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Abstract

Large Language Models (LLMs) have demonstrated proficiency in utilizing various
tools by coding, yet they face limitations in handling intricate logic and precise
control. In embodied tasks, high-level planning is amenable to direct coding, while
low-level actions often necessitate task-specific refinement, such as Reinforcement
Learning (RL). To seamlessly integrate both modalities, we introduce a two-level
hierarchical framework, RL-GPT, comprising a slow agent and a fast agent. The
slow agent analyzes actions suitable for coding, while the fast agent executes
coding tasks. This decomposition effectively focuses each agent on specific tasks,
proving highly efficient within our pipeline. Our approach outperforms traditional
RL methods and existing GPT agents, demonstrating superior efficiency. In the
Minecraft game, it possibly obtains diamonds within a single day on an RTX3090.
Additionally, it achieves good performance on designated MineDojo tasks.

1 Introduction

Building agents to master tasks in open-world environments has been a long-standing goal in AI
research [1–3]. The emergence of Large Language Models (LLMs) has revitalized this pursuit,
leveraging their expansive world knowledge and adept compositional reasoning capabilities [4–6].
LLMs agents showcase proficiency in utilizing computer tools [7, 8], navigating search engines [9, 10],
and even operating systems or applications [11, 12]. However, their performance remains constrained
in open-world embodied environments [1, 7], such as Minedojo [13]. Despite possessing “world
knowledge” akin to a human professor, LLMs fall short when pitted against a child in a video
game. The inherent limitation lies in LLMs’ adeptness at absorbing information but their inability to
practice skills within an environment. Proficiency in activities such as playing a video game demands
extensive practice, a facet not easily addressed by in-context learning, which exhibits a relatively
low upper bound [7, 4, 6]. Consequently, existing LLMs necessitate human intervention to define
low-level skills or tools.

Reinforcement Learning (RL), proven as an effective method for learning from interaction, holds
promise in facilitating LLMs to “practise”. One line of works grounds LLMs for open-world control
through RL fine-tuning [14–19]. Nevertheless, this approach necessitates a substantial volume of
domain-specific data, expert demonstrations, and access to LLMs’ parameters, rendering it slow and
resource-intensive in most scenarios. Given the modest learning efficiency, the majority of methods
continue to operate within the realm of “word games” such as tone adjustment rather than tackling
intricate embodied tasks.
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Figure 1: An overview of RL-GPT. After the
optimization in an environment, LLMs agents
obtain optimized coded actions, RL achieves
an optimized neural network, and our RL-GPT
gets both optimized coded actions and neural
networks. Our framework integrates the coding
parts and the learning parts.
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Figure 2: To learn a subtask, the LLM can gen-
erate environment configurations (task, observa-
tion, reward, and action space) to instantiate RL.
In particular, by reasoning about the agent be-
havior to solve the subtask, the LLM generates
code to provide higher-level actions in addition
to the original environment actions, improving
the sample efficiency for RL.

Addressing this challenge, we propose to integrate LLMs and RL in a novel approach: Empower
LLMs agents to use an RL training pipeline as a tool. To this end, we introduce RL-GPT, a
framework designed to enhance LLMs with trainable modules for learning interaction tasks within
an environment. As shown in Fig. 3, RL-GPT comprises an agent pipeline featuring multiple
LLMs, wherein the neural network is conceptualized as a tool designed for training the RL pipeline.
Illustrated in Fig. 1, unlike conventional approaches where LLMs agents and RL optimize coded
actions and networks separately, RL-GPT unifies this optimization process. The line chart in Fig. 1
illustrates that RL-GPT outperforms alternative approaches by seamlessly integrating both knowledge
iteration and skill practice.

We further point out that the pivotal issue in using RL is to decide: Which actions should be learned
with RL? To tackle this, RL-GPT is meticulously designed to assign different actions to RL and
Code-as-policy [20], respectively. Our agent pipeline entails two fundamental steps. Firstly, LLMs
should determine “which actions” to code, involving task decomposition into distinct sub-actions and
deciding which actions can be effectively coded. Actions falling outside this realm will be learned
through RL. Secondly, LLMs are tasked with writing accurate codes for the “coded actions” and test
them in the environment.

We employ a two-level hierarchical framework to realize the two steps, as depicted in Fig. 3.
Allocating these steps to two independent agents proves highly effective, as it narrows down the
scope of each LLM’s task. Coded actions with explicit starting conditions are executed sequentially,
while other coded actions are integrated into the RL action space. This strategic insertion into the
action space empowers LLMs to make pivotal decisions during the learning process. Illustrated in
Fig. 2, this integration enhances the efficiency of learning tasks, exemplified by our ability to more
effectively learn how to break a tree.

For intricate tasks such as the ObtainDiamond task in the Minecraft game, devising a strategy with
a single neural network proves challenging due to limited computing resources. In response, we
incorporate a task planner to facilitate task decomposition. Our RL-GPT framework demonstrates
remarkable efficiency in tackling complex embodied tasks. Specifically, within the MineDojo
environment, it attains good performance on the majority of selected tasks and adeptly locates
diamonds within a single day, utilizing only an RTX3090 GPU. Our contributions are summarized as
follows:

• Introduction of an LLMs agent utilizing an RL training pipeline as a tool.

• Development of a two-level hierarchical framework capable of determining which actions
in a task should be learned.

• Pioneering work as the first to incorporate high-level GPT-coded actions into the RL action
space.
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2 Related Works

2.1 Agents in Minecraft

Minecraft, a widely popular open-world sandbox game, stands as a formidable benchmark for
constructing efficient and generalized agents. Previous endeavors resort to hierarchical reinforcement
learning, often relying on human demonstrations to facilitate the training of low-level policies [21–23].
Efforts such as MineAgent [13], Steve-1 [24], and VPT [25] leverage large-scale pre-training via
YouTube videos to enhance policy training efficiency. However, MineAgent and Steve-1 are limited
to completing only a few short-term tasks, and VPT requires billions of RL steps for long-horizon
tasks. DreamerV3 [26] utilizes a world model to expedite exploration but still demands a substantial
number of interactions to acquire diamonds. These existing works either necessitate extensive expert
datasets for training or exhibit low sample efficiency when addressing long-horizon tasks.

An alternative research direction employs Large Language Models (LLMs) for task decomposition
and high-level planning to offload RL’s training burden using LLMs’ prior knowledge. Certain
works [27] leverage few-shot prompting with Codex [28] to generate executable policies. DEPS [29]
and GITM [30] investigate the use of LLMs as high-level planners in the Minecraft context. VOY-
AGER [1] and Jarvis-1 [31] explore LLMs for high-level planning, code generation, and lifelong
exploration. Other studies [32, 33] delve into grounding smaller language models for control with
domain-specific finetuning. Nevertheless, these methods often rely on manually designed controllers
or code interfaces, sidestepping the challenge of learning low-level policies.

Plan4MC [34] integrates LLM-based planning and RL-based policy learning but requires defining
and pre-training all the policies with manually specified environments. Our RL-GPT extends LLMs’
ability in low-level control by equipping it with RL, achieving automatic and efficient task learning.

2.2 LLMs Agents

Several works leverage LLMs to generate subgoals for robot planning [35, 36]. Inner Monologue [37]
incorporates environmental feedback into robot planning with LLMs. Code-as-Policies [20] and
ProgPrompt [38] directly utilize LLMs to formulate executable robot policies. VIMA [39] and
PaLM-E [2] involve fine-tuning pre-trained LLMs to support multimodal prompts. Chameleon [4]
effectively executes sub-task decomposition and generates sequential programs. ReAct [6] utilizes
chain-of-thought prompting to generate task-specific actions. AutoGPT [7] automates NLP tasks
by integrating reasoning and acting loops. DERA [40] introduces dialogues between GPT-4 [41]
agents. Generative Agents [42] simulate human behaviors by memorizing experiences. Creative
Agent [43] achieves creative building generation in Minecraft. Our paper equips LLMs with RL to
explore environments.

2.3 Integrating LLMs and RL

Since LLMs and RL possess complementary abilities in providing prior knowledge and exploring
unknown information, it is promising to integrate them for efficient task learning. Prior works include
using decision trees, finite state machines, DSL programs, and symbolic programs as policies [44–50].

Most work studies improve RL with the domain knowledge in LLMs. SayCan [35] and Plan4MC [34]
decompose and plan subtasks with LLMs, thereby RL can learn easier subtasks to solve the whole
task. Recent works [51–54] studies generating reward functions with LLMs to improve the sample
efficiency for RL. Some works [55–59] used LLMs to train RL agents. Other works [14, 15, 60,
61, 16, 17, 62] finetune LLMs with RL to acquire the lacked ability of LLMs in low-level control.
However, these approaches usually require a lot of samples and can harm the LLMs’ abilities in other
tasks. Our study is the first to overcome the inabilities of LLMs in low-level control by equipping
them with RL as a tool. The acquired knowledge is stored in context, thereby continually improving
the LLMs skills and maintaining its capability.

3 Methods

Our framework employs a decision-making process to determine whether an action should be executed
using code or RL. The RL-GPT incorporates three distinct components, each contributing to its
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Figure 3: Overview of RL-GPT. The overall framework consists of a slow agent (orange) and a
fast agent (green). The slow agent decomposes the task and determines “which actions” to learn.
The slow agent will improve the decision based on the high-level action feedbacks. The fast agent
writes code and RL configurations. The fast agent debugs the written code based on the environment
feedback (“Direct Code Implementation”). Correct codes will be inserted into the action space as
high-level actions (“RL Implementation”).
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Figure 4: The two-loop iteration. We design a method to optimize both slow agent and fast agent
with a critic agent.

innovative design: (1) a slow agent tasked with decomposing a given task into several sub-actions
and determining which actions can be directly coded, (2) a fast agent responsible for writing code
and instantiating RL configuration, and (3) an iteration mechanism that facilitates an iterative process
refining both the slow agent and the fast agent. This iterative process enhances the overall efficacy of
the RL-GPT across successive iterations. For complex long-horizon tasks requiring multiple neural
networks, we employ a GPT-4 as a planner to initially decompose the task.

As discussed in concurrent works [63, 64], segregating high-level planning and low-level actions
into distinct agents has proven to be beneficial. The dual-agent system effectively narrows down
the specific task of each agent, enabling optimization for specific targets. Moreover, Liang et al.
highlighted the Degeneration-of-Thought (DoT) problem, where an LLM becomes overly confident
in its responses and lacks the ability for self-correction through self-reflection. Empirical evidence
indicates that agents with different roles and perspectives can foster divergent thinking, mitigating
the DoT problem. External feedback from other agents guides the LLM, making it less susceptible to
DoT and promoting accurate reasoning.

3.1 RL Interface

As previously mentioned, we view the RL training pipeline as a tool accessible to LLMs agents, akin
to other tools with callable interfaces. Summarizing the interfaces of an RL training pipeline, we
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identify the following components: 1) Learning task; 2) Environment reset; 3) Observation space;
4) Action space; 5) Reward function. Specifically, our focus lies on studying interfaces 1) and 4) to
demonstrate the potential for decomposing RL and Code-as-policy.

In the case of the action space interface, we enable LLMs to design high-level actions and integrate
them into the action space. A dedicated token is allocated for this purpose, allowing the neural
network to learn when to utilize this action based on observations.

3.2 Slow Agent: Action Planning

We consider a task T that can feasibly be learned using our current computing resources (e.g., lab-
level GPUs). We employ a GPT-4 [41] as a slow agent AS . AS is tasked with decomposing T into
sub-actions αi, where i ∈ {0, ..., n}, determining if each αi in T can be directly addressed through
code implementation. This approach optimally allocates computational resources to address more
challenging sub-tasks using Reinforcement Learning techniques. Importantly, AS is not required to
perform any low-level coding tasks; it solely provides high-level textual instructions including the
detailed description and context for sub-actions αi. These instructions are then transmitted to the
fast agent AF for further processing. The iterative process of the slow agent involves systematically
probing the limits of coding capabilities.

For instance, in Fig. 3, consider the specific action of crafting a wooden pickaxe. Although AS

is aware that players need to harvest a log, writing code for this task with a high success rate can
be challenging. The limitation arises from the insufficient information available through APIs for
AS to accurately locate and navigate to a tree. To overcome this hurdle, an RL implementation
becomes necessary. RL aids AS in completing tasks by processing complex visual information and
interacting with the environment through trial and error. In contrast, straightforward actions like
crafting something with a table can be directly coded and executed.

It is crucial to instruct AS to identify sub-actions that are too challenging for rule-based code imple-
mentation. As shown in Table 6, the prompt for AS incorporates role description {role_description},
the given task T , reference documents, environment knowledge {minecraft_knowledge}, planning
heuristics {planning_tips}, and programming examples {programs}. To align AS with our goals, we
include the heuristic in the {planning_tips}. This heuristic encourages AS to further break down an
action when coding proves challenging. This incremental segmentation aids AS in discerning what
aspects can be coded. Further details are available in Appendix A.

3.3 Fast Agent: Code-as-Policy and RL

The fast agent AF is also implemented using GPT-4. The primary task is to translate the instructions
from the slow agent AS into Python codes for the sub-actions αi. AF undergoes a debug iteration
where it runs the generated sub-action code and endeavors to self-correct through feedback from the
environment. Sub-actions that can be addressed completely with code implementation are directly
executed, as depicted in the blue segments of Fig. 3. For challenging sub-actions lacking clear
starting conditions, the code is integrated into the RL implementation using the temporal abstraction
technique [65, 66], as illustrated in Fig. 2. This involves inserting the high-level action into the
RL action space, akin to the orange segments in Fig. 3. AF iteratively corrects itself based on the
feedback received from the environment.

3.4 Two-loop Iteration

In Fig. 4, we have devised a two-loop iteration to optimize the proposed two agents, namely the
fast agent AF and the slow agent AS . To facilitate it, a critic agent C is introduced, which could be
implemented using GPT-3.5 or GPT-4.

The optimization for the fast agent, as shown in Fig. 4, aligns with established methods for code-as-
policy agents. Here, the fast agent receives a sub-action, environment documents Denv (observation
and action space), and examples Ecode as input, generating Python code. It then iteratively refines
the code based on environmental feedback. The objective is to produce error-free Python-coded
sub-actions that align with the targets set by the slow agent. Feedback, which includes execution
errors and critiques from C, plays a crucial role in this process. C evaluates the coded action’s
success by considering observations before and after the action’s execution.
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Within Fig. 4, the iteration of the slow agent AS encompasses the aforementioned fast agent AF

iteration as a step. In each step of AS , AF must complete an iteration loop. Given a task T , Denv,
and Ecode, AS decomposes T into sub-actions αi and refines itself based on C’s outputs. The critic’s
output includes: (1) whether the action is successful, (2) why the action is successful or not, (3) how
to improve the action. Specifically, it receives a sequence of outputs Critici from C about each αi to
assess the effectiveness of action planning. If certain actions cannot be coded by the fast agent, the
slow agent adjusts the action planning accordingly.

3.5 Task Planner

Our primary pipeline is tailored for tasks that can be learned using a neural network within limited
computational resources. However, for intricate tasks such as ObtainDiamond, where it is more
effective to train multiple neural networks like DEPS [29] and Plan4MC [34], we introduce a task
planner reminiscent of DEPS, implemented using GPT-4. This task planner iteratively reasons what
needs to be learned and organizes sub-tasks for our RL-GPT to accomplish.

4 Experiments

4.1 Environment

MineDojo MineDojo [13] stands out as a pioneering framework developed within the renowned
Minecraft game, tailored specifically for research involving embodied agents. This innovative
framework comprises a simulation suite featuring thousands of tasks, blending both open-ended
challenges and those prompted by language. To validate the effectiveness of our approach, we selected
certain long-horizon tasks from MineDojo, mirroring the strategy employed in Plan4MC [34]. These
tasks include harvesting and crafting activities. For instance, Crafting one wooden pickaxe requires
the agent to harvest a log, craft planks, craft sticks, craft tables, and craft the pickaxe with the table.
Similarly, tasks like milking a cow involve the construction of a bucket, approaching the cow, and
using the bucket to obtain milk.

ObtainDiamond Challenge It represents a classic challenge for RL methods. The task of obtaining
a diamond demands the agent to complete the comprehensive process of harvesting a diamond
from the beginning. This constitutes a long-horizon task, involving actions such as harvesting logs,
harvesting stones, crafting items, digging to find iron, smelting iron, locating a diamond, and so on.

4.2 Implementation Details

LLM Prompt We choose GPT-4 as our LLMs API. For the slow agents and fast agents, we design
special templates, responding formats, and examples. We design some special prompts such as
“assume you are an experienced RL researcher that is designing the RL training job for Minecraft”.
Details can be found in the Appendix A. In addition, we encourage the slow agent to explore more
strategies because the RL task requires more exploring. We encourage the slow agent to further
decompose the action into sub-actions which may be easier to code.

PPO Details The training and evaluation are the same as Mineagent or other RL pipelines as
discussed in Appendix C. The difference is that our RL action space contains high-level coded actions
generated by LLMs. Our method doesn’t depend on any video pretraining. It can work with only
environment interaction. Similar to MineAgent [13], we employ Proximal Policy Optimization
(PPO) [67] as the RL baseline. This approach alternates between sampling data through interactions
with the environment and optimizing a "surrogate" objective function using stochastic gradient ascent.
PPO is constrained to a limited set of skills. When applying PPO with sparse rewards, specific tasks
such as “milk a cow" and “shear a sheep" present challenges due to the small size of the target object
relative to the scene, and the low probability of random encounters. To address this, we introduce
basic dense rewards to enhance learning efficacy in these tasks. It includes the CLIP [68] Reward,
which encourages the agent to exhibit behaviors that align with the prompt [13]. Additionally, we
incorporate a Distance Reward that provides dense reward signals to reach the target items [34]. It
costs 3K steps for harvesting a log referring to Table. 16. For the diamond task, the evaluation ends
when the diamond is found or the agent is dead. It will cost around 20K steps. The frame rate for the
game is 30 fps. Further details can be found in the appendix C.
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Table 1: Comparison of several tasks selected from the Minedojo benchmark. Our RL-GPT achieves
the highest success rate on all tasks. All values in our tables refer to the actual successful rate.

TASK

MINEAGENT 0.00 0.00 0.00 0.00 0.00 0.00 -- -- -- --
MINEAGENT

(AUTOCRAFT) 0.00 0.03 0.00 0.00 0.00 0.46 0.50 0.33 0.35 0.00

PLAN4MC 0.30 0.30 0.53 0.37 0.17 0.83 0.53 0.43 0.33 0.17
RL-GPT 0.65 0.65 0.67 0.67 0.64 0.85 0.56 0.46 0.38 0.32

Table 2: Main results in the challenging ObtainDiamond task in Minecraft. Existing strong
baselines in ObtainDiamond either require expert data (VPT, DEPS), hand-crafted policies (DEPS-
Oracle) for subtasks, or take huge number of environment steps to train (DreamerV3, VPT). Our
method can automatically decompose and learn subtasks with only a little human prior, achieving
ObtainDiamond with great sample efficiency.

METHOD TYPE SAMPLES SUCCESS

DREAMERV3 RL 100M 2%
VPT IL+RL 16.8B 20%
DEPS-BC IL+LLM -- 0.6%
DEPS-ORACLE LLM -- 60%
PLAN4MC RL+LLM 7M 0%
RL-GPT RL+LLM 3M 8%
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Figure 5: Demonstrations of how different agents learn to harvest a log. While both RL agent and
LLM agent learn a single type of solution (RL or code-as-policy), our RL-GPT can reasonably
decompose the task and correct how to learn each sub-action through the slow iteration process. RL-
GPT decomposes the task into “find a tree" and “cut a log", solving the former with code generation
and the latter with RL. After a few iterations, it learns to provide RL with a necessary high-level
action (attack 20 times) and completes the task with a high success rate. Best viewed by zooming in.

4.3 Main Results

MineDojo Benchmark Table 1 presents a comparative analysis between our RL-GPT and several
baselines on selected MineDojo tasks. Notably, RL-GPT achieves the highest success rate among all
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Table 3: Ablation on the RL and Code-as-policy com-
ponents and the iteration mechanism. RL-GPT outper-
forms its Pure RL and Pure Code counterparts. Given
more iterations, RL-GPT gets better results.

Method

Pure RL 0.00 0.00 0.00 0.00
Pure Code 0.13 0.02 0.00 0.00
Ours (Zero-shot) 0.26 0.53 0.79 0.32
Ours (Iter-2 w/o SP) 0.26 0.53 0.79 0.30
Ours (Iter-2) 0.56 0.67 0.88 0.30
Ours (Iter-3) 0.65 0.67 0.93 0.32

Table 4: Ablation on the agent structure.

Structure

One Agent 0.34 0.42
Slow + Fast 0.52 0.56
Slow + Fast + Critic 0.65 0.67

Table 5: Ablation on the RL interfaces.

Interface Success ↑ Dead Loop ↓
Reward 0.418 ≈0.6
Action 0.585 ≈0.3

baselines. All baselines underwent training with 10 million samples, and the checkpoint with the
highest success rate was chosen for testing.

MineAgent, as proposed in [13], combines PPO with CLIP Reward. However, naive PPO encounters
difficulties in learning long-horizon tasks, such as crafting a bucket and obtaining milk from a cow,
resulting in an almost 0% success rate for MineAgent across all tasks. Another baseline, MineAgent
with autocraft, as suggested in Plan4MC [34], incorporates crafting actions manually coded by
humans. This alternative baseline achieves a 46% success rate on the milking task, demonstrating
the importance of code-as-policy. Our approach demonstrates superiority in coding actions beyond
crafting, enabling us to achieve higher overall performance compared to these baselines.

Plan4MC [34] breaks down the problem into two essential components: acquiring fundamental
skills and planning based on these skills. While some skills are acquired through Reinforcement
Learning (RL), Plan4MC outperforms MineAgent due to its reliance on an oracle task decomposition
from the GPT planner. However, it cannot modify the action space of an RL training pipeline or
flexibly decompose sub-actions. It is restricted to only three types of human-designed coded actions.
Consequently, our method holds a distinct advantage in this context.

In tasks involving and , the agent is tasked with crafting a stick from scratch, necessitating the
harvesting of a log. Our RL-GPT adeptly codes three actions for this: 1) Navigate to find a tree; 2)
Attack 20 times; 3) Craft items. Notably, Action 2) can be seamlessly inserted into the action space.
In contrast, Plan4MC is limited to coding craft actions only. This key distinction contributes to our
method achieving higher scores in these tasks.

To arrive at the optimal code planning solution, RL-GPT undergoes a minimum of three iterations.
As illustrated in Fig. 5, in the initial iteration, RL-GPT attempts to code every action involved in
harvesting a log, yielding a 0% success rate. After the first iteration, it decides to code navigation,
aiming at the tree, and attacking 20 times. However, aiming at the tree proves too challenging for
LLMs. As mentioned before, the agent will be instructed to further decompose the actions and give up
difficult actions. By the third iteration, the agent correctly converges to the optimal solution—coding
navigation and attacking, while leaving the rest to RL, resulting in higher performance.

In tasks involving crafting a wooden pickaxe and crafting a bed , in addition to the previously
mentioned actions, the agent needs to utilize the crafting table. While Plan4MC must learn this
process, our method can directly code actions to place the crafting table on the ground, use it, and
recycle it. Code-as-policy contributes to our method achieving a higher success rate in these tasks.

In tasks involving crafting a furnace and a stone pickaxe , in addition to the previously mentioned
actions, the agent is further required to harvest stones. Plan4MC needs to learn an RL network to
acquire the skill of attacking stones. RL-GPT proposes two potential solutions for coding additional
actions. First, it can code to continuously attack a stone and insert this action into the action space.
Second, since LLMs understand that stones are underground, the agent might choose to dig deep for
several levels to obtain stones instead of navigating on the ground to find stones.

In crafting a milk bucket and crafting wool , the primary challenge is crafting a bucket or shears.
Since both RL-GPT and Plan4MC can code actions to craft without a crafting table, their performance
is comparable. Similarly, obtaining beef and obtaining mutton needs navigating.
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ObtainDiamond Challenge As shown in Tab. 2, we compare our method with existing competitive
methods on the challenging ObtainDiamond task.

DreamerV3 [26] leverages a world model to accelerate exploration but still requires a significant
number of interactions. Despite the considerable expense of over 100 million samples for learning, it
only achieves a 2% success rate on the Diamond task from scratch.

VPT [25] employs large-scale pre-training using YouTube videos to improve policy training efficiency.
This strong baseline is trained on 80 GPUs for 6 days, achieving a 20% success rate in obtaining a
diamond and a 2.5% success rate in crafting a diamond pickaxe.

DEPS [29] suggests generating training data using a combination of GPT and human handcrafted
code for planning and imitation learning. It attains a 0.6% success rate on this task. Moreover, an
oracle version, which directly executes human-written codes, achieves a 60% success rate.

Plan4MC [34] primarily focuses on crafting the stone pickaxe. Even with the inclusion of all
human-designed actions from DEPS, it requires more than 7 million samples for training.

Our RL-GPT attains an over 8% success rate in the ObtainDiamond challenge by generating Python
code and training a PPO RL neural network. Despite requiring some human-written code examples,
our approach uses considerably fewer than DEPS. The final coded actions involve navigating on the
ground, crafting items, digging to a specific level, and exploring the underground horizontally.

4.4 Ablation Study

Framework Structure In Tab. 4, we analyze the impact of the framework structure in RL-GPT,
specifically examining different task assignments for various agents. Assigning all tasks to a single
agent results in confusion due to the multitude of requirements, leading to a mere 34% success rate in
crafting a table. Additionally, comparing the 3rd and 4th rows emphasizes the crucial role of a critic
agent in our pipeline. Properly assigning tasks to the fast, slow, and critic agents can improve the
performance to 65%. Slow agent faces difficulty in independently judging the suitability of actions
based solely on environmental feedback and observation. Incorporating a critic agent facilitates more
informed decision-making, especially when dealing with complex, context-dependent information.

Two-loop Iteration In Tab. 3, we ablate the importance of our two-loop iteration. Our iteration
is to balance RL and code-as-policy to explore the bound of GPT’s coding ability. We can see that
pure RL and pure code-as-policy only achieve a low success rate on these chosen tasks. Our method
can improve the results although there is no iteration (zero-shot). In these three iterations, it shows
that the successful rate increases. It proves that the two-loop iteration is a reasonable optimization
choice. Qualitative results can be found in Fig. 5. Besides, we also compare the results with and
without special prompts (SP) to encourage the LLMs to further decompose actions when facing
coding difficulty. It shows that suitable prompts are also essential for optimization.

RL Interface Recent works [51, 52] explore the use of LLMs for RL reward design, presenting an
alternative approach to combining RL and code-as-policy. With slight modifications, our fast agent
can also generate code to design the reward function. However, as previously analyzed, reconstructing
the action space proves more efficient than designing the reward function, assuming LLMs understand
the necessary actions. Tab. 5 compares our method with the reward design approach. Our method
achieves a higher average success rate and lower dead loop ratio on our selected MineDojo tasks.

5 Conclusion

In conclusion, we propose RL-GPT, a novel approach that integrates Large Language Models (LLMs)
and Reinforcement Learning (RL) to empower LLMs agents in practicing tasks within complex,
embodied environments. Our two-level hierarchical framework divides the task into high-level
coding and low-level RL-based actions, leveraging the strengths of both approaches. RL-GPT
exhibits superior efficiency compared to traditional RL methods and existing GPT agents, achieving
remarkable performance in the challenging Minecraft environment.
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Appendix

A Agent Prompt Details

Prompt details of fast and slow agent including {role_description}, {planning_tips},{act_info},
and {obs_info} are listed in Table 8,9,10. We provide several human-written code blocks following
DEPS [29]. We list some codes in Table 11. These human-provided codes are for crafting tasks since
it is difficult for GPT-4 to write correct crafting actions. Our agent will not directly use these crafting
codes as API. It will writing code by itself based on these contexts. We also provide the critic agent’s
prompt details in Table 13. We have provided a comprehensive overview of helpful and unhelpful
low-level skills written by LLMs in Table 15 and Table 14. These examples showcase the range of
skills generated by LLMs, including those beneficial for task completion and others that are less
effective. The useful low-level skills identified will be integrated into the action space, as illustrated
in Fig. 2 of our paper. It’s important to note that unhelpful low-level skills typically fall into two
categories: (1) Wrong in details: Examples include actions like attacking a tree a limited number of
times or attempting to "use" an item ineffectively for a crafting task. (2) Too difficult actions: While
actions such as adjusting sight to the tree before an attack may be reasonable, they can be overly
complex to code and execute efficiently.

{role_description}

It is difficult to code all actions in this game.
We only want to code as many sub-actions as
possible. The task of you is to tell me which
sub-actions can be coded by you with Python.

At each round of conversation, I will give you
Task: T
Context: ...
Critique: The results of the generated codes
in the last round

Here are some actions coded by humans:
{programs}

You should then respond to me with
Explain (if applicable): Why these actions
can be coded by python? Are there any ac-
tions difficult to code?
Actions can be coded: List all actions that
can be coded by you.

Important Tips:
{planning_tips}

You should only respond in the format as
described below:

Explain: ...
Actions can be coded:
1) Action1: ...
2) Action2: ...
3) ...

Table 6: Slow Agent’s prompt: Decom-
pose a task into sub-actions.

{role_description}

Here are some basic actions coded by humans:
{programs_template}

Please inherit the class CodeAgent. You
are only required to overwrite the function
main_function.

Here are some reference examples written by
me:
{programs_example}

Here are the attributes of the obs that can be
used:
{obs_info}

Here are the guidelines of the act variable:
{act_info}

At each round of conversation, I will give you
Task: ...
Context: ...
Code from the last round: ...
Execution error: ...
Critique: ...

You should then respond to me with
Explain (if applicable): Can the code complete
the given action? What does the chat log and
execution error imply?

You should only respond in the format as de-
scribed below:
{code_format}

Table 7: Fast Agent’s prompt: Write
Python codes.
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{role_description}:
You are playing the game Minecraft. Assume you are a Python programmer. You want to write python
code to complete some parts of this game.

{planning_tips}:
1) If it is unsuccessful to code one action in the last round, it means the action is too difficult for coding.
2) If one action in the last round is too difficult to code, try to further subdivide the action. For example,
if "attacking the tree 20 times" is difficult, try "simply attacking 20 times".
3) Please refer to the additional knowledge about Minecraft. It is very useful.

Table 8: Slow Agent’s prompt details

{role_description}:
We want to write python code to complete some actions in Minecraft. You are a helpful assistant that
helps to write the code for the given action tasks.

{act_info}:
We design a compound action space. At each step the agent chooses one movement action (forward,
backward, camera actions, etc.) and one optional functional action (attack, use, craft, etc.). Some
functional actions such as craft take one argument, while others like attack does not take any argument.
This compound action space can be modelled in an autoregressive manner.

Technically, our action space is a multi-discrete space containing eight dimensions:
>>> env.action_space
MultiDiscrete([3, 3, 4, 25, 25, 8, 244, 36])

Index 0; Forward and backward; 0: noop, 1: forward, 2: back
Index 1; Move left and right; 0: noop, 1: move left, 2: move right
Index 2; Jump, sneak, and sprint; 0: noop, 1: jump, 2: sneak, 3:sprint
Index 3; Camera delta pitch; 0: -180 degree, 24: 180 degree
Index 4; Camera delta yaw; 0: -180 degree, 24: 180 degree
Index 5; Functional actions; 0: noop, 1: use, 2: drop, 3: attack, 4: craft, 5: equip, 6: place, 7: destroy
Index 6; Argument for “craft”; All possible items to be crafted
Index 7; Argument for “equip”, “place”, and “destroy”; Inventory slot indice

Table 9: Fast Agent’s prompt details

15



obs["rgb"]:
RGB frames provide an egocentric view of the running Minecraft client that is the same as human players
see.
Data type: numpy.uint8
Shape: (3, H, W), height and width are specified by argument image_size

obs["inventory"]["name"]:
Names of inventory items in natural language, such as “obsidian” and “cooked beef”.
Data type: str
Shape: (36,)

We also provide voxels observation (3x3x3 surrounding blocks around the agent). This type of observa-
tion is similar to how human players perceive their surrounding blocks. It includes names and properties
of blocks.

obs["voxels"]["block_name"]:
Names of surrounding blocks in natural language, such as “dirt”, “air”, and “water”.
Data type: str
Shape: (3, 3, 3)

obs["location_stats"]["pos"]:
The xyz position of the agent.
Data type: numpy.float32
Shape: (3,)

obs["location_stats"]["yaw"] and obs["location_stats"]["pitch"]:
Yaw and pitch of the agent.
Data type: numpy.float32
Shape: (1,)

obs["location_stats"]["biome_id"]:
Biome ID of the terrain the agent currently occupies.
Data type: numpy.int64
Shape: (1,)

Lidar observations are grouped under obs["rays"]. It includes three parts: information about traced
entities, properties of traced blocks, and directions of lidar rays themselves.

obs["rays"]["entity_name"]:
Names of traced entities.
Data type: str
Shape: (num_rays,)

obs["rays"]["entity_distance"]:
Distances to traced entities.
Data type: numpy.float32
Shape: (num_rays,)

Properties of traced blocks include blocks’ names and distances from the agent.

obs["rays"]["block_name"]:
Names of traced blocks in natural language in the fan-shaped area ahead of the agent, such as “dirt”,
“air”, and “water”.
Data type: str
Shape: (num_rays,)

obs["rays"]["block_distance"]:
Distances to traced blocks in the fan-shaped area ahead of the agent.
Data type: numpy.float32
Shape: (num_rays,)

Table 10: Observation information {obs_info} of Fast Agent
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# look to a specific direction
def look_to(self, deg = 0):

#accquire info
obs, reward, done, info = self.accquire_info()
obs_ = self.env.obs_
while obs["location_stats"]["pitch"] < deg:

act = self.env.action_space.no_op()
act[3] = 13
act[5] = 3
yield act
obs, reward, done, info = self.accquire_info()

while obs["location_stats"]["pitch"] > deg:
act = self.env.action_space.no_op()
act[3] = 11
act[5] = 3
yield act
obs, reward, done, info = self.accquire_info()

# place the item in the hands
def place(self, goal):

slot = self.index_slot(goal)
if slot == -1:

return False

act = self.env.action_space.no_op()
act[2] = 1
act[5] = 6
act[7] = slot
yield act

# place the table in the hands and use it
def place_down(self, goal):

if self.index_slot(goal) == -1:
return None

for act in chain(
self.look_to(deg=83),
self.attack(2),
self.place(goal),

):
yield act

# recycle the table after using it
def recycle(self, goal, times = 20):

for i in range(times):
act = self.env.action_space.no_op()
act[5] = 3
obs, reward, done, info = self.env.step(act)
if any([item[’name’] == goal for item in info[’inventory’]]):

break

yield self.env.action_space.no_op()
for act in chain( self.look_to(0), self.take_forward(3), ):

yield act

Table 11: Human-written code examples for crafting actions. (Continued in Table 12)
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# directly craft something without a crafting table
def craft_wo_table(self, goal):

act = self.env.action_space.no_op()
act[5] = 4
act[6] = self.craft_smelt_items.index(goal)
print(goal, self.craft_smelt_items.index(goal))
yield act

# craft something with a crafting table
def craft_w_table(self, goal):

#print(’here’, self.index_slot(’crafting_table’))
if self.index_slot(’crafting_table’) == -1:

return None

for act in chain(
self.place_down(’crafting_table’),
self.craft_wo_table(goal),
self.recycle(’crafting_table’, 200),

):
print(f"goal: act")
yield act

# smelt something with a furnace
def smelt_w_furnace(self, goal):

#print(’Here’, self.index_slot(’furnace’))
if self.index_slot(’furnace’) == -1:

return None

for act in chain(
self.place_down(’furnace’),
self.craft_wo_table(goal),
self.recycle(’furnace’, 200),

):
yield act

# directly smelt something without a furnace
def smelt_wo_furnace(self, goal):

for act in self.craft_wo_table(goal):
yield act

Table 12: Human-written code examples for crafting actions.
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We want to write python code to complete some actions in Minecraft.
You are an assistant that assesses whether the coded actions are effective. Can the code complete the
target action?
You need to analyze why the code is successful or not. Please give detailed reasoning and critique.

I will give you the following information:

To code the action: The action we want to code.
Context for the action: The context of the coded action.
Code: The code written by gpt to complete the action.

Observations before running the coded action:
Inventory Name: Names of inventory items in natural languages, such as “obsidian” and “cooked beef”.
Inventory Quantity
Blocks in lidar rays: Names of traced blocks.
Entities in lidar rays: Names of traced entities.
Around blocks: Names of surrounding blocks in natural language, such as “dirt”, “air”, and “water”.

Observations after running the coded action:
Inventory Name
Inventory Quantity
Blocks in lidar rays
Entities in lidar rays
Around blocks

You should only respond in JSON format as described below:
{
"reasoning": "reasoning",
"success": boolean,
"critique": "critique",
}

Table 13: Critic Agent’s prompt details

# unuseful skills
# continuously attacking 10 times (not enough to break a log)
for act in chain(

self.attack(10),
):

yield act

# "use" instead of "craft"
act[5] = 3
act[6] = self.craft_smelt_items.index(goal)

# look at the tree (difficult to succeed)
while not self.target_in_sight(obs, ’wood’, max_dis=5):

act[3] = 13
act[5] = 3
yield act

# look at the tree and attack (the tree may not be in the front)
for act in chain(

self.look_to_front,
self.attack,

):
yield act

Table 14: Unuseful low-level skills designed by the LLMs
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# useful skills

# continuously attacking 20 times
def attack(self, times = 20):

for i in range(times):
act[5] = 3
yield act

for act in chain(
self.attack(20),

):
yield act

# craft an item
act[5] = 4
act[6] = self.craft_smelt_items.index(goal)

# look to the front
while obs["location_stats"]["pitch"] < 50:

act[3] = 13
act[5] = 3
yield act

while obs["location_stats"]["pitch"] > 50:
act[3] = 11
act[5] = 3
yield act

# move forward
for i in range(10):

act[0] = 1
yield act

# navigate to find a cow
if random.randint(0, 20) == 0:

act[4] = 1
if random.randint(0, 20) == 0:

act[0] = 1
for act in chain(

self.look_to_front,
self.forward,
self.attack,

):
yield act

# place the crafting table
slot = self.index_slot(’crafting_table’)
act[2] = 1
act[5] = 6
act[7] = slot
yield act

# mine deep to a depth
if self.env.obs["location_stats"]["pos"][1] > depth:

if self.env.obs["location_stats"]["pitch"] < 80:
act[3] = 13
yield act

else:
act[5] = 3
yield act

Table 15: Useful low-level skills designed by the LLMs.
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B Algorithms

Algorithm 1 RL-GPT’s Two-loop Iteration

Input: Task T , Slow agent AS , Fast agent AF , Critic agent C, Prompt for slow agent PS , Prompt
for fast agent PF . Critici = None
repeat
α0, ..., αn = AS(T , PS)
for i = 0 to n do

repeat
Code = AF (αi, PF , Critici)
act_space = rl_config(Code)
Obsi = rl_training(act_space)
Critici = CF (rl_config, code, Obsi)

until no bug
end for
PS = PS + Critic0 + ... + Criticn

until T is complete

Actions deemed unsuitable for coding are not included in α0, ..., αn, ensuring they are learned
naturally through RL neural networks during training.

C Details in PPO

CLIP reward. The reward incentivizes the agent to generate behaviors aligned with the task
prompt. 31 task prompts are selected from the entire set of MineDojo programmatic tasks as negative
samples. Utilizing the pre-trained MineCLIP model [13], we calculate the similarities between
the features extracted from the past 16 frames and the prompts. The probability is then computed,
indicating the likelihood that the frames exhibit the highest similarity to the given task prompt:
p = [softmax (S (fv, fl) , {S (fv, fl−)}l−)]0, where fv, fl are video features and prompt features, l
is the task prompt, and l− are negative prompts. The CLIP reward is:

rCLIP = max

{
p− 1

32
, 0

}
. (1)

Distance reward. The distance reward offers dense reward signals for reaching target items. In
combat tasks, the agent receives a distance reward when the current distance is closer than the
minimum distance observed in history:

rdistance = max

{
min
t′<t

dt′ − dt, 0

}
. (2)

For mining tasks, where the agent needs to remain close to the block for several time steps, we adapt
the distance reward to promote maintaining a small distance:

rdistance =


dt−1 − dt, 1.5 ≤ dt ≤ +∞
2, dt < 1.5

−2, dt = +∞,

(3)

where dt is the distance between the agent and the target item at time step t, detected through lidar
rays in the simulator.

D Other Environments

The powerful zero-shot capability of GPT serves as a guarantee of its generalization ability. It also
represents an advantage of RL-GPT over pure RL methods. Our method mainly works in complex
environments with both high-level planning and low-level controlling, like the real world. In robotic
tasks requiring long-horizon planning and motor execution, RL-GPT is a promising framework to
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Table 16: Settings for MineDojo tasks in our paper.
Task Icon Target Name Initial Tools Biome Max Steps

stick -- plains 3000
crafting_table_

nearby -- plains 3000

wooden_pickaxe -- forest 3000
furnace_nearby *10 hills 5000
stone_pickaxe forest_hills 10000
milk_bucket , *3 plains 3000

wool , *2 plains 3000
beef plains 3000

mutton plains 3000
bed , plains 10000

Table 17: OpenAI tokens it takes to ”speed up” RL.
ITER-1 ITER-2 ITER-3

TOKENS 10K 15K 16K

decompose tasks and learn subtasks with different solutions autonomously. Subtasks requiring simple
locomotion skills, such as navigation and reaching, might be easily acquired with code-as-policy
via motion planning. Nevertheless, there are other complex skills, such as object manipulation,
which necessitate using RL tools to address. In Fig. 6, we present a qualitative demonstration in the
Furniture environment [69]. The motion planning action effectively aids in hole-finding tasks during
table assembly, highlighting the practical utility of our approach in complex assembly scenarios.
Fig. 7 illustrates the RL training process in the Kitchen environment [70]. The vertical axis represents
the success rate, and the horizontal axis represents the number of training steps. Inserting coded
motion planning into the action space accelerates learning. Our method learns faster compared to the
baseline. In Fig. 8, we present a qualitative demonstration of the Furniture environment [69]. The
motion planning action effectively aids in hole-finding tasks during table and chair assembly. The
baseline struggles to find the correct location at the same training step. Modifications are needed for
different domains, such as adjusting the task descriptions in the prompts. The powerful zero-shot
capability of GPT should ensure generalization ability.

E Other Details

We count the average tokens on different tasks for the first 3 iterations in Tab. 17. Works like Voyager
only consider high-level planning, using human-coded skill libraries to bypass the need for low-level
control. Our method considers both high-level planning and low-level actions, directly facing the
Minedojo action space. To acquire low-level policies autonomously, RL is necessary. We visualize
these in Tab. 18. We show the comparison on the ”harvest a log” task in Tab. 19. The performance of
Claude is similar to GPT-4. Vicuna-13b has lower performance due to its poor coding ability. VLMs
can function as more effective critic agents in our framework. While LLMs can only indicate whether
the agent succeeded with its coded actions, VLMs can explain why it failed in the environment.
As shown in Fig. 9, GPT-4V provides more detailed feedback across different environments. For
example, in Minecraft, it can identify that the agent keeps attacking the ground instead of finding the
cow. In the driving simulation environment, it can note that the vehicle is gradually drifting off the
road. This feedback can be used by both our fast and slow agents for self-improvement.
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Table 18: High-level comparison among different methods.

METHOD LONG-HORIZON TASK LOW-LEVEL CONTROL SAMPLE-EFFICIENCY SELF-IMPROVEMENT

MINEAGENT % ! % %

VPT ! ! % %

DEPS ! % ! %

VOYAGER ! % ! !

RL-GPT ! ! ! !

Table 19: Comparison among different LLMs.
LLMS SUCCESS RATE DEAD LOOP

VICUNA-13B 0.36 0.8
CLAUDE 0.64 0.3
GPT-4 0.65 0.3

Figure 6: Qualitative results on Furniture. Using motion planning as an action can help the robot arm
find the hole more efficiently.

F Limitations

This framework relies on the LLMs being able to initialize the environment and code reasonable
actions. As a result, the upper bound of our method is limited by LLMs’ ability. LLMs may exhibit
limited out-of-sample generalization capabilities, meaning they may struggle to generalize on unseen
data. This implies that in real-world applications, models may exhibit unpredictable or unstable
behavior under unknown circumstances, posing challenges to system security. This is particularly
critical in domains requiring high reliability and stability, such as autonomous driving or medical
devices. Besides, due to the expense of GPT, experiments are completed with fewer random seeds.

G Broader Impact

The integration of RL-GPT in real-world interactions presents exciting opportunities but also raises
security concerns. While RL-GPT facilitates seamless collaboration between agents and humans,
enabling efficient task execution and adaptive responses, its reliance on large-scale language models
introduces vulnerabilities. These vulnerabilities include susceptibility to adversarial attacks, where
malicious inputs can manipulate the model’s behavior, potentially leading to unintended actions or
compromised system integrity. Privacy and security protection are crucial issues when using LLMs
for natural language processing. LLMs may handle vast amounts of personal data and sensitive
information during training and deployment, necessitating stringent privacy protection measures to
prevent data breaches or misuse, thereby safeguarding user privacy and security.
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Figure 7: The training curves in the Kitchen
environment. Integrating coded motion planning
and RL accelerates learning. RL-GPT learns
faster compared to the RL baseline.
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Figure 10: MuJoCo example. GPT-4 can code an action to reverse the car and then move it forward.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the abstract and introduction, we clearly state the claims made, including
the contributions made in the paper and important assumptions and limitations.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the work in Section F of the appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA] .
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Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes] .
Justification: We provide sufficient details to reproduce the prompt engineering in Section A
and model training results in Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

26



Answer: [No]

Justification: We will release all the code upon acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide experimental details in Section 4 of the main paper and Section A
of the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Error bars are not reported because it would be too computationally expensive.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide computational cost in Section 4 of the main paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes] .

Justification: We discussed the broader impacts of this work in Section G of the appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We use the openai API to do research.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We follow the license for each asset and cite all the original papers that
contribute to our paper. We will also give credits to the used code and follow the license,
copyright information, and terms of use in our released code.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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