
Under review as a conference paper at ICLR 2024

LEARNING BOOLEAN FUNCTIONS WITH NEURAL NET-
WORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Many works have shown learnability of functions on the Boolean hypercube via
gradient descent. These analyses of gradient descent use the convexity of the
problem to establish guarantees despite the fact that most loss functions are highly
non-convex. In addition, the analyses explicitly show that the hypothesis class can
approximate the target function; this is known as a representation theorem. In this
work we give gradient descent guarantees for learning functions on the Boolean
hypercube on both the mean squared and hinge losses with 2-layer neural networks
with a single hidden non-linear layer. Furthermore, all of our analyses apply to
the ReLU activation function. Moreover, on both losses, we don’t make use of
any convexity of the problem, and don’t explicitly prove a representation theo-
rem. A representation theorem is a consequence of our analysis. In the hinge loss
setting to learn size k parities, with dimension n, and ϵ error, we obtain bounds
of nO(k)poly(1ϵ) and nO(k) log(1ϵ) for network width and samples, and iterations
needed, respectively. This upper bound matches the SQ lower bounds of nΩ(k).
In the mean squared loss setting, given that the Fourier spectrum of an activation
function has non-zero Fourier coefficients up to degree k, and given that the best
degree k polynomial approximation of the target function is ϵ0 in mean squared
loss, we give guarantees for network width and samples, and iterations needed of
nO(k)poly(1ϵ) and nO(k) log(1ϵ) respectively for an error of ϵ+ ϵ0. To the best of
our knowledge, our bounds of nO(k) log(1ϵ) iterations needed for learning degree
k polynomials on both losses are better than any previous bounds in the Boolean
setting, which is a consequence of not using any convexity of the problem in our
analysis. Specifically, in other works in the Boolean setting, the bound on itera-
tions is nO(k)poly(1ϵ). Moreover, as a corollary to our agnostic learning guarantee,
we establish that lower degree Fourier components are learned before higher de-
gree ones, a phenomenon observed experimentally. Finally, as a corollary to our
mean squared loss guarantee, we show that neural networks with sparse hidden
ReLU units as target functions can be efficiently learned with gradient descent.

1 INTRODUCTION

In recent years deep learning has been successful on a variety of practical tasks such as computer
vision Krizhevsky et al. (2012). Despite this success, less is known about why neural networks
are able to perform so well on these tasks. Moreover, there is a large gap between a theoretical
understanding of common training algorithms, such as gradient descent, and what these tools are
able to accomplish in practice. Since real world data can be difficult to describe from a theoretical
perspective, it makes sense to first understand the training process of neural networks under more
well-understood data distributions such as standard Gaussian or uniform Boolean input distributions
(Andoni et al., 2014; Daniely, 2017; Du et al., 2018; Malach & Shalev-Shwartz, 2020; Yehudai &
Ohad, 2020; Barak et al., 2022; Damian et al., 2022).

Training guarantees in more well-understood settings have advanced our understanding of deep
learning, but many of these works have unreasonable model and training assumptions. For exam-
ple, in many works, assumptions on learning rate schedules (Daniely & Malach, 2020; Barak et al.,
2022), weight initialization (Daniely & Malach, 2020; Malach & Shalev-Shwartz, 2020), bias terms
(Malach & Shalev-Shwartz, 2020; Barak et al., 2022), and activation functions (Andoni et al., 2014;

1

Under review as a conference paper at ICLR 2024

Daniely & Malach, 2020) are often unrealistic compared to what is standard in practice. Further-
more, it is often the case that these works have analyses that make use of convexity results despite
the fact that most losses are highly non-convex (Daniely, 2017; Yehudai & Shamir, 2019; Daniely
& Malach, 2020; Barak et al., 2022). Thus we would hope any analysis would steer away from any
convexity in the problem, especially if we wish to extend results to non-convex settings.

In this work we give efficient, in time, model and sample size, agnostic upper bounds for neural
network training with gradient descent for learning any function on the Boolean hypercube with
the mean squared loss. Specifically, we show that neural network training with gradient descent
converges to the best degree k polynomial approximation for the target with network width, samples,
and iterations needed of nO(k). In addition, we give nO(k) upper bounds, in samples, width, and
iterations for learning k bit parities on the hinge loss. The upper bounds for learning parities on
both the hinge and mean square loss match the Statistical Query (SQ) lower bounds of nΩ(k), noting
that gradient descent is a SQ algorithm. Thus, compared to any SQ algorithm, gradient descent is
the best we can do for learning parities. Our network model assumptions are reasonable, and our
analysis applies to a wide range of activation functions with ReLU as a special case. In the mean
squared loss setting, the techniques we employ are similar to those of Vempala & Wilmes (2019),
and avoid any convexity of the problem despite the fact that we update only the output layer weights.
The avoidance of convexity allows us to achieve upper bounds on iterations of gradient descent of
log(1ϵ) compared to poly(1ϵ) for works that take convexity into consideration. To the best of our
knowledge, our bounds on iterations are better than any previous work in the Boolean setting. In
addition, as a corollary in the mean squared loss setting, we show that neural networks with sparse
hidden ReLU units as target functions can be efficiently learned with gradient descent. Finally, in
the mean squared loss setting, the analysis gives a spectral bias result for gradient descent that shows
low-frequency Fourier coefficients are learned before high-frequency ones.

2 RELATED WORK

There are various works that give guarantees for gradient descent when training overparameterized
neural networks in the discrete setting on a finite number of input and label pairs. In this setting
there is usually some requirement on the input data, and gradient descent iterations are polynomial
in the number of samples. For example in (Du et al., 2018; Arora et al., 2019; Song & Yang, 2019)
iterations needed and network width are inversely proportional to the smallest eigenvalue of a matrix
such that the matrix is a function of the input data. In (Li & Liang, 2018; Allen-Zhu et al., 2019;
Zou et al., 2020; Oymak & Soltanolkotabi, 2020; Ji & Telgarsky, 2019) iterations needed and width
are inversely proportional to the minimal distance of input data pairs.

In contrast to the discrete setting, there have been many works that allow uncountable distributions
(Andoni et al., 2014; Brutzkus & Globerson, 2017; Daniely, 2017; Ge et al., 2017; Li & Yuan, 2017;
Soltanolkotabi, 2017; Goel et al., 2018; Damian et al., 2022; Du et al., 2018; Vempala & Wilmes,
2019; Yehudai & Ohad, 2020; Xu & Du, 2023). Even though the hypercube is a countable distri-
bution, the techniques in the discrete and overparamaterized setting, mentioned above, won’t work
since there are an exponential number of Boolean vectors. Although the hypercube is countable,
our analysis in the mean squared loss setting is similar to the one in Vempala & Wilmes (2019) on
the sphere. Since the only facts about the sphere they use are that harmonic polynomials form an
orthonormal basis for L2(Sn−1) and are eigenfunctions of Funk transforms, we can use a similar
analysis since the parities are an orthonormal basis for L2({−1, 1}n) and are eigenfunctions of the
operator of Proposition 4.1.

A large number of papers have given gradient descent training guarantees for learning parities with
the hinge loss on the hypercube, or in more general settings, on the uniform and other distributions
(Daniely, 2017; Yehudai & Shamir, 2019; Malach & Shalev-Shwartz, 2020; Barak et al., 2022;
Shi et al., 2022; Abbe et al., 2023). Most of these works show explicitly that by randomization,
the neural network has the capacity to approximate the parity in question at initialization Malach
& Shalev-Shwartz (2020) or after the first iteration of training (Daniely & Malach, 2020; Barak
et al., 2022); with the approximation result, it can then be shown that gradient descent reaches a
good solution using the convexity of the problem (See Theorem 11 of Malach & Shalev-Shwartz
(2020)). In addition, the gradient descent analyses in these works and other settings are dependent
on these existence results, often with long and complicated proofs (Andoni et al., 2014; Daniely,

2

Under review as a conference paper at ICLR 2024

2017; Barron, 1993). In contrast, for both losses in our work, the analysis of gradient descent is
independent of a representation theorem, a representation theorem is a consequence of our analysis.
Our analysis happens in the opposite order: we carry out the analysis of gradient descent on both
losses, and our upper-bounds show that the network must be a good approximation of the target
function. With both losses we are able to get upper bounds in iterations of gradient descent that
are logarithmic in the error as opposed to polynomial in the error for convex techniques. To the
best of our knowledge, these logarithmic error bounds on both losses are better than any bound on
iterations, for any previous work in the Boolean setting.

In the hypercube setting with the hinge loss, the work of Barak et al. (2022) is the most similar to
ours. The work shows that ReLU activation functions with Boolean weights have Fourier coeffi-
cients that heavily depend on the majority function, and after the first gradient step, coordinates that
are on the parity have substantially larger gradient than those that aren’t. The separation of input
bits on the parity and those that aren’t allows the analysis to establish that after the first iteration of
gradient descent, the network has the capacity to represent the given parity, a representation theo-
rem. Similarly, in our analysis we exploit the Fourier coefficients of hidden units, with the ReLU
as a special case of a more general class of activation functions; see definition 4.7. In contrast, we
show that on each iteration of gradient descent the gradient correlates with the parity, since hidden
units have large Fourier coefficients on parities. Therefore, a representation theorem isn’t needed.
See Theorem 4.12.

3 PRELIMINARIES AND SETTING

Let H be the set of Boolean functions, f : {−1, 1}n −→ R. Throughout the paper we will be
approximating functions in H using neural networks with loss functions on the uniform hyper-
cube, {−1, 1}n. An important Boolean function, the parity on S ⊂ [n], is given by χS(x) =∏

i∈S xi. Another important Boolean function is the majority function, defined when n is odd:
Maj : {−1, 1}n −→ {−1, 1}. The majority function is 1 if there are more 1s than −1’s in a
Boolean vector, and −1 otherwise. Below we present the following important fact from Boolean
analysis that will be used throughout this work:
Fact 3.1. Any Boolean function f : {−1, 1}n −→ R can be decomposed uniquely as follows:

f(x) =
∑
S⊂n

f̂(S)xS(x)

We call f̂(S) the Fourier coefficient of f on S. The set of Fourier coefficients of f is called the
Fourier spectrum of f . deg f is the size of the largest subset with a non-zero Fourier coefficient. See
Theorem 1.1 O’Donnell (2021).

We will be giving learning guarantees with the mean squared loss: l(y, ŷ) = (y − ŷ)2 and the
hinge loss: l(y, ŷ) = max(0, 1 − yŷ). Given g ∈ H we will learn g using gradient descent
with a neural network fi where fi denotes the network at iteration, i ≥ 0, of gradient descent.
We initialize f0 = 0. We will minimize the mean-squared loss: Ex∼{−1,1}n(g(x) − fi(x))

2

and the hinge loss: Ex∼{−1,1}n max(0, 1 − g(x)fi(x)). Our neural networks will be of the form:
f(x) =

∑
u∈W a(u)σ(u · x) where W is the set of hidden weights, a(u) ∈ R is the output weight

corresponding to the weight, u, and σ : R −→ R is an activation function. We will define the
operator, Jσ : H −→ H as follows, which we will refer to as J when the context is clear:

Jσ(h)(u) = Ex∼{−1,1}n [h(x)σ(u · x)]
We will refer to each σ(u · .) as a unit and will often write σu instead of σ(u · .). σ1 denotes the unit
on 1 :=

∑n
i = 1nei. The concrete activation functions we will be using are a scaled ReLU and the

sign function. We will also denote the indicator function as 1(P), where P is a truth value. If P is
true, then 1(P) = 1, otherwise 0. The weights of units will always be of the form u ∈ {−1, 1}n.
We consider Linear Threshold Functions of the form sign(u · .) where u ∈ {−1, 1}n. The ReLU
neurons we consider are of the form 1

n max(0, u · .) where u ∈ {−1, 1}n. However, our results
are for more general classes of activation functions where ReLU neurons and Linear Threshold
Functions are just special cases.

Facts 3.2 and 3.3 below make much use of the results of O’Donnell (2021) on Fourier coefficients
of the majority function. Both ReLU activation functions and Linear Threshold functions have

3

Under review as a conference paper at ICLR 2024

spectrums that are highly dependent on the Fourier spectrum of the majority as shown in examples
4.9 and 4.10. Moreover, the Fourier coefficients of the majority function will be a central tool of the
neural network training guarantees of theorems 4.2 and 4.4.
Fact 3.2. Let n be odd. Let S, T ⊂ [n].

1.) If |S| = |T | then M̂aj(S) = M̂aj(T) (see Theorem 5.19 of O’Donnell (2021)).

2.) Fourier coefficients on even subsets of the majority function are 0 (see Theorem 5.19 of
O’Donnell (2021)).

3.) Suppose that n ≥ 2k2 where k is odd. Then W k(Maj) = (2π)
3
2 k−1/2(1 ± 1/k). Thus for any

odd k-sized subset, S, M̂aj(S)2 = W k(Maj)/
(
n
k

)
= n−O(k) (See Corollary 5.23 of O’Donnell

(2021))
Fact 3.3. Suppose n, k are odd, S ⊂ [n], and n ≥ 2k2. Consider ReLU(u · x) := max(0, u · x),
and suppose u ∈ {−1, 1}n. If |S| = k + 1, then the magnitude of the Fourier coefficients of
ReLU(u·.) on S is 1

2 |M̂aj[k]|. For simplicity, we will denote the Fourier coefficients of ReLU(u·.)
as R̂eLU(S). If |S| is not an even and positive number, then

R̂eLU(S) = 0 if |S| > 1 is odd.

|R̂eLU({i})| = 1

2
for i ∈ [n]

R̂eLU(∅) = I[Maj]

2
such that

√
n√
2π

≤ R̂eLU(∅) ≤
√
n√
2π

+O(n− 1
2)

Note that I[Maj] is the total influence of the majority function. See definition 2.27 of O’Donnell
(2021).

Proof. First note that ReLU(u · x) = ReLU(1 · x ◦ u) =
∑

S⊂[n]
̂ReLU(1 · .)(S)χS(u)χS(x).

Thus | ̂ReLU(1 · .)(S)| = | ̂ReLU(u · .)(S)|.
If S = ∅, then

| ̂ReLU(u · .)(∅)| = (see Fact 1.12 of O’Donnell (2021)
|Ex∼{−1,1}nReLU(1 · x)| = |Ex∼{−1,1}n(1 · x)1(1 · x ≥ 0)| =

|Ex∼{−1,1}n

(1 · x)(1 + sign(1 · x)
2

| = |Ex∼{−1,1}n

(1 · x)Maj(x)

2
| =

|1
2

n∑
i=1

Ex∼{−1,1}nM̂aj(i)xi| =
1

2

n∑
i=1

M̂aj(i) =
1

2
I[Maj]

Noting that
√
2n√
π

≤ I[Maj] ≤
√
2n√
π

+O(n− 1
2) by exercise 2.22e of O’Donnell (2021).

If S = {i} then

∥ ̂ReLU(u · .)(i)| = 1

2
|Exxi

∑
j

xj(1 +Maj(x))| =

|Exx
2
i /2 + Ex

∑
j ̸=i

xixjMaj(x)/2| = 1

2

since the majority is 0 on even Fourier coefficients.

If |S| > 1 and odd then

|R̂eLU(u · .)(S)| = |ExχS(x)
(1 · x)(1 +Maj(x))

2
| = |ExχS(x)

(1 · x)Maj(x)

2
| =

|1
2

n∑
i=1

ExχS(x)xiMaj(x)| = |1
2

n∑
i=1

M̂aj(Ti)| = 0

such that Ti is S − {i} if i ∈ S and S
⋃

{i}, otherwise

4

Under review as a conference paper at ICLR 2024

noting that the last equality comes from Fact 3.2 #2.

If |S| =: l > 1 and even then

|R̂eLU(u · .)(S)| = |ExχS(x)
(1 · x)(1 +Maj(x))

2
| = |ExχS(x)

(1 · x)Maj(x)

2
| =

|1
2

n∑
i=1

ExχS(x)xiMaj(x)| = 1

2
|
∑
i∈S

M̂aj([l − 1]) +
∑

i∈[n]−S

M̂aj([l + 1]))|

where the last equality above comes from Fact 3.2 # 1. By the proof of Lemma 2 in Barak et al.
(2022), we have that

|M̂aj([l − 1])| = n− l

l − 1
|M̂aj([l + 1])|

Moreover, by Theorem 5.9 of O’Donnell (2021), sign(M̂aj([l+1]) = −sign(M̂aj([l− 1]). Thus

|R̂eLU(u · .)(S)| = 1

2
|
∑
i∈S

M̂aj([l − 1])−
∑

i∈[n]−S

l − 1

n− l
M̂aj([l − 1])(x)| =

1

2
|lM̂aj([l − 1])− (n− l)

l − 1

n− l
M̂aj([l − 1])(x)| = 1

2
|M̂aj[l − 1]|

3.1 TRAINING PROCEDURES

To train our networks we draw a set, W , of m weights independently from {−1, 1}n, draw a set of
m samples, X , independently from {−1, 1}n , and set ai(u) = 0 for all u ∈ W .

3.1.1 MEAN SQUARED LOSS

To minimize the mean squared loss, we will update the linear output weights, a(u), on each iteration
of gradient descent by taking the derivative of the empirical mean squared loss:

1

m

∑
x∈X

(g(x)− fi(x))
2

Thus with a learning rate of 1
2m the update rule at iterate i ≥ 1 of gradient descent for each u ∈ W

is

ai(u) = ai−1(u)− (− 1

2m

1

m

∑
x∈X

2(g(x)− fi−1(x))σ(u · x)) = (1)

ai−1(u) +
1

m2

∑
x∈X

(g(x)− fi−1(x))σ(u · x) (2)

Thus we can write fi in terms of fi−1 for i ≥ 1 as follows:

fi =
∑
u∈W

ai(u)σu =
∑
u∈W

(ai−1(u) +
1

m2

∑
x∈X

(g(x)− fi−1(x))σ(u · x)σu =

fi−1 +
1

m2

∑
u∈W

∑
x∈X

(g(x)− fi−1(x))σ(u · x)σu

For a finite set, S ⊂ Rn, define the operator, TS : H → H, with respect to σ as

TS(h)(z) =
1

|S|
∑
x∈S

h(x)σ(x · z)

From above, we’ve established the following proposition:
Proposition 3.4. Using the update rule above with the mean squared loss, the i ≥ 1 iteration of
gradient descent yields

fi = fi−1 + TW (TX(g − fi−1))

5

Under review as a conference paper at ICLR 2024

3.1.2 HINGE LOSS

Now, we establish the update rules for the hinge loss and obtain some results in a way similar to the
above. With a learning rate of 1

m , the update rule for gradient descent with the hinge loss at iteration
i ≥ 1 for any u ∈ W is:

ai(u) = ai−1(u) +
1

m2

∑
x∈X

1(1− g(x)fi−1(x) ≥ 0)g(x)σu(x) (3)

Hence

fi = fi−1 +
1

m

∑
u∈W

1

m

∑
x∈X

1(1− fi−1(x)g(x) ≥ 0)g(x)σ(x · u)σu

Thus we have the analogous results to Proposition 3.4 for the hinge loss, and get the following
proposition:

Proposition 3.5. Using the hinge loss and the update rule above, on iteration i ≥ 1 of gradient
descent, it follows that

fi = fi−1 + TW (TX(1(1− fi−1g ≥ 0)g))

4 RESULTS

Below we give agnostic upper bounds for learning functions on the hypercube via gradient descent
on the mean squared loss. In the mean squared loss setting, we make use of similar techniques
to the analysis in Vempala & Wilmes (2019). The two properties of their analysis that we draw
analogies to are that the harmonic polynomials are an orthornomal basis for L2(Sn−1) and that the
harmonic polynomials are eigenfunctions of Heck transforms. It is well known that the parities form
an orthonormal basis for L2({−1, 1}n); see Fact A.1. We draw the other analogy, in Proposition
4.1 below, by showing that the parites are eigenfunctions of the operator Jσ , which depends on the
activation function, σ.

Proposition 4.1. Let σ : R −→ R be an activation function, and define the operator Jσ : H −→ H
by Jσ(g)(w) = Ex∼{−1,1}ng(x)σ(x · w). Then Jσ(g) =

∑
S⊂[n] σ̂1(S)ĝ(S)χS . Thus the Fourier

coefficients of Jσ(g) are: Ĵσ(g)(S) = σ̂1(S)ĝ(S) where S ⊂ [n].

Proof. Jσ(g)(w) = Ex∼{−1,1}ng(x)σ(x · w) = Ex∼{−1,1}n(
∑

S⊂[n] ĝ(S)χS(x))σ(w · x) =∑
S⊂[n] ĝ(S)Ex∼{−1,1}χS(x)σ(1 · w ◦ x) =

∑
S⊂[n] ĝ(S)Ex∼{−1,1}χS(x)

2σ̂1(S)χS(w) =∑
S⊂[n] ĝ(S)σ̂1(S)χS(w)

We define h≤k
even to be the best degree k approximation in mean squared loss with even degree and

degree 1 support for h ∈ H. We define h≤k
odd to be the best degree k approximation in mean squared

loss with odd degree support. Below we show that networks with Linear Threshold Function and
ReLU units can agnostically learn Boolean functions with the mean squared loss.

Theorem 4.2. Let g ∈ H and ϵ > 0. Suppose that n ≥ 2(deg g)2 and that n is odd. Let W and X
be sets of m i.i.d. weights and m i.i.d. samples drawn respectively from {−1, 1}n. Suppose ∥g −
g≤k
odd∥2 ≤ ϵodd and ∥g− g≤k

even∥2 ≤ ϵeven for some ϵodd and ϵeven. If m = nO(k)poly(∥g∥2/ϵ), then
in time, t = nO(k) log(∥g∥2/ϵ), a neural network updated with equation 1 with Linear Threshold
Function units will converge in mean squared loss to g with error at most ϵ + ϵodd and a network
with scaled ReLU units will converge in mean squared loss to g with an error at most ϵ+ϵeven, each
with probability at least 1− 1

m .

Proof. This is a consequence of theorem 4.11 and the explanation of examples 4.9 and 4.10.

With Theorem 4.2, it is a simple corollary to show that a class of 2-layer ReLU neural networks can
be learned. Let T ̸= ∅ ⊂ [n] and f(T) : T −→ {−1, 1} be a mapping. We define u(f(T)) to

6

Under review as a conference paper at ICLR 2024

be the vector in Rn such that u(f(T))i = f(T)(i), if i ∈ T , 0 otherwise. We say that u(f(T)) is
supported on T .

Let T B
r = {Ts}rs=1 be an r-length sequence of odd sized subsets of [n] such that, |Ts| ≤ B,

for all s ∈ [r]. Define M(T B
r) := {f(Ts) : Ts −→ {−1, 1}}rs=1. Let a ∈ Rr and let σ

be an activation function bounded by 1. We define NN(M(T B
r), a, σ) :=

∑r
s=0 asσu(f(Ts))

to be the neural network on {−1, 1}n with r hidden σ units of sparsity, B. We have that,
∥NN(M(T B

r), a, σ)∥ ≤
∑r

s=1 |as|∥σu(f(Ts))∥ ≤ ∥a∥1. Thus, we have the following corollary
to Theorem 4.2. The theorem states that as target functions, neural networks with sparse hidden
ReLU units, can be learned by neural networks trained by gradient descent on the mean squared
loss.

Theorem 4.3. Set g := NN(M(T B
r), a, σ) where σ is the scaled ReLU activation function. Let

ϵ > 0, n ≥ 2B2, and suppose that n is odd. Let W and X be sets of m i.i.d. weights and
m i.i.d. samples drawn respectively from {−1, 1}n. If m = nO(B)poly(∥a∥1/ϵ), then in time,
t = nO(B) log(∥a∥1/ϵ), a neural network updated with equation 1 with scaled ReLU units will
converge in mean squared loss to g with error at most ϵ with probability at least 1− 1

m .

Proof. The proof follows directly from Theorem 4.2.

Below we give upper bounds for learning size k parities with gradient descent on the hinge loss. We
consider Linear Threshold Functions and ReLU units.

Theorem 4.4. Let S ⊂ [n] such that |S| = k and ϵ > 0. Suppose n ≥ 2k2 and that n is odd.
Let W and X be sets of m i.i.d. weights and m i.i.d. samples drawn respectively from {−1, 1}n.
If m = nO(k)poly(1/ϵ), then in time, t = nO(k) log(1/ϵ), a network updated with equation 3 with
Linear Threshold Function units will have at most ϵ error on the hinge-loss with the parity on S if k
is odd with probability at most 1− 1

m . The same result holds for scaled ReLU networks, but when k
is even or odd when k = 1.

Proof. This is a consequence of Theorem 4.12 and the explanation of examples 4.9 and 4.10.

There has been empirical evidence that gradient descent learning with neural networks learns low-
frequency Fourier components before high-frequency ones (Rahaman et al., 2019). On the theoret-
ical side of “spectral bias”, Cao et al. (2019) and Vempala & Wilmes (2019) have made strides in
this direction. Below, definition 4.5 and the analysis of Theorem 4.6 are similar to definition 1.5 and
Theorem 1.6 respectively in the latter.

Below we give guarantees that there is a spectral bias phenomenon in the Boolean hypercube setting
and introduce some needed notation. Let f ∈ H and S be some collection of subsets of [n]. Denote
fS =:

∑
S∈S f̂(S)χS be the part of f with Fourier coefficients in S.

Definition 4.5. Let Hi = g − fi denote the residual at iteration i of training on the mean squared
loss. Let S, T ⊂ [n]. We denote the change in residual at iteration i by ∆i = Hi+1 −Hi. Suppose
HS

i , H
T
i ̸= 0. We define the rate of progress in S relative to T as ri,S,T > 0 such that

∥∆S
i ∥

∥∆T
i ∥

= ri,S,T
∥HS

i ∥
∥HT

i ∥

If ri,S,T > 1, information on S is learned more quickly than information on T compared to what
we would expect by the relative sizes of the residuals on S and T . If ri,S,T < 1, information on T is
learned more quickly.

The next theorem shows that “lower frequencies” are learned more quickly than “higher frequen-
cies”. High frequencies, in this case, are large parities, and low frequencies are small parities.

Theorem 4.6. Let ϵ > 0 and suppose g ∈ H with 2(deg g)2 ≤ n, n odd. Assume that
g = g≤k

even. Let S, T be subsets of [n] in g’s support. Set k := |S| < |T | =: l and assume that
∥HS

i ∥, ∥HT
i ∥ ≥ ϵ. Consider the ReLU network with the training procedure of Theorem 4.2 with

m = nO(l)poly(∥g∥2/ϵ) hidden weights and samples. Then with probability at least 1− 1
m , the rate

of progress of degree S relative to T is ri,S,T ≥ nΩ(l−k)

7

Under review as a conference paper at ICLR 2024

Proof. See proof in appendix A.1.

Below we introduce some terminology that will allow us to extend the results of Theorems 4.2 and
4.4 to more general activation functions.
Definition 4.7. Let σ be an activation function, and suppose that α > 0. We say that σ is an (S, α)
activation function if, for any u ∈ {−1, 1}n, |σ̂u(S)| ≥ α for all S ∈ S.
Remark 4.8. Definition 4.7 is equivalent to the following statement: there is some u ∈ {−1, 1}n
such that |σ̂u(S)| ≥ α or any S ∈ S.

Indeed, for any w ∈ {−1, 1}n, σ(w · x) = σ(u · (w ◦ u ◦ x)) =
∑

S⊂[n] σ̂u(S)χS(w ◦ u)χS(x).
Hence, ∥σ̂w(S)χS∥2 = ∥σ̂u(S)χS(w ◦ u)χS∥2 = ∥σ̂u(S)χS∥2 ≥ α for all S ∈ S as needed. The
other direction is obvious.
Example 4.9. If n is odd and 2k2 ≤ n, the sign function is a (S, n−O(k)) activation function where
S is the collection of odd subsets of [n] of size at most k. The sign function is an (S, n−O(k))

activation function since for any u ∈ {−1, 1}n, | ̂sign(u · .)(S)| = |M̂aj(S)| for all S ⊂ [n].
Moreover, for all S ∈ S, | ̂sign(u, .)(S)| = n−O(|S|) ≥ n−O(k) (see Fact 3.2, #3).
Example 4.10. If n is odd and 2k2 ≤ n, the scaled ReLU function, 1

n max(0, x), is a (S, n−O(k))
activation function where S is the collection of subsets of size one and all even subsets of [n] of size at
most k. The scaled ReLU function is an (S, n−O(k)) activation function since for any u ∈ {−1, 1}n,

| ̂1
n max(u · ., 0)(S)| = 1

2n |M̂aj([#S − 1])| ≥ n−O(|S|) for all S ∈ S such that |S| > 1. If S ∈ S
such that |S| = 1 then | ̂1

n max(u · ., 0)(S)| = 1
2n . If |S| = 0 then | ̂1

n max(u · ., 0)(∅)| = 1
Θ(

√
n)

.
See Fact 3.3 for results about the Fourier coefficients of ReLU units. We conclude that for all S ∈ S,

| ̂1
n max(u, ., 0)(S)| = n−O(|S|) ≥ n−O(k) (see Fact 3.2, #3).

Below we extend the results of Theorem 4.2 to (S, α) activation functions. In fact, Theorem 4.2 is a
corollary of the result below by the discussions of Examples 4.9 and 4.10.
Theorem 4.11. Let g ∈ H and ϵ > 0. Let W and X be sets of m i.i.d. weights and m i.i.d.
samples respectively drawn from {−1, 1}n. Let σ be an (S, α) activation function where ∥σ∥∞ ≤
1. Suppose that ∥g − gS∥2 ≤ ϵ0 for some ϵ0 > 0 and consider a network with σ units. Then
if m = poly(1/α)poly(∥g∥2/ϵ), in time t = poly(1/α) log(∥g∥2/ϵ), the network updated with
equation 1 will converge in mean squared loss with g to error ϵ+ ϵ0 with probability at least 1− 1

m .

Proof. See appendix A.1.

We now give the proof idea of Theorem 4.11. Suppose that instead of the update at iteration, i:
fi = fi−1 + TWTX(Hi−1), we instead used the update fi = fi−1 + J 2(Hi−1). Then we would
have that ∥Hi −Hi−1 − J 2(Hi−1)∥2 = 0. From Proposition A.3, it follows that

∥Hi∥22 ≤ ∥Hi−1 − J 2(Hi−1)∥22 =

∥(1− J 2)(Hi−1)∥22 ≤ ∥Hi−1∥2 − α2∥HS
i−1∥22

Thus we can descend as long as ∥HS
i−1∥2 is above our target error.

We describe how J 2(Hi) is approximated by TWTX(Hi) in mean squared loss well enough, so
we can descend in the same way as above. To get a good approximation with high-probability,
we use concentration inequalities to get high probability bounds for J (σx) by TW (σx), J (σx) by
TW (σx), and J (g) by TX(g) for all x ∈ X and w ∈ W holding simultaneously. The idea is that the
mean squared loss, ∥TWTX(Hi) − J 2(Hi)∥22, is bounded above by linear combinations of J (g)
approximated by TX(g), and linear combinations of the worst mean squared loss approximation for
x ∈ X and w ∈ W : maxx∈X ∥TW (σx)−J (σx)∥22 and maxw∈W ∥TX(σw)−J (σw)∥22. Since these
approximations are all good, to ensure that TWTX(Hi) approximates J 2(Hi) well enough, we just
have to ensure that the coefficients in the linear combinations are small enough for all iterations of
descent. We can show that the coefficients are small enough, since they depend on the ai(u) and the
magnitude of previous residuals.

Below we extend the results of Theorem 4.4 to more general settings. As in the mean squared loss
case, Theorem 4.4 is a corollary of the result below by the discussions of Examples 4.9 and 4.10.

8

Under review as a conference paper at ICLR 2024

Theorem 4.12. Let S ⊂ [n] and ϵ > 0. Let W and X be sets of m i.i.d. weights and m i.i.d. sam-
ples, respectively, drawn from {−1, 1}n. Let σ be an activation function such that ∥σ∥∞ ≤ 1 and for
all u ∈ {−1, 1}n, σu’s Fourier coefficient on S is α > 0 in magnitude. If m = poly(1/α)poly(1/ϵ),
then in time t = poly(1/α) log(1/ϵ), the network with σ units will approximate the parity on S to
an error of ϵ with the hinge loss with high probability.

Proof. See appendix A.2.

We describe the proof idea of Theorem 4.12. It is similar to the proof idea of Theorem 4.11. Suppose
first that instead of updating our fi = fi−1 + TWTX(1(1 − fi−1g ≥ 0)g), we updated the loss as
fi = fi−1 + J 2(g). Then if Ex max(1− fi(x)g(x), 0) > 0

Ex max(1− fi(x)g(x), 0) = Ex max(1− g(x)(fi−1(x) + J 2(g)(x)), 0) =

Ex max(1− g(x)fi−1(x), 0)− α2

since J 2(g)g = α2. Hence, we could descend by α2. Thus, if we can get a good approximation of
J 2(g) by TWTX(1(1 − fi−1g ≥ 0)g) in mean squared loss, we can descend by a constant factor
of α2. Indeed, TWTX(1(1− fi−1g ≥ 0)g) approximates J 2(g) well-enough with high-probability
to ensure the desired descent. To guarantee the approximation, as in Theorem 4.11, we get good
approximations of J (σx) by TW (σx), J (σx) by TW (σx), and J (g) by TX(g) for all x ∈ X and
w ∈ W .

The following are the exact definitions of variables in Theorem 4.12, m = O(log(1/δ)/δ2) such
that δ = O(α4ϵ2/t3), and t = O(α−2 log(1/ϵ)). To establish the approximation of J 2(g) by
TWTX(1(1− fi−1g)g), with the above definitions, we present the following approximation lemma,
the main ingredient in the proof of theorem 4.12:
Lemma 4.13. (Lemma A.6 in the appendix) Suppose the assumptions of Theorem 4.12 hold. Let
Ek be the event {∥fk − kJ 2(g)∥ ≤ O(kδ)} for k ≥ 0. Note that there is some s ≤ t such that
sα2 < 1 ≤ (s+1)α2. Then for any integer i such that 1 ≤ i ≤ s given that events E0, E1, ..., Ei−1

hold, then with probability at least 1−O(δt
2

α4) it follows that ∥fi − iJ 2(g)∥ ≤ O(iδ).

Thus, with Lemma A.6 with events E0, E1, ..., Ei−1 by induction on the chain rule, we know
with high-probability exactly what function fi is approximating with at most ϵ error, over all it-
erations, i, of gradient descent. Moreover, using Bernoulli’s inequality, with probability at least:
(1 − O(δt

2

α4))
s ≥ 1 − O(δst

2

α4) after s iterations of gradient descent, the hinge loss error will be
almost exactly 1− α2s.

5 CONCLUSION AND FUTURE DIRECTIONS

This work gave polynomial time guarantees for neural network training on the uniform Boolean
hypercube. In the mean squared loss setting, we showed that gradient descent can agnostically learn
any function on the hypercube in time proportional to the smallest Fourier coefficient of the hidden
unit on the shared support with the function. In the hinge loss setting, we showed that gradient
descent can learn parities in time proportional to the hidden unit’s Fourier coefficient on that parity.

In addition, even though the weights of hidden layers are not optimized, by SQ lower bounds on the
parity and noting that gradient descent is an SQ algorithm, our analysis is essentially the best you
can do.

Future directions would be to extend these techniques to get logarithmic time bounds in error for
learning all Boolean functions, not just parties, on other losses such as the hinge loss. In this work
it would be possible to not just agnostically learn degree k polynomials in the mean-squared loss
setting with gradient descent, but to learn all degree k polynomials to arbitrary error, if our activation
functions had support on every Fourier coefficient. Indeed, this work supports the latter if our
activation function was the sum of a ReLU and a Linear Threshold function, although this is not a
realistic assumption. We believe it would be an interesting future direction to get full Fourier support
on activation functions with realistic model assumptions by potentially training both bias terms and
the hidden weights in these units.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Emmanuel Abbe, Elisabetta Cornacchia, and Aryo Lotfi. Provable advantage of curriculum learning
on parity targets with mixed inputs. CoRR, abs/2306.16921, 2023.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. Proceedings of the 36th International Conference on Machine Learning, 97:
242–252, 2019.

Alexandr Andoni, Rina Panigrahy, Gregory Valiant, and Li Zhang. Learning polynomials with
neural networks. volume 32, pp. 1908–1916, 2014.

Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of
optimization and generalization for overparameterized two-layer neural networks. Proceedings
of the 36th International Conference on Machine Learning, 97:322–332, 2019.

Boaz Barak, Benjamin Edelman, Surbhi Goel, Sham Kakade, Eran Malach, and Cyril Zhang. Hid-
den progress in deep learning: Sgd learns parities near the computational limit. Advances in
Neural Information Processing Systems, 35:21750–21764, 2022.

A.R. Barron. Universal approximation bounds for superpositions of a sigmoidal function. IEEE
Transactions on Information Theory, 39:930–945, 1993.

Alon Brutzkus and Amir Globerson. Globally optimal gradient descent for a convnet with gaussian
inputs. Proceedings of the 34th International Conference on Machine Learning - Volume 70, pp.
605—-614, 2017.

Yuan Cao, Zhiying Fang, Yue Wu, Ding-Xuan Zhou, and Quanquan Gu. Towards understanding the
spectral bias of deep learning. 2019.

Alexandru Damian, Jason D. Lee, and Mahdi Soltanolkotabi. Neural networks can learn represen-
tations with gradient descent. ArXiv, abs/2206.15144, 2022.

Amit Daniely. Sgd learns the conjugate kernel class of the network. volume 30, pp. 2419—-2427.
Curran Associates, Inc., 2017.

Amit Daniely and Eran Malach. Learning parities with neural networks. Advances in Neural Infor-
mation Processing Systems, 33:20356–20365, 2020.

Simon Du, Jason Lee, Yuandong Tian, Aarti Singh, and Barnabas Poczos. Gradient descent learns
one-hidden-layer CNN: Don’t be afraid of spurious local minima. Proceedings of the 35th Inter-
national Conference on Machine Learning, 80:1339–1348, 2018.

Rong Ge, J. Lee, and Tengyu Ma. Learning one-hidden-layer neural networks with landscape design.
ArXiv, abs/1711.00501, 2017.

Surbhi Goel, Adam R. Klivans, and Raghu Meka. Learning one convolutional layer with overlapping
patches. Proceedings of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, 80:1778–1786, 2018.

Ziwei Ji and Matus Telgarsky. Polylogarithmic width suffices for gradient descent to achieve arbi-
trarily small test error with shallow relu networks. ArXiv, abs/1909.12292, 2019.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in Neural Information Processing Systems, volume 25, pp.
1097—-1105. Curran Associates, Inc., 2012.

Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochastic gradient
descent on structured data. pp. 8168–8177, 2018.

Yuanzhi Li and Yang Yuan. Convergence analysis of two-layer neural networks with relu activation.
Proceedings of the 31st International Conference on Neural Information Processing Systems, pp.
597–607, 2017.

10

Under review as a conference paper at ICLR 2024

Eran Malach and Shai Shalev-Shwartz. Computational separation between convolutional and fully-
connected networks. ArXiv, abs/2010.01369, 2020.

Ryan O’Donnell. Analysis of Boolean Functions. 2021.

Samet Oymak and Mahdi Soltanolkotabi. Toward moderate overparameterization: Global con-
vergence guarantees for training shallow neural networks. IEEE Journal on Selected Areas in
Information Theory, 1(1):84–105, 2020.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua
Bengio, and Aaron Courville. On the spectral bias of neural networks. Proceedings of the 36th
International Conference on Machine Learning, 97:5301–5310, 2019.

Zhenmei Shi, Junyi Wei, and Yingyu Liang. A theoretical analysis on feature learning in neural
networks: Emergence from inputs and advantage over fixed features. ArXiv, abs/2206.01717,
2022.

Mahdi Soltanolkotabi. Learning relus via gradient descent. Proceedings of the 31st International
Conference on Neural Information Processing Systems, pp. 2004–2014, 2017.

Zhao Song and Xin Yang. Quadratic suffices for over-parametrization via matrix chernoff bound.
ArXiv, abs/1906.03593, 2019.

Santosh Vempala and John Wilmes. Gradient descent for one-hidden-layer neural networks: Polyno-
mial convergence and sq lower bounds. Proceedings of the Thirty-Second Conference on Learning
Theory, 99:3115–3117, 2019.

Weihang Xu and Simon Shaolei Du. Over-parameterization exponentially slows down gradient
descent for learning a single neuron. ArXiv, abs/2302.10034, 2023.

Gilad Yehudai and Shamir Ohad. Learning a single neuron with gradient methods. In Proceedings
of Thirty Third Conference on Learning Theory, volume 125, pp. 3756–3786, 2020.

Gilad Yehudai and Ohad Shamir. On the power and limitations of random features for understanding
neural networks. Advances in Neural Information Processing Systems, 32:6598—-6608, 2019.

Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Gradient descent optimizes over-
parameterized deep relu networks. Mach. Learn., 109(3):467–492, 2020.

A APPENDIX

The appendix includes results from Boolean analysis, and proofs of theorems 4.11 and 4.12 in
sections A.1 and A.2 respectively.

Fact A.1. For f, g ∈ H, define the inner product:

< f, g >= Ex∼{−1,1}n [f(x)g(x)]

The 2n parity functions are an orthonormal basis for H. See Theorem 1.5 in O’Donnell (2021).

Fact A.2. (Parseval’s Theorem) let f be a Boolean function. Then

< f, f >= ∥f∥22 =
∑
S∈[n]

f̂(S)2

. Moreover if the image of f is {−1, 1} then∑
S∈[n]

f̂(S)2 = 1

See page 25 of O’Donnell (2021).

11

Under review as a conference paper at ICLR 2024

A.1 MEAN SQUARED LOSS GUARANTEES

Proof. Proof of theorem 4.11. As in equations 5, 6, and 7 in Vempala & Wilmes (2019), throughout
this proof we define the following parameters with constants cm, cδ , and ct:

m = cm∥g∥∞ log(∥g∥∞/δ)/δ2

δ = cδα
4ϵ2/(∥g∥22t2)

t = ctα
−4 log(∥g∥2/ϵ)

The settings of m, δ, and t above are the specific values of these parameters in the statement of
Theorem 4.11. The proof of Proposition A.3 below is similar to Lemma 2.5 in Vempala & Wilmes
(2019).

Proposition A.3. Let g ∈ H. Let σ be an (S, α) activation function bounded by 1. Then

∥g − J 2
σ (g)∥22 ≤ ∥g∥22 − α2∥gS∥22

Proof.

∥g − J 2
σ (g)∥22 = Ex∼{−1,1}n(g(x)− J 2

σ (g)(x))
2 =

Ex∼{−1,1}n(
∑
S⊂[n]

ĝ(S)χS(x)− σ̂1(S)
2ĝ(S)χS(x))

2 (by Proposition 4.1) =

∑
S⊂[n]

(1− σ̂1(S)
2)2ĝ(S)

2 (by Parseval’s Theorem) ≤

∥g∥22 −
∑
S⊂[n]

σ̂1(S)
2ĝ(S)2 ≤ ∥g∥22 −

∑
S∈S

σ̂1(S)
2ĝ(S)2 ≤

∥g∥22 − α2∥gS∥22
where the last inequality follows since σ is an (S, α) activation function.

Lemma A.4 is the same as Lemma 3.6 in Vempala & Wilmes (2019), and below we check that it
still holds in the Boolean setting.

Lemma A.4. Let σ be bounded by 1. Then with probability 1−m over the choice of X and W , the
following statements are all true:

1.) ∥TX(g)− J (g)∥2 ≤ δ

2.) for all w ∈ W , we have ∥TX(σw)− J (σw)∥2 ≤ δ

3.) for all x ∈ X , we have ∥TW (σx)− J (σx)∥2 ≤ δ

4.) for all x ̸= y ∈ X , we have |TW (σx)(y)− J (σx)(y)| ≤ δ/2

Proof. The proof of this lemma depends on Lemma 3.5 of Vempala & Wilmes (2019), and except
for Lemma 3.5, the proof doesn’t have any dependence on the uniform sphere. It follows that we
just need to check that the parts of the proof in Lemma 3.5 of Vempala & Wilmes (2019) that use
data from the sphere still hold in the Boolean setting. We make this check below.

Fix u ∈ {−1, 1}n. Let f be a Boolean function and draw x1, .., xl i.i.d. from {−1, 1}n. Then
ζ1, ..., ζl are i.i.d. where ζi = f(xi)σ(u · xi)− J (f)(u) for each i. Note that

Ex[ζi] = Ex[f(xi)σ(u · xi)− J (f)(u)] =

J (f)(u)− J (f)(u) = 0

At this point, to have an identical proof of Lemma 3.5 of Vempala & Wilmes (2019), we just need
to show that ∥J (G)∥∞ ≤ ∥σ∥2∥G∥2 for all G ∈ H, V ar(ζi) ≤ ∥f∥22, and |ζi| ≤ 2∥f∥∞. Indeed,
∥J (G)∥∞ = |Exσ(u

∗ · x)G(x)| ≤ ∥σu∥2∥G∥2 by Cauchy Schwartz, V ar(ζi) =

Ex(ζi)
2 = Ex(f(xi)σ(u · xi)− J (f)(u))2 = V ar(f(xi)σu(xi)) =

Exf(xi)
2σu(xi)

2 ≤ Exf(xi)
2 = ∥f∥22.

12

Under review as a conference paper at ICLR 2024

In addition,
|ζi| ≤ ∥fσu − J (f)(u)∥∞ ≤ ∥fσu∥∞ ≤ ∥fσu∥∞ + |J (f)(u)| ≤ ∥f∥∞ + ∥σu∥2∥f∥2 ≤

2∥f∥∞.

From now on, we essentially follow the proof of Theorem 1.3 of Vempala & Wilmes (2019) verba-
tim. We can prove Lemma 3.7 of Vempala & Wilmes (2019) with Lemmas A.4 and 3.4. Lemma
3.8 of Vempala & Wilmes (2019) follows from ∥J (f)∥∞ ≤ ∥σ∥2∥f∥2, which we showed above,
Proposition 3.4, and Lemma 3.7 of Vempala & Wilmes (2019). The proof of Lemma 3.3 of Vem-
pala & Wilmes (2019) can be proven with Proposition A.3 and Lemma 3.8 of Vempala & Wilmes
(2019). The proof of Theorem 1.3 in Vempala & Wilmes (2019) now follows from Proposition A.3
and Lemma 3.3 of Vempala & Wilmes (2019).

Proof. Proof of Theorem 4.6. The proof is similar to the proof of Theorem 1.6 in Vempala &
Wilmes (2019) and since the conditions of Theorem 4.2 are satisfied, we can use Lemma 3.3 from
their work, which states:

∥∆Hi − J 2(Hi)∥2 = O(δ∥g∥2t2)
We set σ := 1

n max(0, x), the scaled ReLU. Denote the absolute value of the Fourier coefficient of

the scaled ReLU on V , where |V | = s, by ζs := |σ̂1(V)|. By Fact 3.3, ζ0 = Θ(1/
√
n), ζ1 = 1

2n ,
and ζs =

1
2n |M̂aj([s− 1])| if s > 1 and s is even.

Recall in the definition of δ, α > 0, where α ≤ ζk, ζl, noting that |S| = k and |T | = l, and T and S
are in g’s support.

We’re now ready to carry out our analysis, and have that:

r := ri,S,T =
∥∆S

i ∥HT
i ∥

∥∆T
i ∥∥HS

i ∥
≥ (∥J 2HS

i ∥ −O(δt2∥g∥)∥HT
i ∥

(∥J 2HT
i ∥+O(δt2∥g∥)∥∥HS

i ∥
=

(ζ2k∥HS
i ∥ −O(δt2∥g∥)∥HT

i ∥
(ζ2l ∥HT

i ∥+O(δt2∥g∥)∥∥HS
i ∥

First note that from the proof of Lemma 3.3 in Vempala & Wilmes (2019) that ∥Hi∥ ≤ ∥g∥. Recall-
ing the definition of δ, it follows that

(ζ2l ∥HT
i ∥+O(δt2∥g∥))∥HS

i ∥ ≤ (ζ2l ∥HT
i ∥+ α4ϵ2)∥HS

i ∥ ≤
2ζ2l ∥HS

i ∥∥HT
i ∥

since ζ2l ≥ α4, and ϵ2 ≤ ∥HT
i ∥ by assumption. Moreover

O(δt2∥g∥∥HT
i ∥) ≤ O(δt2∥g∥2) ≤ ϵ2α4 ≤ 1

2
∥HS

i ∥ζ2k
Putting everything together,

r ≥ 1/2ζ2k∥HS
i ∥∥HT

i ∥
2ζ2l ∥HT

i ∥∥HS
i ∥

=
ζ2k
4ζ2l

= nΩ(l−k)

We show the final equality above. Recall from Fact 3.2 #3 that if s > 1 then M̂aj([s − 1])2 =
n−O(s). Moreover, if S or T are of size bigger than 1, then the set must be even since S, T are in g’s
support.

If k = 0, then ζ2k = 1
Θ(n) and ζ−2

l = 4n2, if l=1. If l > 1 then ζ−2
l = 1/n−O(l) = nΩ(l). Either

way, the claim holds.

If k = 1 then ζ2k = 1
4n2 , and ζ−2

l = nΩ(l) since l must be even and bigger than 1. Thus, the claim
holds.

If k > 1, both S and T must be of even size. Hence,

ζ2k
4ζ2l

=
M̂aj([k − 1])2

M̂aj([l − 1])2
= nΩ(l−k)

13

Under review as a conference paper at ICLR 2024

A.2 HINGE LOSS GUARANTEES

Proof. We prove Theorem 4.12 in this section. Throughout the discussion, g is a parity, and the
magnitude of σu’s Fourier coefficient on g is α > 0 for all u ∈ {−1, 1}n. Throughout the proof, we
will use the definitions of the following parameters with constants cm, cδ , and ct:

m = cm log(1/δ)/δ2

δ = cδα
4ϵ2/t3

t = ctα
−2 log(1/ϵ)

The statement of Theorem 4.12 with the above values of m, δ, and t will be proven.

With the definitions of m, δ, and t above, with probability at least 1−1/m, the statements in Lemma
A.4 are all true. Indeed, in the proof Lemma 3.6 in Vempala & Wilmes (2019), Lemma A.4 in this
work, their only requirement on m is that m ≥ cm∥g∥∞ log(∥g∥∞/δ)/δ2, and δ is arbitrary. Since
g is the parity, ∥g∥∞ = 1, and our m above satisfies the requirements of Lemma A.4.

Lemma A.5, below, is almost identical to Lemma 3.7 of Vempala & Wilmes (2019), but uses the
gradient of the hinge loss instead of the gradient of the mean squared loss. We include a proof below,
and note that from Proposition 3.5, fi − fi−1 = TWTX(1(1− gfi−1 ≥ 0)g).

Lemma A.5. Suppose that conditions 1-3 of Lemma A.4 hold. Then for all i ≥ 1 we have that

∥(TW − J)TX(1(1− gfi−1 ≥ 0)g)) ≤ δ

Proof.

∥(TW − J)TX(1(1− gfi−1 ≥ 0)g))∥ =

∥(TW − J) (
1

m

∑
x∈X

1(1− g(x)fi−1(x) ≥ 0)g(x))σx∥2 ≤

1

m

∑
x∈X

∥(TW − J)(σx)∥2 ≤ δ

Where the last inequality comes from Lemma A.4 # 3.

The next lemma is the main technical ingredient for the proof of Theorem 4.12.

Lemma A.6. Suppose that conditions 1-3 of Lemma A.4 hold. Let Ek be the event {∥fk −
kJ 2(g)∥ ≤ O(kδ)} for k ≥ 0. Note that there is some s ≤ t such that sα2 < 1 ≤ (s+ 1)α2. Then
for any integer i such that 1 ≤ i ≤ s given that event E0, ..., Ei−1 holds then with probability at
least 1−O(δt

2

α4) it follows that

∥fi − iJ 2(g)∥ ≤ O(iδ)

Proof. Suppose i = 1. The event E0 holds trivially. Then f1 = TWTX(1(1− f0g ≥ 0)g) =
TWTX(g). By Lemma A.4 1.) and Lemma A.5, it follows that

∥f1 − J 2(g)∥ ≤ ∥TWTX(g)− J TX(g)∥+ ∥J TX(g) − J 2(g)∥ ≤
δ + ∥TX(g) − J (g)∥ ≤ 2δ

Noting that for any Boolean function h, ∥J (h)∥ ≤ ∥h∥ since σ is bounded by 1.

Now assume that i > 1. Since the event Ei−1 holds it follows that

∥fi − iJ ∥ ≤ ∥fi−1 − (i− 1)J (g)∥+
∥TWTX(1(1− fi−1g ≥ 0)g)− J 2(g)∥ ≤ O((i− 1)δ)+

∥TWTX(1(1− fi−1g ≥ 0)g)− J 2(g)∥

14

Under review as a conference paper at ICLR 2024

We now bound ∥TWTX(1(1− fi−1g ≥ 0))− J 2(g)∥ and have that

∥TWTX(1(1− fi−1g ≥ 0)g)− J 2(g)∥ ≤
∥TWTX(1(1− fi−1g ≥ 0))− J 2(1(1− fi−1g ≥ 0)g)∥

+∥J 2(1(1− fi−1g ≥ 0)g)− J 2(g)∥

We will now bound ∥J 2(1(1− fi−1g ≥ 0)g)− J 2(g)∥. First note that:

∥1(1− fi−1g ≥ 0)g − g∥2 = ∥1− 1(1− fi−1g ≥ 0)∥2 =

Pr[1(1− fi−1g ≥ 0) = 0] = Pr[fi−1g > 1] ≤
Pr[fi−1g ≥ 1] ≤ Pr[|fi−1 − (i− 1)J 2(g)| ≥ α2]

The last inequality follows since if fi−1g ≥ 1, then

(i− 1)J 2(g)g = (i− 1)α2g2 = (i− 1)α2 < (s− 1)α2 < 1− α2, and it follows that

fi−1g − α2 ≥ 1− α2 > (i− 1)J 2(g)g. Thus fi−1g − (i− 1)J 2(g)g ≥ α2 as needed.
By Markov’s inequality and assumption, we have that

Pr[|fi−1 − (i− 1)J 2(g)| ≥ α2] ≤ ∥fi−1 − (i− 1)J 2(g)∥2/α4 ≤
O((i− 1)2δ2/α4) = O(δ)

by the definition of δ.

Since ∥J 2(1(1− fi−1g ≥ 0)g)− J 2(g)∥ ≤ ∥J 2(1(1− fi−1g ≥ 0)g)− J 2(g)∥∞,

we will upper bound ∥J 2(1(1− fi−1g ≥ 0)g)− J 2(g)∥∞. Let u be an element of

the hypercube. Then

|J 2(1(1− fi−1g ≥ 0)g − g)(u)| = |Evh(v)σu(v)| ≤ Ev|h(v)| =
Ev|Ex1(1− fi−1(x)g(x) ≥ 0)g(x)− g(x))σv(x)| ≤
EvEx|1(1− fi−1(x)g(x) ≥ 0)g(x)− g(x))σv(x)| =
EvEx|1(1− fi−1(x)g(x) ≥ 0)− 1| · |g(x)σv(x)| ≤

Ex|1(1− fi−1(x)g(x) ≥ 0)− 1| = Pr[fi−1(x)g(x) > 1] ≤ O(δ)

Hence ∥J 2(1(1− fi−1g ≥ 0)g)− J 2(g)∥ ≤ O(δ) as needed.

We now bound ∥TWTX(1(1− fi−1g ≥ 0)g)− J 2(1(1− fi−1g ≥ 0)g)∥. We have that

∥TWTX(1(1− fi−1g ≥ 0)g)− J 2(1(1− fi−1g ≥ 0)g)∥ ≤
∥|TWTX(1(1− fi−1g ≥ 0)g)− J TX(1(1− fi−1g ≥ 0)g)∥+

∥J TX(1(1− fi−1g ≥ 0)g)− J 2(1(1− fi−1g ≥ 0)g∥ ≤
δ + ∥J TX(1(1− fi−1g ≥ 0)g)− J 2(1(1− fi−1g ≥ 0)g)∥

by Lemma A.5.

We now bound ∥J TX(1(1 − fi−1g ≥ 0)g) − J 2(1(1 − fi−1g ≥ 0)g)∥ . Using the results from
Lemma A.4 1.) it follows that:

∥J TX(1(1− fi−1g ≥ 0)g)− J 2(1(1− fi−1g ≥ 0)g)∥ ≤
∥TX(1(1− fi−1g ≥ 0)g)− J (1(1− fi−1g ≥ 0)g)∥ ≤

∥TX(1(1− fi−1g ≥ 0)g)− TX(g)∥+ ∥TX(g)− J (1(1− fi−1g ≥ 0)g)∥ ≤
∥TX(1(1− fi−1g ≥ 0)g)− TX(g)∥+ ∥J (g)− J (1(1− fi−1g ≥ 0)g)∥+ δ ≤
∥TX(1(1− fi−1g ≥ 0)g)− TX(g)∥+ ∥J (g)− J (1(1− fi−1g ≥ 0)g)∥+ δ

From earlier we have:

|J (g)− J (1(1− fi−1g ≥ 0)g)(u)| = |Ex(1(1− fi−1g(x) ≥ 0)− 1)g(x)σu(x)| ≤
Ex|(1(1− fi−1g(x) ≥ 0)− 1)| =
Pr[fi−1(x)g(x) > 1] ≤ O(δ)

15

Under review as a conference paper at ICLR 2024

Thus,

∥J TX(1(1− fi−1g ≥ 0)g)− J 2(1(1− fi−1g ≥ 0)g)∥ ≤
∥TX(1(1− fi−1g ≥ 0)g)− TX(g)∥+O(δ)

Note that for a Boolean function, h, ∥TX(h)∥ = ∥ 1
m

∑
x∈X h(x)σx∥ ≤ 1

m

∑
x∈X |h(x)| since

∥σx∥ ≤ 1. Thus it follows that:

∥TX(1(1− fi−1g ≥ 0)g)− TX(g)∥ ≤ 1

m

∑
x∈X

|(1(1− fi−1(x)g(x) ≥ 0)− 1)g(x)| =

1

m

∑
x∈X

1− 1(1− fi−1(x)g(x) ≥ 0)

Now we calculate the probabilistic conclusion of the lemma. Using Markov’s inequality we get:

Pr[
1

m

∑
x∈X

1− 1(1− fi−1(x)g(x) ≥ 0) ≥ δ] ≤ 1− E1(1− fi−1(x)g(x) ≥ 0)

δ

We upper bound E1(1 − fi−1(x)g(x) ≥ 0) = 1 − Pr[1 − fi−1(x)g(x) < 0]. From earlier in the
proof, we have that

Pr[1− fi−1(x)g(x) < 0] ≤ Pr[fi−1(x)g(x) ≥ 1] ≤ Pr[|fi−1 − (i− 1)J 2(g)| ≥ α2] =

O((i− 1)2δ2/α4)

Hence,

1− E1(1− fi−1(x)g(x) ≥ 0)

δ
=

Pr[1− fi−1(x)g(x) < 0]

δ
= O(i− 1)2δ/α4

Thus the probability that ∥TX(1(1− fi−1g ≥ 0)g)− TX(g)∥ < δ is at least 1−O(i− 1)2δ/α4.

Hence ∥J TX(1(1− fi−1g ≥ 0)g)− J 2(1(1− fi−1g∥ ≤ O(δ) with probability at least

1−O(i− 1)2δ/α4. Thus

∥TWTX(1(1− fi−1g ≥ 0)g)− J 2(1(1− fi−1g ≥ 0)g)∥ ≤ O(δ)

with probability at least 1−O((i− 1)2δ/α4).

Hence

∥TWTX(1(1− fi−1g ≥ 0)g)− J 2(g)| ≤
∥TWTX(1(1− fi−1g ≥ 0))− J 2(1(1− fi−1g ≥ 0)g)∥+

∥J 2(1(1− fi−1g ≥ 0)g)− J 2(g)∥ = O(δ)

and putting everything together we get that,

∥fi − iJ 2J(g)∥ ≤ ∥fi−1 − (i− 1)J 2(g)∥+ ∥TWTX(1(1− fi−1g ≥ 0)g)− J 2(g)∥ =

O((i− 1)δ) +O(δ) = O(iδ)

with probability at least 1−O((i− 1)2δ/α4) completing the proof.

Below is the statement of Theorem 4.12 and the remaining part of the proof with the above lemmas
of this section at hand.

Theorem A.7. Let σ be an activation function such that the magnitude of it’s Fourier coefficient on
g = χS is α > 0 and ∥σ∥∞ ≤ 1. Assume that m = O(log(1/δ)/δ2) where δ = O(α4ϵ2/t3), and
t = O(α−2 log(1/ϵ)). Then with probability at least (1− 1/m)(1−O(δt3/α4))(1−O(t2δ/ϵ2)) a
network with m randomly initialized σ neurons will converge to ϵ error on the hinge loss in at most
t iterations of gradient descent using the same set of m samples on each iteration.

16

Under review as a conference paper at ICLR 2024

Proof. There is some s ≤ t such that sα2 < 1 ≤ (s+ 1)α2. In either case, with probability at least
1 − 1

m , the conditions of A.4 hold. There are two cases: 1 − ϵ/2 < sα2 < 1 and sα2 ≤ 1 − ϵ/2.
We first explore the case, 1 − ϵ/2 < sα2 < 1. Then from Lemma A.6, if E0, E1, .., Es−1 are true,
it follows that

∥fs − sJ 2(g)∥ ≤ O(sδ)

We now upper bound the hinge loss on fs by ϵ. By Jensen’s inequality, that max is 1-Lipschitz, and
by Lyapunov’s inequality we have that:

|Emax(0, 1− fs(x)g(x)))− Emax(0, 1− sJ 2(x)g(x))| =
|E[max(0, 1− fs(x)g(x))−max(0, 1− sJ 2(x)g(x))]| ≤

E|max(0, 1− fs(x)g(x))−max(0, 1− sJ 2(x)g(x))| ≤ E|fs(x)g(x)− sJ 2(x)g(x))| ≤
∥fs − sJ 2(g)∥

Thus

Emax(0, 1− fs(x)g(x)) ≤ O(sδ) + Emax(0, 1− sJ 2(x)g(x)) < ϵ/2 + ϵ/2 = ϵ

choosing the constant in the definition of δ suitably and noting that
1− sJ 2(x)g(x) = 1− sα2 < 1− (1− ϵ/2) = ϵ/2. Now, by Lemma A.6 with events E0, .., Es−1,
by induction on the chain rule, and Bernoulli’s inequality, with probability at least

(1− 1/m)(1−O(δt2/α4))t ≥ (1− 1/m)(1−O(δt3/α4))

that after at most t iterations of gradient descent, the error on the hinge loss will be less than ϵ. The
case when 1− ϵ/2 < sα2 < 1 is now complete.

We now move onto the second case, sα2 ≤ 1 − ϵ/2. Using the same argument as above, we have
that with probability at least (1− 1/m)(1−O(δt3/α4)) that

∥fs − sJ 2(g)∥ ≤ O(sδ)

Thus, we have that,

∥fs+1 − (s+ 1)J 2(g)∥ ≤ O(sδ) + ∥TWTX(1(1− fsg ≥ 0)g)− J 2(g)∥

Everything for this case is the same as in Lemma A.6, except that we must upper bound

∥TWTX(1(1− fsg ≥ 0)g)− J 2(g)∥ by ϵ/2 by bounding

∥J 2(1(1− fsg ≥ 0)g)− J 2(g)∥ ≤ Pr[fsg ≥ 1] ≤ Pr[|fs − sJ 2(g)| ≥ ϵ/2]

instead of Pr[|fi−1− (i− 1)J 2(g)| ≥ α2] as in the proof of Lemma A.6 and noting that if fsg ≥ 1,
since sJ 2(g)g = sα2 ≤ 1− ϵ/2, it follows that fsg − sJ 2(g)g > ϵ/2. Similarly, we upper bound

Pr[1− fs(x)g(x) < 0] = O(s2δ24/ϵ2)

instead of the upper bound O((i−1)2δ/α4) in the proof of Lemma A.6. Putting everything together,
we get with probability at least 1−O(s2δ/ϵ2) that

∥TWTX(1(1− fi−1g ≥ 0)g − J 2(g)∥ ≤ O(δ)

Finally, putting everything together and from similar arguments in the first case, since

∥fs+1 − (s+ 1)J 2(g) ≤ O((s+ 1)δ)

and since Emax(0, 1− (s+ 1)J 2(g)(x)g(x)) = 0, it follows that

Emax(0, 1− fs+1(x)g(x)) < O((s+ 1)δ) + 0 = O((s+ 1)δ) < ϵ

for a suitably small choice of δ with probability at least

(1− 1/m)(1−O(δt3/α4))(1−O(t2δ/ϵ2))

completing the proof.

17

	Introduction
	Related Work
	Preliminaries and setting
	Training Procedures
	Mean squared loss
	Hinge loss

	Results
	Conclusion and future directions
	Appendix
	Mean Squared loss guarantees
	Hinge loss guarantees

