
Unmasking Trees for Tabular Data

Calvin McCarter
mccarter.calvin@gmail.com

BigHat Biosciences

Abstract

Despite much work on advanced deep learning and generative modeling techniques
for tabular data generation and imputation, traditional methods have continued
to win on imputation benchmarks. We herein present UnmaskingTrees, a sim-
ple method for tabular imputation (and generation) employing gradient-boosted
decision trees which are used to incrementally unmask individual features. This
approach offers state-of-the-art performance on imputation, and on generation
given training data with missingness; and it has competitive performance on vanilla
generation. To solve the conditional generation subproblem, we propose a tabular
probabilistic prediction method, BaltoBot, which fits a balanced tree of boosted
tree classifiers. Unlike older methods, it requires no parametric assumption on the
conditional distribution, accommodating features with multimodal distributions;
unlike newer diffusion methods, it offers fast sampling, closed-form density esti-
mation, and flexible handling of discrete variables. We finally consider our two
approaches as meta-algorithms, demonstrating in-context learning-based generative
modeling with TabPFN.1

1 Introduction

Given a tabular dataset, it is frequently desirable to impute missing values within that dataset, and
to generate new synthetic examples. On data generation, recent work [Jolicoeur-Martineau et al.,
2024b] (ForestDiffusion) has shown state-of-the-art results on data generation using gradient-boosted
trees [Chen and Guestrin, 2016] trained on diffusion or flow-matching objectives, outperforming
deep learning-based approaches. However, this approach tended to struggle on tabular imputation
tasks, outperformed by MissForest [Stekhoven and Bühlmann, 2012], an older multiple imputation
approach based on random forests [Breiman, 2001].

We address this shortfall by training gradient-boosted trees to autoregressively unmask features
in random order, taking as inspiration the benefits of this training objective applied to tabular
Transformer models [Gulati and Roysdon, 2024] (TabMT). This autoregressive approach, which we
dub UnmaskingTrees, naturally performs conditional generation (i.e. imputation): at inference time,
we simply fill in and condition on observed values, autoregressively generating the remaining missing
values. This contrasts with tabular diffusion modeling, for which the RePaint inpainting algorithm
[Lugmayr et al., 2022] is employed to mediocre effect [Jolicoeur-Martineau et al., 2024b]. Because
the predictor for a given feature must condition on varying subsets of the other features, the ability
of gradient-boosted trees to handle missing features makes them a natural choice for autoregressive
modeling. Hence, we maintain the tree-based approach of Jolicoeur-Martineau et al. [2024b], while
replacing their tree-based regressors with our novel tree-based probabilistic predictors, which we turn
to next.

While mean-estimating regression models are satisfactory for diffusion, for autoregression we must
inject noise, and hence must estimate the entire conditional distribution of each feature. We therefore

1Please see https://arxiv.org/abs/2407.05593 for the latest methods and results.

Table Representation Learning Workshop at NeurIPS 2024.

https://arxiv.org/abs/2407.05593


revisit the long-studied problem of (tabular) probabilistic prediction [Le et al., 2005, Meinshausen
and Ridgeway, 2006]. Because the conditional distribution is possibly multi-modal, parametric
approaches such as XGBoostLSS [März, 2019], NGBoost [Duan et al., 2020], and PGBM [Sprangers
et al., 2021] are poor choices for our setting. Meanwhile, quantization of a continuous variable
can model its multi-modality, but at the cost of destroying either low-resolution or high-resolution
information. A diffusion-based method, Treeffuser Beltran-Velez et al. [2024], was recently proposed
to address these problems. However, as a diffusion method, it suffers from slow sampling and is
unable to provide closed-form density estimates; furthermore, Treeffuser does not naturally model
discrete outcomes. To address these problems, we propose BaltoBot, a balanced tree of boosted
trees. For each individual variable, we recursively divide its output space with the kernel density
integral (KDI) quantizer [McCarter, 2023] into a “meta-tree” of binary classifiers, which for us are
gradient-boosted trees. This allows us to efficiently generate samples and estimate densities, because
each sample follows only one path from root to leaf of the meta-tree. Performing regression with
hierchical classification proved successful in computer vision object bounding box prediction [Li
et al., 2020], but has been surprisingly underexplored in tabular ML.

Our two methods are in fact meta-algorithms that, in combination, can create a generative model out
of any probabilistic binary classifier. To demonstrate this flexibility, we swap out XGBoost [Chen and
Guestrin, 2016] for TabPFN [Hollmann et al., 2022]. TabPFN is a deep learning model pretrained
to perform in-context learning for tabular classification. While it has state-of-the-art classification
benchmark performance [McElfresh et al., 2024], it currently does not perform regression tasks, nor
does it inherently perform generative modeling [Ma et al., 2024]. Constructing a generative model
out of TabPFN [Hollmann et al., 2022] was first proposed in TabPFGen [Ma et al., 2024], which
approximates the posterior from TabPFN-provided likelihoods by iteratively applying stochastic
gradient Langevin dynamics [Welling and Teh, 2011]. But unlike the previous work, ours requires
only a few TabPFN forward-passes for each sample rather than many iterative data updates.

We showcase UnmaskingTrees on two tabular case studies, and on the benchmark of 27 tabular
datasets presented by Jolicoeur-Martineau et al. [2024b]. Most notably on this benchmark, our
approach offers state-of-the-art performance on imputation and on generation given training data
with missingness; and it has competitive performance on vanilla generation. We also demonstrate
that BaltoBot is on its own a useful method for probabilistic prediction, showing its advantages
on synthetic case studies. Finally, we provide open-source code with an easy-to-use sklearn-style
interface at https://github.com/calvinmccarter/unmasking-trees. In addition to being
a useful method for practitioners, we hope our work sparks conversations within the tabular ML
community about whether diffusion is really all you need for tabular conditional generation.

2 Method

2.1 UnmaskingTrees for tabular joint distribution modeling

UnmaskingTrees combines the gradient-boosted trees of ForestDiffusion [Jolicoeur-Martineau et al.,
2024b] with the training objective of TabMT [Gulati and Roysdon, 2024], inheriting the benefits
of both. Consider a dataset with N examples and D features. For each example, we generate new
training samples by randomly sampling an order over the features, then incrementally masking the
features in that random order. Given duplication factor K, we repeat this process times with K
different random permutations. This leads to a training dataset with KND samples, given which
we train XGBoost [Chen and Guestrin, 2016] models to predict each unmasked sample given the
more-masked example derived from it. Implementing this is very simple: it requires about 70 lines of
excessively-loquacious Python code for training, and about 20 lines for inference.

For both generation and imputation, we generate features of each sample in random order. For
imputation rather than generation tasks, we begin by filling in each sample with the observed values,
and run inference on the remaining unobserved features.

2.2 BaltoBot for tabular probabilistic prediction

A key problem when autoregressively generating continuous data is that a regression model will
attempt to predict the mean of a conditional distribution, whereas we would like it to sample from
the possibly-multimodal conditional distribution. The simplest solution is to quantize continuous

2

https://github.com/calvinmccarter/unmasking-trees


features into bins, because classification over histograms is inherently multimodal; TabMT [Gulati
and Roysdon, 2024] did this with 1d k-Means clustering [Lloyd, 1982]. Yet this not only destroys
information within bins due to rounding, it also destroys information about the proximity among the
ordered bins. Thus, it forces us to choose between a small number of quantization bins, yielding low
resolution; or to choose a large number of bins, risking catastrophic errors due to overfitting and/or
clumping of generated samples due to poor calibration. This not only limits performance, but also
necessitates hyperparameter tuning [Gulati and Roysdon, 2024].

Inspired by this, we propose a general-purpose solution to the tabular probabilistic prediction problem.
For each individual regression output variable, we build a balanced tree of binary classifiers. Consider
a node with depth δ on this “meta-tree”, which is fit with (Xtrain ∈ Rn×d,ytrain ∈ Rn). Using kernel
density integral quantization (KDI) [McCarter, 2023], which adaptively interpolates between uniform
quantization and quantile quantization, we obtain binarized ỹtrain ∈ [0, 1]n. We train an XGBoost
classifier on (Xtrain, ỹtrain). If δ > 0, we then recursively pass {(x(i), y(i)) ∈ (Xtrain,ytrain)|ỹ(i) = 0}
to its left child, and analogously for ỹ(i) = 1 to its right child. At a leaf node, δ = 0, if given a single
unique training set output value in a bin, we record this value. At inference time, given a query input
x, we descend the tree by obtaining predicted probabilities from each node’s XGBoost classifier, then
sampling from these. Once we reach a leaf node, we either sample uniformly from its appropriate
bin, or we return the lone output value if a singleton bin.

At training and inference time, each XGBoost model within the meta-tree only sees examples that
fall into its corresponding region of the output space. Thus, for a meta-tree with depth ∆ (and
thus 2∆ models), each example is only passed as input to ∆ different models. While lower-level
classifiers receive less data and are poorer quality, the magnitude of such errors are smaller due to our
hierarchical partitioning approach. Furthermore, our singleton-bin technique allows us to adaptively
generate discrete and even mixed-type variables, if these discrete outcomes are high-frequency
relative to the total size of the data and to the depth of the meta-tree. (Up to 2∆ discrete outcomes can
be produced by BaltoBot.) Finally, eschewing diffusion modeling enables us to perform closed-form
conditional density estimation.

2.3 Computational complexity

ForestDiffusion, with T diffusion steps and duplication factor K, constructs a training dataset of size
TKN ×D. Given the same duplication factor K, UnmaskingTrees will construct a training dataset
of size KND×D. Meanwhile, ForestDiffusion must train DT different XGBoost regression models.
We, on the other hand, train D different BaltoBot models, one per feature; with BaltoBot meta-tree
depth of ∆, we then train a total of D2∆ XGBoost binary classifiers. However, classifiers lower in
the BaltoBot meta-tree become progressively faster to train. Indeed, each constructed training sample
will be seen by DT different XGBoost regressors with ForestDiffusion, but only D∆ classifiers with
our approach. Given that T ∼ 50 and ∆ ∼ 4, this yields a large speedup for our approach.

The KDI quantizer [McCarter, 2023] has negligible contribution to runtime, because it uses the
polynomial-exponential kernel density estimator (KDE) [Hofmeyr, 2019], which has linear complex-
ity in sample size for 1d data, unlike the quadratic complexity of the Gaussian KDE.

At inference time, each ForestDiffusion generated sample passes through T steps of the diffusion
reverse-process, for a total of DT XGBoost predictions. For UnmaskingTrees with BaltoBot, each
generated sample instead requires only D∆ XGBoost predictions, because each sample follows only
one path from root to leaf of the meta-tree. The resulting speedup is especially impactful for the
multiple imputation scenario, where inference time dominates.

2.4 In-context learning-based generation with BaltoBoTabPFN and UnmaskingTabPFN

Within our flexible frameworks for joint and conditional modeling, TabPFN [Hollmann et al., 2022]
can be used as a base learner for probabilistic prediction and generative modeling. For Unmask-
ingTabPFN joint modeling, a difficulty arises from TabPFN’s inability to handle inputs Xtrain with
missing values. To address this, during both training and inference, we replaced NaNs with samples
from N (0, 1); we found this performed better than removing samples and/or features containing
NaNs. To address TabPFN’s sample size limit of 1024, we performed random subsampling without
replacement.

3



3 Results

Figure 1: Results on Two Moons case study. Original data is shown in green; generated data is shown
in red; imputed data is shown in blue.

We evaluate UnmaskingTrees on two case studies (Section 3.1) and on a tabular benchmark of
27 datasets (Section 3.2); we lastly evaluate BaltoBot on tabular probabilistic prediction (Section
3.3). Results were obtained always using the default hyperparameters: output tree depth of 4, and
duplication factor K = 50. Our hyperparameters were tuned on the two case study datasets, then
applied without further tuning to the benchmark experiment. Overall, UnmaskingTrees has state-of-
the-art performance on imputation and on generation after training on incomplete data; and it has
competitive performance on vanilla tabular generation scenarios.

3.1 Case studies on Two Moons and Iris datasets

Two Moons dataset We first compare our approach to previous leading methods on the synthetic
Two Moons dataset with 200 training samples and noise level N (0, 0.1). We compare Unmask-
ingTrees to MissForest [Stekhoven and Bühlmann, 2012], MICE-Forest [Van Buuren et al., 1999,
Wilson et al., 2022] (another leading traditional multiple imputation method), and ForestDiffusion,
with default hyperparameters for all methods. For ForestDiffusion, we evaluate both the variance-
preserving SDE (Forest-VP) and flow-matching (Forest-Flow) versions on generation; on imputation,
we evaluate Forest-VP with and without RePaint, again using default RePaint hyperparameters.

We show results in Figure 1. On generation, Forest-VP appears to do best according to visual
inspection, while UnmaskingTrees and Forest-Flow perform similarly decently. UnmaskingTabPFN
performs poorly, but does capture the overall shape of the distribution. Next, we turn to imputation,
wherein we request a single imputation for a copy of the original training data with the second
dimension (y-axis) values masked out. ForestDiffusion struggles with and without RePaint, and
MissForest and MICE-Forest have a lesser degree of out-of-distribution imputations. Meanwhile,
UnmaskingTrees generates impeccable imputations.

Iris dataset In Figure 2, we show results for the Iris dataset [Fisher, 1936], plotting petal length,
petal width, and species. We compare both methods on generation, and to compare on imputation,
we create another version of the Iris dataset, with missingness completely at random: we randomly
select samples with 50% chance to have any missingness, and on these samples, we mask the non-
species feature values with 50% chance. Visually, ForestDiffusion and UnmaskingTrees perform
about equally well on generation. Meanwhile, on imputation, UnmaskingTrees does a better job
conditioning on species information than ForestDiffusion. UnmaskingTrees also produces more
diverse imputations than MissForest.

4



Figure 2: Results on Iris dataset, with species, petal width, and petal length depicted. Original data
and syntetically-generated datasets are shown on the left column. The imputed dataset is shown
on the right column, with × symbols highlighting the samples with any missingness that required
imputation.

3.2 Benchmarking UnmaskingTrees on 27 tabular datasets

We next repeat the experimental setup of Jolicoeur-Martineau et al. [2024b] for evaluating tabular
imputation and generation methods.2 Results for imputation are shown in Table 1. UnmaskingTrees

2We do not compare against TabMT [Gulati and Roysdon, 2024] and TabPFGen [Ma et al., 2024] because no
code was provided.

5



wins first place on 3/9 metrics, including both metrics based on downstream prediction tasks; and it
generally outperforms ForestDiffusion, winning on 8/9 metrics. While MissForest wins first place on
4/9 metrics, UnmaskingTrees wins 5-4 head-to-head against MissForest. UnmaskingTrees is also the
only method with better than 5th place average ranking on all metrics. We report further ablation
experiments in Appendix A, showing progressive improvements for the UnmaskingTrees framework,
for KDI quantization versus k-Means, and for the BaltoBot method used in our full proposed solution.

We next repeat the experimental setup of Jolicoeur-Martineau et al. [2024b] for evaluating tabular
generation methods. Results for partially-missing data are shown in Table 2. UnmaskingTrees is first
place on 5/9 metrics; head-to-head, UnmaskingTrees beats TabDDPM 5-4, and beats Forest-Flow
6-3. Results for fully-observed data are shown in Table 3. UnmaskingTrees loses head-to-head to
Forest-Flow, Forest-VP, and TabDDPM, but wins against the other methods.

Table 1: Tabular data imputation (27 datasets, 3 experiments per dataset, 10 imputations per experi-
ment) with 20% missing. Shown are averaged rank over all datasets and experiments (standard-error).
Overall best is highlighted; better of Forest-VP versus ours is boldface blue. Metrics are Minimum
and Average mean-absolute error (MinMAE and AvgMAE) to ground-truth, Wasserstein distance to
train and test dataset distributions (Wtrain and Wtest), Mean Absolute Deviation (MAD) around the
median/mode (for diversity), R2 and F1 for downstream regression / classification problems, and
percent bias Pbias and confidence interval coverage rate Covrate for statistical inferences.

MinMAE ↓ AvgMAE ↓ Wtrain ↓ Wtest ↓ MAD ↓ R2 ↓ F1 ↓ Pbias ↓ Covrate ↓
KNN 5.5 (0.5) 6.3 (0.4) 4.9 (0.4) 5 (0.4) 8.4 (0) 6.5 (1) 5.7 (1.1) 6.2 (1) 5.4 (0.6)

ICE 6.8 (0.4) 4.7 (0.4) 7 (0.5) 7.2 (0.4) 1.6 (0.2) 6.2 (1) 7 (0.6) 5.7 (0.9) 5.3 (0.6)
MICE-Forest 3.9 (0.4) 2.5 (0.4) 2.9 (0.2) 3 (0.2) 3.6 (0.2) 3.7 (1.4) 3.2 (1) 5.5 (1.2) 4.3 (0.6)

MissForest 2.7 (0.5) 4 (0.4) 1.8 (0.3) 2 (0.3) 5.5 (0.2) 3.8 (1.4) 2.5 (0.5) 5.5 (1.5) 3.3 (0.5)
Softimpute 6.7 (0.4) 7.6 (0.4) 7.1 (0.5) 7.3 (0.5) 8.4 (0) 6 (0.9) 7.8 (0.4) 6.3 (0.9) 6.7 (0.4)

OT 5.9 (0.4) 6.1 (0.3) 6 (0.5) 6 (0.5) 3.7 (0.3) 6.2 (0.5) 6.8 (0.6) 5.5 (0.8) 4.8 (0.5)
GAIN 4.7 (0.4) 6.5 (0.3) 6 (0.3) 6 (0.2) 6.9 (0.1) 5.7 (0.8) 5.4 (0.8) 4.7 (1) 5 (0.6)

Forest-VP 5.3 (0.4) 4 (0.5) 5.8 (0.3) 5.1 (0.4) 3.2 (0.4) 4.5 (0.9) 4.6 (0.8) 3.3 (0.6) 5.5 (0.7)
UTrees 3.5 (0.5) 3.2 (0.5) 3.5 (0.4) 3.5 (0.5) 3.8 (0.2) 2.5 (0.6) 2.2 (0.6) 2.3 (0.9) 4.7 (0.6)

Table 2: Tabular data generation with incomplete data (27 datasets, 3 experiments per dataset, 20%
missing values), MissForest is used to impute missing data except in Forest-VP, Forest-Flow, and
UnmaskingTrees; averaged rank over all datasets and experiments (standard-error). Overall best is
highlighted; better of Forest-VP versus Forest-Flow versus ours is boldface blue.

Wtrain ↓ Wtest ↓ covtrain ↓ covtest ↓ R2
fake ↓ F1fake ↓ F1disc ↓ Pbias ↓ covrate ↓

GaussianCopula 7 (0.3) 7.1 (0.2) 7.2 (0.3) 7.1 (0.3) 6.3 (0.4) 6.6 (0.3) 6.7 (0.4) 5.5 (1) 7.7 (0.6)
TVAE 5.2 (0.3) 4.9 (0.3) 5.7 (0.3) 5.8 (0.2) 6 (1) 5.8 (0.5) 5.8 (0.4) 8 (0.4) 6.2 (1)

CTGAN 8.3 (0.2) 8.4 (0.2) 8.4 (0.2) 8.3 (0.2) 8.3 (0.3) 8.4 (0.2) 6.5 (0.2) 4.8 (1.2) 7.1 (0.7)
CTABGAN 6.7 (0.4) 6.5 (0.4) 7.1 (0.3) 6.8 (0.3) 7.3 (0.6) 7.1 (0.4) 6.6 (0.3) 7.5 (1) 6.1 (0.6)

Stasy 5.9 (0.2) 6.1 (0.3) 5.3 (0.2) 5.1 (0.3) 5.8 (0.9) 4.4 (0.4) 5.3 (0.4) 3.7 (0.4) 4.6 (1.1)
TabDDPM 3 (0.7) 3.4 (0.7) 2.3 (0.5) 2.9 (0.6) 1.7 (0.3) 3.3 (0.6) 3.9 (0.6) 3.8 (1.2) 2 (0.5)
Forest-VP 3.7 (0.2) 3.2 (0.3) 3.9 (0.2) 3.8 (0.3) 3.2 (0.3) 2.3 (0.3) 4.2 (0.4) 4.2 (0.8) 4.5 (1.1)

Forest-Flow 3 (0.3) 2.6 (0.3) 2.6 (0.3) 2.7 (0.2) 3 (0.7) 3.7 (0.3) 5 (0.5) 3.8 (0.9) 3.2 (0.8)
UTrees 2.1 (0.2) 2.8 (0.3) 2.5 (0.2) 2.5 (0.2) 3.3 (0.8) 3.5 (0.5) 1 (0) 3.7 (0.9) 3.7 (1)

Table 3: Tabular data generation with complete data (27 datasets, 3 experiments per dataset); averaged
rank over all datasets and experiments (standard-error). Overall best is highlighted; better of Forest-
VP versus Forest-Flow versus ours is boldface blue.

Wtrain ↓ Wtest ↓ covtrain ↓ covtest ↓ R2
fake ↓ F1fake ↓ F1disc ↓ Pbias ↓ Covrate ↓

GaussianCopula 7.1 (0.3) 7.2 (0.3) 7.3 (0.3) 7.4 (0.3) 6.2 (0.2) 6.4 (0.3) 7 (0.4) 6.5 (1.1) 7.5 (0.7)
TVAE 5.3 (0.2) 5.1 (0.2) 5.7 (0.2) 5.7 (0.2) 6.5 (0.7) 6 (0.5) 5.5 (0.3) 7.3 (0.6) 6.7 (0.6)

CTGAN 8.4 (0.1) 8.4 (0.2) 8.3 (0.2) 8.1 (0.2) 8.5 (0.2) 8.3 (0.2) 6.7 (0.3) 5.3 (1.1) 7.2 (0.5)
CTAB-GAN+ 6.8 (0.3) 6.7 (0.3) 7.2 (0.3) 7.1 (0.3) 6.8 (0.4) 6.9 (0.4) 6.9 (0.3) 7.7 (0.8) 6.7 (0.8)

STaSy 6.1 (0.2) 6.3 (0.2) 5.3 (0.2) 5.4 (0.2) 6 (1.2) 5.1 (0.3) 6.1 (0.3) 4.5 (0.8) 4.2 (1.1)
TabDDPM 3 (0.7) 3.9 (0.6) 2.8 (0.5) 3.4 (0.5) 1.2 (0.2) 3.8 (0.6) 3.2 (0.4) 3 (0.9) 1.4 (0.2)
Forest-VP 3.2 (0.2) 2.8 (0.2) 3.6 (0.3) 3.3 (0.3) 2.8 (0.3) 2.2 (0.3) 4.3 (0.4) 3.2 (0.9) 3.5 (0.8)

Forest-Flow 1.9 (0.2) 1.5 (0.2) 1.7 (0.2) 1.8 (0.2) 2.3 (0.4) 2.4 (0.3) 4.3 (0.4) 2.8 (0.5) 2.7 (0.4)
UTrees 3.1 (0.1) 3.1 (0.2) 3.1 (0.2) 2.8 (0.2) 4.7 (0.3) 3.9 (0.3) 1 (0) 4.7 (0.7) 5.2 (0.9)

3.3 Evaluating BaltoBot on synthetic probabilistic prediction case studies

Wave dataset We compare our approach with Treeffuser [Beltran-Velez et al., 2024] on the “wave”
synthetic dataset from Treeffuser [Beltran-Velez et al., 2024], which as shown in Figure 3 is nonlinear,

6



Figure 3: Comparison of Treeffuser and our approach on wave synthetic data with 5000 samples.
(A) Probabilistic predictions for Treeffuser (top), BaltoBot (center), and BaltoBoTabPFN (bottom).
(B) Runtime comparison for the different methods. (C) Estimated pdf from our methods at X = 2,
depicted as the vertical dotted line in (A).

multimodal, heteroskedastic, and heavy-tailed. On the raw probabilistic predictions in Figure 3(A),
we see that BaltoBot is (by visual inspection) able to model the conditional distribution as well as
Treeffuser; BaltoBoTabPFN performs slightly worse. Yet this case study illustrates the two advantages
of BaltoBot. First, in Figure 3(B) we show the runtime of the different methods: training, sampling,
and total. To train on 5000 samples, Treeffuser took 1.1s and BaltoBot took 2.6s; but to generate
5000 samples, Treeffuser took 5.0s while BaltoBot took 0.72s. Second, BaltoBot offers the ability to
estimate a closed-form probability density function (pdf) of the predictive distribution in Figure 3(C);
in contrast, Treeffuser can only sample from the predictive distribution.

Poisson-distributed count data We generate 500 samples of Xi ∼ Unif[0, 3], Yi ∼ Poisson(λ =√
Xi), and show probabilistic predictions for Y in Figure 4. Whereas Treeffuser generates a spurious

negative-valued outlier and many non-integer Y samples, our approach automatically models the
count-type distribution of the data.

Figure 4: Comparison of Treeffuser, BaltoBot, and BaltoBoTabPFN on Poisson-distributed data. The
input variable is on the x-axis, while probabilistic predictions are shown on the y-axis.

7



4 Discussion

Diffusion modeling has recently gained popularity in tabular ML [Zheng and Charoenphakdee, 2022,
Jolicoeur-Martineau et al., 2024b, Beltran-Velez et al., 2024, Kotelnikov et al., 2023]. Our proposed
approach is an instance of the autoregressive discrete diffusion framework [Hoogeboom et al., 2021],
instances of which have shown success in a variety of tasks [Yang, 2019, Austin et al., 2021, Kitouni
et al., 2024, Jolicoeur-Martineau et al., 2024a]. Yet our results call into question whether diffusion is
beneficial for tabular conditional generation, or whether autoregression is sufficient for our setting.
It has been observed that diffusion is autoregression in frequency space, progressing from low
frequencies to high frequencies, which makes it a good match for image data with its power law
spectra [Rissanen et al., 2022, Dieleman, 2024, Stewart, 2024]. In tabular datasets without this
phenomena, we would expect diffusion modeling to be less advantageous. Our success also makes
sense in light of the observation that unmasking tends to outperform denoising in self-supervised
pretraining [Balestriero and LeCun, 2024].

Why is ForestDiffusion better at vanilla generative modeling, while UnmaskingTrees is better on
generation given partially-missing data and especially on imputation? We offer two speculative
explanations. First, imputation is a conditional modeling scenario, except that you do not know the
partition of the features into input features and output features a priori. One could address imputation
by learning all possible 2D conditional distributions, but this is impractical for large D, so one would
prefer to learn a single joint distribution. Both autoregression and diffusion are ways of learning a
joint distribution; because autoregression does so by learning conditional distributions, it is more
suited to the conditional modeling imputation setting. Second, for missing data, diffusion has a
train-inference gap: during training, observed features begin the reverse process from N (0, 1); during
inference for imputation, observed features begin the reverse process at their actual values. On the
other hand, the advantages of diffusion modeling (no quantization error, holistic generation) give it
superiority when these problems can be avoided.

Despite their strong outperformance on other modalities, deep learning approaches have laboured
against gradient-boosted decision trees on tabular data [Shwartz-Ziv and Armon, 2022, Jolicoeur-
Martineau et al., 2024b]. Previous work [Breejen et al., 2024] suggests that tabular data requires
an inductive prior that favors sharpness rather than smoothness, showing that TabPFN [Hollmann
et al., 2022] (the leading deep learning tabular classification method) can be further improved with
synthetic data generated from random forests. We anticipate that our XGBoost classifiers may be
swapped out for a future variant of TabPFN that learns sharper boundaries and handles missingness.

We also note that MissForest [Stekhoven and Bühlmann, 2012], hailing from statistical literature on
multiple imputation, has yet to be fully dethroned. Future progress in tabular conditional generation
may require going back to the well of this traditional literature. As one example, we observe that
MissForest exploits feature missingness fraction information, but we are not aware of any “machine
learning” approaches which do so. The statistical literature has also previously explored the value of
conditional modeling for joint modeling [Gelman and Raghunathan, 2001, Liu et al., 2014, Kropko
et al., 2014]. Indeed, our UnmaskingTrees approach, and all autoregressive modeling, is presaged by
the full-mechanism bootstrap [Efron, 1994].

Finally, we observe where randomness enters into our generation process. Flow-matching injects
randomness solely at the beginning of the reverse process via Gaussian sampling, whereas diffusion
models inject randomness both at the beginning and during the reverse process. In contrast, because
our method starts with a fully-masked sample, it injects randomness gradually during the generation
process. First, we randomly generate the order over features for unmasking. Second, we do not
“greedily decode” to the most likely leaf in the meta-tree, but instead sample according to predicted
probabilities. Third, for continuous features, having sampled a particular meta-tree leaf bin, we
sample from within the bin, treating it as a uniform distribution.

5 Conclusions

We show that tree-based autoregressive unmasking is a strong, simple baseline for tabular data. We
recommend UnmaskingTrees for tabular imputation, especially when downstream predictions are
the goal, and for generation on datasets with missingness. We also offer BaltoBot as a fast, flexible
method for computing predictive distributions.

8



References
Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured

denoising diffusion models in discrete state-spaces. Advances in Neural Information Processing
Systems, 34:17981–17993, 2021.

Randall Balestriero and Yann LeCun. Learning by reconstruction produces uninformative features
for perception. arXiv preprint arXiv:2402.11337, 2024.

Nicolas Beltran-Velez, Alessandro Antonio Grande, Achille Nazaret, Alp Kucukelbir, and David Blei.
Treeffuser: Probabilistic predictions via conditional diffusions with gradient-boosted trees. arXiv
preprint arXiv:2406.07658, 2024.

Felix den Breejen, Sangmin Bae, Stephen Cha, and Se-Young Yun. Why in-context learning
transformers are tabular data classifiers. arXiv preprint arXiv:2405.13396, 2024.

Leo Breiman. Random forests. Machine learning, 45:5–32, 2001.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of
the 22nd acm sigkdd international conference on knowledge discovery and data mining, pages
785–794, 2016.

Sander Dieleman. Diffusion is spectral autoregression, 2024. URL https://sander.ai/2024/
09/02/spectral-autoregression.html.

Tony Duan, Avati Anand, Daisy Yi Ding, Khanh K Thai, Sanjay Basu, Andrew Ng, and Alejan-
dro Schuler. Ngboost: Natural gradient boosting for probabilistic prediction. In International
conference on machine learning, pages 2690–2700. PMLR, 2020.

Bradley Efron. Missing data, imputation, and the bootstrap. Journal of the American Statistical
Association, 89(426):463–475, 1994.

Ronald A Fisher. The use of multiple measurements in taxonomic problems. Annals of eugenics, 7
(2):179–188, 1936.

Andrew Gelman and Trivellore E Raghunathan. Using conditional distributions for missing-data
imputation. Statistical Science, 15:268–69, 2001.

Manbir Gulati and Paul Roysdon. Tabmt: Generating tabular data with masked transformers.
Advances in Neural Information Processing Systems, 36, 2024.

David P Hofmeyr. Fast exact evaluation of univariate kernel sums. IEEE transactions on pattern
analysis and machine intelligence, 43(2):447–458, 2019.

Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. Tabpfn: A transformer
that solves small tabular classification problems in a second. arXiv preprint arXiv:2207.01848,
2022.

Emiel Hoogeboom, Alexey A Gritsenko, Jasmijn Bastings, Ben Poole, Rianne van den Berg, and
Tim Salimans. Autoregressive diffusion models. arXiv preprint arXiv:2110.02037, 2021.

Alexia Jolicoeur-Martineau, Aristide Baratin, Kisoo Kwon, Boris Knyazev, and Yan Zhang. Any-
property-conditional molecule generation with self-criticism using spanning trees. arXiv preprint
arXiv:2407.09357, 2024a.

Alexia Jolicoeur-Martineau, Kilian Fatras, and Tal Kachman. Generating and imputing tabular data
via diffusion and flow-based gradient-boosted trees. In International Conference on Artificial
Intelligence and Statistics, pages 1288–1296. PMLR, 2024b. URL https://github.com/
SamsungSAILMontreal/ForestDiffusion.

Ouail Kitouni, Niklas Nolte, Diane Bouchacourt, Adina Williams, Mike Rabbat, and Mark Ibrahim.
The factorization curse: Which tokens you predict underlie the reversal curse and more. arXiv
preprint arXiv:2406.05183, 2024.

9

https://sander.ai/2024/09/02/spectral-autoregression.html
https://sander.ai/2024/09/02/spectral-autoregression.html
https://github.com/SamsungSAILMontreal/ForestDiffusion
https://github.com/SamsungSAILMontreal/ForestDiffusion


Akim Kotelnikov, Dmitry Baranchuk, Ivan Rubachev, and Artem Babenko. Tabddpm: Modelling
tabular data with diffusion models. In International Conference on Machine Learning, pages
17564–17579. PMLR, 2023.

Jonathan Kropko, Ben Goodrich, Andrew Gelman, and Jennifer Hill. Multiple imputation for
continuous and categorical data: comparing joint multivariate normal and conditional approaches.
Political Analysis, 22(4), 2014.

Quoc V Le, Tim Sears, and Alexander J Smola. Nonparametric quantile regression. Technical report,
Technical report, National ICT Australia, June 2005. Available at http://sml . . . , 2005.

Xiaotian Li, Shuzhe Wang, Yi Zhao, Jakob Verbeek, and Juho Kannala. Hierarchical scene coordinate
classification and regression for visual localization. Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 11983–11992, 2020.

Jingchen Liu, Andrew Gelman, Jennifer Hill, Yu-Sung Su, and Jonathan Kropko. On the stationary
distribution of iterative imputations. Biometrika, 101(1):155–173, 2014.

Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory, 28(2):
129–137, 1982.

Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc Van Gool.
Repaint: Inpainting using denoising diffusion probabilistic models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 11461–11471,
June 2022.

Junwei Ma, Apoorv Dankar, George Stein, Guangwei Yu, and Anthony Caterini. Tabpfgen–tabular
data generation with tabpfn. arXiv preprint arXiv:2406.05216, 2024.

Alexander März. Xgboostlss–an extension of xgboost to probabilistic forecasting. arXiv preprint
arXiv:1907.03178, 2019.

Calvin McCarter. The kernel density integral transformation. Transactions on Machine Learning
Research, 2023. ISSN 2835-8856.

Duncan McElfresh, Sujay Khandagale, Jonathan Valverde, Vishak Prasad C, Ganesh Ramakrishnan,
Micah Goldblum, and Colin White. When do neural nets outperform boosted trees on tabular data?
Advances in Neural Information Processing Systems, 36, 2024.

Nicolai Meinshausen and Greg Ridgeway. Quantile regression forests. Journal of machine learning
research, 7(6), 2006.

Severi Rissanen, Markus Heinonen, and Arno Solin. Generative modelling with inverse heat dissipa-
tion. arXiv preprint arXiv:2206.13397, 2022.

Ravid Shwartz-Ziv and Amitai Armon. Tabular data: Deep learning is not all you need. Information
Fusion, 81:84–90, 2022.

Olivier Sprangers, Sebastian Schelter, and Maarten de Rijke. Probabilistic gradient boosting machines
for large-scale probabilistic regression. In Proceedings of the 27th ACM SIGKDD conference on
knowledge discovery & data mining, pages 1510–1520, 2021.

Daniel J Stekhoven and Peter Bühlmann. Missforest—non-parametric missing value imputation for
mixed-type data. Bioinformatics, 28(1):112–118, 2012.

Riley Stewart. trasformers are kiki, diffusion is bouba, and language is pointier than images, 2024.
URL https://x.com/riley_stews/status/1827089629369266492.

Stef Van Buuren, Hendriek C Boshuizen, and Dick L Knook. Multiple imputation of missing blood
pressure covariates in survival analysis. Statistics in medicine, 18(6):681–694, 1999.

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In
Proceedings of the 28th international conference on machine learning (ICML-11), pages 681–688.
Citeseer, 2011.

10

https://x.com/riley_stews/status/1827089629369266492


Samuel Von Wilson, Bogdan Cebere, James Myatt, and Samuel Wilson. AnotherSamWil-
son/miceforest: Release for Zenodo DOI, December 2022. URL https://doi.org/10.5281/
zenodo.7428632.

Z Yang. Xlnet: Generalized autoregressive pretraining for language understanding. arXiv preprint
arXiv:1906.08237, 2019.

Shuhan Zheng and Nontawat Charoenphakdee. Diffusion models for missing value imputation in
tabular data. arXiv preprint arXiv:2210.17128, 2022.

11

https://doi.org/10.5281/zenodo.7428632
https://doi.org/10.5281/zenodo.7428632


A Ablation experiments with imputation

We additionally run UnmaskingTrees without BaltoBot, and instead with vanilla quantization using
k-Means [Lloyd, 1982] and KDI [McCarter, 2023]. Average ranks (shown in Table 4) and raw scores
(shown in Table 5) demonstrate that UnmaskingTrees on its own improves upon Forest-VP’s diffusion
approach. We also see that KDI quantization contributes to improvement beyond k-Means, and that
BaltoBot yields even further improvement.

Table 4: Averaged ranks from ablation study of tabular data imputation (27 datasets, 3 experiments
per dataset, 10 imputations per experiment) with 20% missing. Shown are averaged rank over all
datasets and experiments (standard-error). Overall best is highlighted; better of Forest-VP versus
ours is boldface blue. See Table 1 for column meanings.

MinMAE ↓ AvgMAE ↓ Wtrain ↓ Wtest ↓ MAD ↓ R2 ↓ F1 ↓ Pbias ↓ Covrate ↓
KNN 6.8 (0.6) 7.8 (0.6) 6 (0.4) 6.1 (0.5) 10.4 (0) 8.2 (1.3) 7 (1.5) 7.5 (1.5) 6.5 (0.8)

ICE 8.3 (0.5) 5.8 (0.5) 8.5 (0.6) 8.8 (0.5) 1.9 (0.4) 8 (1.1) 9 (0.6) 7.2 (1.1) 6.4 (0.8)
MICE-Forest 4.8 (0.6) 3.3 (0.6) 3.5 (0.3) 3.4 (0.3) 4.6 (0.4) 4.3 (1.8) 4.3 (1.3) 6.8 (1.6) 4.8 (0.7)

MissForest 3.3 (0.7) 5 (0.6) 2.2 (0.4) 2.3 (0.4) 7.2 (0.3) 4.7 (1.8) 3.3 (0.9) 6.8 (1.9) 3.8 (0.6)
Softimpute 8.3 (0.5) 9.3 (0.5) 8.8 (0.6) 8.9 (0.6) 10.4 (0) 7.5 (1.2) 9.8 (0.4) 8.3 (0.9) 7.9 (0.6)

OT 7.2 (0.5) 7.6 (0.4) 7.4 (0.6) 7.4 (0.6) 4.8 (0.4) 8.2 (0.5) 8.8 (0.6) 7.3 (0.7) 5.8 (0.7)
GAIN 5.8 (0.5) 8.3 (0.4) 7.2 (0.5) 7.5 (0.4) 8.9 (0.1) 7.5 (0.8) 7.4 (0.8) 6.7 (1) 6.1 (0.8)

Forest-VP 6.4 (0.5) 4.8 (0.6) 7 (0.4) 6.1 (0.5) 3.8 (0.5) 6.5 (0.9) 6.6 (0.8) 4.5 (0.8) 6.5 (0.8)
UTrees-kMeans 6 (0.6) 5.8 (0.5) 6.3 (0.6) 6.1 (0.6) 4.1 (0.3) 4 (0.7) 2.9 (0.6) 3.8 (1) 6 (0.7)

UTrees-KDI 5.1 (0.5) 5.1 (0.5) 5.4 (0.6) 5.6 (0.5) 4.8 (0.3) 4.5 (0.9) 4 (0.5) 3.5 (1.2) 6.4 (0.7)
UTrees 3.8 (0.5) 3.2 (0.5) 3.8 (0.4) 3.8 (0.5) 5 (0.3) 2.7 (0.6) 2.9 (0.8) 3.5 (0.8) 5.8 (0.7)

Table 5: Raw scores from ablation study for tabular data imputation (27 datasets, 3 experiments per
dataset, 10 imputations per experiment) with 20% missing values. Shown are raw scores - mean
(standard-error). Overall best is highlighted; better of Forest-VP versus ours is boldface blue. See
Table 1 for column meanings.

MinMAE ↓ AvgMAE ↓ Wtrain ↓ Wtest ↓ MAD ↑ R2
imp ↑ F1imp ↑ Pbias ↓ Covrate ↑

KNN 0.16 (0.03) 0.16 (0.03) 0.42 (0.08) 1.89 (0.49) 0 (0) 0.59 (0.09) 0.75 (0.04) 1.27 (0.25) 0.4 (0.11)
ICE 0.1 (0.01) 0.21 (0.03) 0.52 (0.09) 1.99 (0.49) 0.69 (0.1) 0.59 (0.09) 0.74 (0.04) 1.05 (0.29) 0.39 (0.09)

MICE-Forest 0.08 (0.02) 0.13 (0.03) 0.34 (0.07) 1.86 (0.48) 0.29 (0.08) 0.61 (0.1) 0.76 (0.04) 0.61 (0.2) 0.75 (0.11)
MissForest 0.1 (0.03) 0.12 (0.03) 0.32 (0.07) 1.85 (0.48) 0.1 (0.03) 0.61 (0.1) 0.76 (0.04) 0.62 (0.22) 0.79 (0.08)
Softimpute 0.22 (0.03) 0.22 (0.03) 0.53 (0.07) 1.99 (0.48) 0 (0) 0.58 (0.09) 0.74 (0.04) 1.18 (0.34) 0.31 (0.09)

OT 0.14 (0.02) 0.19 (0.03) 0.56 (0.1) 1.98 (0.49) 0.28 (0.05) 0.59 (0.1) 0.75 (0.04) 1.09 (0.27) 0.39 (0.12)
GAIN 0.16 (0.03) 0.17 (0.03) 0.49 (0.11) 1.95 (0.51) 0.01 (0) 0.6 (0.1) 0.75 (0.04) 1.04 (0.25) 0.54 (0.12)

Forest-VP 0.14 (0.04) 0.17 (0.03) 0.55 (0.13) 1.96 (0.5) 0.25 (0.03) 0.61 (0.1) 0.74 (0.04) 0.81 (0.25) 0.57 (0.14)
UTrees-kMeans 0.1 (0.02) 0.15 (0.03) 0.43 (0.09) 1.9 (0.5) 0.28 (0.06) 0.61 (0.1) 0.76 (0.04) 0.63 (0.21) 0.72 (0.13)

Utrees-KDI 0.1 (0.02) 0.14 (0.03) 0.42 (0.09) 1.89 (0.49) 0.27 (0.06) 0.61 (0.1) 0.76 (0.04) 0.68 (0.24) 0.68 (0.14)
UTrees 0.08 (0.02) 0.14 (0.03) 0.37 (0.08) 1.87 (0.48) 0.27 (0.07) 0.61 (0.1) 0.76 (0.04) 0.55 (0.19) 0.71 (0.13)
Oracle 0 (0) 0 (0) 0 (0) 1.87 (0.49) 0 (0) 0.64 (0.09) 0.78 (0.04) 0 (0) 1 (0)

12


	Introduction
	Method
	UnmaskingTrees for tabular joint distribution modeling
	BaltoBot for tabular probabilistic prediction
	Computational complexity
	In-context learning-based generation with BaltoBoTabPFN and UnmaskingTabPFN

	Results
	Case studies on Two Moons and Iris datasets
	Benchmarking UnmaskingTrees on 27 tabular datasets
	Evaluating BaltoBot on synthetic probabilistic prediction case studies

	Discussion
	Conclusions
	Ablation experiments with imputation

