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Abstract

General logical reasoning is perhaps the most impenetrable challenge for large language
models (LLMs). We define general logical reasoning as the ability to reason deductively
on domain-agnostic tasks. Current LLMs fail to reason deterministically and are not inter-
pretable. As such, there has been a recent surge in interest in neurosymbolic AI, a research
area that attempts to incorporate logic into neural networks. We first identify two main
neurosymbolic approaches to improving logical reasoning: (i) the integrative approach com-
prising models where symbolic reasoning is contained within the neural network, and (ii)
the hybrid approach comprising models where a symbolic solver, separate from the neural
network, performs symbolic reasoning. Both contain AI systems with promising results
on domain-specific logical reasoning benchmarks. However, their performance on domain-
agnostic benchmarks is understudied. To the best of our knowledge, there has not been
a comparison of the contrasting approaches that answers the following question: Which
approach is more promising for developing general logical reasoning without sacrificing the
capabilities of existing LLMs? To analyze their potential, the following best-in-class domain-
agnostic models are introduced: Logic Neural Network (LNN), which uses the integrative
approach, and LLM-Symbolic Solver (LLM-SS), which uses the hybrid approach. Compared
to the current state-of-the-art neurosymbolic models, LNN achieves faster convergence and
higher accuracy while LLM-SS delivers a lower error rate. Using both models as case studies
and representatives of each approach, our analysis demonstrates that the hybrid approach
is more promising for developing general logical reasoning because (i) its reasoning chain
is more interpretable than the integrative approach, and (ii) it retains the capabilities and
advantages of existing LLMs. To support future works using the hybrid approach to im-
prove general logical reasoning, we propose a generalizable neurosymbolic framework based
on LLM-SS that is modular by design, model-agnostic, domain-agnostic, and requires little
to no human input.

1 Introduction

Following the seminal paper "Attention is all you need" (Vaswani et al., 2017), the emergence of artificial
general intelligence (AGI) appears closer than ever. State-of-the-art models, e.g. GPT-4 (Achiam et al.,
2023) and Gemini 1.5 (Reid et al., 2024), steadily inch higher and higher on a wide array of benchmarks,
from text summarization to code generation (Achiam et al., 2023; Chen et al., 2021). Nonetheless, LLMs
continue to exhibit serious deficiencies in their ability to perform logical reasoning (Huang & Chang, 2022).
Despite the gradual rise in accuracy in logical reasoning benchmarks, LLMs’ fundamental problems have not
been mitigated.

Consider the example in Fig. 1, which shows a chain-of-thought (CoT) response to a question from the
StrategyQA dataset (Geva et al., 2021), generated by Wei et al. (2022). The text highlighted in yellow
shows the LLM’s premises, i.e. the evidence used to support the conclusion, while the text highlighted in
green shows the LLM’s conclusion. This example highlights two primary flaws in LLMs: (1) the premises do
not lead to the conclusion. Given the two premises, the final answer should have been true; (2) the conclusion
may not have been derived from the premises at all. This problem is more subtle, for we naturally assume
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Figure 1: An example CoT output from a question in StrategyQA dataset in Wei et al. (2022)

Figure 2: Integrative and hybrid approaches to neurosymbolic AI for general logical reasoning

that if the conclusion does not follow from the premises, it implies the LLM has made a logical reasoning
mistake. However, we cannot definitively state that the LLM inferred based on any and all of the premises,
which are further explained below.

Both problems are the results of LLM’s model architecture. LLMs are, broadly speaking, a combination
of linear and non-linear matrix operations, e.g. ReLU (Agarap, 2018) and sigmoid functions (Rasamoelina
et al., 2020), sprinkled with neural network techniques, e.g. batch normalization (Ioffe & Szegedy, 2015) and
dropout (Srivastava et al., 2014). As a result, they belong to the connectionist approach to AI (Fahlman &
Hinton, 1987), and are therefore probabilistic, rather than deterministic, in nature by design. Determinism is
defined as a model’s ability to produce the same result given the same input regardless of the random seed (if
any). Deductive reasoning is, however, deterministic, rather than probabilistic, thus causing Flaw (1). Flaw
(2) cannot be ruled out or resolved due to the lack of interpretability of Transformer-based architectures: the
use of high-dimensional embeddings and matrix operations obfuscates the underlying premises and ideas.
Evidently, so long as LLM architecture remains the same, no amount of parameters or training data will
solve these fundamental problems in logical reasoning.

In response to these challenges, neurosymbolic AI has recently regained prominence as an alternative to
Transformer-based architectures; its deterministic and interpretable methods appear promising for enabling
logical reasoning (Chaudhuri et al., 2021). Interpretability is defined as a model’s ability to accurately
demonstrate its flow of reasoning to arrive at an answer. As the name suggests, it aims to combine the
best of both worlds: neural networks and symbolic reasoning. The former enables learning, creativity, and
inductive reasoning, while the latter handles logical reasoning with symbolic rules and algorithms.

However, many recent neurosymbolic works (Badreddine et al., 2022; Riegel et al., 2020) are not generalizable
as evidenced by how they are typically benchmarked on domain-specific tasks. For example, the CLUTRR
benchmark, which only includes family relations, is commonly used (Sinha et al., 2019) to evaluate inference
skills. This is because such models require a comprehensive list of task-specific axioms/formulas to be defined
before training; additional details and examples are provided in Section 2. Since it is unfeasible to manually
define logical rules for hundreds of expansive topics, these models cannot be applied to domain-agnostic
benchmarks like MMLU (Hendrycks et al., 2020), FOLIO (Han et al., 2022), and StrategyQA (Geva et al.,
2021); they cannot achieve the broad applicability of existing LLMs. As such, we focus on general logical
reasoning in this paper, which we define as the ability to deductively reason in domain-agnostic tasks.

Inspired by the taxonomies in Kautz (2020) and Ciatto et al. (2024), we identify two main approaches to
neurosymbolic AI for general logical reasoning, i.e. integrative and hybrid, which are illustrated in Fig. 2.
The integrative approach modifies the neural network architecture to allow it to perform logical reasoning in
a deterministic and interpretable way. On the other hand, the hybrid approach sidesteps the limitations of
traditional neural networks by coupling them with external symbolic solvers. Recent literature found success
with both approaches for domain-specific benchmarks like CLUTRR and StepGame (Shi et al., 2022), but
their use in general logical reasoning is still understudied. We elaborate further on this in Section 2.
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To evaluate the merits of both approaches, we develop a best-in-class model for each approach and compare
their strengths and weaknesses. For the integrative approach, we create a novel neural network that consists
solely of differentiable logic gates, which we refer to as Logic Neural Network (LNN). It can deterministically
represent any and all laws of propositional calculus. For example, the statement "If a and b, then c is true."
can be represented by an AND logic gate (a ∧ b). Moreover, it is interpretable. Once a specific neuron
has chosen a logic gate, one can precisely interpret the argument form used. Using a synthetic dataset, we
experimentally validate that LNN’s relaxation formula converges on the correct logic gate 3 times faster than
Logic Gate Network (LGN) (Petersen et al., 2022), the existing state-of-the-art integrative model. Moreover,
LNN outperforms LGN on the Breast Cancer dataset and performs comparably on the Adult Census dataset
(Asuncion et al., 2007).

For the hybrid approach, we introduce LLM-SS, a framework that combines an LLM and a symbolic solver.
It is, by design, model-agnostic, domain-agnostic, and requires little human input. Broadly speaking, in the
case of question-answering (QA) tasks, the LLM is responsible for generating natural language premises for
the question, and then translating them into logical form. Afterward, the logical form is fed to the symbolic
solver, which outputs the final conclusion using deductive reasoning. LLM-SS achieved higher or similar
performance and lower error rates on domain-agnostic QA tasks compared to other models using the hybrid
approach through the use of several novel techniques.

To evaluate which approach holds more potential for general logical reasoning, we formulate our comparison
based on the following criteria: (i) ability to reason symbolically, (ii) interpretability of reasoning chain, and
(iii) retention of LLM abilities. We find that while both integrative and hybrid approaches are able to reason
symbolically, the former’s interpretability decreases when model size increases and the former loses much of
the capabilities of existing LLMs, such as knowledge retrieval and generalization. LNN and the integrative
approach as a whole suffer from theoretical limitations that limit their potential for tackling general logical
reasoning. Given these factors, we contend that the hybrid approach is more promising. Finally, we propose
a neurosymbolic framework based on LLM-SS to support future works in this direction.

2 Related Works

With regards to the integrative approach, Garcez & Lamb (2023) reviewed several systems where symbolic
reasoning is contained within the neural network. Most notably, Logic Tensor Network (Badreddine et al.,
2022) is designed to learn new predicates via a deep neural network while satisfying a first-order logic
knowledge base. Daniele & Serafini (2019), Fischer et al. (2019), and Manhaeve et al. (2018) present models
with similar principles. Logical Neural Network (Riegel et al., 2020), developed by IBM, creates a 1-on-1
correspondence between each neuron and a logic gate, a similar concept to our LNN.

However, the primary difference between the two aforementioned systems and LNN is that the former
requires Real Logic axioms/formulas specific to the given task to be manually defined prior to training.
The model subsequently learns the weights with respect to the axioms provided. LNN, on the other hand,
consists of the same 6 logic gates for each neuron across any given task. It learns each neuron’s optimal
logic gate during training, thus dynamically constructing the best-performing axioms/formulas. This is a
significant disadvantage for the Logic Tensor Network and Logical Neural Network because it limits their
scope to problems with known, well-defined logical rules, thereby diminishing their usefulness in real-world
applications. For example, IBM’s Logical Neural Network is tested on the Lehigh University Benchmark
(LUBM) (Guo et al., 2005), which contains predefined OWL axioms.

To the best of our knowledge, the only model architecture that allows for the choice of a logic gate is the Logic
Gate Network (LGN) (Petersen et al., 2022). Its fundamental principle is the same as LNN: allow neural
networks to choose between logic gates through differentiation by continuously relaxing them. However, LNN
and LGN differ in how various logic gates are combined. This paper creates a distinct relaxation formula for
each logic gate and then uses categorical probability distribution to create a weighted average across 16 logic
gates. However, LGN’s primary objective was to decrease inference time for computer vision tasks by using
the highest probability logic gate for each neuron. Hence, its practical ability to converge to the appropriate
logic gate for reasoning tasks remains unexamined.
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On the other hand, the hybrid approach has seen state-of-the-art results on domain-specific reasoning tasks,
but few have applied this approach to domain-agnostic tasks. Yang et al. (2023) applied GPT-3 and Clingo
to the benchmark datasets: bABI, StepGame, CLUTRR, and gSCAN. However, the scope of its application
is limited. For example, CLUTRR only involves the inference of family relationships. Moreover, the authors
manually wrote an ASP knowledge module for each task, e.g. the one for CLUTRR contains an exhaustive
list of family relationships. Therefore, Yang’s architecture is not applicable to general QA tasks. Deepmind’s
AlphaGeometry (Trinh et al., 2024) combines an LLM with the symbolic engine DD+AR, which contains
geometric rules. Similarly, its scope is limited to geometry problems. Moreover, these natural language
geometry questions are manually translated into a domain-specific form in order for DD+AR to understand
the problem. This is again unrealistic for general QA tasks. Models with similar frameworks, and therefore
similar limitations include Silver et al. (2016), McGinness & Baumgartner (2024), Zhang et al. (2023), and
Dai et al. (2019).

To our knowledge, only the Faithful-CoT model (Lyu et al., 2023) attempts to combine LLMs with symbolic
engines for a wide range of tasks, without knowledge modules or manual translation of problems. However,
using GPT-4 and Prolog, an alternative to Clingo, it achieved a mere 54% accuracy rate on the StrategyQA
benchmark (Geva et al., 2021).

3 Model Architecture

We now explain the model architecture of our Logic Neural Network (LNN) and LLM-Symbolic Solver
(LLM-SS), representing the integrative and hybrid approaches respectively.

3.1 Logic Neural Network (LNN)

LNN is a regular neural network with an adapted logic gate formula for each neuron, which builds upon
the Logic Gate Network (Petersen et al., 2022). Every two neurons in a layer connect to a randomly chosen
neuron in the subsequent layer. Each neuron has a choice of 16 distinct logic gates, as shown in Table 1. This
is because, given 2 binary inputs, there are 4 unique input combinations. Since the output is also binary,
there are 16 unique output combinations, each corresponding to a logic gate. Two neurons are connected
instead of three or more because the latter’s implementation is considerably more complicated, yet does not
exhibit stronger performance empirically given a comparable number of parameters (Petersen et al., 2022;
Benamira et al.).

Table 1: List of logic gates with their corresponding relaxation formulas and outputs values given input
neurons a and b. This table is derived from Petersen et al. (2022).

Logic Gate Real-Valued Logic A = 0, B = 0 A = 1, B = 0 A = 0, B = 1 A = 1, B = 1
False 0 0 0 0 0
A ∧ B A · B 0 0 0 1
¬(A ⇒ B) A − AB 0 0 1 0
A A 0 0 1 1
¬(A ⇐ B) B − AB 0 1 0 0
B B 0 1 0 1
A ⊕ B A + B − 2AB 0 1 1 0
A ∨ B A + B − AB 0 1 1 1
¬(A ∨ B) 1 − (A + B − AB) 1 0 0 0
¬(A ⊕ B) 1 − (A + B − 2AB) 1 0 0 1
¬B 1 − B 1 0 1 0
A ⇐ B 1 − B + AB 1 0 1 1
¬A 1 − A 1 1 0 0
A ⇒ B 1 − A + AB 1 1 0 1
¬(A ∧ B) 1 − AB 1 1 1 0
True 1 1 1 1 1
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However, logic gates are discrete, with values of either 0 or 1, and are therefore non-differentiable. Nonethe-
less, gradient descent is necessary for LNN to work. To achieve this, we first relax each discrete logic gate
into a continuous graph, with 0 and 1 at each boundary, also known as real-valued logic. For example, the
AND logic gate can be represented by a · b while the OR logic gate is represented by a + b − a · b, based
on probabilistic T-norm and T-conorm respectively (van Krieken et al., 2022). Notice that all formulas in
Table 1 require at most inputs a, b, and a · b, where a and b are the values of the input neurons. We can
therefore further generalize the formulas into Eq. 1, where a and b are the input neurons, c is the output
neuron, and w1−4 are trainable weights. The sigmoid function σ ensures that output c ranges from 0 to 1
during training. Each neuron there uses Eq. 1 during training.

c = σ(w1a + w2b + w3(a · b) + w4) (1)

At inference time, Eq. 1 is then translated into a discrete logic gate for each neuron. Each output oi of the
4 input possibilities is discretized into 0 or 1, such that when oi > 0.5, it is assigned a value of 1. Based on
the 4 outputs, the corresponding logic gate is determined. All reported results are based on accuracies from
the discretized version.

3.2 LLM-Symbolic Solver (LLM-SS)

We use a QA task to explain how LLM-SS works and to evaluate its performance. This is because QA
tasks require substantial logical reasoning, while also having considerable emphasis on knowledge storage
and retrieval, and inductive reasoning. This ensures the latter properties are not compromised in pursuit of
logical reasoning.

Figure 3: Architecture of LLM-SS model

The general structure of LLM-SS is illustrated in Fig. 3. It consists of three stages. In Stage 1, few-shot
prompting is applied to a pre-trained LLM to generate natural language premises for an input question.
Based on propositional logic, only two types of premises are allowed: (1) declarative sentences, which are
statements that have truth values and no connectives, e.g. "A spider has 8 legs.", and (2) conditional
sentences, which are essentially if-else statements, e.g. "If an animal has 6 legs, it is not a spider." (Pospesel,
1974). In other words, this is similar to conventional chain-of-thought (CoT) prompting (Wei et al., 2022),
except the final answer is not generated and only two types of sentences are encouraged.

In the second stage, another few-shot prompt, together with the premises generated in Stage 1, is applied to
a pre-trained LLM, which outputs the logical form of the given premises. Given that it translates natural
language sentences into a machine-understandable representation, Stage 2 can be formulated as a semantic
parsing task. However, given that LLM-SS must perform semantic parsing on uncontrolled natural language,
which includes a wide range of vocabulary and grammatical structures, the examples provided in the prompt
cannot cover the wide array of knowledge representations. This often leads to invalid logical forms, thus
preventing the subsequent symbolic solver from producing an answer at all. In fact, Lyu et al. (2023)
find that syntax errors and infinite loops (which we consider a subset of syntax errors) account for 52.9%
of all errors made by OpenAI Codex on the StrategyQA dataset. To tackle this issue, we incorporate
an LLM constraining program into Stage 2, which is a class of software that ensures the text generated
by LLMs adheres to specific formats and rules (Beurer-Kellner et al., 2023). Its use for semantic parsing
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tasks is currently underexplored in the literature. While the specific implementation varies, these programs
generally work by identifying tokens that violate conditions defined by the user, in order to generate a token
mask for the decode function. This ensures that the pre-trained LLM’s choice of the next token is within
the subset of valid tokens. For example, if an LLM constraining program follows a formalism that states
that "=" must be followed by "True" or "False", then assuming the previous output is "=", the subsequent
token must be either "True" or "False". We chose Microsoft Guidance (Microsoft, 2023) as our constraining
program, which is open-source and actively supported.

In the third and final stage, a symbolic solver receives the logical forms generated in Stage 2 as input and
then performs deductive reasoning on them to reach the final conclusion. It must be a deterministic model,
where given a set of premises, it produces a logically entailed conclusion in all cases without fail; to ensure
interpretability, the algorithms used throughout the process must also be transparent. To accomplish this,
we turn to answer set programming (ASP) (Lifschitz, 2019), a form of logic programming (Lloyd, 2012).
Logic programming represents natural language sentences as logical forms. Logical forms allow the logical
relationships between entities to be unambiguously understood by the program, unlike natural language
sentences by LLMs which may have multiple interpretations. ASP is a subset of logical programming, which
focuses on solving search problems; finding the truth value of a statement based on a set of premises is one
such problem. We use Clingo (Gebser et al., 2019) as our ASP solver due to its straightforward syntax and
considerable open-source support. Below are examples of how natural language sentences, both declarative
and conditional, can be represented in Clingo. Note the ability to use mathematical expressions in the last
example.

• [Declarative] Sam has a cow.
no_of_cows_owned(sam, 1).

• [Conditional] If Sam owns a cow, Sam is a farmer.
farmer(sam) :- no_of_cows_owned(sam, 1).

• [Conditional] If Sam owns more than five cows, then he is rich.
rich(sam) :- no_of_cows_owned(sam, Number), Number >5.

This explains the architectural choices in the earlier stages. Restricting the premises generated in Stage 1
to declarative and conditional forms allows a simpler and therefore more error-free translation into logical
form; using LLM constraining software in Stage 2 helps ensure the LLM adheres to Clingo’s strict syntax
rules.

Importantly, so long as the premises and ASP code are accurate, the final output is necessarily true due to the
deterministic nature of Clingo. This is unlike a traditional chain-of-thought (CoT) model (Wei et al., 2022),
where the final output is also generated by the LLM. A CoT model’s final output may not be consistent with
its premises. For example, suppose we ask: "Are all the elements plants need for photosynthesis present in
Mars’ atmosphere?" (derived from the StrategyQA dataset), the output may be as follows:

1. Plants need three elements for photosynthesis: Hydrogen, Oxygen, and Carbon.

2. The atmosphere of Mars is composed of carbon dioxide, nitrogen, argon, and trace levels of water
vapor, oxygen, carbon monoxide, hydrogen, and other noble gases.

3. Therefore, not all the elements plants need for photosynthesis are present in Mars’ atmosphere.

The conclusion does not follow from the premises, which is endemic to the lack of logical reasoning in
traditional chain-of-thought systems. By transferring the responsibility of logical reasoning to an ASP like
Clingo, this issue is completely eliminated.

4 Experimental Setup

We now benchmark LNN and LLM-SS against other methods with integrative and hybrid approaches re-
spectively, to test whether they are, in fact, best-in-class models.
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4.1 Logic Neural Network (LNN)

Our experiments for LNN aim to understand whether (i) the neurons are able to converge on the appropriate
logic gate, and (ii) its performance on existing benchmarks. Both objectives are empirically studied in
Experiments 1 and 2 respectively. This will help us understand the integrative approach’s pros and cons,
which we discuss in Section 6.1

Figure 4: Experiment 1: Model
Architecture of LNN and LGN

For Experiment 1, we create a simple synthetic dataset where the model
must identify the appropriate logic gate when provided with 4 unique sets
of neuron a and b values and their corresponding output. For example,
with reference to Table 1, when provided the outputs 0, 0, 0, 1 for their
corresponding a and b values, the model is expected to identify the A ∧ B
logic gate. We benchmark LNN against the state-of-the-art Logic Gate
Network (LGN) model (Petersen et al., 2022) based on (i) whether it
converges on the correct logic gate and (ii) how many iterations it takes.
Models like Logical Neural Networks and Logic Tensor Networks are ex-
cluded because they presuppose that the model already knows the logic
gates used before training. This condition does not hold for the aforemen-
tioned task, thus making it beyond these models’ existing capabilities.

The architecture of both models is shown in Figure 4. It is a single-layer model, containing just 1 neuron with
the respective formulas of LNN and LGN. When the neuron’s discretized version chooses the appropriate
logic gate, it is considered to have converged. As for hyperparameters, both models are trained with 1000
iterations, a learning rate of 0.01, and using the Adam optimizer (Kingma & Ba, 2015).

For Experiment 2, we utilize the Adult Census and Breast Cancer datasets (Asuncion et al., 2007), which
are classification tasks containing 48842 and 286 instances respectively. LNN is benchmarked against LGN
and a multi-layer perception (MLP). The model architecture and hyperparameters of LGN and MLP are
determined by the recommended settings in the original paper Petersen et al. (2022), which are as shown
in Table 2. Importantly, model sizes are kept roughly equivalent in the interest of fairness. All models are
trained up to 200 epochs at a batch size of 100. The MLPs are ReLU activated.

Model Space Layers Neurons per layer
Breast Cancer
Logic Neural Network 320B 5 128
Logic Gate Network 320B 5 128
Multi-Layer Perceptron 1.4KB 2 8
Adult
Logic Neural Network 640B 5 256
Logic Gate Network 640B 5 256
Multi-Layer Perceptron 15KB 2 32

Table 2: Model architecture and hyperparameters for LNN’s Experiment 2

4.2 LLM-Symbolic Solver (LLM-SS)

The task chosen is the StrategyQA dataset (Geva et al., 2021), where the model must infer the appropriate
premises based on the question and reason about those premises. Importantly, it prevents LLM-SS from
being biased towards any domain because the dataset may contain questions about any topic at all, including
anything from historical knowledge to chemistry. Fig. 5 shows how LLM-SS will answer the question "Was
Jackson Pollock trained by Leonardo da Vinci?". The model must first infer in stage 1 that the question
can be answered by the years in which they were alive, i.e. 1912-56 for Pollock and 1452-1519 for Da Vinci.
It must then reason that since these years do not overlap, one could not have trained the other. In order
to ensure that the conclusion follows from the premises, Stage 2 converts the premises above into Clingo
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Figure 5: Example response by LLM-SS to the question "Was Jackson Pollock trained by Leonardo da
Vinci?"

code, i.e. a logical form, which is then deterministically run on the Clingo program in Stage 3 to generate
the final answer. This benchmark fits our purpose because, beyond testing for general logical reasoning, it
also requires the advantages of traditional neural networks: (i) learning, storing, and retrieval of knowledge,
which is evaluated by whether models have the facts needed for the question from their training data, and
(ii) inductive reasoning, which is evaluated by whether models can select the relevant facts.

We compare LLM-SS to a traditional CoT model using (i) an LLM, (ii) an unconstrained LLM-SS, where
the constraining software in Stage 2 is removed, and (iii) Faithful-CoT. LLM-SS uses Llama2-7B (Touvron
et al., 2023) in Stage 1 and CodeQwen1.5-7B (Bai et al., 2023) in Stage 2; unconstrained LLM-SS and the
traditional CoT model uses Llama2-7B; Faithful-CoT uses GPT-4. Unconstrained LLM-SS combines Stages
1 and 2, since the insertion of natural language premises as code comments are done via the constraining
software, thus only one LLM is used. This aligns with the approach of Faithful-CoT. All models use Clingo
as their symbolic solver, except Faithful-CoT, which uses Prolog, an alternative logic programming language.
Few-shot prompts are executed with four examples only, besides Faithful-CoT, which uses six. We use fewer
examples because LLM-SS uses Llama2-7B, which has a smaller context length than GPT-4. This reduces
the probability of exceeding the maximum context length. As for metrics, other than accuracy, we also
measure the error rate, which is the percentage of questions with no answers generated. This happens when
the CoT model does not produce a "yes" or "no" answer, or when the ASP code has a syntax error.

5 Results

5.1 Logic Neural Network (LNN)

The results of Experiment 1 are shown in Table 3. LNN’s accuracy of 100% proves that Eq. 1 is able to
converge on the correct logic gate for all 16 options. Moreover, while LGN also achieves 100% accuracy, it
converges almost 3 times slower than LNN, suggesting the latter’s relaxation formula may be more optimal
for training.

Table 3: Results of Experiment 1
Accuracy Avg. Iterations Needed

Logic Gate Network 1.00 163.4
Logic Neural Network 1.00 63.9

As for Experiment 2, the results are shown in Table 4. LNN achieves the highest accuracy (78.6%) out
of the 3 models for the Breast Cancer dataset. The Adult Census, on the other hand, saw comparable
results for all models, with MLP being marginally better (84.9%) than the rest. These results suggest that
LNN outperforms LGN on smaller datasets due to the former’s stronger convergence abilities. However, as
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datasets increase in size, LGN starts to outperform LNN. While further research is required to understand
and optimize LNN’s performance and behaviors on larger problems, this is not necessary for our analysis in
Section 6.1 and therefore beyond the scope of our work.

Table 4: Results of Experiment 2
Breast Cancer Adult

Accuracy Space Accuracy Space
Logic Neural Network 0.786 320B 0.847 640B
Logic Gate Network 0.761 320B 0.848 640B
Multi-Layer Perceptron 0.753 1.4KB 0.849 15KB

5.2 LLM-Symbolic Solver (LLM-SS)

As shown in Table 5, LLM-SS has a significantly higher accuracy and lower error rate compared to its
unconstrained counterpart. It is evident that constraining LLM generation to enforce the syntax of Clingo
leads to fewer errors during code execution, thereby increasing LLM-SS’s accuracy. This is further highlighted
when benchmarked against Faithful-CoT, which suggests a smaller constrained model, e.g. Llama2-7B, can
perform comparably to a larger unconstrained model, e.g. GPT-4. However, LLM-SS still lags behind the
traditional CoT model in terms of accuracy.

Table 5: Results of LLM-SS experiment
Accuracy Error Rate (%)

CoT 60.6 0.6
Faithful-CoT 54.0 -
LLM-SS (Unconstrained) 48.5 17.8
LLM-SS 54.0 1.5

The main bottleneck of LLM-SS’s accuracy can be straightforwardly deduced. The process in which the
CoT model gathers facts is identical to Stage 1 of LLM-SS. Stage 3 of LLM-SS is a deterministic execution
of Clingo, so it cannot be blamed for any errors. Thus, Stages 1 and 3 cannot explain the gap in accuracy
between the two models. Thus, Stage 2 is the cause, specifically, the translation from natural language sen-
tences to code. McGinness & Baumgartner (2024) categorizes translation errors into syntactic and semantic
errors. Syntactic errors are defined as errors in the logical form that prevent parsing, while semantic errors
are defined as logical forms that falsely represent their corresponding sentence despite being parsable. Given
that the syntactic error rate for LLM-SS is 2.5%, it is evident that semantic errors are mostly responsible.
Semantic error manifests in several ways: First, the naming convention between premises is sometimes in-
consistent. For example, one premise may say "1519" while another may say "16th century", thus making
the use of math operators to compare between them impossible. Second, the code translation may also be
nonsensical, such as the usage of words and phrases that do not even appear in the premise.

6 Discussion

6.1 Comparison of Integrative & Hybrid Approaches

Is the integrative or hybrid approach more promising for developing general logical reasoning without sacri-
ficing the capabilities of existing LLMs? Given the strong performance of LNN and LLM-SS against state-of-
the-art models using either approach, they serve as case studies to answer the aforementioned question. We
compare the approaches using the following criteria: (i) ability to reason symbolically, (ii) interpretability of
reasoning chain, and (ii) retention of LLM abilities, i.e. whether the model can still preserve the advantages
of existing LLMs, such as memorization and generalization. Table 6 summarizes our analysis.
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Table 6: Comparison of integrative and hybrid approaches
Symbolic Reasoning Interpretability LLM Abilities

Integrative ✓ ∼ ✗

Hybrid ✓ ✓ ✓

Criteria 1: Symbolic Reasoning. LNN is able to logically reason, albeit in a limited fashion. Specifically,
it is restricted by the connections pre-formed between neurons of one layer to the next. Realistically, pre-
formed connections may not be the most accurate representation of a given logical argument; models should
be allowed to learn the most optimal connections. Gumbel-Max Equation Learner Networks (Chen, 2020)
uses Gumbel-Softmax to learn which outputs of the previous layer should be the input of the next layer.
However, each layer’s arithmetic operations are predefined. Since combining both flexible logical formulas
and flexible connections has not been achieved but appears plausible, we argue that the integrative approach
is capable of symbolic reasoning.

The hybrid approach, on the other hand, is capable of symbolic reasoning due to the use of symbolic programs.
While Stage 2 currently hinders reasoning due to its inadequate translation abilities, this can be addressed by
designing improved natural language-to-Clingo code translation models. For future development, inspiration
can be drawn from semantic parsing tasks like Abstract Meaning Representation (AMR) (Knight et al.,
2021), where a sentence’s meaning is parsed into a tree structure. Effective methods for AMR parsing
include structure-aware transition-based approaches with pre-trained language models (Zhou et al., 2021)
and model ensembling (Lee et al., 2022).

Criteria 2: Interpretability. Both approaches contain some degree of interpretability given their explicit
use of symbolic reasoning: the logic gates used by LNN and the Clingo code used by LLM-SS are readily
accessible. However, the former’s interpretability scales poorly. Consider the LNN implemented for the
Breast Cancer dataset which contains 5 × 128 = 640 neurons. While one can identify the logic gate of each
neuron, a human cannot interpret a line of reasoning containing 640 logic gates. Therefore, LNN is only
realistically interpretable when restricted to just a few logic gates. From a human perspective, as the number
of neurons increases, LNN’s reasoning ability becomes no different from a traditional neural network.

For the hybrid approach, Lyu et al. (2023) point out that while the Problem-Solving stage in Faithful-CoT,
which corresponds to Stage 3 in LLM-SS, is transparent and interpretable, the Translation Stage, which
corresponds to Stages 1 and 2 in LLM-SS, is still opaque. In other words, one cannot interpret how premises
and logical form translations are generated. However, we argue that this is not a fundamental issue. Consider
an analogy to the human brain: when humans make an argument, it is deemed logical so long as the premises
retrieved from memory lead to a conclusion. The criteria for an interpretable line of reasoning do not require
transparency into how our brain retrieved the premises in the first place. Similarly, for LLM-SS, Stages 1
and 2 do not necessarily need to be deterministic and interpretable for logical reasoning to occur.

Criteria 3: Retention of LLM Abilities. The Transformers architecture, with its maze of linear and
non-linear transformations, excels at inductive reasoning, and the learning, storage, and retrieval of knowl-
edge. To compete against existing LLMs in general logical reasoning, neurosymbolic models must retain the
above capabilities, otherwise they will be relegated to solving minute, small-scale problems. The integrative
approach replaces the Transformers architecture with a logic-based one, thereby entirely stripping the model
of its LLM capabilities. Moreover, attempting to attain the advantages of LLMs conflicts with the reasoning
capabilities of integrative models. For example, when LNN is scaled to hundreds or thousands of neurons,
it is no longer interpretable.

The hybrid approach, on the other hand, has no such issues. In LLM-SS, Stage 1 still uses a Transformer-
based architecture, i.e. Llama2-7B, thereby retaining the capabilities of existing LLMs, while Stage 3 uses
Clingo to perform symbolic reasoning. This separation of responsibilities allows LLM-SS to achieve the best
of both worlds.

To summarize, the hybrid approach is superior to the integrative approach with regard to interpretability
and retention of LLM abilities. We therefore posit that the hybrid approach is more promising for developing
general logical reasoning and we encourage further research in this direction.
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6.2 LLM-SS: A framework for hybrid approach

Importantly, the framework exemplified by LLM-SS in Fig. 3 is generalizable for future neurosymbolic
efforts. By segmenting LLM-SS into three distinct stages, it becomes a modular framework, where each
stage can be independently tested, updated, and improved. Specifically, the choice of models for each stage
is also flexible: alternative pre-trained LLMs like GPT-4 and Gemini 1.5 can be used in Stage 1, semantic
parsing models can be used in Stage 2, and alternative symbolic solvers like Datalog and Python can be used
in Stage 3.

Most neurosymbolic models are tailored to solve domain-specific tasks by using domain-specific knowledge
modules and manually translated logical forms. In contrast, LLM-SS is designed for general logical reasoning,
ensuring its viability across a variety of tasks, regardless of domain. To apply this framework to a new task,
only in-context learning is required as human input.

To improve this neurosymbolic framework for general logical reasoning, further exploration may include the
(i) optimization of prompts and choice of models, (ii) mitigation of semantic errors in Stage 2, (iii) use of
alternative logical forms in Stage 2 and 3, such as knowledge graphs (Pan et al., 2024), and (iv) evaluation
of LLM-SS’s effectiveness in other domain-agnostic tasks.

7 Conclusion

Our study finds that the hybrid approach to neurosymbolic AI is more promising than the integrative
approach for developing general logical reasoning without sacrificing the capabilities of existing LLMs. To
aid our analysis, we introduced the Logic Neural Network (LNN) and LLM-Symbolic Solver (LLM-SS) which
serve as case studies and representatives for the integrative and hybrid approaches respectively. Finally, to
support future research in neurosymbolic AI, we propose LLM-SS as a modular, model-agnostic, and domain-
agnostic framework.
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