

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 AUDIOMoG: GUIDING AUDIO GENERATION WITH MIXTURE-OF-GUIDANCE

Anonymous authors

Paper under double-blind review

ABSTRACT

Guidance methods have demonstrated significant improvements in cross-modal audio generation, including text-to-audio (T2A) and video-to-audio (V2A) generation. The popularly adopted method, classifier-free guidance (CFG), steers generation by emphasizing condition alignment, enhancing fidelity but often at the cost of diversity. Recently, autoguidance (AG) has been explored for audio generation, encouraging the sampling to faithfully reconstruct the target distribution and showing increased diversity. Despite these advances, they usually rely on a single guiding principle, *e.g.*, condition alignment in CFG or score accuracy in AG, leaving the full potential of guidance for audio generation untapped. In this work, we explore enriching the composition of the guidance method and present a mixture-of-guidance framework, AudioMoG. Within the design space, AudioMoG can exploit the complementary advantages of distinctive guiding principles by fulfilling their *cumulative benefits*. With a reduced form, AudioMoG can consider parallel complements or recover a single guiding principle, without sacrificing generality. We experimentally show that, given the same inference speed, AudioMoG approach consistently outperforms single guidance in T2A generation across sampling steps, concurrently showing advantages in V2A, text-to-music, and image generation. These results highlight a “free lunch” in current cross-modal audio generation systems: higher quality can be achieved through mixed guiding principles at the sampling stage without sacrificing inference efficiency. Demo samples are available at: audiomog.github.io.

1 INTRODUCTION

Audio generation conditioned on text and video information, known as text-to-audio (T2A) and video-to-audio (V2A) generation, has witnessed significant advancements in recent studies. Typically, these systems generate an audio latent in a small space compressed from the audio waveform or the mel-spectrogram, indicated by the learned text embeddings (Kreuk et al., 2022; Liu et al., 2023; 2024a; Huang et al., 2023b; Evans et al., 2024) or encoded video representations (Xu et al., 2024; Wang et al., 2024a; Du et al., 2023; Luo et al., 2023). Recent efforts have enhanced cross-modal audio generation quality through various perspectives, such as data augmentation (Huang et al., 2023b;a), condition information (Jeong et al., 2024; Wang et al., 2024b; Liu et al., 2023; Li et al., 2024a; Evans et al., 2024), generative models (Kreuk et al., 2022; Liu et al., 2023; 2024a), network architecture (Huang et al., 2023a; Evans et al., 2024; Hung et al., 2024), and compression networks (Liu et al., 2023; Evans et al., 2024; 2025). However, most of these improvements require retraining the model from scratch or with significant overhead.

At the sampling stage, guidance methods have proven effective in enhancing the overall audio generation quality, where classifier-free guidance (CFG) (Ho & Salimans, 2022) is popularly adopted in modern cross-modal audio generation systems (Liu et al., 2023; 2024a; Cheng et al., 2025). By emphasizing the indication of condition signals, namely text or video, CFG can improve the audio generation results under an appropriate guidance scale, while it may therefore sacrifice generation diversity. Recently, autoguidance (AG) (Karras et al., 2024a) is proposed in class-conditioned image generation and has been extended to audio generation by ETTA (Lee et al., 2025). Different from CFG strengthening condition alignment, it guides the diffusion model with a weaker version, encouraging the generation process to faithfully reconstruct the target distribution.

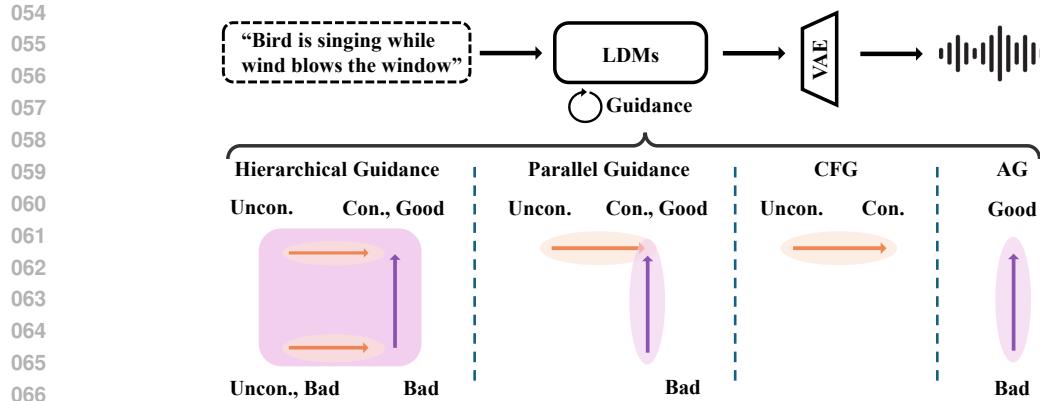


Figure 1: **Overall framework of our proposed AudioMoG**, which illustrates the mechanism of AudioMoG and its degraded forms—Hierarchical Guidance exploits cumulative advantages from both methods for optimal performance, Parallel Guidance introduces complementary directions, and CFG or AG provides a single-directional guidance.

While these guidance methods are advantageous over unguided diffusion sampling, they usually strengthen the generation direction with a single guiding principle, *e.g.*, condition alignment in CFG and score accuracy in AG. It remains underexplored if stronger generation results can be achieved by mixing distinctive guidance methods, while maintaining inference efficiency. In this work, we explore enriching the composition of the guidance method and present a mixture-of-guidance framework, named AudioMoG, to simultaneously consider distinctive guiding principles rather than depend solely on one of them. Firstly, we revisit the design of guidance strategies in audio generation, where we analyze the behaviors and limitations of the widely-used CFG and recent AG, respectively. We demonstrate that, CFG enhances synthesis quality through an entangled effect of score correction and condition alignment amplification, which complicates independent control over quality and diversity—particularly as improvements in the unconditional model diminish the correction signal. In comparison, AG employs a weaker conditional model to isolate the score correction effect, achieving more accurate score estimation to enable quality improvements, though its effectiveness can be sensitive to the choice of the weak model (Karras et al., 2024a; Lee et al., 2025).

Based on these insights, we demonstrate the mechanism of AudioMoG, an improved sampling framework that can fully exploit the complementary advantages of diverse guidance methods. Within the design space, AudioMoG can fulfill the cumulative advantage by progressively harnessing the strengths of diverse guiding principles, reaching the performance of further refining condition-aligned term empowered by CFG with AG, or strengthening both conditional and unconditional score estimation results with AG before CFG. As a degraded form, AudioMoG can fulfill parallel complements or ultimately recover the guidance method considering a single principle, such as CFG or AG, without sacrificing the generality as a mixture framework. Especially, in AudioMoG, we empirically observe that the bad version of the model can be trained using the same network architecture as the good version but with fewer iterations, or even taken directly from earlier checkpoints, avoiding the dedicated design proposed in AG (Karras et al., 2024a) or the sensitivity for audio generation mentioned in ETTA (Lee et al., 2025). Our contributions are summarized as follows.

- We present a mixture-of-guidance framework for audio generation, achieving improved synthesis quality while maintaining the inference efficiency in comparison with the single guiding principle.
- Within the design space, AudioMoG can fulfill the cumulative advantages of diverse guidance methods, progressively expressing their strengths, as well as allowing parallel complements or a single principle as a degraded form.
- Experimental validation on diverse cross-modal audio generation and image generation tasks demonstrates that under the same inference speed, AudioMoG consistently outperforms both CFG and AG. Compared to CFG, we improve FAD from 1.76 to 1.38 in T2A (Evans et al., 2024), from 0.73 to 0.68 in V2A, and from 2.36 to 1.92 in text-to-music generation. Compared to AG, we improve FID from 1.60 to 1.47 in image generation (Karras et al., 2024b).

108 **2 PRELIMINARIES**
 109

110 In this section, we introduce the foundation of latent diffusion models and guided audio generation.
 111

112 **Diffusion-based audio generation system.** In T2A and V2A generation systems, audio signals x
 113 are first compressed into a small latent space z with a compression network. Then, latent diffusion
 114 models are popularly adopted to learn the generation of audio latent from a simple prior distribution,
 115 e.g., the standard Gaussian noise distribution $\mathcal{N}(\mathbf{0}, \mathbf{I})$, conditioned on the text prompt or video input.
 116 At the training stage, a forward process is introduced to transform the audio latent at $t = 0$ into a
 117 noisy latent with

$$z_t = \sqrt{\bar{\alpha}_t} z_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, \quad (1)$$

118 where $\sqrt{\bar{\alpha}_t}$ is predefined to control the signal-to-noise ratio in forward process; $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ is the
 119 added Gaussian noise and shares the same distribution with the prior distribution $p(z_T)$ at $t = T$. At
 120 each training iteration, a noise predictor is optimized with

$$\arg \min_{\theta} \mathbb{E}_{(z_0, c), \epsilon} \|\epsilon - \epsilon_{\theta}(z_t, t, c)\|_2^2, \quad (2)$$

121 where c is the text embedding or encoded video features to indicate audio generation. Given the
 122 well-trained noise predictor, a reverse process iteratively reconstructs the audio latent from the prior
 123 distribution with

$$p_{\theta}(z_{0:T-1}|z_T, c) = p(z_T) \prod_{t=1}^T p_{\theta}(z_{t-1}|z_t, c). \quad (3)$$

124 In sampling, each reverse transition $p_{\theta}(z_s|z_t, c)$ at the time steps $0 \leq s < t \leq T$ follows a Gaussian
 125 distribution $\mathcal{N}(z_s, \mu_{s|t}(z_t, t, c), \sigma_{s|t}^2 \mathbf{I})$. The mean and variance are parameterized as

$$\mu_{s|t}(z_t, t, c) = \sqrt{\bar{\alpha}_{s|t}}(z_t - \frac{1 - \bar{\alpha}_{t|s}}{\sqrt{1 - \bar{\alpha}_t}}\epsilon_{\theta}(z_t, t, c)), \quad \sigma_{s|t}^2 = (1 - \bar{\alpha}_{t|s})\frac{1 - \bar{\alpha}_s}{1 - \bar{\alpha}_t}, \quad (4)$$

126 where $\bar{\alpha}_{t|s} = \bar{\alpha}_t / \bar{\alpha}_s$. Given sufficient sampling steps, audio latent z_0 is reconstructed and then
 127 decoded into audio signals x with a decoding system.

128 **Classifier-Free Guidance.** CFG (Ho & Salimans, 2022) is one of the most commonly used strategies
 129 in diffusion models for conditional generation. During training, the conditional signal c is randomly
 130 replaced with the null condition \emptyset with a fixed probability p_{uncond} (a.k.a., random label dropout),
 131 allowing the model to learn both conditional and unconditional noise predictors, $\epsilon_{\theta}(z_t, t, c)$ and
 132 $\epsilon_{\theta}(z_t, t)$. At inference time, CFG combines the two predictors as follows:

$$\epsilon_{\text{CFG}}(z_t, t, c) = \epsilon_{\theta}(z_t, t) + w(\epsilon_{\theta}(z_t, t, c) - \epsilon_{\theta}(z_t, t)), \quad (5)$$

133 where $w \geq 1$ denotes the guidance scale that adjusts the strength of the conditional signal. When
 134 $w = 1$, CFG recovers the conditional diffusion model $\epsilon_{\theta}(z_t, t, c)$. Larger values of w encourage
 135 samples to align more closely with the conditioning signal, potentially enhancing generation quality.

136 **Autoguidance.** AG (Karras et al., 2024a) proposes guiding a diffusion model using a weaker version
 137 of itself:

$$\epsilon_{\text{AG}}(z_t, t, c) = \epsilon_{\theta_{\text{bad}}}(z_t, t, c) + w(\epsilon_{\theta}(z_t, t, c) - \epsilon_{\theta_{\text{bad}}}(z_t, t, c)), \quad (6)$$

138 where θ_{bad} refers to the weak model with smaller size or less training, and c can be replaced with \emptyset .
 139 The underlying motivation stems from the observation that the score-matching objective in diffusion
 140 models promotes mode coverage, often leading to noisy or inaccurate estimates. By contrastive
 141 amplification of the difference between a strong and weak model, AG seeks to improve the score
 142 estimation quality. Following a similar rationale, recent works (Kasymov et al., 2024; Phunyaphibarn
 143 et al., 2025; Zhong et al., 2025) guide the fine-tuned model using the pre-fine-tuned one. While
 144 the specific formulations differ, the core principle remains consistent: leveraging the weak-strong
 145 discrepancy to guide improvement.

156 **3 AUDIOMOG**
 157

158 **3.1 ANALYSIS**
 159

160 **2D toy example.** We first provide an analysis of the CFG and AG methods to illustrate their respective
 161 guiding principle. We adopt a 2D toy example introduced in Karras et al. (2024a), where a small

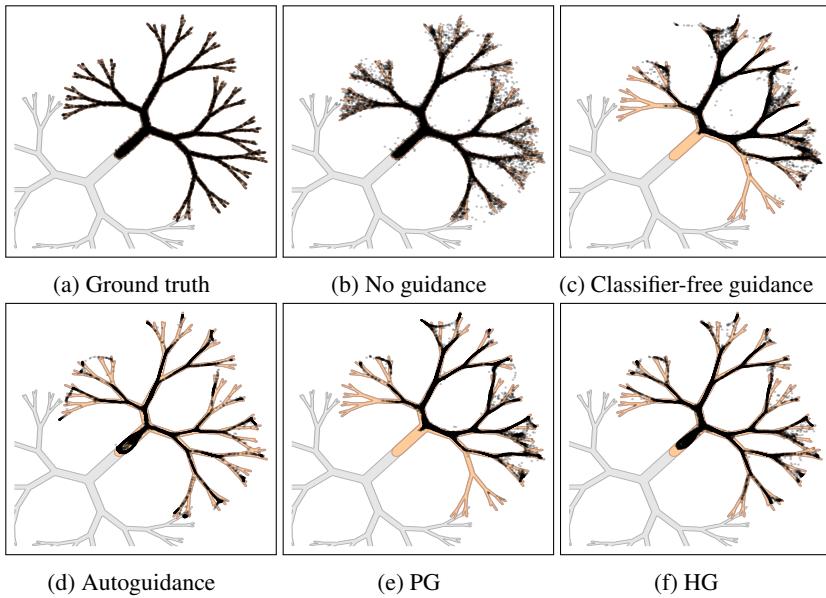


Figure 2: **Illustration of guidance methods on the fractal-like 2D distribution from Karras et al. (2024a).** (a) Ground truth distribution (orange class). (b) Unguided conditional sampling generates outliers. (c) Classifier-Free Guidance ($w = 3$) with a well-trained unconditional model struggles to remove outliers. (d) Autoguidance ($w = 3$) improves score estimation and removes outliers without reducing diversity. (e) Parallel Guidance exhibits mode dropping similar to CFG. (f) Hierarchical Guidance eliminates outliers and provides more controllable condition alignment.

denoiser is trained on synthetic data to learn conditional diffusion. The 2D dataset is designed to exhibit low local dimensionality, characterized by highly anisotropic and narrow support, as well as a hierarchical emergence of local detail as shown in Figure 2a, mimicking real-world data manifolds (Karras et al., 2024a). As shown in Figure 2b, the denoiser network learns a suboptimal score function, leading to scattered and unlikely outliers under unguided generation, *i.e.*, conditional diffusion sampling. Additional details on the experimental setup are provided in Appendix E.

CFG effects. For guided generation results, CFG improves sample quality by contrasting the conditional and unconditional models. The unconditional model is arguably relatively under-trained due to the inherent difficulty of the unconditional task and the low label dropout rate (*e.g.*, 10% for audio generation in Liu et al. (2023); Deepanway et al. (2023); Evans et al. (2024)). Consequently, the CFG effect in Equation 5 is mixed, as formulated in the following guidance decomposition:

$$\nabla_{\mathbf{x}} \log p(\mathbf{x}|\mathbf{c}) - \nabla_{\mathbf{x}} \log p(\mathbf{x}|\emptyset) = [\nabla_{\mathbf{x}} \log \mathbb{E}_{\mathbf{c}} p(\mathbf{x}|\mathbf{c}) - \nabla_{\mathbf{x}} \log p(\mathbf{x}|\emptyset)] + \nabla_{\mathbf{x}} \log p(\mathbf{c}|\mathbf{x}). \quad (7)$$

Namely, with an under-trained unconditional model, the CFG direction entangles two components: (1) *score correction* from weak-strong contrast that eliminates dispersed outliers, and (2) *condition alignment amplification* that may skew the distribution and reduce diversity. The quality improvement observed with CFG can be ideally attributed to the first factor. However, the entanglement makes it difficult for CFG to independently control diversity and quality, as a better unconditional model yields weaker signals for score correction. This effect is visualized in Figure 2c, where CFG with a sufficiently trained unconditional model fails to eliminate dispersion.

AG effects. On the other hand, AG avoids this entanglement by employing a weaker but still conditional version of the model, thus isolating the improvement direction without losing diversity as shown in Figure 2d. However, its effectiveness hinges on the availability of a suitably degraded weak model. Constructing such a model in practice can be nontrivial (Karras et al., 2024a; Lee et al., 2025; Jeon, 2025; Hyung et al., 2025), especially when model degradation does not align well with real score estimation errors and the weak-strong contrast cannot provide meaningful directions. In such cases, incorporating additional sources of guidance may be necessary to achieve more robust quality gains. For example, when training data quality is suboptimal, CFG often yields sharper and more prompt-consistent generations due to its “lower-temperature” behavior (Bradley & Nakkiran, 2024), creating a more favorable distribution that can complement AG.

216 **Motivation.** As discussed above, previous guidance methods, CFG and AG, guide the sampling
 217 process with diverse principles, both showing advantages over unguided generation. CFG enhances
 218 consistency with conditional information, and AG removes dispersion by mitigating errors. The
 219 effectiveness of CFG has been extensively validated in audio generation across various data represen-
 220 tations (Liu et al., 2023; Evans et al., 2025), conditional modalities such as text (Deepanway et al.,
 221 2023; Huang et al., 2023a), video (Luo et al., 2023; Xu et al., 2024), and network architectures (Liu
 222 et al., 2023; Evans et al., 2025; Li et al., 2024a; Hung et al., 2024). However, CFG can still yield
 223 suboptimal results due to its overemphasis on condition information. Particularly, it may miss relevant
 224 sound events or fail to accurately generate uncommon audio events. Recent work ETTA (Lee et al.,
 225 2025) has explored AG on T2A generation, showing increased generation diversity but observing
 226 strong sensitivity to the choice of weak model. Given that either CFG or AG has shown quality
 227 improvement for audio generation, while both consider a single guiding principle, we explore a
 228 mixture-of-guidance framework, aiming at composing guidance methods to fulfill stronger results
 229 by exploiting their complementary advantages, *e.g.*, cumulative benefits, even without sacrificing
 230 sampling efficiency.

231 3.2 FRAMEWORK

233 **General setting.** AudioMoG presents a mixture-of-guidance strategy as follows, involving M
 234 guidance methods:

$$\epsilon_{\text{MoG}}(\mathbf{z}_t, t, \mathbf{c}) = \sum_{i=1}^N w_i \epsilon_i(\mathbf{z}_t, t, \mathbf{c}), \quad \text{s.t. } \sum_{i=1}^N w_i = 1, \quad (8)$$

235 where ϵ_i is a denoiser network and $w_i \in \mathbb{R}$ is the corresponding weight. When $M = 1$, AudioMoG
 236 considers a single guidance method, which extrapolates two denoising results as mentioned in (Karras
 237 et al., 2024a). Given $M \geq 2$, AudioMoG starts exploiting the complementary advantages of different
 238 guidance methods. However, this inevitably increases the complexity, which may result in longer
 239 inference time, as the framework considers both the terms required by different methods and the
 240 additionally produced interaction terms, *e.g.*, the *unconditional and bad term* when combining CFG
 241 and AG. Hence, even though a MoG framework may yield stronger performance by considering
 242 more guiding principles and leveraging their complementary benefits, an essential consideration is
 243 the balance between synthesis quality and inference speed.

244 To improve guided audio generation, we empirically observe that combining two distinctive guidance
 245 methods, both of which have proven more advantageous than unguided conditional sampling, shows
 246 potential to achieve improved synthesis quality without sacrificing inference speed.

247 **Hierarchical guidance.** When considering a mixture of two guidance methods, the MoG framework
 248 shown by Equation 8 exploits their complementary advantages by linearly combining four noise
 249 predictors (*i.e.*, $M = 2, N = 4$), which can be viewed as hierarchically combining two guidance
 250 methods (denoted by HG). Taking CFG and AG as examples for guided audio generation, AudioMoG
 251 can be interpreted from two perspectives¹. Firstly, we can interpret it as refining the CFG method
 252 with the AG guiding principle as follows:

$$\begin{aligned} \epsilon_{\text{CFG}}(\mathbf{z}_t, t, \mathbf{c}) &= \epsilon_{\theta}(\mathbf{z}_t, t) + w_1(\epsilon_{\theta}(\mathbf{z}_t, t, \mathbf{c}) - \epsilon_{\theta}(\mathbf{z}_t, t)), \\ \epsilon_{\text{badCFG}}(\mathbf{z}_t, t, \mathbf{c}) &= \epsilon_{\theta_{\text{bad}}}(\mathbf{z}_t, t) + w_2(\epsilon_{\theta_{\text{bad}}}(\mathbf{z}_t, t, \mathbf{c}) - \epsilon_{\theta_{\text{bad}}}(\mathbf{z}_t, t)), \\ \epsilon_{\text{HG}}(\mathbf{z}_t, t, \mathbf{c}) &= \epsilon_{\text{badCFG}}(\mathbf{z}_t, t, \mathbf{c}) + w_3(\epsilon_{\text{CFG}}(\mathbf{z}_t, t, \mathbf{c}) - \epsilon_{\text{badCFG}}(\mathbf{z}_t, t, \mathbf{c})). \end{aligned} \quad (9)$$

253 Namely, the good and bad terms under the AG framework (Karras et al., 2024a) have been first
 254 enhanced by explicitly emphasizing condition alignment, and then AG further strengthens the result
 255 towards faithfully reconstructing the target distribution. Alternatively, as proven in Appendix A, it
 256 can be interpreted as applying the CFG method to more accurate score estimation results. Namely,
 257 the conditional and unconditional terms under the CFG framework (Ho & Salimans, 2022) have been
 258 first improved by AG to achieve higher score accuracy. This naturally outperforms previous works
 259 that solely depend on CFG: applying CFG to scores not yet refined by AG.

260 **Other forms: parallel guidance, CFG, and AG.** By controlling the weighting strategy for Equa-
 261 tion 8, AudioMoG can show other forms exhibiting a different mechanism when exploiting the
 262

263 ¹HG in CFG-AG or AG-CFG orders yields equivalent guidance family, as proven in Appendix A.

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
Table 1: **Objective metrics for text-to-audio generation on AudioCaps test set.** The best performance for each metric is highlighted in bold, while the second-best is marked with an underline.

Model	FAD \downarrow	KL \downarrow	IS \uparrow	FD \downarrow	CLAP \uparrow
GT	/	/	/	/	0.52
AudioGen (Kreuk et al., 2022)	3.13	2.09	/	/	/
AudioGen-Large (Kreuk et al., 2022)	1.82	1.69	/	/	/
Make-An-Audio (Huang et al., 2023b)	1.61	1.61	7.29	<u>18.32</u>	/
TANGO-AF&AC-FT-AC (Kong et al., 2024)	2.54	/	11.04	17.19	/
AudioLDM-Large-Full (Liu et al., 2023)	1.96	1.59	8.13	23.31	0.43
AudioLDM 2 (Liu et al., 2024a)	2.09	1.79	8.14	26.44	0.50
AudioLDM 2-Large (Liu et al., 2024a)	1.89	1.54	8.55	26.18	<u>0.53</u>
Stable Audio Open (Evans et al., 2025)	/	2.14	/	/	0.35
CFG-only, $w = 7$	1.76	1.44	13.46	20.94	0.54
MoG-PG, $w_1 = 4.6, w_2 = 0.2$	<u>1.54</u>	<u>1.47</u>	<u>13.47</u>	18.50	<u>0.53</u>
MoG-HG, $w_1 = 4.0, w_2 = 3.3, w_3 = 1.2$	1.38	1.44	13.58	18.87	0.54

285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
Table 2: **Subjective metrics for text-to-audio generation on AudioCaps samples.** Rated for overall quality and text relevance, with higher scores indicating better performance.

Metric	GT	AudioLDM	AudioLDM 2	CFG-only	MoG-HG
OVL \uparrow	3.23 ± 0.58	2.26 ± 0.53	2.76 ± 0.47	3.20 ± 0.51	3.64 ± 0.48
REL \uparrow	3.43 ± 0.62	2.34 ± 0.61	2.90 ± 0.55	3.40 ± 0.59	3.90 ± 0.54

complementary advantages. When the interaction terms in Equation 8 are removed (*i.e.*, $M = 2$, $N = 3$), AudioMoG degrades to employing CFG and AG in *parallel* (denoted by PG), which can be written as:

$$\epsilon_{\text{PG}}(\mathbf{z}_t, t, \mathbf{c}) = \epsilon_{\theta}(\mathbf{z}_t, t) + w_1(\epsilon_{\theta}(\mathbf{z}_t, t, \mathbf{c}) - \epsilon_{\theta}(\mathbf{z}_t, t)) + w_2(\epsilon_{\theta}(\mathbf{z}_t, t, \mathbf{c}) - \epsilon_{\theta_{\text{bad}}}(\mathbf{z}_t, t, \mathbf{c})). \quad (10)$$

While PG qualitatively demonstrated by (Karras et al., 2024a) offers a simple and effective integration of CFG and AG, it implicitly assumes their compatibility at each sampling step. However, as discussed above, these two methods guide the model in potentially interfering directions: emphasizing the condition can lead to mode collapse, while correcting from weak references may introduce semantic drift. Thus, it may not be able to fully exploit their complementary advantages in comparison with exploiting the cumulative benefits, as demonstrated by experiments in Section 4.

It is also worth noting that, when further removing the terms in Equation 8, AudioMoG can recover the guidance method considering a single guiding principle, *e.g.*, CFG or AG, indicating that MoG can be seen as a *unified* framework to incorporate diverse guidance methods.

4 EXPERIMENTS

4.1 T2A EXPERIMENT SETUP

Datasets. We use AudioSet (Gemmeke et al., 2017), FSD50k (Fonseca et al., 2021) and Clotho v2 (Drossos et al., 2020). To maintain consistency throughout the dataset, each track in these databases was segmented into 10-second clips and resampled at 16 kHz. The details of these datasets are further introduced in the Appendix F.1. To compare with prior work, we evaluated our models on the widely used AudioCaps benchmark (Kim et al., 2019), which consists of about 1K 10-second audio clips.

Model configurations. We use FLAN-T5(Chung et al., 2024) as the text encoder for our base model, and we train a Variational Autoencoder (VAE) (Kingma et al., 2013) that compresses the original waveform into the latent representation. A more detailed description of the model configurations and compression networks is provided in the Appendix F.3. We trained the model for 1 M iterations with a batch size of 8 per GPU. We used the AdamW optimizer (Loshchilov & Hutter, 2017) with a learning rate of 5e-5 and a condition drop $p_{\text{uncond}} = 0.1$ for CFG. The bad model was trained under the same configuration as the main model, but with only 0.1 M iterations. During inference, we use DPM++ 2M SDE (Lu et al., 2022).

Evaluation metrics. We conduct a comprehensive evaluation of our models using both objective and subjective evaluations to assess audio generation quality, text-audio alignment, and inference

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
Table 3: Objective metrics for video-to-audio generation on VGGSound test set.

Model	FAD ↓	KL ↓	IS ↑	FD ↓	IBS ↑	Align acc ↑
GT	/	/	/	/	<u>32.9</u>	83.6
IM2WAV (Sheffer & Adi, 2023)	6.41	2.54	/	/	19.0	74.3
Diff-Foley (Luo et al., 2023)	5.79	3.12	10.8	21.90	20.4	89.9
FoleyGen (Mei et al., 2024)	1.65	2.35	/	/	26.1	73.8
VTA-LDM (Xu et al., 2024)	2.01	2.37	10.4	12.80	26.2	77.0
FoleyCrafter (Zhang et al., 2024)	2.32	2.54	9.9	18.10	27.7	83.6
V2A-Mapper (Wang et al., 2024a)	0.90	2.68	12.5	8.35	22.4	78.3
VAB-Encodec (Su et al., 2024)	2.69	2.58	/	/	/	/
VATT w/o text (Liu et al., 2024b)	2.35	2.25	/	/	/	82.8
CFG-only, $w = 3$	0.73	2.28	<u>17.1</u>	4.48	32.8	85.8
MoG-PG, $w_1 = 2.7, w_2 = 0.15$	<u>0.70</u>	<u>2.22</u>	<u>16.8</u>	<u>4.14</u>	<u>32.9</u>	86.1
MoG-HG, $w_1 = 2.7, w_2 = 2.5, w_3 = 1.2$	0.68	2.20	17.2	4.06	33.1	<u>86.6</u>

Table 4: Comparison between different guidance methods on T2A.

Method	FAD ↓	KL ↓	IS ↑	FD ↓
No guidance	7.31	2.45	5.86	38.42
CFG-only	1.96	1.91	7.47	17.40
AG-only	2.30	1.91	7.41	17.57
MoG-PG	1.67	1.54	13.52	19.01
MoG-HG	1.38	1.44	13.58	18.87

Table 5: Comparison between different guidance methods on V2A.

Method	FAD ↓	KL ↓	IS ↑	FD ↓
No guidance	1.28	2.49	10.2	8.06
CFG-only	0.74	2.31	15.8	5.17
AG-only	1.06	2.37	11.4	6.84
MoG-PG	0.71	2.22	16.9	4.59
MoG-HG	0.68	2.20	17.2	4.06

efficiency. Objective metrics include Fréchet Audio Distance (FAD) (Kilgour et al., 2019), Kullback-Leibler (KL) divergence (Kullback & Leibler, 1951), Inception Score (IS) (Salimans et al., 2016), Fréchet Distance (FD) (Heusel et al., 2017), and LAION-CLAP score (Wu et al., 2023). For subjective evaluation, we recruited 20 human raters to score two aspects: (i) overall perceptual quality (OVL), and (ii) semantic relevance to the input text (REL). Both scores are rated on a 1–5 scale. More details are introduced in Appendix F.5 and F.6, respectively.

4.2 MAIN RESULTS

T2A generation results. We conduct a comparison study of audio generation quality across GT (*i.e.*, ground-truth audio) and a range of systems, including AudioGen, AudioGen-Large (Kreuk et al., 2022), Make-An-Audio (Huang et al., 2023b), TANGO-AF&AC-FT-AC (Kong et al., 2024), AudioLDM-Large-Full (Liu et al., 2023), AudioLDM 2, AudioLDM 2-Large (Liu et al., 2024a), and Stable Audio Open (Evans et al., 2025). The descriptions of these models are further detailed in the Appendix F.2. For AudioGen and AudioLDM, we report the metrics as presented in their original papers, and for the rest of the methods, we cite the results from ETTA (Lee et al., 2025). To demonstrate the effectiveness of our method, we further evaluate the base model using only CFG. The best results are achieved when the CFG scale is set to $w = 7$. For a fair comparison, we fix the number of function evaluations (NFE) to 400² for both our method and the CFG-only baseline, *ensuring equal inference cost*. All evaluations are conducted on the AudioCaps test set using standard objective metrics for quantitative comparison. The main results are summarized in Table 1. We have the following conclusions:

Under equal inference resources, our method uniformly outperforms CFG-only. In terms of audio quality, our proposed methods demonstrate significantly improved performance compared to CFG-only under the same inference budget. Specifically, both PG and HG outperform CFG-only across all objective metrics. Our results show that improved quality can be achieved *without* increasing inference cost. Notably, our HG-improved variant gives an updated result, achieving a FAD of 1.38, KL of 1.44, IS of 13.58, and a CLAP score of 0.54.

²This corresponds to 200 sampling steps for CFG and 100 for HG. For PG, we instead keep the number of sampling steps consistent with HG, yielding an NFE of 300, as we observed that further increasing it leads to slight performance degradation for PG.

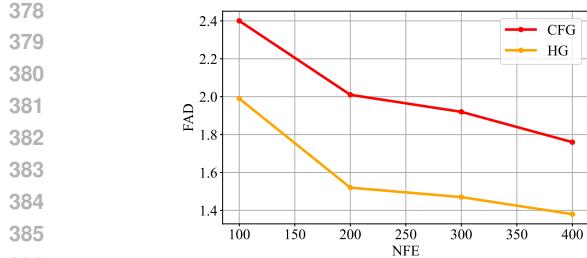
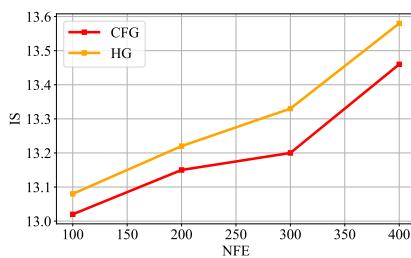
(a) FAD (\downarrow) under different NFEs.(b) IS (\uparrow) under different NFEs.

Figure 3: **Performance comparison of HG and CFG-only across different NFEs.** As shown, HG consistently outperforms CFG-only across all settings.

HG is better than PG. Furthermore, we observe that HG consistently outperforms PG. While both methods significantly surpass the CFG-only baseline, HG achieves better performance than PG across all evaluated metrics. For example, HG achieves a lower FAD and KL than PG, indicating better distributional fidelity. Moreover, the higher CLAP score indicates that HG achieves better text-audio alignment than PG. We hypothesize these improvements stem from the structured formulation of HG, which avoids the potential conflicts present in PG.

V2A generation results. To further investigate the potential of AudioMoG, we also fine-tune the T2A model to V2A with CLIP features (Radford et al., 2021) and validate it on the VGGSound (Chen et al., 2020) test set. We evaluated our models using several metrics to assess audio quality, video-audio semantic alignment and temporal alignment, including FAD, KL, IS, FD, ImageBind Score (IBS) (Girdhar et al., 2023) and temporal alignment accuracy (Align acc) introduced in Diff-Foley (Luo et al., 2023). Then we compare our results with GT and a variety of strong systems, including IM2WAV (Sheffer & Adi, 2023), Diff-Foley (Luo et al., 2023), FoleyGen (Mei et al., 2024), VTA-LDM (Xu et al., 2024), FoleyCrafter (Zhang et al., 2024), V2A-Mapper (Wang et al., 2024a), VAB-Encoder (Su et al., 2024), and VATT (Liu et al., 2024b). The comparative results are summarized in Table 3. A comprehensive improvement across most metrics, including the critical issue of *temporal alignment* in V2A, demonstrates that our method uniformly enhances cross-modal audio generation. More details about the V2A experiment are provided in Appendix G.

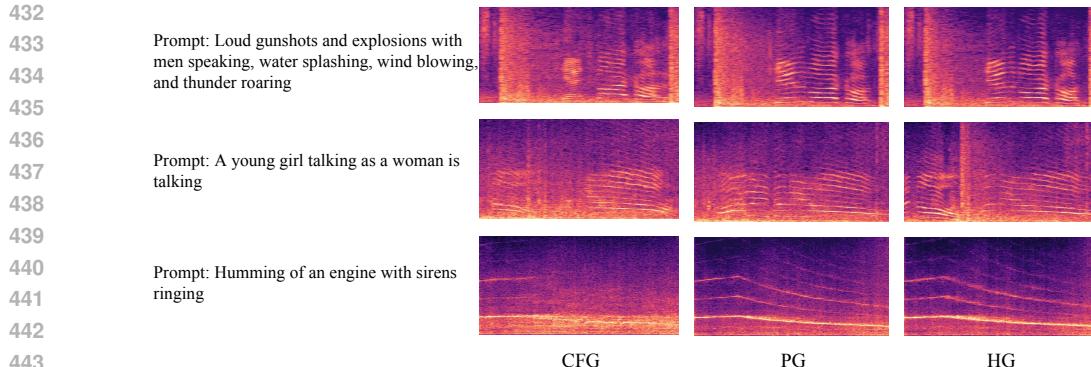
Text-to-music and image generation results. To further demonstrate the effectiveness of our proposed method, we also perform our approach on text-to-music generation with our DiT base model, and conditional image generation on the public EDM (Karras et al., 2024b) checkpoint. The results are shown in Appendix C and D respectively, which again verifies the efficacy of MoG across different tasks and modalities.

Diverse samplers. In audio generation tasks, we use DPM++ solver, while in image generation, we use the Heun sampler, demonstrating the robustness of our methods on different samplers.

4.3 ADDITIONAL RESULTS

Comparison across various NFEs. We compare the performance of HG and CFG-only under different numbers of function evaluations (NFE), each using their respective optimal settings. Specifically, we examine NFE values of 100, 200, 300 and 400, and report the results in Figure 3. Across all NFE levels, HG consistently outperforms CFG-only in terms of FAD and IS. This consistent superiority indicates that our method is more robust across varying computational budgets, maintaining high-quality generation even under stricter inference constraints. These results highlight the strong adaptability and scalability of HG, which delivers reliable quality improvements regardless of available inference resources, while also unlocking higher performance ceilings when additional computation is allowed.

Comparison in the same guidance scale. To validate the effectiveness of our approach, we compare different guidance methods on both T2A and V2A. For NFE, we fix it to 300 for PG and 400 for the rest. For the guidance scale, we set $w_1 = w_3 = 1$, $w_3 = 1$, $w_1 = w_2 = 1$ and $w_2 = 1$ in the HG setting, which corresponds to no guidance, CFG-only, AG-only and PG, respectively. The remaining guidance scales are consistent with HG in Table 1 and Table 3 (AG-only also achieves the best



444 **Figure 4: Case study comparing the spectrogram outputs of different guidance strategies**
 445 **(CFG, PG, HG) under various text prompts.** HG consistently demonstrates superior harmonic
 446 structure modeling and clearer spectral patterns compared to PG and CFG. While PG shows moderate
 447 improvements, CFG often struggles to capture harmonics and yields blurrier, less structured results,
 448 particularly for complex prompts. These examples visually highlight the effectiveness of hierarchical
 449 guidance in improving fidelity and temporal structure.

450 performance at this scale). The results are shown in Table 4 and Table 5. We observe that HG and PG
 451 outperform no guidance, CFG-only and AG-only across FAD, KL and IS, indicating that combining
 452 guidance directions yields better performance than using either one alone. Furthermore, HG surpasses
 453 PG on both tasks, further confirming the advantage of the hierarchical guidance structure.

454 **Impact of guidance scales.** We further investigate the influence of guidance scales in PG and HG on
 455 the audio generation quality. Our analysis reveals that these parameters have an effect on the balance
 456 between fidelity and diversity in the generated audio. Detailed experimental results and discussions
 457 are provided in Appendix B.

458 **Case study.** Apart from the objective and subjective evaluations, we conduct a case study as shown
 459 in Figure 4. For each of the guidance methods, CFG, PG, and HG, we provide three test text prompts.
 460 As shown, CFG is prone to produce less structured results. In comparison, PG has shown improved
 461 quality and HG produces the strongest outcome. These results are consistent with our objective test
 462 results and the human evaluations. We provided more generation results in Appendix I.

464 5 RELATED WORK

466 Diffusion-based cross-modal audio generation, such as T2A and V2A generation systems, primarily
 467 employ CFG during sampling, while it may suffer from sub-optimal synthesis quality as discussed.
 468 Recent work (Chidambaram et al., 2024) has theoretically justified the empirical finding that a
 469 large guidance scale which can ensure synthesis quality may result in reduced generation diversity.
 470 To address this issue, recent works (Karras et al., 2024a; Hong et al., 2023; Li et al., 2025; Sadat
 471 et al., 2024) carefully design different weaker models to replace the unconditional term in CFG, as
 472 noted in Jeon (2025). Among them, AG is representative as its general formulation, and has been
 473 extended to diverse data modalities and generation tasks (Phunyaphibarn et al., 2025; Jeon, 2025;
 474 Hyung et al., 2025; Lee et al., 2025). In this work, we propose a mixture-of-guidance framework,
 475 exploiting complementary advantages of different guidance methods, aiming at improving guided
 476 audio generation quality without sacrificing inference efficiency.

478 6 CONCLUSION

480 In this work, we introduce AudioMoG, an improved sampling framework for audio generation.
 481 We start from an analysis of CFG and AG methods, demonstrating their respective principle on
 482 outperforming unguided diffusion generation. Then, we propose the mixture-of-guidance framework,
 483 introducing its mechanism which exploits the *cumulative benefits* of diverse guidance methods.
 484 Comprehensive experiments demonstrate the superiority of AudioMoG over the popularly adopted
 485 CFG on T2A generation under the same inference budgets, as well as achieving improvement over
 both CFG and AG across V2A, T2M, and image generation tasks without increasing inference time.

486 REFERENCES
487

488 Andrea Agostinelli, Timo I Denk, Zalán Borsos, Jesse Engel, Mauro Verzetti, Antoine Caillon,
489 Qingqing Huang, Aren Jansen, Adam Roberts, Marco Tagliasacchi, et al. Musiclm: Generating
490 music from text. *arXiv preprint arXiv:2301.11325*, 2023.

491 Thierry Bertin-Mahieux, Daniel PW Ellis, Brian Whitman, and Paul Lamere. The million song
492 dataset. In *Ismir*, volume 2, pp. 10, 2011.

493 Arwen Bradley and Preetum Nakkiran. Classifier-free guidance is a predictor-corrector. *arXiv*
494 *preprint arXiv:2408.09000*, 2024.

495 Honglie Chen, Weidi Xie, Andrea Vedaldi, and Andrew Zisserman. Vggsound: A large-scale audio-
496 visual dataset. In *ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and*
497 *Signal Processing (ICASSP)*, pp. 721–725. IEEE, 2020.

498

499 Ho Kei Cheng, Masato Ishii, Akio Hayakawa, Takashi Shibuya, Alexander Schwing, and Yuki
500 Mitsufuji. Mmaudio: Taming multimodal joint training for high-quality video-to-audio synthesis.
501 In *CVPR*, pp. 28901–28911, 2025.

502

503 Muthu Chidambaram, Khashayar Gatmiry, Sitan Chen, Holden Lee, and Jianfeng Lu. What does
504 guidance do? a fine-grained analysis in a simple setting. *arXiv preprint arXiv:2409.13074*, 2024.

505

506 Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li,
507 Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language
508 models. *Journal of Machine Learning Research*, 25(70):1–53, 2024.

509

510 Marco Comunità, Riccardo F Gramaccioni, Emilian Postolache, Emanuele Rodolà, Danilo Com-
511 miniello, and Joshua D Reiss. Syncfusion: Multimodal onset-synchronized video-to-audio foley
512 synthesis. In *ICASSP*, pp. 936–940. IEEE, 2024.

513

514 Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi, and
515 Alexandre Défossez. Simple and controllable music generation. *Advances in Neural Information*
516 *Processing Systems*, 36:47704–47720, 2023.

517

518 Ghosal Deepanway, Majumder Navonil, Mehrish Ambuj, and Poria Soujanya. Text-to-audio gener-
519 ation using instruction-tuned llm and latent diffusion model. *arXiv preprint arXiv:2304.13731*,
520 2023.

521

522 Michaël Defferrard, Kirell Benzi, Pierre Vandergheynst, and Xavier Bresson. Fma: A dataset for
523 music analysis. *arXiv preprint arXiv:1612.01840*, 2016.

524

525 Konstantinos Drossos, Samuel Lipping, and Tuomas Virtanen. Clotho: An audio captioning dataset.
526 In *ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing*
527 *(ICASSP)*, pp. 736–740. IEEE, 2020.

528

529 Yuexi Du, Ziyang Chen, Justin Salamon, Bryan Russell, and Andrew Owens. Conditional generation
530 of audio from video via foley analogies. In *Conference on Computer Vision and Pattern Recognition*
531 2023, 2023.

532

533 Zach Evans, CJ Carr, Josiah Taylor, Scott H Hawley, and Jordi Pons. Fast timing-conditioned latent
534 audio diffusion. In *Forty-first International Conference on Machine Learning*, 2024.

535

536 Zach Evans, Julian D Parker, CJ Carr, Zack Zukowski, Josiah Taylor, and Jordi Pons. Stable audio
537 open. In *ICASSP 2025-2025 IEEE International Conference on Acoustics, Speech and Signal*
538 *Processing (ICASSP)*, pp. 1–5. IEEE, 2025.

539

540 Eduardo Fonseca, Xavier Favory, Jordi Pons, Frederic Font, and Xavier Serra. Fsd50k: an open
541 dataset of human-labeled sound events. *IEEE/ACM Transactions on Audio, Speech, and Language*
542 *Processing*, 30:829–852, 2021.

543

544 Seth Forsgren and Hayk Martiros. Riffusion-stable diffusion for real-time music generation. *URL*
545 <https://riffusion.com>, 2022.

540 Jort F Gemmeke, Daniel PW Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence, R Channing
 541 Moore, Manoj Plakal, and Marvin Ritter. Audio set: An ontology and human-labeled dataset for
 542 audio events. In *2017 IEEE international conference on acoustics, speech and signal processing*
 543 (*ICASSP*), pp. 776–780. IEEE, 2017.

544 Rohit Girdhar, Alaaeldin El-Nouby, Zhuang Liu, Mannat Singh, Kalyan Vasudev Alwala, Armand
 545 Joulin, and Ishan Misra. Imagebind: One embedding space to bind them all. In *Proceedings of the*
 546 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 15180–15190, 2023.

547 Shawn Hershey, Sourish Chaudhuri, Daniel PW Ellis, Jort F. Gemmeke, Aren Jansen, R. Channing
 548 Moore, Manoj Plakal, Devin Platt, Rif A. Saurous, Bryan Seybold, Malcolm Slaney, Ron J. Weiss,
 549 and Kevin Wilson. Cnn architectures for large-scale audio classification. In *Proc. ICASSP*, pp.
 550 131–135, 2017.

551 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
 552 trained by a two time-scale update rule converge to a local nash equilibrium. In *Proc. NeurIPS*, pp.
 553 6626–6637, 2017.

554 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint arXiv:2207.12598*,
 555 2022.

556 Susung Hong, Gyuseong Lee, Wooseok Jang, and Seungryong Kim. Improving sample quality of
 557 diffusion models using self-attention guidance. In *Proceedings of the IEEE/CVF International*
 558 *Conference on Computer Vision*, pp. 7462–7471, 2023.

559 Jiawei Huang, Yi Ren, Rongjie Huang, Dongchao Yang, Zhenhui Ye, Chen Zhang, Jinglin Liu, Xiang
 560 Yin, Zejun Ma, and Zhou Zhao. Make-an-audio 2: Temporal-enhanced text-to-audio generation.
 561 *arXiv preprint arXiv:2305.18474*, 2023a.

562 Po-Yao Huang, Hu Xu, Juncheng Li, Alexei Baevski, Michael Auli, Wojciech Galuba, Florian Metze,
 563 and Christoph Feichtenhofer. Masked autoencoders that listen. *Advances in Neural Information*
 564 *Processing Systems*, 35:28708–28720, 2022.

565 Rongjie Huang, Jiawei Huang, Dongchao Yang, Yi Ren, Luping Liu, Mingze Li, Zhenhui Ye, Jinglin
 566 Liu, Xiang Yin, and Zhou Zhao. Make-an-audio: Text-to-audio generation with prompt-enhanced
 567 diffusion models. In *International Conference on Machine Learning*, pp. 13916–13932. PMLR,
 568 2023b.

569 Chia-Yu Hung, Navonil Majumder, Zhifeng Kong, Ambuj Mehrish, Rafael Valle, Bryan Catanzaro,
 570 and Soujanya Poria. Tangoflux: Super fast and faithful text to audio generation with flow matching
 571 and clap-ranked preference optimization. *arXiv preprint arXiv:2412.21037*, 2024.

572 Junha Hyung, Kinam Kim, Susung Hong, Min-Jung Kim, and Jaegul Choo. Spatiotemporal skip
 573 guidance for enhanced video diffusion sampling. In *CVPR*, 2025.

574 Boseong Jeon. Spg: Improving motion diffusion by smooth perturbation guidance. *arXiv preprint*
 575 *arXiv:2503.02577*, 2025.

576 Yujin Jeong, Yunji Kim, Sanghyuk Chun, and Jiyoung Lee. Read, watch and scream! sound
 577 generation from text and video. *arXiv preprint arXiv:2407.05551*, 2024.

578 Tero Karras, Miika Aittala, Tuomas Kynkänniemi, Jaakko Lehtinen, Timo Aila, and Samuli Laine.
 579 Guiding a diffusion model with a bad version of itself. *Advances in Neural Information Processing*
 580 *Systems*, 37:52996–53021, 2024a.

581 Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli Laine. Analyzing
 582 and improving the training dynamics of diffusion models. In *Proceedings of the IEEE/CVF*
 583 *Conference on Computer Vision and Pattern Recognition*, pp. 24174–24184, 2024b.

584 Artur Kasymov, Marcin Sendera, Michal Stypulkowski, Maciej Zieba, and Przemysław Spurek.
 585 Autolora: Autoguidance meets low-rank adaptation for diffusion models. *ArXiv*, abs/2410.03941,
 586 2024. URL <https://api.semanticscholar.org/CorpusID:273186941>.

594 Kevin Kilgour, Robin Clark, Kyu J. Sim, and Paris Smaragdis. Fréchet audio distance: A metric for
 595 evaluating music enhancement algorithms. In *Proc. Interspeech*, pp. 2350–2354, 2019.

596

597 Chris Dongjoo Kim, Byeongchang Kim, Hyunmin Lee, and Gunhee Kim. Audiocaps: Generating
 598 captions for audios in the wild. In *Proceedings of the 2019 Conference of the North American
 599 Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume
 600 1 (Long and Short Papers)*, pp. 119–132, 2019.

601 Diederik P Kingma, Max Welling, et al. Auto-encoding variational bayes, 2013.

602

603 Qiuqiang Kong, Yin Cao, Turab Iqbal, Yuxuan Wang, Wenwu Wang, and Mark D. Plumbley.
 604 Panns: Large-scale pretrained audio neural networks for audio pattern recognition. In *IEEE/ACM
 605 Transactions on Audio, Speech, and Language Processing*, volume 28, pp. 2880–2894, 2020.

606

607 Zhifeng Kong, Sang-gil Lee, Deepanway Ghosal, Navonil Majumder, Ambuj Mehrish, Rafael Valle,
 608 Soujanya Poria, and Bryan Catanzaro. Improving text-to-audio models with synthetic captions.
 609 *arXiv preprint arXiv:2406.15487*, 2024.

610

611 Felix Kreuk, Gabriel Synnaeve, Adam Polyak, Uriel Singer, Alexandre Défossez, Jade Copet, Devi
 612 Parikh, Yaniv Taigman, and Yossi Adi. Audiogen: Textually guided audio generation. *arXiv
 613 preprint arXiv:2209.15352*, 2022.

614

615 Solomon Kullback and Richard A. Leibler. On information and sufficiency. *The Annals of Mathematical
 616 Statistics*, 22(1):79–86, 1951.

617

618 Max WY Lam, Qiao Tian, Tang Li, Zongyu Yin, Siyuan Feng, Ming Tu, Yuliang Ji, Rui Xia, Mingbo
 619 Ma, Xuchen Song, et al. Efficient neural music generation. *Advances in Neural Information
 620 Processing Systems*, 36:17450–17463, 2023.

621

622 Edith Law, Kris West, Michael I Mandel, Mert Bay, and J Stephen Downie. Evaluation of algorithms
 623 using games: The case of music tagging. In *ISMIR*, pp. 387–392. Citeseer, 2009.

624

625 Sang-gil Lee, Zhifeng Kong, Arushi Goel, Sungwon Kim, Rafael Valle, and Bryan Catanzaro. Etta:
 626 Elucidating the design space of text-to-audio models. In *ICML*, 2025.

627

628 Chang Li, Ruoyu Wang, Lijuan Liu, Jun Du, Yixuan Sun, Zilu Guo, Zhenrong Zhang, and Yuan
 629 Jiang. Quality-aware masked diffusion transformer for enhanced music generation. *arXiv e-prints*,
 630 pp. arXiv–2405, 2024a.

631

632 Peike Patrick Li, Boyu Chen, Yao Yao, Yikai Wang, Allen Wang, and Alex Wang. Jen-1: Text-guided
 633 universal music generation with omnidirectional diffusion models. In *2024 IEEE Conference on
 634 Artificial Intelligence (CAI)*, pp. 762–769. IEEE, 2024b.

635

636 Tiancheng Li, Weijian Luo, Zhiyang Chen, Liyuan Ma, and Guo-Jun Qi. Self-guidance: Boosting
 637 flow and diffusion generation on their own. *IEEE Transactions on Pattern Analysis and Machine
 638 Intelligence*, 2025.

639

640 Haohe Liu, Zehua Chen, Zejia Yuan, et al. Audioldm: Text-to-audio generation with latent diffusion
 641 models. *arXiv preprint arXiv:2301.12503*, 2023.

642

643 Haohe Liu, Yi Yuan, Xubo Liu, Xinhao Mei, Qiuqiang Kong, Qiao Tian, Yuping Wang, Wenwu
 644 Wang, Yuxuan Wang, and Mark D Plumbley. Audioldm 2: Learning holistic audio generation with
 645 self-supervised pretraining. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*,
 646 2024a.

647

648 Xulong Liu, Kun Su, and Eli Shlizerman. Tell what you hear from what you see - video to audio
 649 generation through text. In *NeurIPS*, 2024b. URL <https://openreview.net/forum?id=kr7eN85mIT>.

650

651 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint
 652 arXiv:1711.05101*, 2017.

653

654 Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast
 655 solver for guided sampling of diffusion probabilistic models. *arXiv preprint arXiv:2211.01095*,
 656 2022.

648 Simian Luo, Chuanhao Yan, Chenxu Hu, and Hang Zhao. Diff-foley: Synchronized video-to-audio
 649 synthesis with latent diffusion models. *Advances in Neural Information Processing Systems*, 36:
 650 48855–48876, 2023.

651 Navonil Majumder, Chia-Yu Hung, Deepanway Ghosal, Wei-Ning Hsu, Rada Mihalcea, and Soujanya
 652 Poria. Tango 2: Aligning diffusion-based text-to-audio generations through direct preference
 653 optimization. In *Proceedings of the 32nd ACM International Conference on Multimedia*, pp.
 654 564–572, 2024.

655 Xinhao Mei, Varun Nagaraja, Gael Le Lan, Zhaocheng Ni, Ernie Chang, Yangyang Shi, and Vikas
 656 Chandra. Foleygen: Visually-guided audio generation. In *2024 IEEE 34th International Workshop
 657 on Machine Learning for Signal Processing (MLSP)*, pp. 1–6. IEEE, 2024.

658 Mubert-Inc. Mubert. URL <https://mubert.com/>, <https://github.com/MubertAI/Mubert-Text-to-Music>,
 659 2022.

660 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of
 661 the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.

662 Prin Phunyaphibarn, Phillip Y Lee, Jaihoon Kim, and Minhyuk Sung. Unconditional priors matter!
 663 improving conditional generation of fine-tuned diffusion models. *arXiv preprint arXiv:2503.20240*,
 664 2025.

665 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 666 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
 667 Learning transferable visual models from natural language supervision, 2021. URL <https://arxiv.org/abs/2103.00020>.

668 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 669 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances
 670 in Neural Information Processing Systems*, 36:53728–53741, 2023.

671 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 672 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 673 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

674 Seyedmorteza Sadat, Manuel Kansy, Otmar Hilliges, and Romann M Weber. No training, no problem:
 675 Rethinking classifier-free guidance for diffusion models. *arXiv preprint arXiv:2407.02687*, 2024.

676 Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
 677 Improved techniques for training gans. In *Proc. NeurIPS*, pp. 2234–2242, 2016.

678 Flavio Schneider, Ojasv Kamal, Zhijing Jin, and Bernhard Schölkopf. Mo\^usai: Text-to-music
 679 generation with long-context latent diffusion. *arXiv preprint arXiv:2301.11757*, 2023.

680 Roy Sheffer and Yossi Adi. I hear your true colors: Image guided audio generation. In *ICASSP
 681 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*,
 682 pp. 1–5. IEEE, 2023.

683 Kun Su, Xiulong Liu, and Eli Shlizerman. From vision to audio and beyond: A unified model for
 684 audio-visual representation and generation. *arXiv preprint arXiv:2409.19132*, 2024.

685 Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. *Advances in
 686 neural information processing systems*, 30, 2017.

687 Heng Wang, Jianbo Ma, Santiago Pascual, Richard Cartwright, and Weidong Cai. V2a-mapper: A
 688 lightweight solution for vision-to-audio generation by connecting foundation models. In *AAAI*,
 689 volume 38, pp. 15492–15501, 2024a.

690 Xihua Wang, Yuyue Wang, Yihan Wu, Ruihua Song, Xu Tan, Zehua Chen, Hongteng Xu, and
 691 Guodong Sui. Tiva: Time-aligned video-to-audio generation. In *ACM Multimedia*, 2024b.

692 Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, and Shlomo Dubnov.
 693 Large-scale contrastive language-audio pretraining with feature fusion and keyword-to-caption
 694 augmentation. In *ICASSP*, pp. 1–5. IEEE, 2023.

702 Zhifeng Xie, Shengye Yu, Qile He, and Mengtian Li. Sonicvisionlm: Playing sound with vision
 703 language models. In *CVPR*, pp. 26866–26875, 2024.
 704

705 Manjie Xu, Chenxing Li, Yong Ren, Rilin Chen, Yu Gu, Wei Liang, and Dong Yu. Video-to-audio
 706 generation with hidden alignment. *arXiv preprint arXiv:2407.07464*, 2024.
 707

708 Dongchao Yang, Jianwei Yu, Helin Wang, Wen Wang, Chao Weng, Yuexian Zou, and Dong Yu.
 709 Diffsound: Discrete diffusion model for text-to-sound generation. *IEEE/ACM Transactions on
 710 Audio, Speech, and Language Processing*, 31:1720–1733, 2023.
 711

712 Yiming Zhang, Yicheng Gu, Yanhong Zeng, Zhenning Xing, Yuancheng Wang, Zhizheng Wu, and
 713 Kai Chen. Foleycrafter: Bring silent videos to life with lifelike and synchronized sounds. *arXiv
 714 preprint arXiv:2407.01494*, 2024.
 715

716 Jincheng Zhong, Xiangcheng Zhang, Jianmin Wang, and Mingsheng Long. Domain guidance: A
 717 simple transfer approach for a pre-trained diffusion model. *arXiv preprint arXiv:2504.01521*,
 718 2025.
 719

720 CONTENTS

722 1	Introduction	1
725 2	Preliminaries	3
727 3	AudioMoG	3
729 3.1	Analysis	3
730 3.2	Framework	5
732 4	Experiments	6
734 4.1	T2A experiment setup	6
735 4.2	Main results	7
737 4.3	Additional results	8
739 5	Related work	9
741 6	Conclusion	9
743 A	Proof of HG	16
745 B	Impact of guidance scales	17
748 C	Text-to-music generation results	17
750 C.1	Baseline methods	17
751 C.2	Experiment results	18
753 D	Image generation results	19
755 E	2D toy dataset experiment details	19

756	F Text-to-audio experiment details	19
757	F.1 Datasets	19
758	F.2 Baseline methods	20
759	F.3 Model configurations	20
760	F.4 Compression networks	21
761	F.5 Objective metrics	21
762	F.6 Subjective evaluation	21
763		
764		
765		
766		
767	G Video-to-audio experiment details	21
768	G.1 Datasets	21
769	G.2 Model configurations	22
770	G.3 Baselines methods	22
771	G.4 Metrics	23
772		
773		
774		
775	H Detailed related works	24
776	H.1 Text-to-audio (T2A) generation	24
777	H.2 Video-to-audio (V2A) generation	24
778	H.3 Guidance methods	24
779		
780		
781	I More generated samples	25
782		
783	J Broader societal impact	25
784		
785		
786	K Licenses	25
787		
788		
789		
790		
791		
792		
793		
794		
795		
796		
797		
798		
799		
800		
801		
802		
803		
804		
805		
806		
807		
808		
809		

A PROOF OF HG

Theorem 1. Embedding AG into CFG is equivalent to embedding CFG into AG. Namely,

$$\begin{aligned}\epsilon_{cAG}(\mathbf{z}_t, t, \mathbf{c}) &= \epsilon_{\theta_{pad}}(\mathbf{z}_t, t, \mathbf{c}) + w_1(\epsilon_{\theta}(\mathbf{z}_t, t, \mathbf{c}) - \epsilon_{\theta_{bad}}(\mathbf{z}_t, t, \mathbf{c})) \\ \epsilon_{ucAG}(\mathbf{z}_t, t) &= \epsilon_{\theta_{bad}}(\mathbf{z}_t, t) + w_2(\epsilon_{\theta}(\mathbf{z}_t, t) - \epsilon_{\theta_{bad}}(\mathbf{z}_t, t)) \\ \epsilon_{HG}(\mathbf{z}_t, t, \mathbf{c}) &= \epsilon_{ucAG}(\mathbf{z}_t, t) + w_3(\epsilon_{cAG}(\mathbf{z}_t, t, \mathbf{c}) - \epsilon_{ucAG}(\mathbf{z}_t, t))\end{aligned}\quad (11)$$

and

$$\begin{aligned}\epsilon_{CFG}(\mathbf{z}_t, t, \mathbf{c}) &= \epsilon_{\theta}(\mathbf{z}_t, t) + \hat{w}_1(\epsilon_{\theta}(\mathbf{z}_t, t, \mathbf{c}) - \epsilon_{\theta}(\mathbf{z}_t, t)) \\ \epsilon_{badCFG}(\mathbf{z}_t, t, \mathbf{c}) &= \epsilon_{\theta_{bad}}(\mathbf{z}_t, t) + \hat{w}_2(\epsilon_{\theta_{bad}}(\mathbf{z}_t, t, \mathbf{c}) - \epsilon_{\theta_{bad}}(\mathbf{z}_t, t)) \\ \hat{\epsilon}(\mathbf{z}_t, t, \mathbf{c}) &= \epsilon_{badCFG}(\mathbf{z}_t, t, \mathbf{c}) + \hat{w}_3(\epsilon_{CFG}(\mathbf{z}_t, t, \mathbf{c}) - \epsilon_{badCFG}(\mathbf{z}_t, t, \mathbf{c}))\end{aligned}\quad (12)$$

are equivalent guidance, as long as $w_3 \notin \{0, 1\}$ and $\hat{w}_3 \notin \{0, 1\}$ (HG degenerates to CFG-only or AG-only in these cases) i.e., for any fixed ϵ_{θ} and $\epsilon_{\theta_{bad}}$,

$$\begin{aligned}\{\epsilon | \exists w_1, w_2 \in \mathbb{R}, w_3 \notin \{0, 1\}, s.t. \epsilon = \epsilon_{HG}(\mathbf{z}_t, t, \mathbf{c})\} \\ = \{\epsilon | \exists \hat{w}_1, \hat{w}_2 \in \mathbb{R}, \hat{w}_3 \notin \{0, 1\}, s.t. \epsilon = \hat{\epsilon}_{HG}(\mathbf{z}_t, t, \mathbf{c})\}\end{aligned}\quad (13)$$

Proof. Let the two sets in Equation 13 be denoted as S_1 and S_2 . Substituting the first two equations of Equation 11 into the third gives:

$$\begin{aligned}\epsilon_{HG}(\mathbf{z}_t, t, \mathbf{c}) &= w_3 \epsilon_{cAG}(\mathbf{z}_t, t, \mathbf{c}) + (1 - w_3) \epsilon_{ucAG}(\mathbf{z}_t, t, \mathbf{c}) \\ &= w_3 (w_1 \epsilon_{\theta}(\mathbf{z}_t, t, \mathbf{c}) + (1 - w_1) \epsilon_{\theta_{bad}}(\mathbf{z}_t, t, \mathbf{c})) \\ &\quad + (1 - w_3) (w_2 \epsilon_{\theta}(\mathbf{z}_t, t) + (1 - w_2) \epsilon_{\theta_{bad}}(\mathbf{z}_t, t)) \\ &= w_1 w_3 \epsilon_{\theta}(\mathbf{z}_t, t, \mathbf{c}) + w_2 (1 - w_3) \epsilon_{\theta}(\mathbf{z}_t, t) \\ &\quad + w_3 (1 - w_1) \epsilon_{\theta_{bad}}(\mathbf{z}_t, t, \mathbf{c}) + (1 - w_2) (1 - w_3) \epsilon_{\theta_{bad}}(\mathbf{z}_t, t)\end{aligned}\quad (14)$$

Likewise, Equation 12 gives

$$\begin{aligned}\hat{\epsilon}_{HG}(\mathbf{z}_t, t, \mathbf{c}) &= \hat{w}_3 \epsilon_{CFG}(\mathbf{z}_t, t, \mathbf{c}) + (1 - \hat{w}_3) \epsilon_{badCFG}(\mathbf{z}_t, t, \mathbf{c}) \\ &= \hat{w}_3 (\hat{w}_1 \epsilon_{\theta}(\mathbf{z}_t, t, \mathbf{c}) + (1 - \hat{w}_1) \epsilon_{\theta}(\mathbf{z}_t, t)) \\ &\quad + (1 - \hat{w}_3) (\hat{w}_2 \epsilon_{\theta_{bad}}(\mathbf{z}_t, t, \mathbf{c}) + (1 - \hat{w}_2) \epsilon_{\theta_{bad}}(\mathbf{z}_t, t)) \\ &= \hat{w}_1 \hat{w}_3 \epsilon_{\theta}(\mathbf{z}_t, t, \mathbf{c}) + \hat{w}_3 (1 - \hat{w}_1) \epsilon_{\theta}(\mathbf{z}_t, t) \\ &\quad + \hat{w}_2 (1 - \hat{w}_3) \epsilon_{\theta_{bad}}(\mathbf{z}_t, t, \mathbf{c}) + (1 - \hat{w}_2) (1 - \hat{w}_3) \epsilon_{\theta_{bad}}(\mathbf{z}_t, t)\end{aligned}\quad (15)$$

For most cases $\epsilon_{\theta}(\mathbf{z}_t, t)$, $\epsilon_{\theta}(\mathbf{z}_t, t, \mathbf{c})$, $\epsilon_{\theta_{bad}}(\mathbf{z}_t, t)$ and $\epsilon_{\theta_{bad}}(\mathbf{z}_t, t, \mathbf{c})$ are linearly independent, thus Equation 14 and 15 implies

$$\begin{cases} w_1 w_3 = \hat{w}_1 \hat{w}_3 \\ w_2 (1 - w_3) = \hat{w}_3 (1 - \hat{w}_1) \\ w_3 (1 - w_1) = \hat{w}_2 (1 - \hat{w}_3) \\ (1 - w_2) (1 - w_3) = (1 - \hat{w}_2) (1 - \hat{w}_3) \end{cases}\quad (16)$$

For Equations 16, adding the first and third equations yields

$$w_3 = \hat{w}_1 \hat{w}_3 + \hat{w}_2 (1 - \hat{w}_3)\quad (17)$$

Substitute into the first and second equations and we can figure out (This division is valid since $w_3 \notin \{0, 1\}$)

$$\begin{aligned}w_1 &= \frac{\hat{w}_1 \hat{w}_3}{\hat{w}_1 \hat{w}_3 + \hat{w}_2 (1 - \hat{w}_3)} \\ w_2 &= \frac{\hat{w}_3 (1 - \hat{w}_1)}{1 - \hat{w}_1 \hat{w}_3 - \hat{w}_2 (1 - \hat{w}_3)}\end{aligned}\quad (18)$$

Therefore, $S_2 \subseteq S_1$. Notice that Equations 16 is symmetric under the exchange of w_1 and \hat{w}_1 , w_2 and \hat{w}_2 , w_3 and \hat{w}_3 , so similarly

$$\begin{aligned}\hat{w}_1 &= \frac{w_1 w_3}{w_1 w_3 + w_2 (1 - w_3)} \\ \hat{w}_2 &= \frac{w_3 (1 - w_1)}{1 - w_1 w_3 - w_2 (1 - w_3)} \\ \hat{w}_3 &= w_1 w_3 + w_2 (1 - w_3)\end{aligned}\quad (19)$$

deducing that $S_1 \subseteq S_2$. Then we have $S_1 = S_2$, which completes the proof.

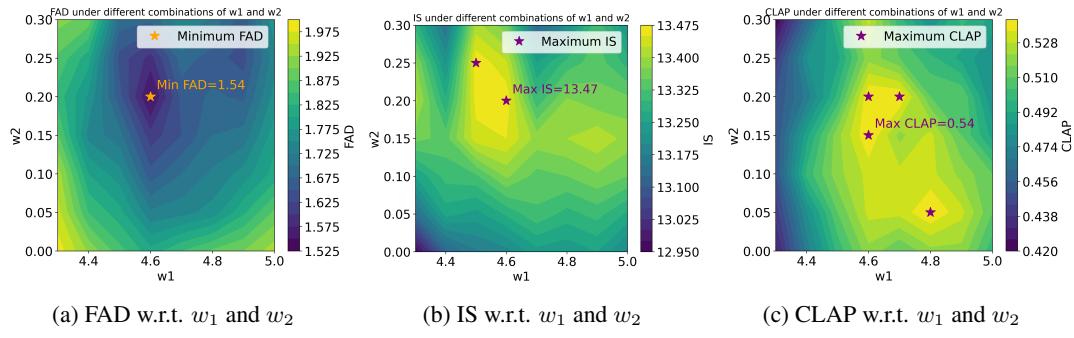


Figure 5: **Impact of different guidance scales in PG.** (a)(b)(c) stands for the relations of FAD, IS and CLAP with w_1 and w_2 , respectively. The best configurations are denoted with stars.

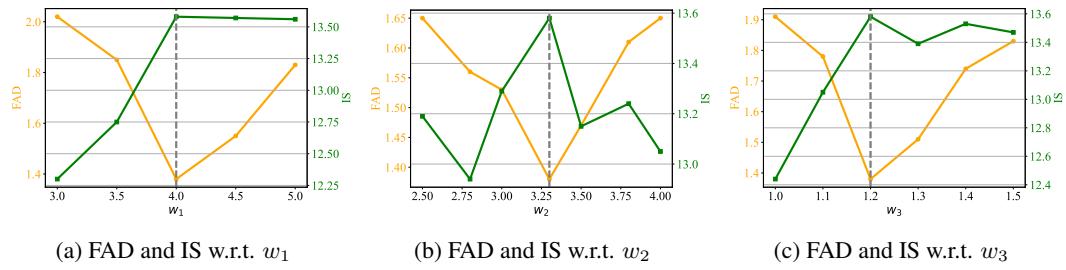


Figure 6: **Impact of different guidance scales in HG.** (a) Sweep over w_1 while keeping w_2 and w_3 unchanged. (b) Sweep over w_2 while keeping w_1 and w_3 unchanged. (c) Sweep over w_3 while keeping w_1 and w_2 unchanged. The best configurations are denoted with dashed lines.

B IMPACT OF GUIDANCE SCALES

To further demonstrate the effectiveness of AudioMoG, we investigate the impact of different guidance scales in PG and HG on the generation results.

The PG setting. We study the guidance scales w_1 in the range $4.3 \sim 5.0$ and w_2 in $0.0 \sim 0.3$. We keep the NFE fixed at 300 following the main paper and evaluated FAD, IS and CLAP. The results are shown in Figures 5a-5c. Noticing that PG degrades to CFG-only when $w_2 = 0$, we can see that PG indeed reaches a higher performance ceiling and achieves the best results around our choice, $w_1 = 4.6$ and $w_2 = 0.2$. Excessively increasing or decreasing w_1 and w_2 will result in a loss of quality, showing alike convex pattern in the following HG setting.

The HG setting. We adopt the setting in the main paper, with the baseline configuration of $w_1 = 4.0$, $w_2 = 3.3$, and $w_3 = 1.2$, while keeping the NFE fixed at 400. We evaluated both FAD and IS as primary metrics, and the results are summarized in Figures 6a-6c. For w_1 (Figure 6a), we can see as w_1 increases from 3.0 to 4.0, FAD decreases substantially, reaching a minimum around $w_1 = 4.0$, indicating improved overall sample fidelity. However, further increasing w_1 beyond this point slightly worsens FAD. Meanwhile, IS increases steadily and saturates at $w_1 \geq 4.0$, reflecting stronger condition adherence and sample specificity. For w_2 and w_3 , we observe similar convex patterns (Figure 6b, 6c). Both FAD and IS achieve their best values around $w_2 = 3.3$ and $w_3 = 1.2$. Therefore, all three scales exhibit non-monotonic behaviors, and each has an optimal value range where both fidelity and diversity metrics are simultaneously optimized. These results validate the necessity of tuning each guidance component, as also noted in Karras et al. (2024a), and highlight that balanced guidance from multiple perspectives is crucial for high-quality audio generation.

C TEXT-TO-MUSIC GENERATION RESULTS

C.1 BASELINE METHODS

To present comprehensive evaluation results, we introduce 10 text-to-music (T2M) baseline models for comparison:

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
Table 6: Objective metrics for text-to-music generation on MusicCaps dataset.

Model	FAD ↓	IS ↑	FD ↓
Riffusion (Forsgren & Martiros, 2022)	13.40	/	/
Mubert (Mubert-Inc., 2022)	9.60	/	/
MusicLM (Agostinelli et al., 2023)	4.00	/	/
Mousai (Schneider et al., 2023)	7.50	/	/
MeLoDy (Lam et al., 2023)	5.41	/	/
Stable Audio Open (Evans et al., 2025)	3.51	2.93	36.42
MusicGen w/o melody (Copet et al., 2023)	3.40	/	/
AudioLDM 2-Large (Liu et al., 2024a)	2.93	2.59	16.34
AudioLDM 2-Full (Liu et al., 2024a)	3.13	/	/
TANGO-AF (Kong et al., 2024)	2.21	2.79	22.69
Jen-1 (Li et al., 2024b)	2.00	/	/
CFG-only, $w = 7$	2.36	3.10	14.39
MoG-PG, $w_1 = 2.0, w_2 = 0.2$	<u>1.98</u>	<u>4.35</u>	14.88
MoG-HG, $w_1 = 1.6, w_2 = 1.6, w_3 = 1.2$	1.92	4.39	14.09

Riffusion (Forsgren & Martiros, 2022) is a unique model that generates music by converting spectrogram images into audio. It fine-tunes the Stable Diffusion model on spectrograms, allowing it to produce short music loops based on text prompts.

Mubert (Mubert-Inc., 2022) is an AI-driven music generation platform that creates royalty-free music tailored for various content needs. It offers tools for content creators, artists, and developers to generate and integrate AI-generated music into their projects.

MusicLM (Agostinelli et al., 2023) is a model introduced by Google that generates high-fidelity music from text descriptions. It utilizes a sequence-to-sequence modeling approach to capture long-term structure in music generation.

Mousai (Schneider et al., 2023) is a two-stage latent-diffusion system for text-to-music generation. Stage 1 compresses 48 kHz stereo audio with a Diffusion-Magnitude Autoencoder (DMAE), and Stage 2 is a text-conditioned latent diffusion (TCLD) model that can produce multi-minute, prompt-aligned musical pieces.

MeLoDy (Lam et al., 2023) is an LM-guided diffusion framework that inherits the highest-level LM from MusicLM for semantic modeling, and applies a novel dual-path diffusion (DPD) model and an audio VAE-GAN to efficiently decode the conditioning semantic tokens into waveform, resulting in cutting sampling cost by more than 95 % while maintaining state-of-the-art text–music alignment and audio quality.

MusicGen (Copet et al., 2023) is an open-source model developed by Meta that generates music from text prompts. It employs a transformer-based architecture trained on a large dataset of music to produce diverse and high-quality audio samples.

Jen-1 (Li et al., 2024b) is a universal high-fidelity model for text-to-music generation. It incorporates both autoregressive and non-autoregressive training, enabling tasks like text-guided music generation, inpainting, and continuation.

C.2 EXPERIMENT RESULTS

We conduct a comprehensive analysis of generated music quality across the above systems. For Riffusion, Mubert and MusicLM, we report the metrics from MusicLM. For Stable Audio Open, AudioLDM2-Large and Tango-AF, we cite the results from ETTA. For Mousai, as it is not evaluated in ETTA, we report it from AudioLDM 2. For other baselines, we report the metrics as presented in their original papers. Similar to T2A, we further evaluate our baseline model using only CFG, which also achieves the best result when $w = 7$, and fix NFE to 400. All evaluations are conducted on MusicCaps dataset. The results are detailed in Table 6. It can be shown that HG not only surpasses CFG-only but also achieves SOTA in all metrics.

972 **D IMAGE GENERATION RESULTS**
973

974 This section presents the experimental results for the conditional ImageNet 512×512 generation task,
975 using the EDM2-S checkpoints from (Karras et al., 2024b). Image generation was performed over 16
976 deterministic steps with a second-order Heun sampler, maintaining the same inference speed with
977 a single guidance method (Karras et al., 2024a). The optimal guidance strengths were determined
978 through a grid search on a reduced sample size ($N = 8192$). Subsequently, the model’s performance
979 was evaluated on a larger set of samples ($N = 50000$) to obtain robust estimates of the Fréchet
980 Inception Distance (FID) and the Fréchet DINOv2 Distance (FD_DINOv2).

981 **Table 7: Conditional image generation results on ImageNet-512.**
982

983 Model	984 FID \downarrow	985 FD_{DINOv2} \downarrow
986 CFG-only	987 2.40	988 96.90
AG-only	1.60	57.35
MoG-PG	1.60	53.01
989 MoG-HG	1.47	49.92

990 **E 2D TOY DATASET EXPERIMENT DETAILS**
991

992 This section outlines the setup of the 2D toy dataset experiment used in the analysis presented in
993 Section 3.1. Unless otherwise specified, the experiment details strictly follow the setup in (Karras
994 et al., 2024a).

995 **Dataset.** The dataset is a synthetic, fractal-like 2D distribution composed of two classes. Each class
996 is represented as a Gaussian mixture model $\mathcal{M}_c = (\phi_i, \mu_i, \Sigma_i)$, where ϕ_i denotes the mixture weight,
997 μ_i the mean, and Σ_i the 2×2 covariance matrix of the i -th Gaussian component.

998 **Models.** We employ simple multi-layer perceptrons (MLPs) as denoiser models, consistent with the
999 setup in (Karras et al., 2024a).

1000 **Training.** To ensure comparability, we use the pre-trained models provided by (Karras et al., 2024a).
1001 The URLs of model checkpoints can be found at: [https://github.com/NVlabs/edm2/
1002 blob/main/toy_example.py](https://github.com/NVlabs/edm2/blob/main/toy_example.py).

1003 **Sampling.** For the visualizations in Figure 2, we use the following guidance weights: $w = 3$ for
1004 both CFG and AG; $w_1 = 2, w_2 = 2$ for PG; and $w_1 = w_2 = 1.5, w_3 = 2$ for HG. The models
1005 $\epsilon_\theta(\mathbf{z}_t, t, \mathbf{c})$ and $\epsilon_\theta(\mathbf{z}_t, t)$ use checkpoints trained with hidden dimension $d = 64$ and training iteration
1006 $M = 4096$, while the bad models $\epsilon_{\theta_{\text{bad}}}(\mathbf{z}_t, t, \mathbf{c})$ and $\epsilon_{\theta_{\text{bad}}}(\mathbf{z}_t, t)$ use checkpoints with $d = 32$ and
1007 $M = 512$.

1008 **F TEXT-TO-AUDIO EXPERIMENT DETAILS**
10091010 **F.1 DATASETS**
1011

1012 We present the datasets used to train our baseline model in Table 8. AudioCaps (Kim et al., 2019) is a
1013 benchmark dataset for audio captioning that contains 50,000 audio clips from AudioSet paired with
1014 human-written textual descriptions. We only used its training set. AudioSet (Gemmeke et al., 2017)
1015 is a large-scale weakly labeled dataset released by Google, comprising over 2 million 10-second
1016 audio clips across more than 600 sound event categories. The BBC Sound Effects Library [link]
1017 provides over 30,000 professionally recorded sound effects covering a wide variety of acoustic
1018 scenes and events. Clotho v2 (Drossos et al., 2020) is designed for audio captioning tasks and
1019 contains approximately 5,000 audio clips, each annotated with five crowdsourced textual descriptions.
1020 VGGSound (Chen et al., 2020) is a large-scale dataset consisting of over 200,000 10-second video
1021 clips from YouTube, covering 310 diverse sound classes. FreeSound [link] is a collaborative platform
1022 that hosts a wide range of user-contributed audio samples, frequently used for environmental sound
1023 classification and retrieval. FSD50K (Fonseca et al., 2021) is a large-scale dataset derived from
1024 FreeSound, containing over 50,000 audio clips annotated with strong and weak labels for sound
1025

event detection. FMA (Defferrard et al., 2016), the Free Music Archive dataset, includes full-length high-quality music tracks and is widely used in music information retrieval research. The Million Song Dataset (MSD) (Bertin-Mahieux et al., 2011) offers metadata and pre-computed audio features for one million popular music tracks to support large-scale music recommendation and analysis. MagnaTagATune (MTT) (Law et al., 2009) is a music tagging dataset that contains 25,000 audio clips annotated with multiple descriptive tags for genre, instrument, and mood classification tasks.

Table 8: Statistics for the datasets used in the paper.

Dataset	Hours (h)	Source
AudioCaps	109	(Kim et al., 2019)
AudioSet	5800	(Gemmeke et al., 2017)
BBC Sound Effects Library	300	link
Clotho v2	152	(Drossos et al., 2020)
VGGSound	550	(Chen et al., 2020)
FreeSound	6246	link
FSD50k	108	(Fonseca et al., 2021)
FMA	900	(Defferrard et al., 2016)
MSD	7333	(Bertin-Mahieux et al., 2011)
MTT	200	(Law et al., 2009)

F.2 BASELINE METHODS

We employ 6 strong T2A baseline methods for comparison.

AudioLDM is a latent diffusion model for text-to-audio (T2A) generation presented by (Liu et al., 2023). It performs the diffusion process in the latent space of a pretrained audio VAE, while conditioning on text embeddings produced by the CLAP text branch. This design enables a T2A training process without paired data and produces audio that is semantically consistent with the input description.

AudioLDM2 is an improved version of the AudioLDM model, introduced by (Liu et al., 2024a). It incorporates several improvements, including leveraging the Language of Audio (LOA) encoder and finetuning a GPT-2 model to translate any modality to LOA. These improvements result in higher-quality audio generation that better aligns with the input text.

AudioGen is a text-to-audio generation model introduced by (Kreuk et al., 2022). It employs an autoregressive transformer architecture to generate audio samples conditioned on textual descriptions. The model is trained on a large-scale dataset of audio-text pairs, enabling it to produce high-quality audio outputs that align with the given textual input.

Make-An-Audio is a diffusion-based text-to-audio generation model proposed by (Huang et al., 2023b). It introduces a pseudo prompt enhancement with the distill-then-reprogram approach, including a large number of concept compositions by opening up the usage of language-free audios to alleviate data scarcity. Therefore, it enables high-fidelity, prompt-aligned outputs.

TANGO-AF&AC-FT-AC (Kong et al., 2024) pre-trains the TANGO architecture on the synthetic-caption AF-AudioSet plus AudioCaps, followed by fine-tuning on AudioCaps alone. Leveraging high-quality synthetic captions significantly improves text-to-audio alignment and overall audio realism.

Stable Audio Open (Evans et al., 2025) is an open-source text-to-audio generation model developed by Stability AI. It leverages a diffusion-based architecture trained on a diverse dataset of audio-text pairs. The model is designed to generate high-fidelity audio samples conditioned on textual input, supporting various applications such as music generation, sound effect synthesis, and more.

F.3 MODEL CONFIGURATIONS

Our diffusion model is built upon the Diffusion Transformer (DiT) (Peebles & Xie, 2023) architecture, following a latent diffusion modeling (LDM) (Rombach et al., 2022) paradigm that offers strong

1080 generative capabilities and effective context modeling. The backbone of the diffusion network adopts
 1081 a DiT structure with 24 layers and 24 attention heads, each with an embedding dimension of 1536.
 1082 The model supports both cross-attention and global conditioning: cross-attention is applied to all types
 1083 of conditional inputs, while global conditioning specifically handles duration-related control signals.
 1084 The internal token dimension of the diffusion model is set to 64, with a conditional token dimension
 1085 of 768 and a global condition embedding dimension of 1536. The generated latent representation has
 1086 the same dimensionality as `io_channels`, which is 64.
 1087

1088 F.4 COMPRESSION NETWORKS

1089 To train the audio autoencoder, we adopt a variational autoencoder (VAE) (Kingma et al., 2013)
 1090 architecture based on the Oobleck framework (Evans et al., 2025) at a sampling rate of 16kHz.
 1091 The model is trained from scratch on large-scale publicly available text-audio paired datasets. The
 1092 encoder and decoder are symmetric, each using a base channel size of 128, with channel multipliers
 1093 1, 2, 4, 8, 16 and strides 2, 2, 4, 4, 10. The encoder maps the input waveform into a 128-dimensional
 1094 latent representation, while the decoder reconstructs the waveform from a 64-dimensional latent code.
 1095 Snake activation is applied throughout the network, and no final tanh activation is used in the decoder.
 1096 The overall downsampling ratio is 640, and both input and output are mono-channel waveforms. The
 1097 bottleneck is implemented as a variational layer.
 1098

1100 F.5 OBJECTIVE METRICS

1101 We introduce the objective metrics employed in our evaluation, including Fréchet Audio Distance
 1102 (FAD) (Kilgour et al., 2019), Kullback-Leibler (KL) divergence (Kullback & Leibler, 1951), Inception
 1103 Score (IS) (Salimans et al., 2016), Fréchet Distance (FD) (Heusel et al., 2017), and LAION-CLAP
 1104 score (Wu et al., 2023). FAD, adapted from FID (Heusel et al., 2017), measures the distributional gap
 1105 between generated and reference audio using VGGish embeddings (Hershey et al., 2017), and serves
 1106 as our primary indicator of audio fidelity. KL divergence evaluates the difference in acoustic event
 1107 posteriors between ground truth and generated audio, computed using the PANN tagging model (Kong
 1108 et al., 2020). IS reflects both diversity and specificity of the generated samples, based on entropy over
 1109 class predictions. FD, while similar in formulation to FAD, is computed in more general embedding
 1110 spaces and tends to be less stable in audio tasks. We include it for completeness but primarily rely on
 1111 FAD for fidelity assessment. The CLAP score is calculated as the cosine similarity between CLAP
 1112 embeddings of the generated audio and the corresponding text. We use the AudioLDM evaluation
 1113 toolkit to compute all objective metrics.
 1114

1115 F.6 SUBJECTIVE EVALUATION

1116 We randomly selected 20 samples from the AudioCaps test set for the subjective evaluation. Each
 1117 group includes the results from AudioLDM, AudioLDM2, CFG-only, HG, and the ground truth (GT),
 1118 with the order of samples within each group randomly shuffled. Each group was rated by 20 human
 1119 raters. In our evaluation, both overall quality (OVL) and text relevance (REL) are rated on a scale
 1120 from 1 to 5. For OVL, raters assess the perceptual quality of the audio, while for REL, they rate the
 1121 relevance of the audio to the given text condition. The minimum rating increment for all scores is 1
 1122 point. A screenshot of our evaluation interface is shown in Figure 7.
 1123

1124 G VIDEO-TO-AUDIO EXPERIMENT DETAILS

1125 G.1 DATASETS

1126 Apart from T2A and T2M generation, we conduct experiments for video-to-audio(V2A) generation.
 1127 We utilize the benchmark datasets AudioSet (Gemmeke et al., 2017) and VGGSound (Chen et al.,
 1128 2020) for model training. To compare with previous work, we evaluated our models on the VGGSound
 1129 test set, which consists of about 15K 10-second audio clips.
 1130

Figure 7: Screenshot of our subjective evaluations.

1153 G.2 MODEL CONFIGURATIONS

1154 We use CLIP (Radford et al., 2021) embeddings to extract the visual features, and we leverage
 1155 the same VAE as in T2A. The diffusion backbone shares the same core architecture as the T2A
 1156 counterpart, being built upon the DiT within the LDM paradigm. Most hyperparameters remain the
 1157 same with T2A, but we increased the conditional token dimension to 1024 to better accommodate
 1158 high-dimensional visual embeddings, and the global condition embedding dimension is set to 2048.
 1159

1160 We fine-tuned from a T2A model that was trained for 2M iterations with a batch size of 8 per GPU.
 1161 For the good model, we conducted 1.3M finetuning iterations, while for the bad model, we fine-tuned
 1162 for 0.3M iterations, both using a batch size of 8 per GPU. The optimizer and sampler settings are the
 1163 same as those used in the T2A model.
 1164

1165 G.3 BASELINES METHODS

1166 We introduce 8 V2A baseline models for comparison.
 1167

1168 **IM2WAV** is an image-guided open-domain audio generation system introduced by (Sheffer & Adi,
 1169 2023). It employs two Transformer language models operating over a discrete audio representation
 1170 derived from a VQ-VAE (Van Den Oord et al., 2017) model. The system first generates a low-level
 1171 audio representation using a language model, then upsamples the audio tokens with an additional
 1172 language model to produce high-fidelity audio. Visual conditioning is achieved through CLIP
 1173 embeddings, and CFG is applied to steer the generation process.
 1174

1175 **Diff-Foley** is a synchronized V2A synthesis method utilizing a latent diffusion model (LDM),
 1176 presented by (Luo et al., 2023). It incorporates contrastive audio-visual pretraining (CAVP) to learn
 1177 temporally and semantically aligned features, which are then used to train the LDM on spectrogram
 1178 latent space. The model employs cross-attention modules and "double guidance" to enhance sample
 1179 quality, achieving state-of-the-art performance in V2A tasks.
 1180

1181 **FoleyGen** is an open-domain V2A generation system based on a language modeling paradigm,
 1182 introduced by (Mei et al., 2024). It leverages a neural audio codec for bidirectional conversion
 1183 between waveforms and discrete tokens. A single Transformer model, conditioned on visual features
 1184 extracted from a visual encoder, facilitates the generation of audio tokens. The model addresses
 1185 temporal synchronization challenges by exploring novel visual attention mechanisms.
 1186

1188 **VTA-LDM** is a V2A generation framework developed by (Xu et al., 2024), building upon the LDM
 1189 framework. It employs a CLIP-based vision encoder to extract frame-level video features, which
 1190 are temporally concatenated and mapped using a projector as the generation condition. The model
 1191 focuses on generating semantically and temporally aligned audio content corresponding to video
 1192 inputs.

1193 **FoleyCrafter** (Zhang et al., 2024) is a text-based V2A generation framework designed to produce
 1194 high-quality, semantically relevant, and temporally synchronized audio for videos. It extends state-of-
 1195 the-art T2A generators by incorporating a semantic adapter for semantic alignment and a temporal
 1196 adapter for precise audio-video synchronization, ensuring realistic sound effects that align with visual
 1197 content.

1198 **V2A-Mapper** is a lightweight solution for V2A generation proposed by (Wang et al., 2024a). It
 1199 connects foundation models by translating visual CLIP embeddings into auditory CLAP embeddings,
 1200 bridging the domain gap between visual and audio modalities. Conditioned on the translated CLAP
 1201 embedding, a pretrained audio generative model (AudioLDM) is used to produce high-fidelity and
 1202 visually-aligned sound, requiring minimal training parameters.

1203 **VAB-Encodec** (Su et al., 2024) is a unified audio-visual framework that learns latent representations
 1204 and enables vision-to-audio generation within the same model. It tokenizes 48 kHz audio with a
 1205 pretrained Encodec tokenizer and encodes video frames with an image encoder. During pre-training
 1206 the model performs visual-conditioned masked-audio-token prediction; at inference it iteratively
 1207 decodes audio tokens conditioned on visual features, yielding fast and semantically aligned sound.

1208 **VATT** is a multi-modal generative framework for V2A generation through text, presented by (Liu
 1209 et al., 2024b). It comprises two modules: VATT Converter, a large language model fine-tuned for
 1210 instructions that maps video features to the LLM vector space; and VATT Audio, a transformer that
 1211 generates audio tokens from visual frames and optional text prompts using iterative parallel decoding.
 1212 The framework allows for controllable audio generation and audio captioning based on video inputs.

1213 For Diff-foley, VTA-LDM and FoleyCrafter, we generate 10-second audio samples using their official
 1214 implementations. For V2A Mapper, it supplies pre-generated audio samples for evaluation. As the
 1215 official implementations of FoleyGen, VAB-Encodec and VATT are unavailable, we compare our
 1216 results with their official reported results. The IM2WAV results are adopted from VATT.

1221 G.4 METRICS

1224 We introduce additional metrics utilized in our V2A evaluation apart from FAD, KL, IS and FD,
 1225 including Imagebind Score (IBS) and temporal alignment accuracy (Align acc), which primarily
 1226 measures audio-visual alignment.

1227 **ImageBind Score (IBS)** assesses the semantic alignment between generated audio and the corre-
 1228 sponding video by computing the cosine similarity between their embeddings in a shared multimodal
 1229 space. This metric leverages the ImageBind model (Girdhar et al., 2023), which aligns multiple
 1230 modalities—including images, audio, and text—into a unified embedding space, facilitating cross-
 1231 modal retrieval and evaluation. A higher IBS indicates a stronger semantic correlation between the
 1232 audio and video content.

1233 **Temporal Alignment Accuracy (Align Acc)** measures the synchronization between generated audio
 1234 and video by evaluating the model’s ability to produce audio events that are temporally aligned with
 1235 visual events. Introduced in Diff-Foley (Luo et al., 2023), this metric involves training a classifier to
 1236 distinguish between correctly aligned audio-video pairs and misaligned ones. The classifier is trained
 1237 on three types of pairs: true pairs (correctly aligned), temporally shifted pairs, and mismatched pairs
 1238 from different videos. Align Acc is computed as the percentage of correctly identified true pairs,
 1239 providing a quantitative measure of temporal synchronization.

1240 By incorporating both IBS and Align Acc, we offer a comprehensive evaluation of the semantic and
 1241 temporal alignment between generated audio and video, ensuring that the audio not only matches the
 content but also aligns accurately in time.

1242 **H DETAILED RELATED WORKS**
12431244 **H.1 TEXT-TO-AUDIO (T2A) GENERATION**
1245

1246 T2A systems generate audio samples conditioned on natural language prompts. At the beginning,
 1247 DiffSound (Yang et al., 2023), AudioGen (Kreuk et al., 2022) explore autoregressive-based gen-
 1248 eration methods in the compressed space of mel-spectrogram and waveform respectively. Then,
 1249 AudioLDM (Liu et al., 2023) and Make-An-Audio (Huang et al., 2023b) develop latent diffusion
 1250 models in the compressed space of mel-spectrogram, improving overall T2A generation quality.
 1251 Tango (Deepanway et al., 2023) improves the text encoder of diffusion-based T2A systems with
 1252 a language model. AudioLDM 2 (Liu et al., 2024a) employs an autoregressive-based method to
 1253 predict the AudioMAE (Huang et al., 2022) features from various input modalities, and then uses
 1254 a latent diffusion model to generate audio from AudioMAE features. Tango2 (Majumder et al.,
 1255 2024) and Tangoflux (Hung et al., 2024) utilize reinforcement strategies including direct preference
 1256 optimization (Rafailov et al., 2023) and CLAP-guided reward shaping (Wu et al., 2023) to improve
 1257 the human preference and semantic-textual alignment. Recently, Stable Audio (Evans et al., 2024)
 1258 designs transformer-based scalable latent diffusion models in the space directly compressed from
 1259 the audio waveform. ETTA (Lee et al., 2025) elucidates the design space of diffusion-based T2A
 1260 systems.

1261 These innovative methods have improved T2A generation quality from generative methods, compres-
 1262 sion networks, and network architectures, while the innovations on guidance methods have not been
 1263 carefully investigated in previous works.

1264 **H.2 VIDEO-TO-AUDIO (V2A) GENERATION**
1265

1266 Recent advances in video-to-audio (V2A) generation can be broadly divided into two categories: (1)
 1267 enhancing V2A via pre-trained text-to-audio (T2A) models, and (2) introducing auxiliary temporal
 1268 representations to improve temporal alignment. In the first category, methods such as V2A-Mapper
 1269 (Wang et al., 2024a) and FoleyCrafter (Mei et al., 2024) build upon established T2A systems
 1270 like AudioLDM (Liu et al., 2023). These approaches either align video features with the original
 1271 conditioning space of T2A models or introduce additional adapters to inject visual information as
 1272 supplementary conditions. For example, V2A-Mapper proposes a mapping strategy that translates
 1273 video features into audio CLAP embeddings, enabling AudioLDM to perform V2A synthesis.
 1274 Similarly, FoleyCrafter integrates dedicated adapters to incorporate visual cues into the conditioning
 1275 process of T2A models.

1276 The second category includes methods such as TiVA (Wang et al., 2024b), ReWaS (Jeong et al.,
 1277 2024), SyncFusion (Comunità et al., 2024), and SonicVisionLM (Xie et al., 2024), which incorporate
 1278 explicitly designed temporal features to enhance synchronization between video and audio. TiVA
 1279 employs downsampled Mel spectrograms as auxiliary representations that carry temporal structure,
 1280 and utilizes a transformer-based predictor to estimate these features for guiding V2A generation.
 1281 SyncFusion and SonicVisionLM leverage onset positions and audio timestamps, respectively, as
 1282 temporal control signals during synthesis. ReWaS introduces energy as a continuous temporal
 1283 representation, providing a more fine-grained condition along the time axis to better regulate V2A
 1284 output. At the sampling stage, CFG is popularly employed in these methods. In our paper, we explore
 1285 a novel sampling algorithm to increase generation quality in a training-free and computationally
 1286 lightweight manner, which is orthogonal to previous innovations.

1287 **H.3 GUIDANCE METHODS**
1288

1289 **CFG.** In previous diffusion-based T2A generation (Liu et al., 2023; 2024a; Huang et al., 2023b;a;
 1290 Evans et al., 2024; 2025; Lee et al., 2025) and V2A generation works (Sheffer & Adi, 2023; Luo et al.,
 1291 2023; Mei et al., 2024; Xu et al., 2024; Wang et al., 2024a; Su et al., 2024; Liu et al., 2024b), CFG (Ho
 1292 & Salimans, 2022) is commonly adopted to improve the audio generation quality at the inference stage.
 1293 To achieve optimal results, its guidance scale is investigated in different methods (Hung et al., 2024).
 1294 However, as demonstrated in recent work (Lee et al., 2025), CFG sacrifices the diversity of generation
 1295 results and may suffer from suboptimal synthesis quality. Previous theoretical analysis (Chidambaram
 1296 et al., 2024) demonstrates that for any non-zero level of score estimation error, a large CFG strength
 1297 causes the sampler to diverge from the data distribution’s support, formally explaining the empirical

1296 phenomenon of distortion at high guidance scales. Our analysis reveals that when CFG uses a bad
 1297 unconditional model, it inherently introduces a score correction term. This may explain the empirical
 1298 finding that a small unconditional model can effectively guide a large conditional model (Karras et al.,
 1299 2024b). However, in standard CFG, this beneficial correction term is entangled with the conditional
 1300 alignment term, making it difficult to find a guidance strength that simultaneously ensures outlier
 1301 removal and quality enhancement.

1302 **Guidance with weak models.** Recently, AG (Karras et al., 2024a) proposes a method to guide a
 1303 diffusion model with the bad version of itself, demonstrating stronger synthesis quality than CFG
 1304 in image domain. Several works (Phunyaphibarn et al., 2025; Jeon, 2025; Hyung et al., 2025) has
 1305 extended this idea to the scenarios of fine-tuning diffusion models to a specific task (Phunyaphibarn
 1306 et al., 2025), motion synthesis (Jeon, 2025), and video generation (Hyung et al., 2025). Other
 1307 works adopt similar ideas to construct a weak model. For instance, SAG (Hong et al., 2023) applies
 1308 Gaussian blurring to the model input, SG (Li et al., 2025) alters the denoising timestep to obtain
 1309 an output with higher noise levels, while ICG (Sadat et al., 2024) randomly samples a condition to
 1310 replace the null embedding in CFG. Among these guidance methods, AG is the most representative.
 1311 It provides a theoretical justification for its efficacy, positing that it reduces the score estimation
 1312 error induced by the "mass-covering" or "mean-seeking" behavior of the score matching training
 1313 objective. However, the advantages of AG have not been observed for audio generation. As recently
 1314 mentioned in ETTA (Lee et al., 2025), AG is sensitive to the choice of the bad model, prohibiting their
 1315 application on audio synthesis. In this work, we explore the advantages of AG for audio generation,
 1316 and propose a novel sampling algorithm, MoG, yielding cumulative advantages of AG and CFG to
 1317 outperform either of them on audio synthesis.

I MORE GENERATED SAMPLES

1320 We shown more text-to-audio and video-to-audio generation results in Figure 8 and 9, respectively.
 1321 As shown in Figure 8, HG and PG consistently achieve more accurate harmonic modeling and
 1322 superior temporal alignment compared to CFG in the first example. Their outputs exhibit well-defined
 1323 harmonic stacks and consistent overtone structures, even in complex or polyphonic cases in the third
 1324 example. Moreover, HG and PG maintain precise timing across events, effectively capturing the
 1325 onset and duration of audio elements in the second example. In contrast, CFG often fails to organize
 1326 harmonics coherently and produces temporally smeared results. These comparisons clearly illustrate
 1327 the advantage of our methods in reinforcing both spectral clarity and temporal fidelity. In Figure 9,
 1328 HG generates significantly clearer high-frequency content and overall higher-quality audio compared
 1329 to CFG in the first example. The resulting audio exhibits more natural brilliance and detail in the
 1330 upper frequency range, enhancing perceptual realism. For the second example, HG demonstrates
 1331 superior temporal alignment, accurately synchronizing audio events with visual cues, while CFG
 1332 shows noticeable temporal drift and inconsistent timing. These comparisons further highlight the
 1333 strengths of our method in improving both spectral resolution and temporal coherence in V2A
 1334 generation. For more generated samples, please refer to our demo page: audiomog.github.io.

J BROADER SOCIETAL IMPACT

1335 Generative audio modeling presents substantial potential for misuse, which could result in harmful
 1336 societal consequences. Principal concerns involve the dissemination of disinformation and the
 1337 reinforcement of stereotypes and existing biases. Although our improvements enhance the realism
 1338 and quality of generated samples, thereby potentially making misuse more convincing, they do not
 1339 introduce any new capabilities or applications beyond those that already exist.

K LICENSES

- 1346 • EDM2 models (Karras et al., 2024b;a): Creative Commons BY-NC-SA 4.0 license
- 1347 • Stable Audio Tools (Evans et al., 2024): MIT license
- 1348 • AudioLDM-Eval (Liu et al., 2023): MIT license
- 1349 • CLIP (Radford et al., 2021): MIT license

