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Abstract
In-context learning (ICL) refers to the ability to
perform new tasks based on a prompt sequence
consisting of “in-context” input-output pairs, with-
out explicit model training. Previous work has
shown that State-Space Models (SSMs), partic-
ularly Mamba, are potential competitors over
Transformers in ICL. However, the capability to
handle mixed tasks in complicated ICL prompts
remains unanswered. In this work, we explore
the Mamba performance in mixed ICL tasks, in
a degree from low to high, and from labeled to
unlabeled, compared to that of Transformers. We
show that Mamba is capable of learning ICL mix-
tures, reaching the performance of single ICL task
and Transformer baselines. Moreover, Mamba
converges faster and shows more stable perfor-
mances than Transformers, allowing Mamba to
handle longer context lengths and more compli-
cated prompt structures. Different learning dy-
namics in different ICL tasks are also observed.

1. Introduction
In-context learning (ICL) refers to the ability to formulate
predictions through the paired input-output examples that
compose the central context of the prompt. Pretrained large
language models (LLMs) can efficiently perform ICL from
a query input after a few task demonstrations (Brown et al.,
2020; Kaplan et al., 2020; Muennighoff et al., 2023). Re-
cently, state-space models (SSMs), particularly Mamba (Gu
& Dao, 2023), are potential alternatives to Transformers
due to their state-of-the-art performance with a linear time
cost. It has been shown that most SSMs are capable of ICL,
reaching the performance of the Transformers across various
tasks (Akyürek et al., 2024; Park et al., 2024; Grazzi et al.,
2024). Although shedding light on whether attention-free
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LLMs can perform ICL, the previous work has not shown
if SSMs can handle the complexity brought by mixtures
of task families, which can reflect models’ performance on
real-world applications where the prompts are composed of
a wide range of context-based task mixtures. Specifically,
we ask:

Can Mamba in-context learn task mixtures? How
is Mamba compared to the Transformers in task
mixture ICL? What are the learning dynamics in
solving task mixture ICL problems?

Answering these questions helps evaluate the performance
of SSMs on future real-world applications where the capa-
bility of handling complicated downstream task structures
is required. In this work, we pretrain Mamba and Trans-
former models on the task mixtures, each of which is a
function class such as Noisy Linear Regression, ReLU Re-
gression, and Binary Classification. Three different methods
of task mixing are compared, including vanilla task mixtures
(sequence-level), concatenated task mixtures (block-level),
and blended task mixtures (position-level). We also com-
pare three different labeling methods, including no labeling,
prompt labeling, and embedding labeling. Our results have
shown that:

• Mamba has achieved competitive results close to that
of the baseline of single ICL task and Transformer in
all different types of task mixtures.

• With either prompt or embedding labeling, both
Mamba and Transformer models achieve test risks or
accuracy scores comparable to single-task baselines,
better than unlabeled plain prompt sequences. How-
ever, Transformers fail to generalize to longer con-
text lengths, showing Mamba can better handle unseen
longer contexts during test than Transformers.

• Mamba models converge faster than Transformers dur-
ing training and have no delayed learning behaviors
that are observed in Transformer training. Moreover,
the convergence rates of solving different task families
using Transformer models follow: Noisy Linear Re-
gression > ReLU Regression > Binary Classification,
implying a hierarchy of learning difficulty for these
tasks in task mixture ICL problems.
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Figure 1: Task mixing problems and labeling methods. Vanilla mixtures are a distribution of single-task prompt sequences
in the training and test datasets. Concatenated mixtures fuse sequence blocks of different tasks in the same prompt sequence.
Blended mixtures have totally random input-output pairs in each position of the prompt sequence. For label in embedding,
all input-output pairs are labeled with the task number. For label in prompt, only the first input-output pair in the same
task block is labeled. For plain sequence, no inpu-output pairs are labeled. We use one-hot label for the input-output pairs.
Unlabeled input-output pairs are padded with zeros.

2. Problem Statement
In-Context Learning. In-context learning (ICL) refers to
the ability of a model to learn from the prompt sequence
consisting of in-context examples (input-output pairs from
some tasks) and generate output based on a new query in-
put without any explicit retraining or finetuning. Formally
speaking, given a prompt with input-output pairs in the
following manner:

pn(f) = (xi,yi)
n
i=1 where yi = f(xi). (2.1)

Here, f ∈ F : X −→ Y is the function/task to be learned,
and it remains constant in a single prompt but can vary
across multiple prompts; n specifies the number of ICL
examples in a prompt. The goal of ICL is that for a
give test query input xq, the model output would satisfy
Model(pn(f),xq) ≈ f(xq).

Task mixture problems. Tripuraneni et al. 2023 divides
the dataset into a mixture of different tasks, and the prompt
sequence contains only one function family with one param-
eter distribution. Here, we focus on the learning of different
types of tasks and fix the task distribution. Specifically, we
consider the following types of mixtures depicted in Fig. 1:

• Vanilla task mixture: Each prompt sequence contains
(xi, yi) pairs generated using the same function f ,
yi = f(xi), and a test query, xtest is attached to the
sequence at last. Different prompt sequences are as-
signed with different task functions f where f can
be either noisy linear regression, ReLU regression or
binary classification function.

• Concatenated task mixture: Each prompt sequence con-
taining (xi, yi) pairs is divided into ≤ 6 concatenated
blocks with random block sizes. A random task type,
noisy linear regression, ReLU, or binary classification,
is assigned to each block.

• Blended task mixture: Each prompt sequence con-
tains (xi, yi) pairs where yi is randomly sampled from
{f1(xi), f2(xi), f3(xi)} and f1, f2, f3 are the noisy
linear, ReLU and binary classification functions.

Labeling methods. To study how models behave with or
without specifying the task identification, we apply one-hot
labels for each task appended to the x (unlabeled x has
aligned padding). We compare two labeling methods to the
plain, unlabeled sequences, respectively:

• Prompt labeling: Only label the first (xi, yi) pair after
a task transition.

• Embedding labeling: All (xi, yi) pairs are labeled.

3. Evaluations
Experimental setting. All our empirical results are trained
with two different types of models: small GPT-2 and Mamba.
The small GPT-2 has 6 layers, 4 attention heads per layer
and 128 dimensional embeddings, and Mamba contains
6 layers and 128 dimensional embeddings. We consider
three different types of tasks: noisy linear regression, ReLU,
and binary classification. More specifically, the in-context
sample pairs of (x, y) are generated via:

• Noisy linear regression: y = w⊤x+ z;

• ReLU: y = (w⊤x)+;

• Binary classification: y = sgn(w⊤x).

Here, inputs x and weight parameters w are both d-
dimensional and randomly sampled from the normal dis-
tribution, i.e., x,w ∈ Rd and x,w ∼ N (0, Id) and
z ∈ R ∼ N (0, σ2) is the random noise. We set d = 5
and σ2 = 0.1 in our experiments. Let ŷ be the model pre-
diction. During training, the squared loss of (y − ŷ)2 is
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Figure 2: Test risk and accuracy of the Mamba and GPT-2 models on vanilla ICL mixture tasks (solid: GPT-2, dashed:
Mamba, black dotted: single-task performance of Mamba model as baselines).

used to train noisy linear regression task and ReLU task,
and sigmoid loss is used to train binary classification task.
During testing, we report the squared loss as the test risk
for both noisy linear regression task and ReLU task, and
classification accuracy is reported as the test accuracy for
binary classification task. We consider meta learning set-
ting where training samples are randomly generated. For
single-task and vanilla mixture ICL problem, each model is
trained with 50k iterations with batch size 64; while to fully
train the model to solve the concatenated and blended ICL
mixture problems, models are trained with 100k iterations
with the same batch size. We use learning rate 10−4 in all
our experiments and normalized risks are reported.

Single task ICL baselines. We find Mamba and GPT-
2 models share similar performances in all three single-
task ICL, see Appendix A. We also find different learning
dynamics in three tasks, with the ICL convergence rates
following: Noisy linear regression > ReLU regression >
Binary classification, indicating the relative difficulties in
learning these tasks.

3.1. Vanilla ICL Mixture

In Figures 2(a)-2(c), we evaluate and compare Mamba’s
capability with the vanilla ICL mixture. Three key compar-
isons are made: Mamba’s (dashed) versus GPT-2’s (solid)
in vanilla ICL mixtures; each model’s performance on ICL
mixtures versus single-task ICL (black); and different label-
ing methods - embedding (blue), prompt (red), and plain
(green). We observe that Mamba’s performance approaches
that of GPT-2 in vanilla ICL mixtures, with both models
matching the single-task baseline (Appendix A) across all
labeling methods. This demonstrates the capability of both
models in effectively managing vanilla ICL mixtures. We
further examine the benefit of labeling with small number
of in-context examples. See Appendix B for details.

3.2. Concatenated ICL Mixture

In Figures 3(a)-3(c), we compare the performance of
Mamba and GPT-2 models in concatenated ICL mixtures.
Similar to the observations in the vanilla case, Mamba’s

performance aligns well with that of GPT-2 across all three
tasks and three different labeling methods. The performance
with labeling, either through embedding or prompt, reach
the same level as the single-task baselines. Again, both mod-
els without labeling can only show some limited learning
abilities compared to the baseline.

To further understand the learning dynamics of ICL mixture,
in Figs. 3(d)-3(f), we show the test performance for three
tasks individually during training iterations. There are three
observations. First, we can see that for both models, plain
labeling has a slower converge rate compared to embedding
or prompt, meaning that adding labels enhances the ability
of both models to more effectively learn the ICL mixtures.
Second, different types of tasks have different convergence
rates. Noisy linear regression and ReLU tasks converge
within 20k and 30k iterations, while binary classification
takes a much longer time to converge, i.e., around 40k it-
erations, suggesting a sequential learning order with noisy
linear regression goes first, then ReLU, and finally binary
classification. In addition, compared to GPT-2, Mamba con-
sistently converges faster across all tasks. Finally, we notice
that during training, GPT-2’s test performance also shows a
peculiar behavior: it first reaches a plateau, and then exhibits
sudden improvements. This highlights different learning
styles: Mamba learns in a continuous and gradual man-
ner, whereas GPT-2 demonstrates emergent performance
improvements during training.

3.3. Blended ICL Mixture

To explore the limit of Mamba’s ability in learning ICL
mixtures, we look at the performance of the Mamba and
GPT-2 in a more challenging setting: blended ICL mix-
tures, as shown in Figures 4(a)-4(c). We find that adding la-
bels, either through embedding or prompt, can significantly
improve the test performance. The notable performance
differences between embedding and prompt labeling meth-
ods highlight the importance of explicit labeling for each
input-output pair in learning task mixtures. We find Mamba
closely matches GPT-2 in noisy linear regression, surpasses
GPT-2 in ReLU across all labeling methods, and achieves
comparable accuracy with GPT-2 under the embedding la-
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Figure 3: The first column shows test risk and accuracy of the Mamba and GPT-2 models on concatenated ICL mixture
tasks, and the second column presents the dynamics of performance metrics during training (solid: GPT-2, dashed: Mamba,
black dotted: single-task performance of Mamba model).
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Figure 4: Test risk and accuracy of the Mamba and GPT-2 models on blended ICL mixture tasks (solid: GPT-2, dashed:
Mamba, black dotted: single-task performance of Mamba model).

beling. This suggests Mamba’s continued effectiveness in
ICL within blended mixtures. Notably, although GPT-2’s
performance matches or exceeds that of Mamba in all tasks
with prompt labeling for a small number of in-context sam-
ples, its performance declines when the sample number
exceeds 8, unlike Mamba, whose performance continues
to improve. This reflects Mamba’s superior generalization
capabilities compared to GPT-2.

To further verify that the cause of the poor performance
of GPT-2 is its inability in extrapolation, we examine the
distribution of the maximum length of consecutive tasks
of the same type in training sequences, illustrated in Fig-
ure 4(d). For sequences comprising 60 input-output pairs,
most continuous lengths of the same task are fewer than 8 in
blended mixtures, suggesting that the models are unaccus-
tomed to long, uninterrupted blocks of the same task type.
This supports the observation that GPT-2 with prompt label-
ing quickly deteriorates when task block lengths exceed the
typical training scenarios.

4. Conclusion
In this work, we empirically explore Mamba’s ability
to learn in-context mixtures with noisy linear regression,
ReLU, and binary classification tasks, and compare its per-
formance in three types of ICL mixtures: vanilla, concate-
nated, and blended ICL mixtures, with three methods: no-
label, embedding and prompt. Our results indicate that
Mamba achieves a level of performance in learning task
mixtures comparable to that of GPT-2, and similarly consis-
tent with single-task baselines. We also notice that different
tasks in the ICL mixtures can have different convergence
rates, this makes sense as different tasks can have different
learning difficulty levels. Notably, Mamba demonstrates
faster and more stable convergence than GPT-2, making it
potentially more advantageous for real-world applications
that require processing diverse task mixtures, which could
reduce the computational demands for training and infer-
ence. Future work may explore the scalability of Mamba’s
rapid convergence across extensive ICL task mixtures and
the potential benefit of adopting hybrid architectures.
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A. Baseline: Single-Task ICL
In Figure A1, we report the performance of the Mamba and GPT-2 models on single-task ICL. At first glance, we can see
the curves of Mamba and GPT-2 model overlap. This suggests that Mamba is capable of in-context learning different types
of tasks with performance close to GPT-2. As the number of in-context samples increases, the test risks for both noisy linear
regression and ReLU tasks decreases and approaches zero. Similarly, the test accuracy for the binary classification task
increases from ∼ 0.5 (random guess) to 0.9. In addition, different types of tasks exhibit different convergence behaviors.
The test risks for noisy linear regression and ReLU tasks approach 0 when the number of in-context samples achieves
10 and 15, respectively. However, the test accuracy for binary classification task seems not to converge to 1 within 20
in-context examples, suggesting different learning difficulty for the model to learn. This aids in the explanation of the
learning dynamics of ICL mixtures.
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Figure A1: Test risk and test accuracy of the Mamba and GPT-2 models on single-task ICL (baseline). (a) Noisy linear
regression. (b) ReLU. (c) Binary classification.

B. The zoomed-in comparisons in vanilla mixtures
To closely examine the benefits of labeling with a lack of in-context examples, we investigate the test results with small
number of in-context samples, i.e., from 0 to 5, as shown in Figures B1. Without labels (plain), both models underperform
compared to single-task ICL, most notably with just 1 or 2 in-context examples. Introducing labels via embedding or prompt
enhance performance substantially, and align with the baseline performance of single-task ICL. This improvement is logical
given that labels provide the model with more context, which aids in task identification.
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Figure B1: Zoom-in of the first few ICL samples of the Mamba and GPT-2 models on vanilla ICL mixture tasks (solid:
GPT-2, dashed: Mamba, black dotted: single-task performance of Mamba model as baselines).
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