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ABSTRACT

Trained on internet-scale video data, world models are increasingly recognized
as powerful world simulators that can generate consistent and plausible dynam-
ics over structure, motion, and physics. While recent studies have explored the
few-shot learning capabilities of world models on vision tasks, these explorations
typically lack a systematic investigation of the further applicability of such meth-
ods on generic tasks. We study what happens when these priors are transferred
into a Vision-Language Model (VLM): we re-purpose a video diffusion model as
a generative encoder, queried for a single denoising step, and treat the resulting
latents as an additional set of visual embeddings. We empirically investigate this
class of models, which we refer to as World-Language Models (WorldLMs), and
we find that generative encoders can indeed capture latents useful for downstream
understanding, showing distinctions from conventional vision encoders. Nam-
ing our best-performing WorldLM Dynamic Vision Aligner (DyVA), we further
discover that this method significantly enhances spatial reasoning abilities and en-
ables single-image models to perform multi-frame reasoning. Through the cura-
tion of a suite of spatial evaluation sets, we find DyVA to surpass both open-source
and proprietary baselines on out-of-domain tasks, achieving state-of-the-art per-
formance on MindCube. Finally, we systematically explore extensive model
designs to highlight promising directions for future work. We hope our study can
pave the way for a new family of VLMs that leverage priors from world models.
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Figure 1: Our analysis is structured around three complementary lenses: (i) Paradigm comparison,
contrasting static encoders (e.g., ViT/SigLIP) with world-model encoders (SVD) to ask whether
VLMs can “envision” futures; (ii) Design-space exploration, probing auxiliary encoders, frame bud-
gets, resolutions, and U-Net feature layers to understand how much and which type of world-model
features matter; and (iii) Benchmark diagnosis, which reveals where world-model latents excel (e.g.,
spatial and multi-frame reasoning) and where they remain unhelpful (e.g., language-heavy tasks).
Together, these pillars provide a discussion-oriented framework for understanding the role of world-
model priors in vision–language reasoning.
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1 INTRODUCTION

World models, originally proposed in cognitive science to explain how humans predict and plan in
their environments (Tolman, 1948), have recently emerged as powerful tools in machine learning.
Generative world models (Agarwal et al., 2025b; OpenAI, 2024; Wan et al., 2025; Hu et al., 2023;
Blattmann et al., 2023; Yang et al., 2025b; Guo* et al., 2023; 2025; Chen* et al., 2025), such as
video generation models (VGMs), trained on internet-scale data, encode strong priors over objects,
spatial layouts, and dynamics. These priors allow them to predict plausible future scenarios that are
consistent in 3D structure and physically coherent in motion

However, a largely overlooked implication of World Models is that the ability to generate coherent
futures signals a form of semantic understanding of visual dynamics; this difference between visual
generation and understanding has shaped a decade of representation learning. This suggests that
world models can be more than generators—they may serve as transferable encoders that enrich
downstream tasks with spatial, temporal, and predictive signals. As a result, recent works have
attempted to use video generation backbones for visual perception tasks (Acuaviva et al., 2025).

In this work, we ask a fundamental question: To truly understand the world, must a model first
learn to predict?

To empirically investigate this, we introduce a simple yet effective framework on Vision–Language
Models (VLMs). We specifically explore by evaluating the applicability of predictive world models
on a generic task—Visual Question Answering (VQA)—to assess their broader potential as gener-
alizable vision encoders. Currently, mainstream VLMs primarily rely on ViT-based encoders such
as CLIP (Radford et al., 2021), SigLIP (Zhai et al., 2023), and DINO (Caron et al., 2021; Oquab
et al., 2024), which extract visual semantics from image patches and are then projected as visual
tokens into language backbones. While these encoders are semantically aligned, they are limited
by temporal reasoning and weaken spatial grounding when multiple views or sequential cues are
present. On the other hand, we re-purpose a world model (Stable Video Diffusion SVD) as a novel
Generative Encoder. Our core mechanism is to extract latent features from a single denoising step
of its U-Net. This single step, we hypothesize, captures the low-dimensional world-dynamics prior
sufficient for downstream understanding. These dynamics-aware latents are then fused with static
image features (e.g., SigLIP) and projected into the LLM. The design is very efficient: all encoders
remain frozen, with only lightweight projectors and the LLM being trained.

To this end, we conduct a systematic investigation comparatively evaluating this class of models,
which we refer to as World-Language Models (WorldLMs). Our findings are as follows:

• Shift in Reasoning Paradigm. The generative prior alters the model’s reasoning process.
It moves beyond describing static content to envisioning dynamic possibilities.

• Zero-shot Multi-Frame Adaptation. Trained exclusively on single images, the generative
encoder enables emergent multi-frame reasoning without multi-image pre-training.

• State-of-the-Art Zero-Shot Reasoning. On multi-frame benchmarks, DyVA achieves
state-of-the-art performance, decisively outperforming leading proprietary models such as
Qwen2.5-VL (Bai et al., 2025) and GPT-4o (OpenAI et al., 2024).

Our best-performing WorldLM variant, Dynamic Vision Aligner (DyVA), exemplifies this paradigm
shift. In zero-shot evaluations on challenging multi-frame reasoning benchmarks, DyVA decisively
surpasses even proprietary models, for instance, a 28.3% lead on the MindCube benchmark over
the GPT-4o model. This provides strong evidence that the ability to predict is a powerful, perhaps
essential, foundation for stronger representation learning.

As shown in Figure 1, we systemically organize our investigation revolving around three pillars:

Paradigm comparison. World-model encoders versus static encoders reveal distinct strengths:
world-model latents benefit spatial and multi-frame reasoning, while static encoders excel on
semantics-heavy benchmarks.

Benchmark diagnostics. Through curated evaluation sets—including MindCube Yin et al. (2025),
SAT-Bench Ray et al. (2024), VSR Liu et al. (2023a), we find DyVA to surpass both open-source and
proprietary baselines on out-of-domain tasks, achieving state-of-the-art performance on Mind-
Cube and SATBench. —we show that dynamics-aware latents particularly help with object rela-
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tions, perspectives, and multi-frame spatial reasoning, while offering less gain on tasks requiring
stronger language priors.

Design-space exploration. We analyze different encoder setups to identify when predicted latents
help or hinder performance, laying the groundwork for a new class of WorldLMs exploiting world-
model priors.

Figure 2: WorldLM Pipeline. A SigLIP encoder extracts static semantic features from the input
image. Concurrently, a Generative Encoder generates dynamic state tokens and predicts future dy-
namic tokens to capture temporal changes, using evenly spaced keyframe slots. All visual tokens
are projected into a shared embedding space, concatenated with text tokens, and then fed into the
LLM decoder.

2 PRELIMINARY

To ground our analysis, we need 1) a framework to incorporate the dynamic features of a world
model into a multimodal language model (which we term WorldLM), 2) a training recipe, and 3)
an implementation of inference supporting both single- and multi-image datasets.

Framework. Traditional VLMs like LLaVA (Liu et al., 2024), QwenVL (Bai et al., 2025), and
Prismatic-VLMs (Karamcheti et al., 2024), adopt an architecture consisting of three core compo-
nents. Given an input image ximg ∈ RH×W×C and a text prompt uprompt, the model processes
them through the following components:

• Semantic Vision Encoder. The input image ximg is processed by a frozen pre-trained ViT-
based (Dosovitskiy et al., 2021) vision encoder Vω , for example SigLIP (Zhai et al., 2023),
to extract a sequence of feature embeddings pimg = Vω(ximg), where pimg ∈ RL×dvision .

• Projector. The visual features pimg are subsequently mapped into the language model’s
embedding space by a projector Fψ . This yields a sequence of embeddings eimg =
Fψ(pimg), where eimg ∈ RL×dtext . The projector is typically implemented as a simple
Multi-Layer Perceptron (MLP) with GELU activations (Hendrycks & Gimpel, 2023).

• LLM Backbone. Finally, the language model LMθ autoregressively generates the textual
output uout. It is conditioned on the concatenated sequence of the projected image features
eimg and the text prompt embeddings eprompt: uout = LMθ([eimg; eprompt])

To obtain the dynamic visual information and motion priors of the input image, we employ another
component to encode it:

• Generative Encoder. We utilize Stable Video Diffusion (SVD) (Blattmann et al., 2023)
as our encoder. SVD consists of a VAE (Kingma & Welling, 2022) encoder ϕ and a U-
Net (Ronneberger et al., 2015) denoiser fθ. The input image ximg is first encoded by VAE
into a latent z0, which is then replicated T times to form an initial video latent Z0. A single
Euler integration step is then applied to yield an updated latent Z1 = Z0+∆σ fθ(Z0, σ0, c).

3
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Rather than rendering video frames, the final output Dimg = Hiddenpre-mid(fθ, Z1) is
extracted from the U-Net’s pre-middle block.

As is shown in Fig. 2, semantic features pimg and dynamic features H̃ are projected by two sep-
arate projectors Psem and Pdyn into the LLM space, yielding Vs = Psem(pimg) ∈ RLs×d and
Vd = Pdyn(H̃) ∈ RLd×d. The fused sequence is V = [Vs;Vd] ∈ R(Ls+Ld)×d, which, together
with prompt embeddings Eprompt, is fed into the LLM backbone to autoregressively generate an-
swer tokens uout = LMθ([V ;Eprompt]). By fusing both streams, our WorldLM leverages static
semantics (from SigLIP) and dynamics-aware priors (from SVD) for multimodal reasoning.

Training recipe. We adopt the training strategy from Prismatic-VLMs (Karamcheti et al., 2024)
using a single-stage training to align modalities and incorporate generative latents: We jointly train
both the projectors and the LLM on a mixture of multimodal instruction datasets from LLaVA-
1.5 (Liu et al., 2023b), together with examples from established vision-language benchmarks (e.g.,
GQA (Hudson & Manning, 2019), TextCaps (Sidorov et al., 2020)), and language-only samples
from ShareGPT (sha). This training paradigm not only effectively aligns the generative encoder’s
representations with the semantic space of the language backbone but also improves the model’s
compositional generalization, enabling it to reason over both motion priors and static features. Re-
markably, the entire training process completes in only 10.3 hours on 16×A800 GPUs (≈165 GPU-
hours) while achieving competitive performance, underscoring the efficiency of our approach.

Inference Protocol During inference, we employ SigLIP-so400m-patch14-224 as the semantic
vision encoder and Stable Video Diffusion as the generative encoder, with the image resolution set
to 448 × 448. As shown in Fig. 2, or K input images, we allocate key frames using evenly spaced
indices within the T -frame latent tensor, replace the corresponding slots with encoded keyframes
before the Euler step, and reuse the resulting latents as additional visual tokens. For the semantic
vision encoder, only the first input image is encoded and concatenated with the input of the genera-
tive encoder. Unless otherwise specified, the number of frames (T ) is set to 8 for both single-image
and multi-image inputs.

Following the proposed framework, training setup, and inference principles, we train a family of
WorldLM models and designate the ones excelling in Dynamic Vision Alignment as DyVA.

3 PARADIGM COMPARISON

Do WorldLM Encoders Entail Visual Semantics Understanding?

In this section, we explore how world model latents can benefit visual understanding by contrasting
two differentiating encoder paradigms: (i) traditional static encoders such as CLIP and SigLIP that
prioritize multi-modal semantic alignment, and (ii) world-model encoders based on video generation
models that generate dynamics-aware latents. We begin by comparing the most intuitive design to
test if WorldLMs can work, by directly replacing the CLIP vision encoder of LLaVA 1.5 (Liu et al.,
2024) with a Generative Encoder(e.g., SVD) following the WorldLM pipeline settings in Fig. 2.

Generative encoders exhibit fundamentally different performance.

We begin with a motivating case study, as illustrated in Fig. 3. Models leveraging static encoders,
such as LLaVA, adopt a reasoning paradigm. The output of LLaVA tends to be more descriptive,
describing in depth the details of the given image input. WorldLM, on the other hand, employs
an envisioning paradigm, not only encodes the current state of the image, but it also performs a
prediction of plausible (e.g., “will drive away”, and “drive to the other rover”). This case reveals
an inherent difference between the two paradigms: This case reveals an intrinsic difference between
the two paradigms: VLM reasons by the given image’s embeddings, whereas WorldLM attends to
depict the embeddings of generated predictions.

Multi-frame capture more useful semantic features than Single Frame. The quantitative 3 com-
parison between using different numbers of generated dynamic latents shows its effect on down-
stream tasks. When the generated frames of the video prediction model increase from 1 to 14, we
see a general increasing trend.
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Figure 3: Paradigm Comparison. Using the most straightforward setup of WorldLM, we evaluate
the impact of predicting 1, 4, 8, and 14 frames. The radar chart demonstrates that increasing the
number of frames consistently boosts performance across various vision-language tasks, especially
in spatial and temporal reasoning benchmarks such as SeedBench, VSR, and TallyQA. The qualita-
tive example further illustrates that under the same configuration, our WorldLM exhibits a distinct
reasoning paradigm by envisioning—offering more concise descriptions, stronger spatial grounding,
and more structured temporal foresight compared to LLaVA’s reasoning methods.

Meanwhile, it performs great on spatial-reasoning tasks. Notably, the gains are most pro-
nounced on benchmarks demanding sophisticated spatio-temporal reasoning, such as SeedBench,
VSR, and TallyQA. WorldLM’s generative encoders do entail visual understanding, especially in
spatio-temporal reasoning. This demonstrates the potential of using world models as dynamics-
aware encoders to allow VLMs with a deeper, more grounded level of spatial understanding.

Limitations of WorldLMs. Despite the clear advantages in temporal reasoning, our analysis reveals
a critical trade-off. The case study in Figure 3 offers a qualitative explanation for this phenomenon.
While our world model correctly grounds the spatial structure of the scene (e.g., “rocket on the
ground... large rocket in the distance”), it hallucinates the semantic identity of the objects, misiden-
tifying the Mars lander and rover as “rockets”. Therefore, we believe that using a world model as
an encoder has the potential to enhance predictive and spatial reasoning tasks, but requires further
improvement to ensure basic semantic capabilities.

4 BENCHMARK ANALYSIS: INVESTIGATION

4.1 EXPERIMENTAL SETUP

We document the configurations, datasets, and training protocols underlying our study. Unless oth-
erwise noted, all settings use a 7B-parameter LLaMA-2 LLM backbone, with both SigLIP and
SVD encoders frozen during a single-stage instruction tuning. Training updates are restricted to
lightweight projection layers and the language backbone.

4.2 DATASETS AND EVALUATION TARGETS

Benchmarks vary widely in their emphasis on spatial grounding, temporal coherence, and semantic
understanding. To assess these dimensions, we curate a suite of open-source out-of-domain (OOD)
datasets on which our models have not been trained. This allows us to isolate the transferability of
world-model priors.

Single-image spatial reasoning. We evaluate on benchmarks that probe relational and spatial
understanding without temporal context, including VSR (Liu et al., 2023a), TallyQA (Acharya
et al., 2018), SpatialMM-Obj (Shiri et al., 2024), and 3DSR-Bench-real (Ma et al., 2025). Base-
lines include LLaVA-1.5 (Liu et al., 2024), Prism-SigLIP-7B (Karamcheti et al., 2024), and Prism-
DinoSigLIP-7B (Karamcheti et al., 2024).
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Multi-image and temporal reasoning. To assess robustness to sequential inputs and temporal
structure, we use MMSI-Bench (Yang et al., 2025a), SAT-Synthetic (Ray et al., 2024), and Mind-
Cube (Yin et al., 2025). These benchmarks require models to integrate cues across frames or view-
points, testing whether world-model latents can enable multi-frame reasoning. We compare against
both open-source and proprietary large-scale VLMs, including Qwen-2.5-VL-7B (Bai et al., 2025),
InternVL-2.5-7B (Chen et al., 2025), LLaVA-OneVision-7B (Li et al., 2024), and GPT-4o (OpenAI
et al., 2024). Note that all of the compared benchmarks are trained with multi-frame or video data,
whereas we train on single images only.

4.3 EXPERIMENTAL ANALYSIS AND INSIGHTS

Table 1: Performance comparison between DyVA and state-of-the-art methods on multi-image
benchmarks SAT Synthetic, MMSI-Bench, and MindCube. DyVA outperforms baselines in these
Out-of-Domain tasks. The highest average values are in bold.

Model SAT Synthetic MindCube
Obj Move. Act. Seq. Act. Cons. Goal Aim Persp. Avg. Rot. Among Around Avg.

Qwen2.5-VL-7B 79.29 84.70 47.83 25.84 35.17 53.16 38.76 29.50 21.35 29.26
Intern2.5-VL-8B 77.74 55.49 53.74 15.03 32.61 48.06 18.68 36.45 18.20 18.68
LLaVA-OneVision-7B 71.10 21.64 49.85 31.76 35.43 43.24 36.45 48.42 44.09 47.43
GPT-4o 61.50 33.20 47.60 67.50 37.50 49.40 40.17 29.16 38.81 38.81

DyVA-7B 49.15 57.81 49.25 53.38 40.44 49.51 37.70 43.10 49.00 44.62
DyVA-Qwen2.5-7B 78.83 62.13 49.85 51.86 41.72 55.24 37.20 39.10 51.70 49.80

Model
MMSI-Bench

Positional Relationship Attribute Motion MSR Avg.
Cam–Cam Obj–Obj Reg–Reg Cam–Obj Obj–Reg Cam–Reg Means Appr Cam Obj

Qwen2.5-VL-7B 32.3 27.7 29.6 32.6 24.7 32.5 26.6 27.3 16.2 31.6 30.3 28.70
Intern2.5-VL-8B 24.7 24.5 24.7 25.6 29.4 26.5 25.0 18.2 20.3 39.5 25.8 25.90
LLaVA-OneVision-7B 20.4 33.0 29.6 29.1 25.9 30.1 29.7 25.8 18.9 34.2 11.6 24.50
GPT-4o 34.4 24.5 23.5 19.8 37.6 27.7 32.8 31.8 35.1 36.8 30.8 30.30
DyVA-7B 21.5 30.9 25.9 31.4 27.1 20.5 35.9 24.2 13.5 19.7 24.2 24.90
DyVA-Qwen2.5-7B 15.1 33.0 25.9 33.7 35.3 30.1 32.8 25.8 17.6 27.6 29.3 28.00

Tab. 1 and 2 present representative results under both single- and multi-image settings. This framing
allows us to disentangle how world-model features contribute across different reasoning regimes.

As presented in Tab. 1 and 2, we evaluate the OOD performance of DyVA-LLaMA-7B and DyVA-
Qwen-2.5-7B. We examine DyVA’s performance relative to existing vision-language models across
various spatial reasoning tasks. The key differences lie in DyVA’s use of “world-model latents”
(SVD-based latent tokens fused with SigLIP image features) versus baselines that use only standard
visual embeddings. Below, we discuss the strengths and weaknesses of DyVA in each benchmark
category, drawing on the reported results and known properties of these tasks and models.

The key findings are summarized as follows:

DyVA can enable single-image trained WorldLMs to perform multi-image tasks exceptionally
well. As in Tab. 1, our best variant can perform strongly in multi-frame spatial understanding tasks.

Specifically, on the MindCube benchmark (Tab. 1), DyVA-Qwen2.5 achieves a new state-of-the-art
performance with the highest overall score (49.8% vs. 47.4% for the best baseline). It particularly
excels in “Around” (rotating viewpoint) tasks (51.7% vs. 44.1%) and matches or slightly exceeds
baselines on “Rot” tasks (37% vs. 36%). This result suggests that DyVA latents significantly aid
in tasks requiring mental rotation and perspective-taking, likely because they encode cross-view
consistency—the world model inherently ”knows” how an object appears from different angles.

This achievement is especially noteworthy considering the training efficiency. Compared to base-
lines, LlaVA-One-Vision is trained on 4M multiframe images. Intern 2.5-VL is pretrained with
16.3M samples, including multi-image and video data. Qwen-2.5-VL is also pre-trained with a vari-
ety of data comprising videos and multi-images. These baselines also have several complex methods
for image preprocessing, such as patchifying (Li et al., 2024), processing at different fps (Bai et al.,
2025), and high-res processing (Chen et al., 2025). In stark contrast, we trained our DyVA model
using only the most basic processing methods and a minimalistic data mixture.
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Table 2: Performance comparison of DyVA variants against baselines on various single-image
spatial reasoning benchmarks, including VSR, TallyQA, SpatialMM-Obj, and 3DSR-Bench-real.
These are Out-of-Domain tasks where models are not trained and perform zero-shot inference. Our
results surpass all baseline models, indicating an improved spatial-reasoning capability from world-
model predicted dynamics. Highest values are highlighted in bold.

Models Data VSR
Topo. Prox. Proj. Direc. Adj. Orien. Unall. Avg.

LLaVA-v1.5-7B 558k+665k 52.24 50.00 54.77 50.00 50.86 48.98 57.50 52.94
Prism-SigLIP-7B 665k 67.48 62.50 65.63 66.67 55.17 55.10 67.50 64.97
Prism-DinoSigLIP-7B 665k 71.34 59.38 65.63 64.29 53.45 48.98 52.50 65.46

DyVA-7B 665k 68.90 68.75 66.74 66.67 66.38 61.22 57.50 67.10
DyVA-Qwen2.5-7B 665k 66.67 71.88 68.74 61.90 62.93 40.82 55.00 65.63

Models
TallyQA SpatialMM-Obj 3DSR-Bench-real

Avg. 1-obj 2-obj Avg. H. L. O. M. Avg.
LLaVA-v1.5-7B 58.74 57.37 44.87 48.91 55.42 57.82 26.09 39.42 45.02
Prism-SigLIP-7B 62.25 62.54 46.77 51.86 52.28 60.22 27.23 42.17 46.55
Prism-DinoSigLIP-7B 62.93 58.56 47.72 51.22 56.85 59.42 27.23 38.97 45.82

DyVA-7B 59.47 54.78 46.29 49.03 53.71 57.60 27.23 40.80 45.41
DyVA-Qwen2.5-7B 68.11 62.74 47.53 52.44 52.57 54.51 27.23 49.60 47.16

Our modest training budget and intuitive multi-image inference method suggest that world model
latents strongly enhance the spatial understanding on multi-image benchmarks. We also believe that
the fusion of SVD with SigLIP is a key factor that directly improves multi-image reasoning abilities.

DyVA excels in handling spatial relations, counting and object queries, and 3D Scenes. In
Single-Image Spatial Reasoning, DyVA’s world-model features boost performance on tasks em-
phasizing geometric and relational spatial reasoning (orientation, adjacency, multi-object spatial
layouts), reflecting improved 3D awareness.

1. Visual Spatial Relations (VSR): DyVA-LLaMA (SigLIP+SVD) achieves the highest average
score (67.1%) across VSR subtasks (topology, proximity, projection, direction, adjacency, orien-
tation, unaligned), outperforming the SigLIP-only baselines (64.9–65.5%) Tab. 2. In particular,
DyVA significantly improves orientation reasoning (61.2% vs 55–49% for baselines) and prox-
imity/topology, suggesting world-model latents better encode spatial layouts and object alignment.
However, DyVA falls behind on the “Unaligned” subtask (57.5% vs 67.5% for Prism-SigLIP), indi-
cating that embedding world-model context can hurt when objects lack canonical alignments (per-
haps because the latent prior biases toward canonical scene structures).

2. Counting and Object Queries (TallyQA, SpatialMM-Obj): On TallyQA (visual count-
ing), DyVA-Qwen2.5 excels (68.1% average), well above Prism baselines (62–63%) and LLaVA
(58.7%)Tab. 2. This suggests the latents help Qwen2.5 better aggregate multi-object cues needed
for counting. Interestingly, DyVA-LLaMA does not show the same gain (59.5%), implying that ef-
fective use of SVD features depends on backbone capacity. For the SpatialMM-Obj task (single- vs
multi-object queries), DyVA-Qwen2.5 again slightly outperforms others (52.4% vs 51.8% baseline)
on the combined 1- and 2-object questions.

3. 3D Scene Reasoning (3DSR-Bench-real): This benchmark measures 3D spatial and depth
understanding in real images. Notably, DyVA greatly improves the “Multiple objects” (M) subset
(49.6% vs 40% for baselines). This aligns with the idea that SVD latents capture implicit depth and
occlusion cues learned from video/world modeling

Limitations and Areas for Improvement. Despite its strengths in spatial reasoning, DyVA exhibits
certain limitations, particularly on tasks that rely heavily on semantic language priors, non-canonical
object arrangements, or temporal sequence understanding.

1. Weakened Performance on Language-Intensive Tasks: The fusion of world-model tokens can
dilute the semantic precision required for certain tasks. On benchmarks like VQAv2 and TextVQA,
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which demand strong language priors and OCR capabilities, DyVA underperforms compared to
SigLIP-only baselines. This suggests that while SVD latents enhance spatial awareness, they can in-
terfere with fine-grained semantic grounding and text recognition where the original visual features
are more direct and precise.

2. Bias Towards Canonical Scene Structures: As previously noted in the VSR analysis, DyVA’s
performance drops significantly on the “Unaligned” subtask (57.5% vs. 67.5%). This indicates
that embedding world-model context can be detrimental when objects lack canonical alignments.
The model’s latent prior appears biased toward common or expected scene structures, hindering its
ability to reason about novel or unusual spatial configurations.

3. Less Reliable Sequential and Temporal Reasoning: The current SVD latents are less effective for
understanding dynamic sequences. This is evidenced by a large performance drop in SAT Action
Sequence and mixed results on MMSI. These outcomes suggest that the latents, while powerful for
static scenes, are less reliable for predicting discrete action orders or interpreting rapid changes over
time, marking a clear area for future improvement.

5 DESIGN-SPACE EXPLORATION: WHY DYVA WORKS?

Building on the strong spatial performance demonstrated in both single-image and multi-image tasks
in our experiments, we further analyze two key design axes to investigate the sources of WorldLM’s
benefits: (i) the choice of different semantic vision encoders, and (ii) the potential of leveraging
text-loss to jointly supervise the training of the VAE and U-Net.

Table 3: Performance Comparison of SVD-based Vision Models. Benchmark scores across a suite
of VQA, reasoning, and spatio-temporal tasks. All experiments use the LLaMA-2 7B backbone. The highest
score in each column is marked in bold, and the second-highest is underlined. Align: one-time alignment on
LAION-558k. F1: one-time finetuning. Fused: 3-layer MLP projector.

Model Align VQAv2 GQA VizWiz VSR POPE TallyQA SeedBench SpatialMM 3DSR

VAE-Only × 46.98 40.53 38.90 52.04 66.42 39.55 38.18 38.81 44.15
✓ 50.70 43.26 48.67 52.29 60.80 42.48 41.53 37.3 43.43

SVD-Only × 63.51 55.18 44.95 57.93 82.38 49.75 50.15 42.03 42.93
✓ 61.82 50.20 50.60 53.60 75.61 53.27 52.55 40.60 43.50

U-Net Trainable ✓ 63.36 54.49 50.24 57.93 79.88 51.51 52.76 40.80 43.43
U-Net & VAE Trainable ✓ 60.99 49.80 50.17 52.53 77.08 53.75 52.33 39.50 44.00

Dino + SVD × 68.77 58.50 50.73 62.52 85.25 52.78 55.19 44.79 44.26
✓ 68.44 55.57 51.13 59.41 85.54 54.15 56.49 43.40 45.07

SigLIP + SVD × 75.36 61.52 55.95 67.10 85.97 59.47 66.61 49.03 45.40
✓ 73.63 58.89 54.63 61.62 84.37 56.98 62.09 45.40 45.49

U-Net Trainable ✓ 74.02 59.86 54.60 62.27 85.61 57.42 63.39 45.95 44.11

CLIP + SVD × 73.51 59.67 53.14 64.89 85.80 58.25 65.45 46.07 46.13
✓ 72.99 60.74 55.89 65.38 85.80 55.37 65.33 46.70 44.42

DinoSigLIP + SVD × 74.28 60.16 54.13 64.81 87.27 57.42 64.54 48.65 44.15
✓ 72.42 59.28 54.47 61.29 86.75 54.98 61.54 47.00 45.14

5.1 WHY DO VAE, DINO, SVD-ONLY NOT WORK, BUT SIGLIP+SVD DOES?

To investigate the respective roles of the generative encoder and the semantic vision encoder within
WorldLM, we conducted a two-stage ablation study: First, in a setting without the semantic vision
encoder, we decoupled the generative encoder into its constituent VAE and the complete generative
encoder architecture. We then trained and comparatively evaluated the performance of two distinct
encoding approaches: one employing only the VAE for encoding and the other utilizing the entire
generative encoder (SVD). Second, while keeping the generative encoder fixed, we systematically
substituted the backbone of the semantic vision encoder with various alternative architectures to
analyze its impact on the model’s overall performance.

Our quantitative experimental results are presented in Tab. 3. Furthermore, to provide a more intu-
itive visualization and comparison of the performance of different encoders.

Prediction Matters. The inference protocol for the SVD encoder has been detailed in Sec. 2. A
similar inference process is employed when using the VAE as the generative encoder. In contrast to
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extracting features from the pre-middle block of the U-Net, we directly use the features encoded by
the VAE. To align the feature dimensionality with that of the SVD, we prepend several convolutional
layers to the projector. As evidenced by our experimental results in Tab. 3, the model employing only
VAE for encoding exhibits a performance degradation across nearly all benchmarks when compared
to models using SVD. This finding underscores the significance of the predicted dynamics for the
WorldLM.

WorldLM needs a text-aligned encoder. Although SigLIP (Zhai et al., 2023) has recently shown
dominant performance as an emerging vision encoder in current state-of-the-art VLMs, such as
LLaVA-One-Vision (Li et al., 2024) and Prismatic-VLM (Karamcheti et al., 2024), in this study,
we investigate the respective roles of SigLIP, CLIP (Radford et al., 2021), DINOv2 (Oquab et al.,
2024), and a combined DINO-SigLIP architecture as the semantic vision encoder. To ensure a fair
comparison, we selected the ViT-L version for each model, all configured for a 224 × 224 input
resolution. Furthermore, we adopted a consistent image processing strategy, which involves scaling
and then cropping all images to these uniform resolutions.

As demonstrated in Tab. 3, models that utilize SigLIP (including the DINO-SigLIP combination)
or CLIP as the semantic vision encoder significantly outperform the model using DINOv2. Fur-
thermore, when considering the aforementioned investigation of the generative encoder, the model
with DINOv2 as the semantic vision encoder, in turn, shows better performance than the generative-
encoder-only architecture.

This leads to a key insight: for our WorldLM framework that is trained under the text-loss su-
pervision, in addition to the predicted dynamic features, it requires supplementary visual-semantic
information from a model pre-trained on language-vision tasks (i.e., a text-aligned model). This in-
sight also paves the way for future explorations: Can the generative encoder alone suffice to replace
the semantic vision encoder? Could the performance be further improved by replacing the VAE?
And is text-loss supervision the answer to WorldLM training?

5.2 CAN DYVA BENEFIT FROM U-NET & VAE TRAINING ON TEXT-LOSS?

We investigated the efficacy of fine-tuning the SVD’s core components (U-Net and VAE) using only
a text-loss signal. Our experimental results indicate this strategy is largely ineffective.

Text supervision failed to help VQA tasks. As shown in Tab. 3, making only the U-Net trainable
yields inconsistent and marginal performance changes, while allowing both the U-Net and VAE to
be trainable leads to a distinct and widespread degradation in performance across the benchmarks.

This suggests the high-level semantic supervision from the text-loss is ill-suited for adapting the low-
level generative priors of these components. This constitutes one of the limitations of our current
work. An alternative approach, inspired by methods like RAPE-E (Leng et al., 2025), involves
aligning the features from the VAE and U-Net with the visual features from a semantic encoder such
as DINOv2. Exploring such an alignment strategy is a promising direction for future research.

6 DISCUSSIONS AND OUTLOOKS

(1) Paradigm comparisons reveal that world-model latents are powerful: generated frame latents un-
lock spatial and multi-view reasoning, yet can erode fidelity and increase hallucination. (2) Design-
space sweeps clarify which architectural choices mitigate these effects, while benchmark diagnostics
explain when each paradigm wins. (3) Open directions include aligning SVD tokens with textual
references, adaptive frame selection, and attention regularizers that maintain semantic grounding
while exploiting the structure of the world model. (4) World Model is a powerful visual encoder:
The key concept of WorldLM is using the prediction pretraining to enhance the spatial-temporal
understanding ability of the general VLM. Though DyVA achieves SOTA performance, one signif-
icant weakness still remains: its prediction feature relies on the worst-performing encoder, VAE.
Therefore, the world model can be more deeply explored, instead of using SVD, design a world
model closer to the language latent space, for understanding tasks. For example, use SigLIP to train
a SigLIP world model by Joint-Embedding-Prediction-Architecture. Furthermore, we argue that us-
ing a prediction model as an encoder might be a potential new paradigm for more broader domain,
across robotics, visual-language understanding, and to more general visual understanding.
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Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nico-
las Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael
Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Ar-
mand Joulin, and Piotr Bojanowski. Dinov2: Learning robust visual features without supervision,
2024. URL https://arxiv.org/abs/2304.07193.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision. arXiv preprint
arXiv:2103.00020, 2021. doi: 10.48550/arXiv.2103.00020.

Arijit Ray, Jiafei Duan, Reuben Tan, Dina Bashkirova, Rose Hendrix, Kiana Ehsani, Aniruddha
Kembhavi, Bryan A. Plummer, Ranjay Krishna, Kuo-Hao Zeng, and Kate Saenko. Sat: Spatial
aptitude training for multimodal language models. arXiv preprint arXiv:2412.07755, 2024.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation, 2015. URL https://arxiv.org/abs/1505.04597.

Fatemeh Shiri, Xiao-Yu Guo, Mona Golestan Far, Xin Yu, Reza Haf, and Yuan-Fang Li. An empir-
ical analysis on spatial reasoning capabilities of large multimodal models. In Yaser Al-Onaizan,
Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing, pp. 21440–21455, Miami, Florida, USA, Novem-
ber 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.1195.
URL https://aclanthology.org/2024.emnlp-main.1195/.

13

https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2304.07193
https://arxiv.org/abs/1505.04597
https://aclanthology.org/2024.emnlp-main.1195/


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Oleksii Sidorov, Ronghang Hu, Marcus Rohrbach, and Amanpreet Singh. Textcaps: a dataset for im-
age captioning with reading comprehension, 2020. URL https://arxiv.org/abs/2003.
12462.

Edward C Tolman. Cognitive maps in rats and men. Psychological Review, 55(4):189–208, 1948.

Michael Tschannen, Alexey Gritsenko, Xiao Wang, Muhammad Ferjad Naeem, Ibrahim Alabdul-
mohsin, Nikhil Parthasarathy, Talfan Evans, Lucas Beyer, Ye Xia, Basil Mustafa, Olivier Hénaff,
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A APPENDIX

B THE USE OF LLMS

Large language models (LLMs) were used to refine and polish writing.

C RELATED WORK

C.1 WORLD MODELS

Various methods have been developed to learn predictive models of visual dynamics. Ha and
Schmidhuber (2018) proposed the original World Models framework, which learns a compressed
latent representation of an environment’s dynamics using generative RNNs (Ha & Schmidhuber,
2018). Hafner introduced PlaNet (Hafner et al., 2018) and later Dreamer (Hafner et al., 2019),
which use latent space dynamics models trained on pixel observations for planning and control.
More recently, large-scale self-supervised video models have emerged. For example, Meta’s V-JEPA
2 (Assran et al., 2025) and NVIDIA’s COSMOS (Agarwal et al., 2025a) provide video foundation
models that enable understanding, prediction, and planning from raw visual data. Zhou (2024)
introduced DINO-WM, a world model that leverages pretrained DINOv2 patch features to enable
zero-shot goal-reaching via planning in feature space (Zhou et al., 2024). Similarly, Stability AI’s
Stable Video Diffusion trains a high-capacity latent video diffusion model on vast video datasets for
high-quality text-to-video and image-to-video generation (Blattmann et al., 2023).

C.2 GENERALIST MODELS

Recent work has explored using diffusion-based generative models for flexible multi-task and in-
context learning. Wang (2023) presented Prompt Diffusion, a method that enables in-context learn-
ing in diffusion models by conditioning on example input-output image pairs and a text prompt
(Wang et al., 2023). Geng (2023) proposed InstructDiffusion, a unified framework that casts di-
verse vision tasks as a pixel-space image manipulation guided by human instructions, learned via
a diffusion process (Geng et al., 2023). Bai (2024) introduced a sequential modeling approach
that represents images and annotations as “visual sentences,” enabling training a single large vision
model across many tasks without using any language data (Bai et al., 2024). Lin (2025) presented
RealGeneral, which reformulates image generation as conditional frame prediction analogous to
LLM in-context learning: using video diffusion models with novel modules, they unify multiple
image-generation tasks (e.g. custom generation, canny-to-image) within one framework (Lin et al.,
2025).

C.3 VISION ENCODERS FOR MLLMS

The choice of vision encoder is critical for multimodal LLMs. Radford (2021) introduced CLIP,
which learns joint image–text embeddings via contrastive pretraining on large image-caption
datasets (Radford et al., 2021). Building on CLIP, Tschannen (2025) developed SigLIP 2,
which augments the original sigmoid-contrastive objective with self-distillation, masked prediction,
and multilingual pretraining to improve semantic understanding, localization, and dense features
(Tschannen et al., 2025). Caron (2021) showed that self-supervised ViT models (DINO) learn rich
spatial features: their DINO model (trained with a self-distillation loss) achieves strong representa-
tion quality with emergent object-centric properties (Caron et al., 2021). Jiang (2023) evaluated var-
ious image encoders in multimodal LLMs and proposed COMM, a simple feature-merging strategy
that fuses multi-layer CLIP and DINO features, demonstrating improved grounding and fine-grained
visual understanding in downstream tasks (Jiang et al., 2023).

D APPENDIX: MODEL FORMALIZATION

VLM basics. A frozen SigLIP image encoder Esiglip maps an image x ∈ RH×W×3 to a grid of
patch embeddings S ∈ RN×Cs , where N is the number of patches and Cs the channel width. A

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

lightweight projector Psiglip : RCs → Rd aligns these to the LLM token space:

Vs = Psiglip(S) = MLPs(S) ∈ RN×d, (1)

where MLPs is a 2-layer MLP with GELU activations.

SVD for single-image→ video. Stable Video Diffusion (SVD) consists of a VAE encoder ϕ and
a U-Net denoiser fθ operating over a continuous noise scale σ (Karras et al.). Given a conditioning
image x, we compute a latent z0 = ϕ(x). To form a video latent tensor, we replicate z0 across T
frames:

Z0 = [z0, . . . , z0] ∈ RT×C×H′×W ′
.

Let σ0 denote the initial noise level from the SVD schedule. We perform one explicit Euler integra-
tion step over the ODE at σ0 (classifier-free guidance disabled):

Z1 = Z0 +∆σ fθ(Z0, σ0, c), (2)

where c denotes SVD conditioning (e.g., time/frame embeddings, text/image prompts), and ∆σ is
the step size.

We do not render frames; instead, we extract a U-Net hidden activation at the lowest spatial resolu-
tion on the downsampling path before the mid-block:

H ∈ RT×Hd×Wd×Ch = Hiddenpre-mid(fθ, Z1). (3)

Multi-image extension. For multiple images {xk}Kk=1, we first compute their latents {z(k)0 }.
These are inserted as keyframes within T frames at indices ik = round(linspace(0, T−1,K)).
We initialize Z0 with copies of z(1)0 and set (Z0)ik ← z

(k)
0 before the Euler step, yielding multi-

image-aware H .

Static+dynamics token fusion. We convert H into a token sequence by flattening spatial loca-
tions: L = HdWd, H̃ ∈ R(T ·L)×Ch . A projector Psvd : RCh → Rd maps these to the LLM token
space:

Vd = Psvd(H̃) = MLPd(H̃) ∈ RM×d, (4)
where M = T · L.

The SigLIP tokens V̂s (Eq. 1) are concatenated with V̂d to form the visual sequence:

V = [V̂s; V̂d].

Table 4: Model Performance Across Different Frame Numbers. These are DyVA with SVD only
encoders using 5761024

Frames Pretrain Tuning VQAv2 GQA VizWiz VSR (BL:51) POPE TallyQA SeedBench SpatialMM-Obj 3DSR-Bench-real
1 558k 665k 59.38 47.75 48.74 52.12 75.74 50.97 51.12 38.81 45.40
4 558k 665k 60.10 47.36 46.24 53.19 77.60 50.68 52.24 42.48 45.67
8 558k 665k 60.80 48.63 50.25 52.20 78.15 51.46 52.81 37.98 46.32
14 558k 665k 61.73 49.71 38.68 53.43 78.80 52.19 53.28 39.78 46.32

Table 5: SVD vs. SVD-MiddleBlock. Comparison of different fusion strategies using SVD latents.
Model VQAv2 GQA VizWiz VSR POPE TallyQA SeedBench Spatial 3DSR

DyVA-SVD 61.82 50.20 50.60 53.60 75.61 53.27 52.55 40.60 43.50
DyVA-SVD-Post-MiddleBlock 62.86 54.30 51.41 57.69 80.17 51.36 52.50 41.13 43.84

D.1 U-NET LAYER CHOICE

Passing through deeper layers in the UNet allows models to obtain better results. Extracting
latents from deeper U-Net blocks (pre-mid vs. mid) changes the balance between global layout
information and fine-grained motion cues. Better latents seem to We leave exploration of the uti-
lization of different latents from the world model as future work.
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