

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 v1: LEARNING TO POINT VISUAL TOKENS FOR MULTIMODAL GROUNDED REASONING

Anonymous authors

Paper under double-blind review

ABSTRACT

When thinking with images, humans rarely rely on a single glance: they revisit visual information repeatedly during reasoning. However, existing models typically process images only once and thereafter generate reasoning entirely in text, lacking mechanisms to re-access or ground inference in visual representations. We empirically confirm this: as reasoning chains lengthen, models progressively lose focus on relevant regions. In response, we introduce **v1**, a lightweight extension that enables active visual referencing through a simple point-and-copy approach. This allows the model to identify relevant image patches and copy their embeddings back into the reasoning stream, ensuring that evolving hypotheses remain grounded in perceptual evidence. Crucially, our pointing strategy lets the MLLM directly select image patches using their semantic representations as keys, keeping perceptual evidence embedded in the same space as the model’s reasoning. To train this capability, we construct **v1g**, a dataset of 300K multimodal reasoning traces with interleaved visual grounding annotations. Across various multimodal mathematical reasoning benchmarks, **v1** consistently outperforms comparable baselines, establishing point-and-copy as a practical mechanism for grounded reasoning. We will release the model checkpoint and data.

1 INTRODUCTION

When reasoning with images, people rarely rely on a single glance. A student solving a geometry problem may repeatedly consult the diagram, checking angles, points of tangency, or symmetries while refining their inferences. Findings from cognitive science support this intuition: humans often revisit visual information to uncover new details, adjust interpretations, or externalize reasoning through sketching (Cox, 1999; Brun et al., 2016; Chu et al., 2017; Kozhevnikov et al., 2002).

Recent progress in Multimodal Large Language Models (MLLMs) (Liu et al., 2023a; Bai et al., 2025; Chen et al., 2025) has extended language models with the ability to process images alongside text. Further, MLLMs are finetuned for multimodal reasoning (Xu et al., 2025; Yao et al., 2024; Sun et al., 2025; Huang et al., 2025), where models must integrate visual and textual information through multi-step inference rather than direct recognition or description. A primary example is multimodal mathematics (Lu et al., 2024; Zhang et al., 2024a; Wang et al., 2024a), which requires explicit multi-step reasoning over visual and textual information and provides unambiguous solutions.

However, current MLLMs process images only once at the start and, due to causal masking, thereafter reason mainly over the frozen key-value cache of visual embeddings. This limits their ability to actively revisit visual context as inference unfolds. In practice, this constraint manifests as two forms of *visual grounding decay*. First, attention to all image tokens steadily weakens as reasoning chains extend. Second, even the relative weight on relevant tokens declines, reducing the model’s ability to focus on the most informative regions (section 3). These effects highlight the need for mechanisms that let models actively re-access visual information to keep reasoning grounded in the input.

To this end, we propose **v1**, a simple yet effective extension that equips MLLMs with a *point-and-copy* mechanism for dynamically referencing input visual tokens during multimodal reasoning (fig. 1). Specifically, we augment the model with an additional pointing head that outputs a probability distribution over the input image token positions, alongside the standard vocabulary logits. When an image token is selected, its embedding is copied and injected as the next-step input embedding, enabling the model to dynamically retrieve and reuse visual information during generation.

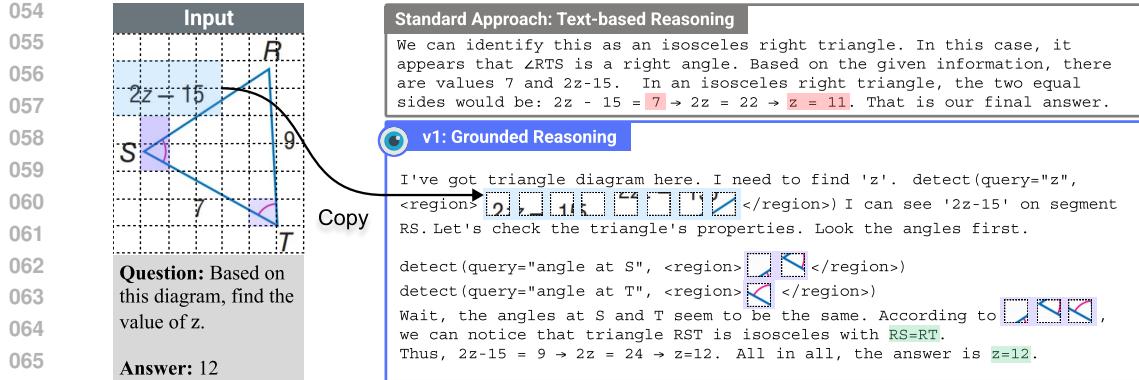


Figure 1: **Pure text-based reasoning vs. v1 during inference.** Our **v1** can actively re-access visual context by pointing to and copying relevant image regions throughout the reasoning process.

Our approach is readily compatible with popular MLLM architectures (Liu et al., 2023a; Wang et al., 2024c; Chen et al., 2025) that operate on continuous image embeddings. Unlike methods that attempt to generate new image tokens (Team, 2024), which are often computationally intensive and prone to instability, our method simply reuses existing input embeddings through pointing and copying. The only additional parameters are lightweight linear heads, incurring minimal computational overhead.

To train **v1**, we construct **v1g**, a dataset of 300K multimodal reasoning paths with interleaved grounding annotations, where each reasoning step is explicitly linked to a corresponding image region. The construction pipeline comprises three stages: (1) oversampling diverse reasoning traces from an MLLM, (2) extracting visual queries and retrieval steps from the traces using an LLM-guided decomposition process, and (3) grounding each visual reference by associating it with a bounding box in the input image. The pipeline is fully automated, leveraging the generative and interpretive capabilities of LLMs to produce high-quality, grounded reasoning trajectories at scale.

We evaluate **v1** on three established multimodal mathematical reasoning benchmarks: MathVista (Lu et al., 2024), MathVision (Wang et al., 2024b), and MathVerse (Zhang et al., 2024a), following prior work (Yao et al., 2024; Sun et al., 2025; Huang et al., 2025). **v1** demonstrates strong performance across all benchmarks, outperforming existing models of comparable scale and approaching the capabilities of much larger models, particularly on tasks requiring precise visual grounding and iterative reference to localized regions. These results suggest that dynamic access of visual input at inference time can improve multimodal reasoning capabilities.

Our contributions are:

- **v1 model:** a lightweight MLLM extension that mitigates visual grounding decay through a novel point-and-copy mechanism, enabling dynamic visual reference.
- **v1g dataset:** a large-scale training set with 300K multimodal reasoning traces and fine-grained visual grounding.
- **Empirical findings:** extensive experiments and ablations on multimodal mathematical reasoning benchmarks, showing that dynamic visual reference and the point-and-copy design both mitigate visual grounding decay and lead to better multimodal reasoning.

2 RELATED WORK

2.1 REASONING IN LARGE LANGUAGE MODELS

Reasoning in text-only large language models. The introduction of OpenAI’s o1 model (Jaech et al., 2024) marked a breakthrough in LLM reasoning, achieving unprecedented performance on mathematical benchmarks (Lightman et al., 2023; Cobbe et al., 2021). This success sparked widespread efforts to reproduce and enhance these capabilities, with DeepSeek-R1 (Guo et al., 2025) demonstrating how reinforcement learning can promote reflective Chain-of-Thought behaviors, and subsequent work exploring inference-time scaling to encourage deeper reasoning (Muennighoff et al.,

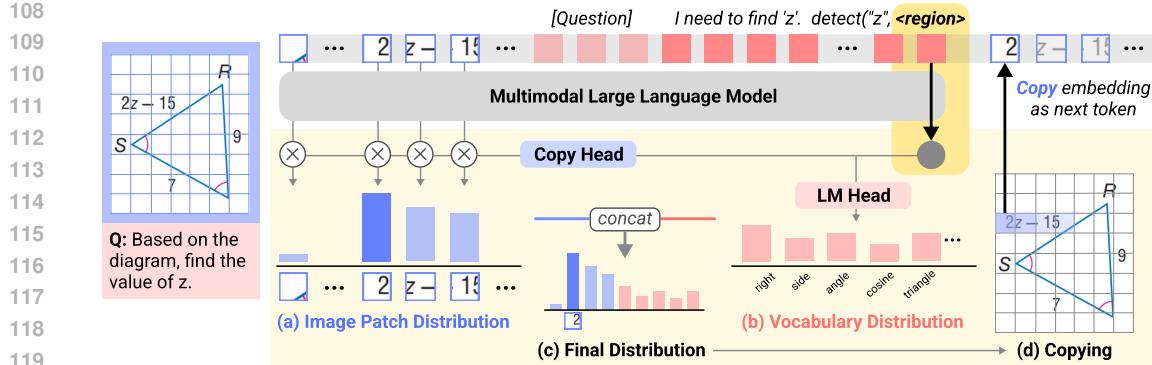


Figure 2: **Inference process of v1.** At each step, the MLLM encodes the multimodal context and generation history into token representations. For the last token (e.g., "<region>"), (a) a copy head projects its representation and computes logits against image patch embeddings, (b) a language head produces logits over the vocabulary, and (c) the two are concatenated to form the final distribution. If a patch is chosen, its embedding is copied as the next token input, enabling v1 to reference image regions one patch at a time.

2025). While these advances have transformed text-based reasoning, extending such capabilities to multimodal settings introduces new challenges.

Reasoning in multimodal large language models. Multimodal reasoning poses challenges beyond text-only inference, demanding both raw perception and the integration of visual inputs into reasoning. Prior approaches (Liu et al., 2023a; Chen et al., 2024; Zhang et al., 2024b; Yang et al., 2023) often convert visual content into descriptive text for downstream reasoning. More recently, inspired by Chain-of-Thought prompting in LLMs, models such as LLaVA-CoT (Xu et al., 2025), Mulberry (Yao et al., 2024), Vision-R1 (Huang et al., 2025), TVC (Sun et al., 2025), OpenVLThinker (Deng et al., 2025), and MM-Eureka (Meng et al., 2025), among others (Zhang et al., 2024b; Wu et al., 2025; Wang et al., 2025), extend CoT reasoning to multimodal tasks and achieve strong results on benchmarks such as MathVista (Lu et al., 2024) and MathVision (Wang et al., 2024b). However, these models treat the image context as fixed input and then carry out reasoning entirely in the text space, without an explicit mechanism to re-access or ground their reasoning in visual representations.

2.2 IMPLEMENTING VISUAL REFERENCE

Humans reason with images by actively engaging with specific regions, often revisiting or sketching them to support problem-solving (Cox, 1999; Brun et al., 2016; Chu et al., 2017; Kozhevnikov et al., 2002). Likewise, MLLMs should support step-wise interaction with visual inputs; either by referencing regions (Gupta & Kembhavi, 2023; Hu et al., 2024) or generating intermediate visuals (Borazjanizadeh et al., 2025). We briefly review prior approaches to this challenge.

Coordinates. Some MLLMs are trained to output bounding boxes to refer to relevant image regions (Gupta & Kembhavi, 2023; Wu & Xie, 2023). While effective in constrained settings, this approach resembles a "call-by-key" mechanism—accessing visual content via position. It depends on accurate detection and fails in cases where relevant visual cues are abstract or not spatially localized.

Image generation. Other methods (Li et al., 2025; Borazjanizadeh et al., 2025; Ma et al., 2025) allow models to externalize reasoning by rendering intermediate visual states or generating new images. While expressive, these approaches are limited to programmatic rendering or require full generative pipelines, which add significant computational overhead. Furthermore, bridging discrete image tokens (e.g. VQ-VAE (Van Den Oord et al., 2017)) with continuous vision-language embeddings introduces representational mismatch, complicating integration.

Pointing. We build on the Pointer-Generator Network (PGN) (See et al., 2017), originally developed for selective text copying, and extend it to the multimodal setting. Our method allows MLLMs to

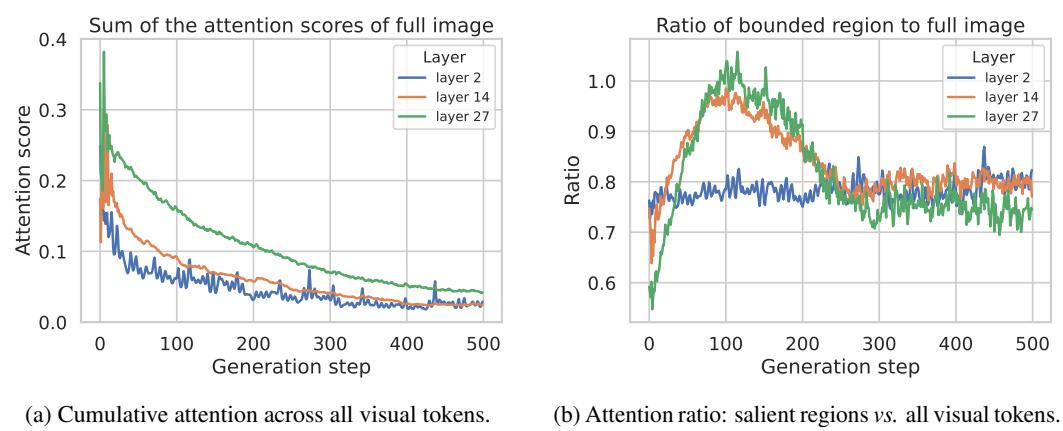
(a) Cumulative attention across all visual tokens. (b) Attention ratio: salient regions *vs.* all visual tokens.

Figure 3: **Attention dynamics during reasoning.** (a) illustrates a gradual decrease in overall attention to the input image tokens, while (b) indicates that semantically important visual regions receive disproportionately low attention, suggesting inefficient grounding during reasoning.

dynamically point to and reuse image embeddings during generation, enabling direct and interpretable visual re-access without coordinate prediction or image synthesis.

3 VISUAL GROUNDING DECAYS DURING REASONING

To examine how visual attention evolves at each generation step, we use RefCOCO (Kazemzadeh et al., 2014), a visual grounding benchmark in which each example consists of an image and a target region defined by a bounding box. The task requires generating a caption that uniquely identifies this region, offering a natural probe for whether a model attends to the correct visual context. Though RefCOCO generally involves shorter generations than mathematical reasoning, it provides a controlled setting to measure attention dynamics with ground-truth visual regions. We analyze the TVC-7B model (Sun et al., 2025) on the RefCOCO testA split, focusing on attention weights between the most recently generated token and all image tokens. Layers 2, 14, and 27 of the 28-layer transformer are analyzed to represent early, middle, and late stages of MLLM processing.

The first analysis (fig. 3a) tracks the total attention allocated to image tokens at each decoding step. In all layers, attention steadily declines, suggesting a shift from visual grounding to reliance on internal memory as generation proceeds. The second analysis (fig. 3b) measures attention to the task-relevant region by computing the ratio of mean attention within the bounding box to mean attention across all image tokens. Layers 14 and 27 initially show increased focus, but by mid-generation, all layers converge to a ratio of ~ 0.8 , indicating that salient tokens receive less attention on average than background tokens.

These findings suggest *visual grounding decay*, where models progressively lose attention to visual content during extended generation. This limitation is of particular relevance to multimodal reasoning domains such as mathematics, where extended reasoning chains necessitate repeated and precise reference to diagrams. These observations motivate architectures that incorporate dynamic visual access during inference to maintain grounding and enhance multi-step reasoning.

4 METHOD

4.1 PRELIMINARY: POINTING FOR LANGUAGE GENERATION

Formulation. We formulate a conditional next-token prediction objective, as commonly adopted in modern multimodal large language models (MLLMs). Given a sequence of continuous input representations c (*e.g.* embedded text tokens or visual features) the model is trained to autoregressively

216 predict the discrete next token x_t conditioned on the input c and previously generated tokens $x_{<t}$:
 217

$$218 \quad p(x_1, \dots, x_T \mid c) = \prod_{t=1}^T p(x_t \mid c, x_1, \dots, x_{t-1})$$

$$219$$

$$220$$

221 The continuous input sequence c may include a heterogeneous mixture of modality-specific features,
 222 such as embedded discrete text tokens or continuous visual embeddings produced by image encoders
 223 (e.g. CLIP (Radford et al., 2021)). This general formulation covers a wide range of multimodal
 224 architectures such as LLaVA (Liu et al., 2023a) and Qwen-VL (Bai et al., 2025), which use continuous
 225 input image representations.
 226

227 **Pointing.** For visually grounded reasoning, it is often necessary to refer back to a specific region
 228 or token within the input sequence c , especially when that region corresponds to localized visual
 229 content. Rather than generating a new description of a visual entity, we may instead wish to *point* to
 230 its position within the input, thereby referencing it explicitly.

231 The pointing mechanism we examine was first introduced by the pointer-generator network (See
 232 et al., 2017) in text summarization research. In the pointer-generator network, the input context
 233 sequence c also consists of discrete tokens within the vocabulary space V , unlike our setup. The
 234 model dynamically mixes two distributions at each decoding step t : (1) a generation distribution
 235 over the vocabulary $P_{\text{gen}}(x_t)$, and (2) a copy distribution $P_{\text{ptr}}(x_t)$ over input tokens. The final output
 236 probability is given by a gated mixture:

$$237 \quad p(x_t \mid c, x_{<t}) = \lambda(x_t \mid c, x_{<t}) \cdot P_{\text{gen}}(x_t \mid c, x_{<t}) + (1 - \lambda(x_t \mid c, x_{<t})) \cdot P_{\text{ptr}}(x_t \mid c, x_{<t})$$

$$238$$

239 where $\lambda \in [0, 1]$ is a learnable scalar gate that controls the trade-off between generating a new token
 240 and copying one from the input.
 241

242 The pointer distribution is obtained via attention over the encoder representations:

$$243 \quad \alpha_t^{(k)} = \frac{\exp(\text{score}(h_t, c_k))}{\sum_{k'} \exp(\text{score}(h_t, c_{k'}))}, \quad P_{\text{ptr}}(x_t = w) = \sum_{k: w_k = w} \alpha_t^{(k)}$$

$$244$$

$$245$$

246 where h_t is the decoder hidden state at step t , w_k the token at position k , and score denotes a standard
 247 attention scoring function (e.g., dot-product or additive). We generalized the formulation beyond the
 248 original implementation to arbitrary autoregressive language models for explanation purposes.
 249

250 **Discrete targets.** The above formulation constrains the pointing targets to be within the discrete
 251 vocabulary space V . This prevents application to general MLLMs as the multimodal inputs often
 252 consist of continuous feature sequences (Liu et al., 2023a; Bai et al., 2025).
 253

4.2 v1: POINTING FOR MULTIMODAL GROUNDED REASONING

254 To overcome these limitations, we introduce **v1**, a lightweight extension to autoregressive MLLMs
 255 that enables explicit grounding by pointing to continuous input representations. **v1** augments the
 256 standard vocabulary with pointer tokens that reference input embeddings, allowing the model to
 257 either generate text or copy visual content on demand. All functionalities, including textual reasoning
 258 and visual grounding, are integrated into a single finetuned backbone model (e.g., Qwen-2.5-VL)
 259 without relying on any external module or auxiliary grounding network during inference. As a result,
 260 **v1** supports inference over both discrete and continuous modalities in a unified framework without
 261 requiring modifications to the model’s core architecture. Figure 2 illustrates its inference process.
 262

263 **Pointing to continuous inputs.** The gated mixture formulation of See et al. (2017) is not directly
 264 applicable to continuous inputs as image embeddings, as such inputs lack discrete mappings to
 265 vocabulary tokens V . To enable pointing in this setting, we extend the output space to include
 266 references to positions in the continuous input. Specifically, we define the augmented output space
 267 as $\bar{V} = V \cup C$, where $C = \{c_1, c_2, \dots, c_K\}$ denotes the set of continuous input vectors (e.g.
 268 embeddings of the input image patches). This formulation allows the model to generate either a
 269 vocabulary token or a pointer to a specific continuous input. We denote a pointer to input vector c_k as
 $\langle \text{ptr} : c_k \rangle$, which is treated as a discrete token during decoding.

270 At each decoding step t , the model computes two distributions: (1) a generation distribution over
 271 the vocabulary V , producing logits $\text{logit}_{\text{gen}} \in \mathbb{R}^{|V|}$, and (2) a pointing distribution over the input
 272 positions C , producing logits $\text{logit}_{\text{ptr}} \in \mathbb{R}^K$. The final output logits are defined as:
 273

$$\text{logit}_t = [\text{logit}_{\text{gen}} \parallel \text{logit}_{\text{ptr}}] \in \mathbb{R}^{|V|+K}$$

274 where $[\cdot \parallel \cdot]$ denotes concatenation. Pointing logits are computed by attending over the input sequence:
 275

$$\text{logit}_{\text{ptr}}^{(k)} = \frac{L_q(h_t) \cdot L_k(c_k)^\top}{\sqrt{D}}$$

276 where h_t is the decoder hidden state at step t , L_q and L_k are learned linear projections, and the
 277 scaling factor \sqrt{D} follows standard attention practice. We omit the gating module λ used in previous
 278 work, as the logit types are defined over disjoint spaces and do not require interpolation.
 279

280 During inference, if the model selects an index in V , the next token x_t is emitted as the corresponding
 281 vocabulary token. If the model selects an index $k \in C$, the token is represented as a pointer
 282 $x_t = \langle \text{ptr} : c_k \rangle$. On the subsequent decoding step, the input embedding at position t is replaced with
 283 the continuous vector c_k , enabling the model to attend directly to the referenced content.
 284

285 4.3 ANNOTATING VISUALLY-GROUNDED REASONING DATA

286 To train **v1**, we require fine-grained multimodal reasoning traces in which each step is grounded to
 287 specific visual evidence. To this end, we construct **v1g**, a dataset of 300K multimodal reasoning
 288 paths with interleaved grounding annotations. Each trajectory includes a sequence of reasoning
 289 steps, where textual inferences are explicitly linked to corresponding image regions. The dataset
 290 is generated through a fully automated three-stage pipeline: (1) we oversample textual reasoning
 291 paths from a pretrained MLLM; (2) we apply an LLM-based parser to decompose each path into
 292 discrete visual queries and retrieval steps; and (3) we ground each visual reference by aligning it with
 293 a bounding box in the input image. Representative examples are provided in the Appendix.
 294

295 **Constructing base reasoning traces.** As a seed to our grounded corpus, we adopt the training set
 296 of TVC (Sun et al., 2025), which consists of reasoning traces generated from the QvQ model (Qwen
 297 Team, 2024). The dataset encompasses nine distinct problem domains: Charts, Documents, Geometry,
 298 IQ Tests, Medical Imagery, Natural Scenes, Science Diagrams, Synthetic Images, and Tables.

299 **Decomposing reasoning traces into visual reference steps.** We extract visual grounding cues from
 300 text-based reasoning traces using a strong off-the-shelf LLM (Gemini-2.0-flash (Google, 2025)). The
 301 model rewrites each reference to visual content as a *detect* call, which takes a short natural language
 302 description and returns the corresponding image region. Retrieved objects are cached and assigned
 303 symbolic identifiers $\langle \text{obj} \rangle$ in order of appearance. In addition, the LLM generates a key-value list
 304 of visual components, with each key serving as a unique, descriptive grounding reference for later
 305 steps. We construct domain-specific few-shot prompts to guide this process, with prompt templates
 306 detailed in the Appendix. Finally, we post-process the LLM outputs to discard failure cases, including
 307 mismatches between referenced and retrieved objects, non-unique object labels, insufficient object
 308 count (≤ 2), and ill-formed reasoning. After filtering, $\sim 82\%$ samples are retained.
 309

310 **Grounding visual references to image regions.** Visual grounding is challenging in multimodal
 311 reasoning tasks, since they often involve domains beyond natural images (e.g. charts, geometry,
 312 medical scans). Existing grounding models perform poorly on such inputs (Steiner et al., 2024; Xiao
 313 et al., 2024). Moreover, these tasks frequently require grounding abstract or symbolic cues (e.g. angle
 314 ABC), which lie outside the training scope of current models.

315 To exploit the implicit visual grounding behavior in MLLMs, we build on a visual grounding model
 316 Qwen2.5-VL (Bai et al., 2025). However, rather than relying on its coordinate generation interface, we
 317 estimate the model’s visual focus using a relative attention mechanism inspired by Zhang et al. (2025),
 318 in order to better handle non-natural domains and symbolic cues. Specifically, we extract cross-
 319 attention maps from the grounding query to all image patches, with and without grounding prompts.
 320 The ratio of conditional to marginal attention yields a normalized map that highlights semantically
 321

324 **Table 1: Results on multimodal mathematical reasoning tasks.** MathVision results are both
 325 reported for the mini and full subsets to include more baseline scores.
 326

327 Model	328 Size	329 Reasoning 330 Only	331 MathVista 332 mini	333 MathVision 334 full	335 MathVerse 336 mini	337 Average 338 mini	339 full
329 Qwen2-VL Wang et al. (2024c)	330 7B	331 ✗	332 60.9	333 -	334 16.3	335 24.6	336 -
330 Qwen2-VL Wang et al. (2024c)	331 72B	332 ✗	333 69.7	334 -	335 26.6	336 36.2	337 -
331 Qwen2.5-VL Bai et al. (2025)	332 7B	333 ✗	334 67.8	335 23.6	336 -	337 44.5	338 45.3
332 Qwen2.5-VL Bai et al. (2025)	333 72B	334 ✗	335 74.8	336 39.8	337 -	338 57.6	339 57.4
333 InternVL2.5 Chen et al. (2025)	334 8B	335 ✗	336 64.4	337 22.0	338 19.7	339 39.5	340 41.9
334 InternVL2.5 Chen et al. (2025)	335 78B	336 ✗	337 72.3	338 34.9	339 32.2	340 51.7	341 53.0
335 GPT-4o Hurst et al. (2024)	336 -	337 ✗	338 63.8	339 -	340 30.4	341 50.2	342 -
336 LLaVa-CoT Xu et al. (2025)	337 11B	338 ✓	339 54.8	340 16.3	341 -	342 33.9	343 35.0
337 Mulberry Yao et al. (2024)	338 7B	339 ✓	340 63.1	341 -	342 -	343 39.6	344 -
338 TVC Sun et al. (2025)	339 7B	340 ✓	341 68.1	342 -	343 22.7	344 38.9	345 -
339 TVC Sun et al. (2025)	340 72B	341 ✓	342 72.2	343 -	344 41.9	345 48.8	346 -
340 QVQ-72B-preview Qwen Team (2024)	341 72B	342 ✓	343 71.4	344 35.9	345 -	346 41.5	347 49.6
341 Base (Qwen2.5-VL)	342 7B	343 ✗	344 67.8	345 23.6	346 -	347 44.5	348 45.3
342 Text-Only (TVC)	343 7B	344 ✓	345 68.1	346 -	347 22.7	348 38.9	349 -
343 Ours	344 7B	345 ✓	346 68.6	347 34.5	348 28.1	349 48.6	350 50.6
344 \downarrow Inference w/o Pointing	345 7B	346 ✓	347 60.0	348 25.3	349 23.7	350 33.6	351 39.6
345	346	347	348	349	350	351	352

344 meaningful regions while suppressing low-level register effects. A heuristic post-processing step then
 345 converts this soft mask into discrete bounding boxes, after which malformed or invalid boxes are
 346 discarded. This produces a curated training set of $\sim 300K$ grounded examples.

349 5 IMPLEMENTATION DETAILS

351 **Preprocessing.** Given a multimodal input consisting of interleaved images, text, and bounding box
 352 annotations for visual references, we first convert each image into a flattened sequence of image
 353 patches, following the patchification protocol used by the backbone model (e.g., Qwen2.5-VL (Bai
 354 et al., 2025)). Each bounding box is then transformed into a corresponding sequence of pointer tokens
 355 (e.g., $\langle \text{ptr4} \rangle, \dots, \langle \text{ptr32} \rangle$), where each token refers to an enclosed image patch. These pointer
 356 tokens are appended to the tokenizer vocabulary but do not modify the model’s original embedding
 357 table or generation head. During preprocessing, the embeddings for pointer tokens are replaced with
 358 the corresponding image patch embeddings prior to the transformer layers. The final input is thus a
 359 unified sequence of text tokens, pointer tokens, and image patch embeddings.

360 **Model.** Our **v1** architecture is designed to extend a broad range of multimodal language model
 361 (MLLM) backbones; for empirical validation, we instantiate it on Qwen-2.5-VL. Architecturally,
 362 we introduce only two lightweight linear layers atop the original model: a pointing query head
 363 $L_q \in \mathbb{R}^{D \times D}$ and a pointing key head $L_k \in \mathbb{R}^{D \times D}$, where D denotes the latent dimensionality
 364 of the MLLM. Both heads are initialized as identity matrices scaled by $1/\sqrt{D}$, ensuring that their
 365 influence on the model’s initial output distribution remains minimal. This initialization strategy
 366 is particularly effective given the structure of our task: the pretrained backbone already produces
 367 meaningful generative likelihoods P_{gen} , and the pointing mechanism selects at most a single position
 368 per timestep from the pointing distribution P_{ptr} . As a result, the added modules integrate smoothly
 369 during early training and do not induce catastrophic forgetting.

371 **Training.** Given the dual-nature output space comprising a generative vocabulary V and a pointing
 372 reference set K , we incorporate z-loss regularization to stabilize the softmax partition function,
 373 following Chowdhery et al. (2023); Wortsman et al. (2023); Team (2024). Specifically, we regularize
 374 the log-partition function $Z = \sum_j e^{x_j}$ in the softmax $\sigma(x)_i = e^{x_i}/Z$ by introducing a z-loss term
 375 $\mathcal{L}_z = \lambda \log \bar{Z}$, where $\lambda = 10^{-5}$. To reduce computational overhead, we approximate Z using
 376 a top- $k = 40$ partition function $\bar{Z} = \sum_{j \in \text{TopK}(x)} e^{x_j}$. This approximation enables efficient and
 377 numerically stable training in large-output-space settings. Further details are in Appendix A.

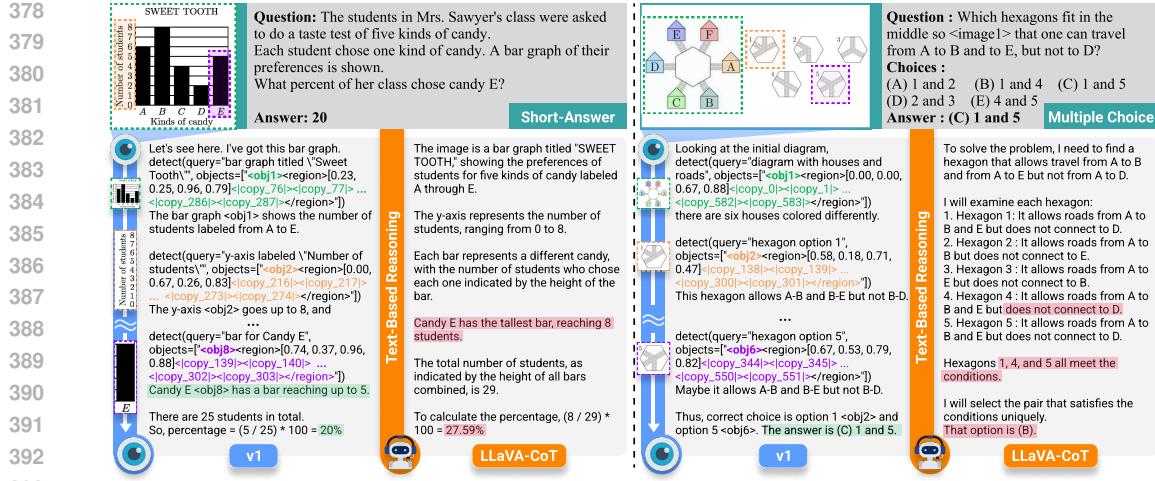


Figure 4: **Qualitative comparison on MathVision.** **v1**’s dynamic grounding helps to solve both bar graph and spatial reasoning tasks, while LLaVA-CoT misinterprets visual content in both cases.

Inference. At each decoding step to generate token x_t , **v1** utilizes two additional caches: (1) keys, given by hidden features $L_k(c)$ corresponding to image patch positions for computing the pointing logits $\text{logit}_{\text{ptr}}$, and (2) values, the input feature sequences of the associated image patches. These are essential for enabling the pointing and copying mechanism during inference. We implement the additional caches by extending the key-value attention caching interface of the HuggingFace (Wolf et al., 2020) Transformers library. The memory overhead is minimal compared to the standard attention cache and can be realized as an auxiliary attention layer with empty parameters serving solely as a cache. We plan to release the implementation with the codebase.

6 EMPIRICAL RESULTS

6.1 DOWNSTREAM EVALUATION ON MULTIMODAL REASONING BENCHMARKS

Setup. We use three representative multimodal mathematical reasoning benchmarks: MathVista (mini) (Lu et al., 2024), MathVision (mini/full) (Wang et al., 2024b), and MathVerse (mini) (Zhang et al., 2024a). Following prior work (Duan et al., 2024), we use GPTEval (Liu et al., 2023b) to compute accuracy while accounting for the formatting inconsistencies.

We compare our method against both general-purpose and reasoning-specialized MLLMs. General MLLMs include Qwen2-VL (Wang et al., 2024c) and Qwen2.5-VL (Bai et al., 2025) at both 7B and 72B scales, as well as InternVL2.5 (Chen et al., 2025) at 8B and 78B. We also include GPT-4o (Hurst et al., 2024) as a high-performing proprietary baseline. For reasoning-oriented models, we evaluate LLaVa-CoT-11B (Xu et al., 2025), Mulberry-7B (Yao et al., 2024), TVC-7B and 72B (Sun et al., 2025), and QVQ-72B-preview (Qwen Team, 2024).

Results. Quantitative results are presented in Table 1. Our approach yields substantial performance improvements over baseline models. Among 7B-scale models, **v1** with full pointing capability consistently outperforms both general-purpose and reasoning-specialized baselines. Notably, despite its smaller size, our 7B model narrows the performance gap with several 72B-scale models. The gains are particularly pronounced on MathVision, a benchmark known for its higher complexity and stronger demand for grounded reasoning in MLLMs.

6.2 FURTHER ANALYSIS

Qualitative results. Figure 4 shows a qualitative comparison between our method and LLaVA-CoT (Xu et al., 2025) as a baseline. In both the short-answer (left) and multiple-choice (right)

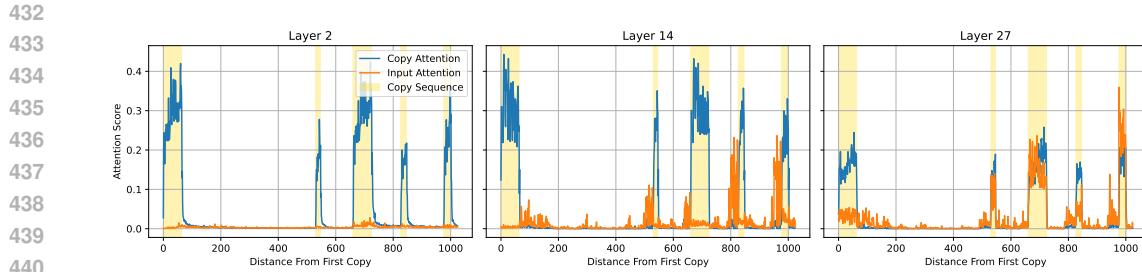


Figure 5: **Comparison of attention to copy tokens vs. original visual tokens.** Layer-wise sum of attention scores directed to copy tokens and their corresponding original visual input tokens from a **v1** output on a MathVision example. Copy token intervals are highlighted in yellow.

examples from MathVision, our **v1** demonstrates explicit visual grounding through pointer-based detection and selective copying of relevant image regions.

For the bar graph example, **v1** accurately identifies the bar corresponding to Candy E and computes the correct percentage based on the total count, while LLaVA-CoT misidentifies the tallest bar and overestimates the result. In the hexagon pathfinding task, **v1** correctly reasons over spatial connectivity by attending to the structural differences in the options, whereas LLaVA-CoT fails to filter invalid candidates and outputs the wrong answer. These examples highlight how active visual reference via pointing enables more precise and interpretable reasoning compared to text-only chain-of-thought approaches.

Ablation study. We conduct an ablation study, summarized in Table 2, to isolate the contributions of individual components in **v1**, with a focus on the impact of the proposed point-and-copy mechanism. We evaluate three ablated variants: (1) *Backbone*, the pretrained Qwen2.5-VL-7B model without any task-specific finetuning; (2) *Coordinate-Only*, which is trained on **v1g** using bounding box coordinates in place of pointer supervision; and (3) *Ours w/o Pointing*, which disables the pointing mechanism at inference time.

The results indicate that the ability to actively retrieve and incorporate relevant visual tokens via pointing is critical for achieving strong performance on complex multimodal reasoning tasks.

How does v1 utilize pointed visual regions? We analyze how **v1** internally uses the visual regions retrieved via the point-and-copy mechanism. As shown in Figure 5, we compare the total *Input Attention* (attention to the original visual tokens) and *Copy Attention* (attention to the copied tokens) during generation after the first copy operation.

Our analysis reveals a coherent sequence of behaviors. First, attention to the original image tokens increases immediately before copying, indicating a localization step in which the model identifies where the relevant information resides. Second, immediately after copying, intermediate layers (e.g., layers 2 and 14) show a strong dominance of copy attention. This reflects an active post-retrieval processing phase where **v1** selectively emphasizes informative subcomponents of the retrieved region. Third, when attention patterns are averaged across layers, copied tokens consistently receive higher weight than the original image tokens, suggesting that once a region is copied into the language context, it becomes a stable and easily accessible reference. Finally, in higher layers (e.g., layer 27), attention to input and copied tokens becomes more balanced, which may correspond to a late-stage integration step in which the retrieved region is reconciled with the broader image context and used for planning subsequent reasoning.

Together, these observations show that **v1** uses pointed visual regions in a structured manner, transitioning from localization, to focused processing, and ultimately to high-level integration.

Table 2: **Ablation on MathVision testmini** to gauge the impact of dynamic visual reference.

Variant	Train	Infer	Score
Backbone	✗	✗	23.6
+ Coord-Only	✗	✗	31.9
Ours w/o Pointing	✓	✗	25.3
Ours	✓	✓	34.5

486 **7 CONCLUSION**
 487

488 We introduced **v1**, a lightweight extension that enables MLLMs to actively revisit input images
 489 through a point-and-copy mechanism. To train it, we constructed **v1g**, a dataset of 300K multimodal
 490 reasoning traces with fine-grained visual grounding. Empirical results on established multimodal
 491 mathematical reasoning benchmarks demonstrate that **v1** significantly improves performance, partic-
 492 ularly on tasks requiring grounded, step-by-step visual reasoning. We hope this work encourages
 493 further exploration of alternative methods for dynamic visual access as a core component of multi-
 494 modal reasoning.

495 Looking forward, **v1**’s copy-and-method mechanism can be applied across modalities beyond text,
 496 such as speech and video. It can also be extended to flexible region retrieval beyond rectangular
 497 bounding boxes for iterative segmentation. Finally, it opens opportunities for controllable generation,
 498 where explicit reference signals are injected into the decoding process to constrain token selection
 499 and guide outputs toward designated regions.

500
 501 **ETHICS STATEMENT**
 502

503 **v1** is designed for multimodal mathematical reasoning, a domain with minimal risk of direct societal
 504 harm. Nonetheless, we acknowledge that **v1** may inherit biases from its pretrained backbone (Qwen-
 505 2.5-VL). Our training dataset, **v1g**, consists solely of multimodal reasoning problems and was
 506 constructed as a re-annotation of an existing dataset (Sun et al., 2025), thereby minimizing potential
 507 privacy and licensing concerns. All human annotations involved in this work were performed by
 508 members of the research group, thereby avoiding potential ethical concerns associated with external
 509 crowd-sourced annotation labor. No separate human-subject studies were conducted.

510
 511 **REPRODUCIBILITY STATEMENT**
 512

513 To ensure reproducibility, we provide comprehensive implementation details and will release all
 514 necessary resources. The v1 architecture and pointing mechanism are specified in Section 4, with
 515 training configurations (hyperparameters, initialization, z-loss regularization) in Section 5. Our
 516 method extends Qwen2.5-VL-7B with two additional linear layers (L_q and L_k). Experiments were
 517 conducted on 8 NVIDIA A100 GPUs using DeepSpeed. The v1g dataset construction pipeline is
 518 documented in Section 4.3, with the data generation prompt template in Table 5. Evaluation protocols
 519 using GPTEval on MathVista, MathVision, and MathVerse benchmarks are described in Section 6.
 520 Upon publication, we will release: (1) the full v1g dataset with grounding annotations, (2) model
 521 checkpoints, (3) training and inference code for HuggingFace Transformers, and (4) evaluation scripts.
 522 The anonymized code and data samples are included with this submission.

523
 524 **REFERENCES**

525 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
 526 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
 527 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
 528 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report, 2025. URL
 529 <https://arxiv.org/abs/2502.13923>.

530 Nasim Borazjanizadeh, Roei Herzig, Eduard Oks, Trevor Darrell, Rogerio Feris, and Leonid Karlinsky.
 531 Visualizing thought: Conceptual diagrams enable robust planning in lmms, 2025. URL <https://arxiv.org/abs/2503.11790>.

532 Juliette Brun, Pascal Le Masson, and Benoît Weil. Designing with sketches: the generative effects of
 533 knowledge preordering. *Design Science*, 2, 2016. URL <https://api.semanticscholar.org/CorpusID:17302973>.

534 Boyuan Chen, Zhuo Xu, Sean Kirmani, Brain Ichter, Dorsa Sadigh, Leonidas Guibas, and Fei Xia.
 535 Spatialvlm: Endowing vision-language models with spatial reasoning capabilities. In *Proceedings
 536 of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 14455–
 14465, June 2024.

540 Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong
 541 Ye, Hao Tian, Zhaoyang Liu, Lixin Gu, Xuehui Wang, Qingyun Li, Yimin Ren, Zixuan Chen,
 542 Jiapeng Luo, Jiahao Wang, Tan Jiang, Bo Wang, Conghui He, Botian Shi, Xingcheng Zhang,
 543 Han Lv, Yi Wang, Wenqi Shao, Pei Chu, Zhongying Tu, Tong He, Zhiyong Wu, Huipeng Deng,
 544 Jiaye Ge, Kai Chen, Kaipeng Zhang, Limin Wang, Min Dou, Lewei Lu, Xizhou Zhu, Tong Lu,
 545 Dahua Lin, Yu Qiao, Jifeng Dai, and Wenhui Wang. Expanding performance boundaries of
 546 open-source multimodal models with model, data, and test-time scaling, 2025. URL <https://arxiv.org/abs/2412.05271>.
 547

548 Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
 549 Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
 550 Scaling language modeling with pathways. *Journal of Machine Learning Research*, 24(240):1–113,
 551 2023.

552 Junyi Chu, Emily R. Fyfe, and Bethany Rittle-Johnson. Diagrams benefit symbolic problem-
 553 solving. *British Journal of Educational Psychology*, 87:273–287, 2017. URL <https://api.semanticscholar.org/CorpusID:14563301>.
 554

555 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 556 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
 557 Schulman. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*,
 558 2021.

559 Richard J. Cox. Representation construction, externalised cognition and individual differences.
 560 *Learning and Instruction*, 9:343–363, 1999. URL <https://api.semanticscholar.org/CorpusID:143780266>.
 561

562 Yihe Deng, Hritik Bansal, Fan Yin, Nanyun Peng, Wei Wang, and Kai-Wei Chang. Openvlthinker:
 563 An early exploration to complex vision-language reasoning via iterative self-improvement, 2025.
 564 URL <https://arxiv.org/abs/2503.17352>.
 565

566 Haodong Duan, Junming Yang, Yuxuan Qiao, Xinyu Fang, Lin Chen, Yuan Liu, Xiaoyi Dong, Yuhang
 567 Zang, Pan Zhang, Jiaqi Wang, et al. Vlmevalkit: An open-source toolkit for evaluating large
 568 multi-modality models. In *Proceedings of the 32nd ACM International Conference on Multimedia*,
 569 pp. 11198–11201, 2024.

570

571 Google. Gemini 2.0 flash (gemini-2.0-flash-001), February 2025. URL <https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-0-flash>.
 572

573 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 574 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 575 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

576

577 Tanmay Gupta and Aniruddha Kembhavi. Visual programming: Compositional visual reasoning
 578 without training. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 579 Recognition (CVPR)*, pp. 14953–14962, June 2023.

580

581 Yushi Hu, Weijia Shi, Xingyu Fu, Dan Roth, Mari Ostendorf, Luke Zettlemoyer, Noah A. Smith, and
 582 Ranjay Krishna. Visual sketchpad: Sketching as a visual chain of thought for multimodal language
 583 models. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024.
 584 URL <https://openreview.net/forum?id=GNSM11P5VR>.

585

586 Wenxuan Huang, Bohan Jia, Zijie Zhai, Shaosheng Cao, Zheyu Ye, Fei Zhao, Zhe Xu, Yao Hu, and
 587 Shaohui Lin. Vision-r1: Incentivizing reasoning capability in multimodal large language models,
 588 2025. URL <https://arxiv.org/abs/2503.06749>.

589

590 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 591 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint
 592 arXiv:2410.21276*, 2024.

593

594 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 595 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv preprint
 596 arXiv:2412.16720*, 2024.

594 Sahar Kazemzadeh, Vicente Ordonez, Mark Matten, and Tamara Berg. ReferItGame: Referring to
 595 objects in photographs of natural scenes. In Alessandro Moschitti, Bo Pang, and Walter Daelemans
 596 (eds.), *Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing*
 597 (*EMNLP*), pp. 787–798, Doha, Qatar, October 2014. Association for Computational Linguistics.
 598 doi: 10.3115/v1/D14-1086. URL <https://aclanthology.org/D14-1086>.

599 Maria Kozhevnikov, Mary Hegarty, and Richard E. Mayer and. Revising the visualizer-verbalizer
 600 dimension: Evidence for two types of visualizers. *Cognition and Instruction*, 20(1):47–
 601 77, 2002. doi: 10.1207/S1532690XCI2001_3. URL https://doi.org/10.1207/S1532690XCI2001_3.

602 Chengzu Li, Wenshan Wu, Huanyu Zhang, Yan Xia, Shaoguang Mao, Li Dong, Ivan Vulić, and
 603 Furu Wei. Imagine while reasoning in space: Multimodal visualization-of-thought, 2025. URL
 604 <https://arxiv.org/abs/2501.07542>.

605 Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
 606 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In *The Twelfth*
 607 *International Conference on Learning Representations*, 2023.

608 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In
 609 *Thirty-seventh Conference on Neural Information Processing Systems*, 2023a. URL <https://openreview.net/forum?id=w0H2xGH1kw>.

610 Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Qing Jiang, Chunyuan
 611 Li, Jianwei Yang, Hang Su, et al. Grounding dino: Marrying dino with grounded pre-training for
 612 open-set object detection. In *European conference on computer vision*, pp. 38–55. Springer, 2024.

613 Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu. G-eval: Nlg
 614 evaluation using gpt-4 with better human alignment, 2023b. URL <https://arxiv.org/abs/2303.16634>.

615 Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng,
 616 Kai-Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning
 617 of foundation models in visual contexts. In *The Twelfth International Conference on Learning*
 618 *Representations*, 2024. URL <https://openreview.net/forum?id=KUNzEQMWU7>.

619 Tianren Ma, Lingxi Xie, Yunjie Tian, Boyu Yang, and Qixiang Ye. Clawmachine: Learning to fetch vi-
 620 sual tokens for referential comprehension. In *The Thirteenth International Conference on Learning*
 621 *Representations*, 2025. URL <https://openreview.net/forum?id=TOtk9dTYYG>.

622 Fanqing Meng, Lingxiao Du, Zongkai Liu, Zhixiang Zhou, Quanfeng Lu, Daocheng Fu, Tiancheng
 623 Han, Botian Shi, Wenhui Wang, Junjun He, Kaipeng Zhang, Ping Luo, Yu Qiao, Qiaosheng Zhang,
 624 and Wenqi Shao. Mm-eureka: Exploring the frontiers of multimodal reasoning with rule-based
 625 reinforcement learning, 2025. URL <https://arxiv.org/abs/2503.07365>.

626 Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
 627 Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
 628 scaling, 2025. URL <https://arxiv.org/abs/2501.19393>.

629 Qwen Team. Qvq: To see the world with wisdom, December 2024. URL <https://qwenlm.github.io/blog/qvq-72b-preview/>.

630 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 631 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
 632 Learning transferable visual models from natural language supervision, 2021. URL <https://arxiv.org/abs/2103.00020>.

633 Abigail See, Peter J Liu, and Christopher D Manning. Get to the point: Summarization with
 634 pointer-generator networks. In *Proceedings of the 55th Annual Meeting of the Association for*
 635 *Computational Linguistics (Volume 1: Long Papers)*, pp. 1073–1083, 2017.

636 Andreas Steiner, André Susano Pinto, Michael Tschanen, Daniel Keysers, Xiao Wang, Yonatan Bit-
 637 ton, Alexey Gritsenko, Matthias Minderer, Anthony Sherbondy, Shangbang Long, et al. Paligemma
 638 2: A family of versatile vlms for transfer. *arXiv preprint arXiv:2412.03555*, 2024.

648 Hai-Long Sun, Zhun Sun, Houwen Peng, and Han-Jia Ye. Mitigating visual forgetting via take-along
 649 visual conditioning for multi-modal long cot reasoning, 2025. URL <https://arxiv.org/abs/2503.13360>.
 650

651 Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models. *arXiv preprint*
 652 *arXiv:2405.09818*, 2024.

653

654 Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. *Advances in*
 655 *neural information processing systems*, 30, 2017.

656

657 Ke Wang, Junting Pan, Weikang Shi, Zimu Lu, Houxing Ren, Aojun Zhou, Mingjie Zhan, and
 658 Hongsheng Li. Measuring multimodal mathematical reasoning with math-vision dataset. In *The*
 659 *Thirty-eight Conference on Neural Information Processing Systems Datasets and Benchmarks*
 660 *Track*, 2024a. URL <https://openreview.net/forum?id=QWTCCxMpPA>.
 661

662 Ke Wang, Junting Pan, Weikang Shi, Zimu Lu, Houxing Ren, Aojun Zhou, Mingjie Zhan, and
 663 Hongsheng Li. Measuring multimodal mathematical reasoning with math-vision dataset. In *The*
 664 *Thirty-eight Conference on Neural Information Processing Systems Datasets and Benchmarks*
 665 *Track*, 2024b. URL <https://openreview.net/forum?id=QWTCCxMpPA>.
 666

667 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 668 Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng
 669 Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-language model's
 670 perception of the world at any resolution, 2024c. URL <https://arxiv.org/abs/2409.12191>.
 671

672 Xiyao Wang, Zhengyuan Yang, Chao Feng, Hongjin Lu, Linjie Li, Chung-Ching Lin, Kevin Lin,
 673 Furong Huang, and Lijuan Wang. Sota with less: Mcts-guided sample selection for data-efficient
 674 visual reasoning self-improvement, 2025. URL <https://arxiv.org/abs/2504.07934>.
 675

676 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
 677 Pierrick Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
 678 Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
 679 Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural language
 680 processing. In *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Pro-
 681 cessing: System Demonstrations*, pp. 38–45, Online, October 2020. Association for Computational
 682 Linguistics. URL <https://www.aclweb.org/anthology/2020.emnlp-demos.6>.
 683

684 Mitchell Wortsman, Peter J Liu, Lechao Xiao, Katie Everett, Alex Alemi, Ben Adlam, John D
 685 Co-Reyes, Izzeddin Gur, Abhishek Kumar, Roman Novak, et al. Small-scale proxies for large-scale
 686 transformer training instabilities. *arXiv preprint arXiv:2309.14322*, 2023.
 687

688 Penghao Wu and Saining Xie. V*: Guided visual search as a core mechanism in multimodal llms,
 689 2023. URL <https://arxiv.org/abs/2312.14135>.
 690

691 Qiong Wu, Xiangcong Yang, Yiyi Zhou, Chenxin Fang, Baiyang Song, Xiaoshuai Sun, and Rongrong
 692 Ji. Grounded chain-of-thought for multimodal large language models, 2025. URL <https://arxiv.org/abs/2503.12799>.
 693

694 Bin Xiao, Haiping Wu, Weijian Xu, Xiyang Dai, Houdong Hu, Yumao Lu, Michael Zeng, Ce Liu,
 695 and Lu Yuan. Florence-2: Advancing a unified representation for a variety of vision tasks. In
 696 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 697 4818–4829, 2024.
 698

699 Guowei Xu, Peng Jin, Hao Li, Yibing Song, Lichao Sun, and Li Yuan. Llava-cot: Let vision language
 700 models reason step-by-step, 2025. URL <https://arxiv.org/abs/2411.10440>.
 701

Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Ehsan Azarnasab, Faisal Ahmed, Zicheng Liu,
 Ce Liu, Michael Zeng, and Lijuan Wang. Mm-react: Prompting chatgpt for multimodal reasoning
 and action. *arXiv preprint arXiv:2303.11381*, 2023.

702 Huanjin Yao, Jiaxing Huang, Wenhao Wu, Jingyi Zhang, Yibo Wang, Shunyu Liu, Yingjie Wang,
703 Yuxin Song, Haocheng Feng, Li Shen, and Dacheng Tao. Mulberry: Empowering mllm with
704 o1-like reasoning and reflection via collective monte carlo tree search, 2024. URL <https://arxiv.org/abs/2412.18319>.
705

706 Jiarui Zhang, Mahyar Khayatkhoei, Prateek Chhikara, and Filip Ilievski. MLLMs know where to
707 look: Training-free perception of small visual details with multimodal LLMs. In *The Thirteenth*
708 *International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=DgaY5mDdmT>.
709

710 Renrui Zhang, Dongzhi Jiang, Yichi Zhang, Haokun Lin, Ziyu Guo, Pengshuo Qiu, Aojun Zhou, Pan
711 Lu, Kai-Wei Chang, Yu Qiao, et al. Mathverse: Does your multi-modal lilm truly see the diagrams
712 in visual math problems? In *European Conference on Computer Vision*, pp. 169–186. Springer,
713 2024a.

714 Zhuosheng Zhang, Aston Zhang, Mu Li, hai zhao, George Karypis, and Alex Smola. Multimodal
715 chain-of-thought reasoning in language models. *Transactions on Machine Learning Research*,
716 2024b. ISSN 2835-8856. URL <https://openreview.net/forum?id=y1pPWFVfvR>.
717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 OVERVIEW OF THE APPENDIX
757758 This Appendix is structured as follows:
759

- 760 Appendix A describes implementation details and resources used in the project;
- 761 Appendix B discusses limitations and future directions;
- 762 Appendix C provides details of the data generation process;
- 763 Appendix D compares attention patterns of **v1**’s point-and-copy method with coordinate-based
764 reference;
- 765 Appendix E reports human evaluation results validating the grounding quality of our training
766 dataset (**v1g**) and our model (**v1**);
- 767 Appendix F details pseudo-code on the visual grounding pipeline we utilized in the data generation
768 process;
- 769 Appendix G presents additional qualitative results.

773 A IMPLEMENTATION DETAILS & RESOURCES
774

775 **Training Details** All models are trained under uniform settings: a base learning rate of 3×10^{-5} ,
776 per-device batch size of 2, and gradient accumulation over 4 steps. We leverage DeepSpeed for
777 distributed training across 8 NVIDIA A100 GPUs. Optimization uses AdamW with $\beta_1 = 0.9$,
778 $\beta_2 = 0.95$, and training is performed for 5 epochs.
779

780 **Training Duration** Our training schedule of 5 epochs follows the setup used for the original
781 text-only reasoning trace dataset, which we extend to the grounded reasoning setup Sun et al. (2025).
782 Because the reasoning traces contain substantially longer token sequences than typical MLLM data,
783 shorter training runs produced unstable behaviors such as repetition and incomplete reasoning without
784 a final answer. In contrast, the point-and-copy behavior required relatively little data and typically
785 saturated within the first epoch. The longer schedule therefore reflects the requirements of the
786 inherited reasoning-trace setup rather than the needs of the pointer mechanism itself.
787

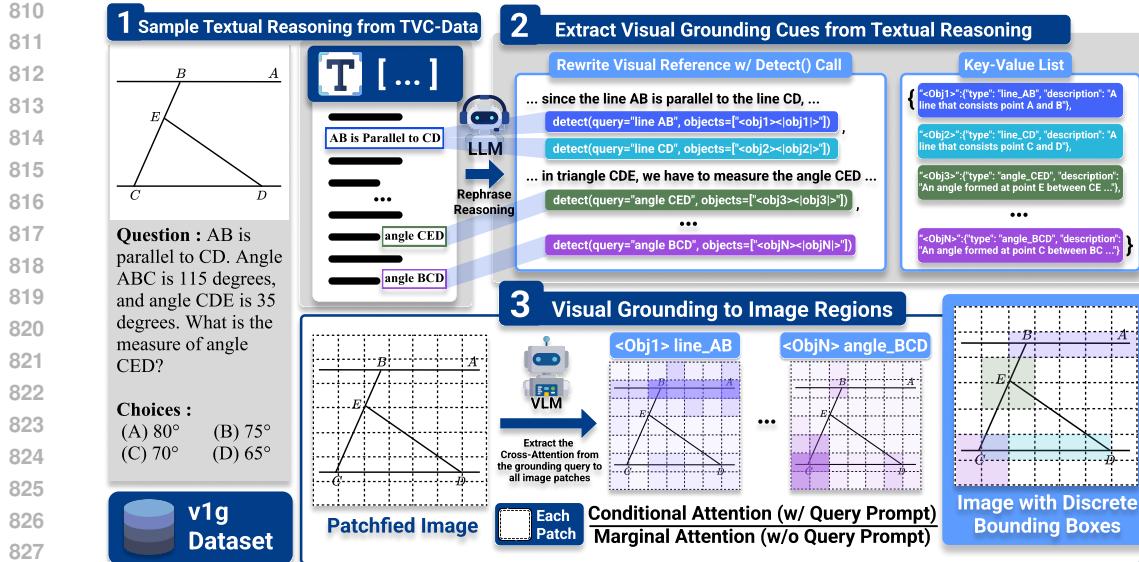
788 **Large Language Model Usage.** LLMs (ChatGPT, GPT-4/5 class) were employed to refine phras-
789 ing, improve clarity, and standardize style in sections of the manuscript, but all scientific ideas,
790 experiments, and analyses were conceived, executed, and validated by the authors. LLMs were also
791 used in a limited capacity to assist with literature discovery (e.g., surfacing related work for manual
792 screening). All substantive content decisions, experiment design, and result interpretation remain
793 entirely author-driven.
794

795 B LIMITATIONS AND FUTURE WORK
796

797 This work focuses on demonstrating the effectiveness of active visual reference in structured multi-
798 modal reasoning via a simple point-and-copy mechanism. While **v1** shows strong performance in
799 mathematical domains, several directions remain for broader applicability.
800

801 **Beyond mathematical domains.** Extending **v1** to other settings (e.g. such as scientific diagrams,
802 medical images, or visual commonsense) presents new challenges in representation and supervision.
803 These domains often lack structured reasoning traces, making data collection more difficult. Since
804 **v1g** relies on a pretrained text-only MLLM to seed reasoning, generalizing to less structured domains
805 will require advances in decomposition, grounding, and alignment.
806

807 **Weak supervision and reinforcement learning.** Recent work in inference-time scaling and align-
808 ment has shown the promise of reward-based learning for reasoning. Incorporating such methods
809 into **v1** may enable more flexible and efficient visual retrieval strategies without dense supervision.
We leave this exploration to future work due to current resource constraints.

Figure 6: **v1g** dataset construction pipeline.

C DATA GENERATION DETAILS

Figure 6 illustrates the construction pipeline for our **v1g** dataset; each stage of this pipeline is described in detail in Section 4.3. The specific prompt template used to decompose text-based reasoning paths into visual queries (as outlined in our methodology in Section 4.3) is provided in Table 5.

D ATTENTION SCORE COMPARISON BETWEEN TEXT-BASED REASONING

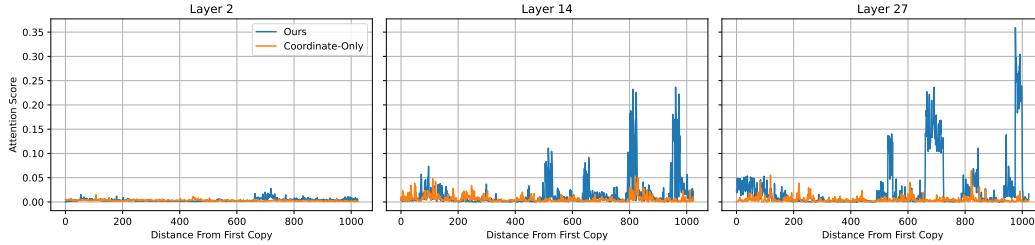


Figure 7: **Layer-wise Visual Attention Dynamics: v1 vs. Coordinates-Only.** Attention scores on visual inputs for **v1** (referenced input visual tokens during reasoning) versus the *Coordinates-Only* baseline (every input visual token), shown across layers (2, 14, and 27). The x-axis, "Distance From First Copy," tracks generation steps after **v1**'s initial copy operation.

Figure 7 presents a layer-wise comparison of these attention dynamics (using a MathVision example), plotting the sum of attention scores on original visual tokens against generation steps following **v1**'s first copy operation. For **v1**, these scores represent attention to specific visual tokens designated by its point-and-copy mechanism at each step. This targeted attention is pronounced and dynamic, particularly in intermediate and deeper layers (e.g., Layers 14 and 27), where scores fluctuate significantly, peaking at approximately 0.35, indicating active engagement with referenced visual information. In stark contrast, for the *Coordinates-Only* model, the sum of attention across all its original visual tokens (present in the context at each step) remains consistently low (generally below 0.05) and largely static across all layers. This comparison underscores how **v1**'s explicit pointing and copying mechanism enables more focused and substantial engagement with relevant visual

864
865
866 Table 3: Human evaluation of v1g dataset quality.
867
868
869
870
871
872
873

Method	Metric	Avg	Majority	Fleiss' κ	Agreement
Attention-based (Ours)	Correctness	83.3%	87.0%	0.352	Fair
	Comprehensive.	55.0%	56.0%	0.582	Moderate
	Tightness	46.0%	44.0%	0.436	Moderate
Grounding-DINO	Correctness	29.3%	30.0%	0.711	Substantial
	Comprehensive.	47.3%	49.0%	0.906	Almost Perfect
	Tightness	19.0%	18.0%	0.675	Substantial

874 information during the reasoning process. The analysis window for both models commences from
875 the generation step at which **v1** produced its first copy token, extending for a consistent number of
876 subsequent steps.
877

879 E HUMAN EVALUATION OF GROUNDING QUALITY

881 E.1 EVALUATION OF V1G DATASET QUALITY

883 To validate the quality of our automatically generated visual grounding annotations in the v1g
884 dataset, we conducted a human evaluation comparing our attention-based grounding approach against
885 GroundingDINO (Liu et al., 2024), a widely-used open-set object detector.
886

887 **Methodology.** We randomly sampled 100 examples from the v1g dataset, each containing multiple
888 bounding boxes. Three expert annotators independently evaluated each bounding box using binary
889 classification on three criteria:

- 890 • **Correctness:** Whether the bounding box covers the intended object or region
891
- 892 • **Comprehensiveness:** Whether all relevant visual content is included within the box
893
- 894 • **Tightness:** Whether the box is well-fitted with minimal extraneous background

895 We report the average score across annotators, majority vote, and Fleiss' κ to assess inter-annotator
896 agreement. Agreement quality follows standard interpretations: Fair (0.21–0.40), Moderate (0.41–
897 0.60), Substantial (0.61–0.80), and Almost Perfect (0.81–1.00).
898

899 **Results.** As shown in Table 3, our attention-based grounding method substantially outperforms
900 GroundingDINO on correctness (83.3% vs. 29.3% average score), demonstrating superior capability
901 in localizing semantically complex and context-dependent entities such as geometric elements (e.g.,
902 “angle ABC”), chart components (e.g., “bar for Grace”), and referring expressions (e.g., “the second
903 figure”). While GroundingDINO achieves higher inter-annotator agreement, this primarily reflects
904 consistent failure modes rather than quality, as evidenced by its low absolute performance.
905

906 E.2 EVALUATION OF V1 POINTING ACCURACY

907 We additionally evaluated the pointing accuracy of our trained v1 model to assess how effectively it
908 grounds visual references during inference.
909

910 **Methodology.** Using the same evaluation protocol, we sampled 100 outputs from v1 on the
911 MathVision dataset. Annotators evaluated whether the model's pointed regions (copied image tokens)
912 correctly corresponded to the referenced objects in the reasoning trace. We added an **Appropriateness**
913 criterion to assess whether the pointing action was contextually justified.
914

915 **Results.** Table 4 demonstrates that v1 maintains high grounding quality during inference, achieving
916 82.7% correctness—comparable to the training data quality. The high appropriateness score (87.7%)
917 indicates that the model learns to selectively invoke the pointing mechanism when dynamic visual
918 reference is genuinely beneficial for reasoning.
919

918
919
920
921
922
923
924
925
926
Table 4: Human evaluation of v1 model pointing quality.

Metric	Avg	Majority	Fleiss' κ	Agreement
Correctness	82.7%	87.0%	0.558	Moderate
Comprehensiveness	55.7%	54.0%	0.689	Substantial
Tightness	49.3%	40.0%	0.280	Fair
Appropriateness	87.7%	90.0%	0.599	Moderate

927
928
929
930
931
932
Discussion. The evaluation reveals that our attention-based grounding excels at capturing semantically rich visual references that are challenging for traditional object detectors. The moderate tightness scores across both methods reflect the inherent ambiguity in defining precise boundaries for abstract concepts (e.g., “angle 2” or “the second figure”), where multiple valid interpretations exist. The consistency between training data quality and model performance suggests that v1 successfully learns robust visual grounding capabilities from our automatically generated supervision.

934 F BOUNDING-BOX EXTRACTION FROM CROSS-ATTENTION

936 This section provides a high-level pseudocode description of our data annotation method for deriving
937 bounding boxes from cross-attention in Qwen-2.5-VL.

939 **Algorithm 1:** Bounding-Box Extraction from Cross-Attention (High-Level)

940 **Input:** Image I , region description T

941 **Output:** Bounding box b corresponding to T

942 **1. Prepare multimodal input.**

943 Concatenate I with a static visual-grounding instruction prompt and feed it to Qwen2.5-VL.

944 **2. Extract attention with instruction.**

945 From the final decoding position, obtain the cross-attention map A over image tokens. Use a
946 predefined set of layers (selected empirically) and average across heads.

947 **3. Extract baseline attention.**

948 Remove the object name from the prompt, feed the modified prompt with I to the model, and
949 extract the corresponding attention map A' using the same layers and averaging.

950 **4. Compute attention contrast.**

951 Compute the contrastive relevance for each image token:

$$952 \quad R = \frac{A}{A'}. \\ 953$$

954 **5. Derive bounding region.**

955 Identify the peak region in R . Sweep over multiple candidate crop ratios; for each ratio, form a
956 bounding region around the peak. Select the bounding box maximizing contrast sharpness
957 between inside and outside regions. Convert the selected region to image-coordinate bounding
958 box b .

959 **6. Return.**

960 **return** b

963

G ADDITIONAL QUALITATIVE RESULTS

965 To further illustrate v1’s complex visual reasoning, this section provides additional qualitative
966 examples, complementing Figure 4 from the main text. These examples highlight how v1 leverages
967 the point-and-copy mechanism.

969 Figure 8 demonstrates v1 on a synthetic task (CLEVR-like) requiring object counting based on the
970 query: “Subtract all red things, then subtract all tiny matte balls. How many objects are left?”. v1 first
971 localizes objects using its pointer mechanism. It then sequentially reasons, identifying “red” objects
before revisiting relevant items, like the “cyan sphere,” to verify the combined “tiny” and “matte”

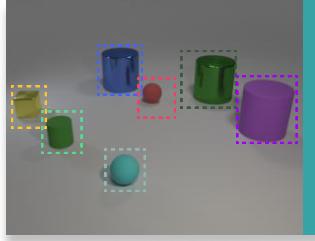
972 attributes through targeted attention. This process demonstrates **v1**'s capacity for precise attribute
973 grounding and multi-step compositional reasoning enabled by the point-and-copy mechanism.
974

975 In Figure 9, **v1** tackles a chart comprehension task: determining if the “Dark Violet” data series
976 has the minimum area under the curve. **v1** initially grounds key chart elements, using its pointer to
977 isolate data series such as “Dark Violet,” “Medium Mint,” and “Dark Cyan.” Later in its reasoning, it
978 proactively revisits these series, performing a comparative analysis of their visual trajectories and
979 relative y-axis values to infer their respective areas. Such selective re-focusing showcases its ability
980 to perform nuanced comparisons within dense visual information.

981 These examples further affirm that **v1**'s architecture, by supporting active visual reference and precise
982 grounding via its pointing mechanism, achieves robust, interpretable, and accurate multi-step visual
983 reasoning.

984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026
1027
1028
1029
1030
1031
1032
1033
1034



Question:

Subtract all red things. Subtract all tiny matte balls. How many objects are left?

Answer: 5

Image-Question Pair

1035 Let me see what objects are present. I need to identify all the objects first.
 1036 detect(query="yellow cube", objects=["<obj1><region>[0.00, 0.00, 0.21, 0.55]<|copy_0|><|copy_1|> ... <|
 1037 copy_45|><|copy_46|></region>"])
 1038 detect(query="blue cylinder", objects=["<obj2><region>[0.29, 0.20, 0.46, 0.45]<|copy_14|><|copy_15|> ...
 1039 <|copy_48|><|copy_49|></region>"])
 1040 detect(query="green cylinder", objects=["<obj3><region>[0.58, 0.20, 0.75, 0.50]<|copy_17|><|copy_18|> ...
 1041 <|copy_50|><|copy_51|><|copy_52|></region>"])
 1042 detect(query="purple cylinder", objects=["<obj4><region>[0.75, 0.45, 0.96, 0.65]<|copy_52|><|copy_53|> ...
 1043 <|copy_64|><|copy_65|></region>"])
 1044 detect(query="small green cylinder", objects=["<obj5><region>[0.12, 0.45, 0.29, 0.75]<|copy_45|><|
 1045 copy_46|> ... <|copy_68|><|copy_69|></region>"])
 1046 detect(query="red sphere", objects=["<obj6><region>[0.46, 0.30, 0.54, 0.45]<|copy_27|><|copy_38|><|
 1047 copy_49|></region>"])
 1048 detect(query="cyan sphere", objects=["<obj7><region>[0.33, 0.65, 0.46, 0.85]<|copy_58|><|copy_59|> ...
 1049 <|copy_81|><|copy_82|></region>"])

The task is to subtract all red things and all tiny matte balls.

Let me consider the order: first, subtract all red things, then subtract all tiny matte balls.

Step 1: Subtract all red things. There's only one red sphere <obj6>. So, remove that.

1050 Remaining objects: 1. Yellow cube <obj1> 2. Blue cylinder <obj2> 3. Green cylinder <obj3> 4. Purple
 1051 cylinder <obj4> 5. Small green cylinder <obj5> 6. Cyan sphere <obj7>

1052 Step 2: Subtract all tiny matte balls. Assuming the cyan sphere <obj7> is matte, it should be removed. So,

remove the cyan sphere <obj7>.

1053 Remaining objects: 1. Yellow cube <obj1> 2. Blue cylinder <obj2> 3. Green cylinder <obj3> 4. Purple
 1054 cylinder <obj4> 5. Small green cylinder <obj5>

1055 That's five objects.

1056 Wait, but the problem might be considering only the red sphere <obj6> as matte, and the cyan sphere
 1057 <obj7> is also matte. But since it's not specified, I'll assume both are matte.

1058 Alternatively, perhaps "tiny matte balls" refer only to the cyan sphere <obj7>, and the red sphere <obj6> is
 1059 not considered a "ball" or something. But the problem mentions "tiny matte balls," and both spheres are
 1060 small and matte, so probably both are considered tiny matte balls. Therefore, after subtracting the red sphere
 1061 <obj6> and the cyan sphere <obj7>, we're left with five objects: yellow cube <obj1>, blue cylinder <obj2>,
 1062 green cylinder <obj3>, purple cylinder <obj4>, and small green cylinder <obj5>.

1063 But wait, the user's message seems to indicate there are six objects initially, but lists seven, which is
 1064 confusing. Maybe there's a mistake in counting. Alternatively, perhaps the small green cylinder <obj5> is
 1065 not present, and there are only six objects: Yellow cube <obj1>, Blue cylinder <obj2>, Red sphere <obj6>,
 1066 Green cylinder <obj3>, Purple cylinder <obj4>, Cyan sphere <obj7>

1067 In this case, after subtracting the red sphere <obj6> and the cyan sphere <obj7><region>[0.33, 0.65, 0.46,
 1068 0.85]<|copy_58|><|copy_59|> ... <|copy_81|><|copy_82|></region>, we're left with four objects: yellow
 1069 cube <obj1>, blue cylinder <obj2>, green cylinder <obj3>, purple cylinder <obj4>.

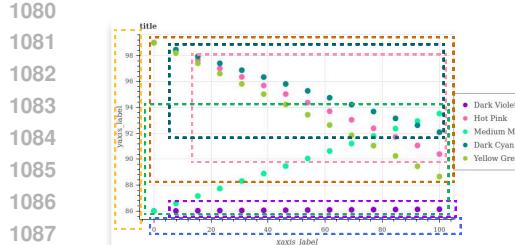
1070 But the user mentioned six objects, including the small green cylinder <obj5>, so I'll stick with that.

1072 Alternatively, maybe the small green cylinder <obj5> is separate from the green cylinder <obj3>, making it
 1073 seven distinct objects. Regardless, the key is to subtract the red sphere <obj6> and the cyan sphere <obj7>,
 1074 assuming both are matte.

1075 So, final answer should be 5 or 4, depending on whether the small green cylinder is considered separate or
 1076 part of the green cylinder. But since the user specified seven objects, including small green cylinder <obj5>,
 1077 the answer should be 5. **Final Answer** $\boxed{5}$

1078
1079

Figure 8: Qualitative example of **v1** tackling an attribute-based counting task in a synthetic domain.

**Question:**

Does Dark Violet have the minimum area under the curve?

Choices:

(A) yes (B) no

Image-Question Pair

Alright, I've got this graph to analyze. First, I need to detect the graph.
 detect(query="the graph", objects=[<obj1><region>[0.00, 0.00, 1.00, 1.00]<copy_0><copy_1> ... <copy_310><copy_311><region>])
 There are five different data series here, each represented by a different color: Dark Violet, Hot Pink, Medium Mint, Dark Cyan, and Yellow Green. I need to detect each data series.
 detect(query="Dark Violet data series", objects=[<obj2><region>[0.12, 0.77, 0.79, 0.93]<copy_219><copy_220> ... <copy_306><copy_307><region>])
 detect(query="Hot Pink data series", objects=[<obj3><region>[0.21, 0.23, 0.58, 0.46]<copy_52><copy_53> ... <copy_157><copy_158><region>])
 detect(query="Medium Mint data series", objects=[<obj4><region>[0.12, 0.54, 0.54, 0.85]<copy_147><copy_148> ... <copy_276><copy_277><region>])
 detect(query="Dark Cyan data series", objects=[<obj5><region>[0.25, 0.15, 0.54, 0.38]<copy_30><copy_31> ... <copy_108><copy_109><region>])
 detect(query="Yellow Green data series", objects=[<obj6><region>[0.08, 0.07, 0.79, 0.77]<copy_1><copy_2> ... <copy_258><copy_259><region>])

The y-axis is labeled "label" and ranges from 86 to 98, and the x-axis is numbered from 0 to 100. I need to detect the y-axis and x-axis.

detect(query="y-axis", objects=[<obj7><region>[0.00, 0.30, 0.04, 0.62]<copy_72><copy_73> ... <copy_192><copy_193><region>])
 detect(query="x-axis", objects=[<obj8><region>[0.33, 0.84, 0.50, 1.00]<copy_247><copy_248> ... <copy_298><copy_299><region>])

Looking at the plot <obj1>, I can see that each of these has points scattered across the graph area.

Starting with Dark Violet <obj2>, which is purple. It seems like there are several purple points clustered towards the lower part of the graph <obj1>, around the 86 mark on the y-axis <obj7>. They don't seem to vary much in value, suggesting that this might be a relatively flat line or very little change over the x-axis <obj8> range.

Hot Pink <obj3>, which is light pink, shows a more dynamic pattern. The points start high around 98 and seem to decrease gradually as the x-axis <obj8> progresses. There might be some fluctuation, but overall, there's a downward trend.

Medium Mint <obj4>, the light greenish-blue, starts low around 86 and increases steadily, possibly following a linear pattern. By the end, it reaches up to about 92 or 93.

Dark Cyan <obj5>, the dark blue-green, appears to be quite variable. It starts around 96 and fluctuates up and down, sometimes dipping below 94 and rising above 96.

Yellow Green <obj6>, the yellowish-green, also shows variability, starting around 96 and fluctuating between about 92 and 96.

...

From the description, it seems that Dark Violet <obj2> is consistently around 86, with minimal variation. Comparatively, Medium Mint <obj4><region>[0.12, 0.54, 0.54, 0.85]<copy_147><copy_148> ... <copy_276><copy_277><region> starts at 86 and increases to about 92 or 93, so its average would be higher than Dark Violet's <obj2>. Similarly, Dark Cyan <obj5><region>[0.25, 0.15, 0.54, 0.38]<copy_30><copy_31> ... <copy_258><copy_259><region> have higher y-values, so their areas would be larger.

Hot Pink <obj3><region>[0.21, 0.23, 0.58, 0.46]<copy_52><copy_53> ... <copy_157><copy_158><region> starts high and decreases, but even at its lowest, it's around 90, which is still higher than Dark Violet's <obj2> average.

Therefore, based on this analysis, Dark Violet <obj2> indeed has the smallest area under the curve. So, the answer should be (A) yes. **Final Answer** [\boxed{A}]

Figure 9: Qualitative example of **v1** performing comparative reasoning on a chart comprehension task.

Prompt for data generation

You are given text-only reasoning for visual question answering.

Your task is to convert this text-only reasoning into visually grounded reasoning.

STEP-BY-STEP INSTRUCTION

Please follow these instructions step-by-step, imitating human visual reasoning behavior by:

1) Start from the beginning of the reasoning and read EACH sentence.

2) When you think you'd better to look the object or region, use detect() function

3) Format: 'detect(query="visual item that you want to find", objects=["<obj#>"])'

4) After detection, reference the visual element with '<obj#>' tags everytime you need to look it again immediately after mentioning the item.

5) Use NEW object numbers ('<obj1>', '<obj2>', '<obj3>'...) for EACH new detection.

EXAMPLE:

Original text:

"Looking at the graph, I can see the function reaches its maximum at x = 3."

Corrected:

""

To answer the question, I need to look the graph.

detect(query="function graph", objects=["<obj1>"])

Looking at the graph <obj1>, I can see the function reaches its maximum at x = 3.

""

Later reference:

You can skip the <obj#> tag when you think you do not need to look it again.

""

The slope of the function becomes zero at this point on the graph.

""

KEY REQUIREMENTS:

- Every item in lists MUST have its own 'detect()' statement

- Put 'detect()' statements on their own lines

- NEVER skip any visual element mentioned in the reasoning

- Start object numbering at 'obj1' and increase by 1 for each new object

<OBJ#> REQUIREMENTS

- Visual element should be concrete, distinct, and explicit. Later you will localize the element based on the detect(). So make sure that the element not confusing.

- Use separate tags for each object (write "between the bus <obj1> and the car <obj2>" not "between <obj1 and obj2>").

- GOOD grounding: "I need to analyze this problem. detect(query="triangle", objects=["<obj1>"]) The triangle <obj1> has a right angle at vertex S."

- BAD grounding: "detect(query="triangle and rectangular", objects=["<obj1>"]) in the diagram, there are the triangle and rectangular has a right angle." (referring to non-atomic element)

- BAD grounding: "detect(query="region", objects=["<obj1>"]) The triangle <obj1> has a right angle." (referring to ambiguous element)

After completing the reasoning, list all objects detected:

{

"obj1": {"type": "function_graph",

"description": "Graph of a function with maximum at x = 3"},

"obj2": {"type": "next_item",

"description": "Description of next item"}

}

- We will localize the element with the open-world detector based on the descrip-

1188
 1189 so make sure to include well-described full self-contained description enough to
 1190 uniquely identify the object.

1191
 1192 ### FINAL FORMAT:
 1193 {
 1194 "reasoning": "Your fully visually-grounded reasoning text",
 1195 "obj_list": "Your JSON object list"
 1196 }

1197 Now, strictly following the instruction and the example, please provide the object
 1198 list and visually grounded reasoning for the following prompt and reasoning:

1199
 1200 ### Example
 1201 Original Conversation

1202
 1203 HUMAN:
 1204 [few_shot_question]

1205
 1206 GPT:
 1207 [few_shot_answer]

1208
 1209 ### Visually Grounded Reasoning

1210
 1211 GPT:
 1212 [few_shot_reasoning]

1213
 1214 ### Object List:
 1215 [few_shot_objects]

1216
 1217
 1218 Now, given the conversation, please convert GPT's text-only reasoning into visually
 1219 grounded reasoning

1220
 1221 Original Conversation:

1222
 1223 HUMAN:
 1224 [question]

1225
 1226 GPT:
 1227 [answer]

1228
 1229 ### Visually Grounded Reasoning:

1230
 1231 Table 5: Prompt used for converting textual reasoning to grounded reasoning annotations in **v1g** data
 1232 generation process

1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241