hissing noise

Figure 8: More T2A results comparing the spectrograms of the generated samples with different
guidance strategies (CFG, PG, and HG) under various text prompts. The third sample is shown
with a different time interval than the one presented in the main paper, and they share the same text
prompt.

(a) HG demonstrates the best generation quality. (b) HG produces the most temporally aligned results.

Figure 9: More V2A comparing the spectrograms of the generated samples with different
guidance strategies (CFG and HG) and baselines (Diff-foley and Foley-crafter).

• Diff-foley models (Luo et al., 2023): Apache-2.0 license
• VTA-LDM models (Xu et al., 2024): Apache-2.0 license
• FoleyCrafter models (Zhang et al., 2024): Apache-2.0 license
• V2A-Mapper models (Wang et al., 2024a): Creative Commons BY-NC-ND 4.0 license
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