
Accelerating PDE-Constrained Optimization by the Derivative of Neural
Operators

Ze Cheng 1 Zhuoyu Li 1 Xiaoqiang Wang 1 Jianing Huang 1 Zhizhou Zhang 1 Zhongkai Hao 2 Hang Su 2

Abstract
PDE-Constrained Optimization (PDECO) prob-
lems can be accelerated significantly by employ-
ing gradient-based methods with surrogate mod-
els like neural operators compared to traditional
numerical solvers. However, this approach faces
two key challenges: (1) Data inefficiency: Lack
of efficient data sampling and effective train-
ing for neural operators, particularly for opti-
mization purpose. (2) Instability: High risk of
optimization derailment due to inaccurate neu-
ral operator predictions and gradients. To ad-
dress these challenges, we propose a novel frame-
work: (1) Optimization-oriented training: we
leverage data from full steps of traditional op-
timization algorithms and employ a specialized
training method for neural operators. (2) En-
hanced derivative learning: We introduce a
Virtual-Fourier layer to enhance derivative learn-
ing within the neural operator, a crucial aspect
for gradient-based optimization. (3) Hybrid opti-
mization: We implement a hybrid approach that
integrates neural operators with numerical solvers,
providing robust regularization for the optimiza-
tion process. Our extensive experimental results
demonstrate the effectiveness of our model in ac-
curately learning operators and their derivatives.
Furthermore, our hybrid optimization approach
exhibits robust convergence.1

1. Introduction
In this paper, we consider solving PDE-constrained opti-
mization problems (PDECO) in a high-dimension design

1Bosch (China) Invest Ltd., Shanghai, China 2Dept. of Comp.
Sci. & Techn., Institute for AI, BNRist Center, Tsinghua-Bosch
Joint ML Center, Tsinghua University. Correspondence to: Ze
Cheng <ze.cheng@cn.bosch.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1Our code is available at https://github.com/zecheng-
ai/Opt RNO.

Figure 1: Illustration of Error Accumulation in Gradient-
Based Optimization with Neural Operators. Blue Trajectory:
Represents the optimization path (λt, ût), where ût is pre-
dicted by the neural operator. Red Trajectory: Represents
the trajectory of the numerical solutions ut corresponding to
λt. While the optimization process proceeds along the blue
trajectory guided by the neural operator, the red trajectory of
numerical solution may deviate significantly, highlighting
the potential for error accumulation and suboptimal conver-
gence.

parameter space Λ,

min
λ∈Λ

J̃(λ)

const. C(u, λ) = 0
(1)

where J̃(λ) := J(u(λ), λ) is the objective function, and C
is a differential operator that describes a PDE with design
parameter λ and solution u. For clarity, we will henceforth
omit the tilde from J where the meaning is unambiguous.
While gradient-free optimization methods like Bayesian
optimization (Snoek et al., 2012) and particle swarm op-
timization (Kennedy & Eberhart, 1995) are effective for
low-dimensional design spaces, gradient-based methods
are generally more suitable for high-dimensional PDECO
problems, for example, shape optimization (Sokolowski
& Zolésio, 1992) and topology optimization (Bendsoe &

1

https://github.com/zecheng-ai/Opt_RNO
https://github.com/zecheng-ai/Opt_RNO

Accelerating PDECO by the Derivative of Neural Operators

Figure 2: (Left) The overview of training neural operators with derivative learning, where curved arrow indicates differentia-
tion by autodiff to obtain ∂J/∂λ. (Right) The iterative process of gradient-based optimization with neural operators of fixed
parameters θ∗.

Sigmund, 2013). Some problems, such as those arising in
density functional theory (DFT) (Kohn & Sham, 1965), may
even involve a combination of both approaches at different
stages.

This paper focuses on solving high-dimensional PDECO
using gradient-based methods. These methods rely on the
gradient of the objective function with respect to the design
parameters, commonly referred to as sensitivity:

∂J̃

∂λ
=

∂J

∂u

∂u

∂λ
+

∂J

∂λ
. (2)

The design parameters are then iteratively updated according
to λt+1 ← λt − η ∂J̃

∂λ , where η represents the learning rate.
Among the various methods for gradient computation, the
adjoint method (Pontryagin, 2018) is a well-established and
efficient approach.

Despite the efficiency of the adjoint method, optimization
processes can be computationally expensive due to the high
cost of solving large-scale PDEs. This often results in long
convergence times, spanning hours or even days. To ad-
dress this, various surrogate models (Forrester et al., 2008;
Zhu & Zabaras, 2018; Fahl & Sachs, 2003; Audet et al.,
2000) are employed to replace computationally expensive
simulations, leading to significant speedups, often reducing
computation times to seconds or milliseconds. While some
surrogate models directly map the design space to objective
values, their applicability is limited by their dependence on
the specific objective function. In contrast, surrogate mod-
els capable of predicting underlying physical fields (e.g.,
displacement, stress, temperature) offer greater flexibility.
These models can be used to compute any desired quantity
of interest, including the objective function. Neural opera-
tors (Kovachki et al., 2023; Lu et al., 2021; Hwang et al.,
2022; Lu et al., 2019) exemplify this approach and show
great promise for accelerating gradient-based optimization
in PDECO problems.

However, training neural operators for PDECO presents
significant challenges. Firstly, constructing a representative
training dataset is crucial. Traditional sampling methods
like Gaussian random fields (Neal, 2012) and uniform sam-
pling often fail to capture the complex and diverse scenarios
encountered in optimization problems, particularly those in-

volving intricate geometries, boundary conditions, and ma-
terial properties. Moreover, effectively sampling data near
the optimal region, characterized by sophisticated patterns
and complex structures, using random methods is highly
improbable, akin to a ”monkey typing Shakespeare.” (Borel,
1913)

To address these limitations, we leverage the data generated
during the optimization process itself. Optimization algo-
rithms, such as the adjoint method, produce sequences of so-
lutions and sensitivities as they converge towards the optimal
region. These sequences, often discarded as “byproducts”
in traditional optimization, form valuable trajectories in the
design-solution space. However, directly training neural
operators on these trajectories can be inefficient and prone
to overfitting due to the high correlation between successive
data points. To mitigate this, we propose a training method
that leverages the relative change between data points to
achieve higher learning efficacy. This approach exploits
the inherent structure of the optimization process, where
successive iterations provide valuable information about the
search direction and proximity to the optimal solution.

The second major difficulty is derailing optimization. Sup-
pose we have a trained neural operator

Gθ : Λ 7→ U (3)
λ 7→ u (4)

where θ is the learned parameter, Λ and U denote design
space and solution space. The gradient (2) can then be cal-
culated by ∂J̃

∂λ = ∂J
∂u

∂Gθ

∂λ + ∂J
∂λ . Fig. 2 (right) illustrates

how to compute ∂J̃
∂λ using neural operators. This approach,

however, introduces significant issues: (i) There is a dis-
crepancy between Gθ(λ) and the true solution u, leading to
differences between J(Gθ) and J(u); (ii) similarly, there
exists an error between ∂Gθ

∂λ and the true derivative ∂u
∂λ ; (iii)

through iterations of gradient-based optimization, these er-
rors accumulate, which often results in the optimization
trajectory entering out-of-distribution (OoD) regions of the
neural operator, causing unreliable predictions and erratic
behavior. As illustrated in Fig. 1, the error of solution
prediction grows out of control from initial point (λ0, u0)
to the final optimized point (λT , uT). Hence, maintaining
in-distribution is critical for reliable optimization.

2

Accelerating PDECO by the Derivative of Neural Operators

Thus, to address the two fundamental questions, i.e., (i) how
to effectively sample and utilize data near optimality, and
(ii) how to control the growing error of neural operators
during optimization, we proposed the following solutions:

1. We utilize the full data generated from optimization
trajectories as the training set. In order to effectively
achieve operator learning from such data, we adopt
reference neural operators (RNO) (Cheng et al., 2024)
to learn extended solution operators.

2. We analyze the effect of different neural operator archi-
tectures on their derivative performance and introduce
a Virtual-Fourier layer to enhance derivative learning.

3. We propose a hybrid inference method that combines
neural operators with numerical solvers to suppress
errors and regularize optimizing process.

2. Related works
Surrogate models have received significant attention in re-
cent years, particularly within the realm of PDECO. Early ef-
forts such as (Audet et al., 2000) employed Kriging models
(Gaussian processes) coupled with gradient-free optimiza-
tion techniques. (Fahl & Sachs, 2003) applied Reduced-
Order Models (ROMs) leveraging proper orthogonal de-
composition (POD) alongside sophisticated optimization
strategies. More recently, operator learning has emerged as
a powerful paradigm, with (Hwang et al., 2022) outlining
a general framework and formulating the optimization as a
variational approximation. (Wang et al., 2021) explored the
combination of DeepONet (Lu et al., 2019) with physics-
informed loss on regular domains, while (Xue et al., 2020)
demonstrated the effectiveness and versatility of amortized
approaches for linear PDECO problems.

Neural Operators, particularly instantiated by integral oper-
ators (Kovachki et al., 2023), provide a flexible and powerful
framework for modeling operators. Two prominent architec-
tures have emerged: Fourier-based neural operator (FNO)
(Li et al., 2020; Tran et al., 2021; Liu-Schiaffini et al., 2024),
and transformer-based neural operators (Li et al., 2022; Cao,
2021; Hao et al., 2023; Wu et al., 2024; Xiao et al., 2024).
FNOs excel on data with fixed, uniform grids by leveraging
the Fast Fourier Transform. Geo-FNO (Li et al., 2023) can
predict on meshes deformed from uniform grids. In con-
trast, transformer-based neural operators effectively handle
arbitrary meshes. To enhance scalability, researchers have
introduced linear transformers (Cao, 2021; Hao et al., 2023),
reducing computational complexity to O(N) where N is
the number of mesh points. Projection strategy (Wu et al.,
2024) has also been proposed to decouple the complexity of
attention from the number of mesh points.

Although various neural operator architectures have been

explored, the impact of architecture on the smoothness of
the learned operator, a crucial aspect for gradient-based op-
timization, remains relatively understudied. PINO (Li et al.,
2024) investigates the derivatives of neural operators but
focuses mainly on enforcing residual losses from governing
equations. Our work delves deeper into how the architecture
of neural operators influences their derivatives, essentially
examining their smoothness properties.

Sobolev training (Czarnecki et al., 2017; Tsay, 2021) en-
hances the smoothness of neural networks, a critical prop-
erty for gradient-based optimization. Sensitivity supervision
can be viewed as a specific instance of Sobolev training. In-
stead of randomly sampling derivatives in all directions, sen-
sitivity supervision focuses on derivatives with respect to the
optimization variables (e.g., design parameters). DeePMD
(Zhang et al., 2018) exemplifies this approach by impos-
ing supervision on the forces acting on atoms, which are
essentially the derivatives of the predicted energy with re-
spect to the atomic positions. Our method follows a similar
principle, utilizing ground truth sensitivities obtained from
classical numerical methods to supervise the sensitivities
predicted by the derivative of neural operators.

Hybrid methods combining neural networks with tradi-
tional numerical methods have shown promise in solving
PDE-related problems. Notably, Hsieh et al. (2019) have
demonstrated convergence guarantees for their hybrid ap-
proach, a significant advantage currently lacking in many
neural operator frameworks. However, their method is lim-
ited to linear PDEs. List et al. (2022); Um et al. (2020)
integrate neural networks within the numerical solution pro-
cess, often refining solutions iteratively from coarse to fine
grids. These existing methods focus on solving PDEs. In
contrast, (Allen et al., 2022) presents a line of works on dif-
ferentiable simulators. Our method is different from these
works. During inference, our model cooperates with tradi-
tional solvers to enhance the accuracy and stability of the
optimization process. Importantly, the neural operator is
trained independently (off-line), similar to traditional neural
operator approaches.

3. Methods
Let d0, d1, h represent the dimension of input space, output
space, and embedded space, respectively. A neural operator
can then be formulated as Gθ := Q◦L ◦ · · · ◦ L ◦ P , where
P : Rd0 → Rh is a lifting operator, Q : Rh → Rd1 is
a projection operator, and L : Rh → Rh is the integral
operator.

3.1. Sensitivity Loss

Since the gradient of neural operators is crucial to gradient-
based optimization, we impose derivative learning to neural

3

Accelerating PDECO by the Derivative of Neural Operators

Figure 3: Overview of structure of Virtual-Fourier (VF)
layer. The VF layer is composed by three steps: I. Weighted
aggregating mesh points to a virtual physical space by equa-
tion (8); II. Signal processing in the virtual physical space
by a Fourier-based layer (9); III. Projection of the processed
signals back to physical space by equation (10).

operators. Derivative learning in this paper means imposing
supervision on the sensitivity of the neural operators defined
as (2). Previous studies (Czarnecki et al., 2017; Tsay, 2021;
O’Leary-Roseberry et al., 2024) have shown that derivative
learning is beneficial for neural networks.

Given the sensitivity ∂J
∂λ obtained from numerical solvers,

along with a differentiable method of calculating J given u
and λ, we impose a sensitivity loss on the neural operators,

Lsens = ∥∇λJ(Gθ, λ)−
∂J

∂λ
∥. (5)

Fig. 2 (left) provides an overview of the computational
graph for training neural operators wtih sensitivity loss.
Consequently, the total loss is

L = ∥Gθ(λ)− u∥+ α · Lsens, (6)

where α > 0 is a hyperparameter controlling the weight of
the sensitivity loss.

3.2. Virtual-Fourier Layers

The influence of neural operator architecture on derivative
learning has received comparatively less attention in the
literature. We find that traditional transformer-based archi-
tectures have limited expressiveness for this task. Here, we
introduce a novel operator layer that exploits the simple
derivative properties of Fourier layers. Notably, our layer
also generalizes Fourier layers to arbitrary grids, a technical
contribution that may be valuable in its own right.

In the following, we use bold letters to indicate ten-
sors of different dimensions. Let us consider commonly-
used transformer-based and Fourier-based neural operators.
For a transformer, the derivative of the nonlinear atten-
tion unit consists of (i) the derivative of Softmax of at-
tention mechanism, let s = Softmax(z), z ∈ RN , then
∂si
∂zj

= si · (δij − sj); (ii) the chain rule and the product
rule of derivatives with respect to Q, K, and V . See Ap-
pendix A for more detailed analysis. The derivative of

transformers leads to limited expressiveness due to unde-
sired inductive bias. On the other hand, the derivative of
Fourier-based layers with discrete Fourier transform F is
simply d

dxF(z) = F(
dz
dx). Therefore, the expressiveness of

the derivative of Fourier-based layers is untempered.

Nevertheless, Fourier-based layer has a key limitation that
it can only deal with uniform mesh points of fixed num-
bers, while many applications, particularly optimization
problems rely on irregular meshes with varying numbers
of points. To address this limitation, inspired by Wu et al.
(2024), we propose a Virtual-Fourier layer (see Fig. 3 for an
overview), which transforms irregular meshes to a virtual
physical space with a fixed number of sensors. This transfor-
mation is achieved by point-wise projection and weighted
aggregation.

First, let N denote the number of points in the physical
space, M the number of sensors in the virtual physical space,
and C the number of channels. While N can vary across
different cases, M remains fixed and is pre-determined.
Given input x ∈ RN×C and a point-wise transformation
Project : R1×C → R1×M , let

li =
Project(xi)√

C
∈ R1×M . (7)

In our implementation, Project is a simple linear trans-
form, though it could potentially be implemented as a non-
linear transformation if needed. Here, l ∈ RN×M , and
li,j represents the logit of the i-th point of x being lin-
early classified to the j-th sensor in the virtual physical
space. Then we apply softmax(·) along the first dimen-
sion of l to obtain the weights w(1) ∈ RN×M , specifically,
w

(1)
i,j = exp(li,j)/

∑N
i=1 exp(li,j), i = 1, · · · , N . Let

zj =

N∑
i=1

w
(1)
i,j xi ∈ R1×C , j = 1, · · · ,M. (8)

Here, z ∈ RM×C can be intuitively interpreted as a 1-D
signal in a virtual physical space sampled by M sensors,
each with C channels.

Remark 3.1. Equation (8) is similar yet different from
its counterpart of Transolver (Wu et al., 2024), which
let wi = Softmax(Project(xi)) ∈ R1×M (softmax(·)
applied along the second dimension of l) and zj =∑N

i=1 wi,jxi∑N
i=1 wi,j

∈ R1×C . Both treatments preserve the nature
of the whole layer as an integral operator since they only
introduce additional measures on the hidden space RC , and
the weight w’s are probability density functions. The main
difference lies in their derivatives. The derivative of equa-
tion (8) introduces less bias due to its simpler structure,
which motivates us to adopt this form. See Appendix A for
a detailed analysis of the derivatives.

4

Accelerating PDECO by the Derivative of Neural Operators

These signals z’s are then processed by a Fourier-based
layer:

z′ = F−1(Rθ · (Fz)) ∈ RM×C . (9)

The Fourier series Fz is truncated to a finite number of
modes k ∈ Z such that Fz ∈ Ck×C and the weight
parameter Rθ ∈ Ck×C×C . Fourier-based layers assume
transitional symmetry on kernel integral operator, and due
to convolution theorem (Proakis, 2001), Rθ element-wise
multiplies with frequency coefficient of z. In the origi-
nal treatment of FNO (Li et al., 2020), the interaction be-
tween channels is allowed. In this paper, with slightly
abused notation, we take 1 ≤ i ≤ k, 1 ≤ j, l ≤ C, and
define the · operation in (Rθ · (Fz)) from equation (9)
to be (Rθ · (Fz))i,l =

∑C
j=1 Ri,l,j(Fz)i,j . To see the

simplicity of the derivatives of Fourier-based layer, notice
dz′

dx = F−1(Rθ · (F dz
dx)), which does not change the struc-

ture of the layer. This is highly favorable for derivative
learning.

Finally, the processed signals are transformed from the vir-
tual physical space back to the physical space with the same
logits from equation (7). However, this time softmax(·)
is applied on the second dimension of l. Namely, let
w(2) ∈ RN×M , and w

(2)
i,j = exp(li,j)/

∑M
j=1 exp(li,j),

j = 1, · · · ,M and we get

x′
i =

M∑
j=1

w
(2)
i,j zj ∈ R1×C . (10)

Although Fourier-based layer is sensitive to the order of
input sequence, the Virtual-Fourier layer is permutation
equivariant similar to Transformer-based layers (without
positional embedding). To see this, one needs to notice that
li only depends on xi due to the pointwise projection and
the fact that under permutation equation (8) is invariant and
equation (10) is equivariant.

Following (Kovachki et al., 2023), the final output of a
Virtual-Fourier layer is σ(Wx+b+x′), where W ∈ RC×C ,
b ∈ RC and σ is a nonlinear activation, such as GeLU
(Hendrycks & Gimpel, 2016) in our implementation.

The overall computational complexity of the layer is
O(NMC +M2C2). By grouping channels into n heads,
the computation cost can be reduced to O(NMC +
M2C2/n), and the number of parameters in Rθ decreases
from O(kC2) to O(kC2/n). The derivative of equation (8)
and (10) do introduce some additional bias to the layer, and
we provide the analysis in Appendix A.

3.3. Training and Optimization with RNO

Finally, a key component of our neural operator-based gra-
dient optimization method is RNO. Its design serves two

primary purposes: efficient learning from optimization tra-
jectory data and enabling a hybrid optimization approach to
mitigate error accumulation.

Reference Neural Operators (RNO) (Cheng et al., 2024),
initially designed for learning smooth solution dependen-
cies on domain deformations in shape optimization, can be
extended to a broader range of gradient-based optimization
problems. Our core idea is that RNO leverages ”nearby”
data points within an optimization trajectory to learn high-
quality predictions. We find that the inherent relationships
among these trajectory points are crucial for effective opera-
tor learning, allowing RNO to capture fine-grained solution
changes resulting from small input perturbations. Specifi-
cally, our goal is to learn an operator,

G : Λ× U × T → U (11)
(λq, ur, φ)→ uq (12)

where U and Λ are Banach spaces, and T = Cs(Λ), s ≥ 1
represents a smooth transformation space on Λ. Also, we
assume that there exist φ ∈ T such that φ(λr) = λq and
ur ◦ φ−1 = uq. For example, in shape optimization, Λ
denotes the geometry space which can be substantiated as a
space of signed distance function, and T denotes a collec-
tion of smooth deformation defined on Λ. Particularly, due
to the bijection between reference mesh and query mesh,
the deformation φ can be discretized as a shift vector field
between them. In topology optimization problem, Λ rep-
resents the space of input function, T can be assumed as
any smooth, invertible transformation space, and φ can be
substantiated as the difference λr − λq .
Remark 3.2. The well-posedness of the mapping (11),
specifically the existence, uniqueness and smoothness of φ,
hinges on the property of the operator G′ : Λ→ U . These
properties, such as continuity and differentiability, are non-
trivial and inherently dependent on the specific PDE under
consideration. For instance, the shape holomorphy of steady
Stokes and Navier-Stokes equations, as demonstrated by
Cohen et al. (2018), establishes the smooth dependence of
the solution on small shape perturbations. This implies that
given a reference shape λr and a slightly perturbed shape
λq, the difference between the corresponding solutions ur

and uq is bounded by the norm of perturbation. For a com-
prehensive overview of shape optimization theory, we refer
readers to Sokolowski & Zolésio (1992). In the context
of topology optimization, analogous results of fluid flows
regarding the smooth dependence of the solution on the
density coefficient have been established by Haubner et al.
(2023); Evgrafov (2005; 2006). These results impose certain
limitations on the applicability of our method. For example,
significant shape deformations that alter the topology should
be avoided, and the governing PDEs must exhibit sufficient
regularity with respect to the design parameters.
Remark 3.3. In Cheng et al. (2024), the target of RNO is

5

Accelerating PDECO by the Derivative of Neural Operators

Figure 4: Optimization Process with RNO. This figure illustrates the optimization trajectory using the RNO model. Red
dashed trajectory illustrates the true solutions and objectives without access. Black solid trajectory stands for optimization
with neural operators. Blue arrows indicate updates to the ground truth solution based on the current input design parameters
λ. The optimization trajectory can be recalibrated whenever a numerical solver is called, ensuring robustness and accuracy.
(Left) The optimization trajectory is projected onto the objective function J - design parameter Λ plane. (Right) The
optimization trajectory is projected onto the solution space U - design parameter Λ plane. Note that both panels represent
the same optimization trajectory.

defined to be the difference δu = ur ◦φ−1−uq , inspired by
material derivatives. We modify the target to be simply uq.
With skip connections outside of the integral operator layers,
setting uq as the target would implicitly learn δu. There
are two benefits with this modification. Firstly, it simplifies
implementation. Secondly, reference neural operators can
be re-interpreted as an extension of vanilla neural operator
(3), which unifies RNO and NO. In practice, it enables
the flexibility of utilizing RNO as NO, which is helpful if
reference is expensive or less worthy acquiring.

Remark 3.4. Although RNO is an extension of neural oper-
ators that maps from a larger space Λ×U ×T to a solution
space U , we empirically observe that it achieves higher
learning efficacy compared to vanilla neural operators. See
Section 4.1. A possible underlining reason is that the train-
ing procedure of RNO is analogue to contrastive learning,
which takes advantage of the inner relation between data
samples, thereby improving data utilization. Given N data
samples, each data with k neighbors, the number of pairwise
data samples is O(kN). Since data samples are collected
from optimization processes using traditional methods, they
are naturally closely related. Based on this, RNO is able to
effectively learn the changes of solutions that result from
small changes in input.

3.3.1. OPTIMIZATION-ORIENTED TRAINING OF RNO

We continue to use the notation of neural operator and rep-
resent an RNO by Gθ := Q ◦ L · · · L ◦

∑3
i Pi, where Pi’s

are lifting operators corresponding to each element of triplet
(λq, ur, φ). The training objective function is defined as (6).
We summarize the training algorithm in Algorithm D. This
training paradigm is specifically tailored for optimization
data, thus inherently optimization-oriented.

Reference-Query pairs. To train RNO, we require a pair
of data points for each query. Since our data originates
from optimization trajectories, we pair each data point with
its nearest neighbor within the same trajectory, excluding
neighbors that exceed a predefined distance threshold. This
pairing process is implemented within a custom dataloader.
For further details, please refer to Appendix C.1.

Reference dropout ratio. During training, we randomly
drop reference inputs (ur, φ) so that RNO reduces to a
vanilla neural operator that maps from λ to u. Enabling
this feature is preferable because it allows RNO to perform
inference flexibly without external references. This is partic-
ularly beneficial at the beginning of the optimization process,
as RNO can operate without relying on any ground truth so-
lution. Consequently, we can avoid unnecessary numerical
computations during the initial stages of the design process.
The reference dropout ratio is set at 0.3 to balance training
performance.

3.3.2. OPTIMIZATION WITH RNO

To mitigate the accumulation of errors generated by neural
operators during optimization, a straightforward approach
involves validating intermediate optimization results and
restarting the optimization process from the validated point.
Then neural operators must effectively utilize newly ac-
quired ground truth solutions. Traditional neural operators
typically require retraining with the newly acquired data,
which is computationally expensive in a single optimization
run. In contrast, since RNO accepts a reference solution as
input to predict the response for a query, it can recalibrate its
predictions and adjust the optimization direction whenever
a new ground-truth solution becomes available. See Fig. 4
for an illustration of the method.

6

Accelerating PDECO by the Derivative of Neural Operators

Dataset Component LA PA VF R-VF w/o ref R-LA R-PA R-VF (Ours)

Microreactor2D

p 7.12e-2 7.67e-2 6.36e-2 5.56e-2 1.45e-2 1.38e-2 1.33e-2
u 1.61e-1 1.76e-1 2.16e-1 1.25e-1 2.85e-2 2.53e-2 2.31e-2
v 6.87e-1 6.86e-1 6.77e-1 5.35e-1 7.34e-2 7.02e-2 6.84e-2
c 8.79e-2 9.33e-2 1.04e-1 7.33e-2 2.64e-2 2.56e-2 2.42e-2
Ls - - - - 2.05e-1 2.02e-1 1.70e-1

Fuelcell2D

p 1.63e-1 1.18e-1 1.51e-1 1.05e-1 1.37e-2 1.34e-2 1.30e-2
u 2.99e-1 2.19e-1 2.97e-1 1.84e-1 1.14e-2 1.14e-2 1.10e-2
v 3.42e-1 2.60e-1 2.36e-1 2.10e-1 1.42e-2 1.40e-2 1.38e-2
L1 - - - - 4.90e-1 4.62e-1 4.44e-1
L2 - - - - 3.18e-1 2.77e-1 2.57e-1

Inductor2D

Br 5.43e-1 4.62e-1 4.57e-1 3.93e-1 9.65e-3 1.14e-2 8.66e-3
Bz 3.76e-1 3.24e-1 3.91e-1 3.74e-1 1.04e-2 1.05e-2 9.55e-3
Lr - - - - 3.12e-1 3.64e-1 3.00e-1
Lz - - - - 5.11e-1 5.77e-1 4.76e-1

Drone3D

u1 5.51e-1 2.42e0 4.27e-1 4.42e-1 1.08e-1 9.60e-2 7.64e-2
u2 5.51e-1 6.60e-1 3.88e-1 3.84e-1 7.01e-2 7.25e-2 5.60e-2
u3 7.50e-1 9.91e-1 1.17e0 5.95e-1 1.32e-1 1.18e-1 1.20e-1
Ls - - - - 6.48e-1 5.66e-1 5.05e-1

Table 1: The prefix “R-” indicates models being modified into RNO framework. See definition of baseline models in Section
4. All metrics are relative-l2 error. Errors are shown by each component. L·’s are sensitivity errors marked in blue. Bold is
the best and underline is the second best. Red values are the best among all models without reference.

Smoothen the gradient. During inference, we adopt two
tricks to further smoothen gradient while proceeding opti-
mization: (1) Inject noise into the inputs and take average
on the outputs. Let εi ∼ N (0, σ), where σ is set to 1% of
the standard deviation of the input,

δJ :=
1

N1

N1∑
i=1

∇λJ(u(λ+ εi), λ) (13)

(2) We buffer the most recent optimization steps with certain
size M , and then make all steps as a reference and take
average on the outputs.

upred =
1

N2

N2∑
j=1

Gθ(λ, uj , φj) (14)

The total number of forward passes for a single optimization
step is N1N2. Since the derivative of the summation of J
with respect to all inputs λ + εi are independent to each
other, the derivative in (13) can be computed by Autograd
in one pass. Also, (14) can be computed in parallel. The
optimization algorithm is summarized as Algorithm 1.

4. Experiments
We benchmark four challenging optimization datasets from
various physics backgrounds, all simulated using COM-
SOL 6.0. For fluid dynamics we have Microreactor2D:
A 2D topology optimization problem that maximizes the
reaction rate of a channel design; Fuelcell2D: A 2D shape

Algorithm 1 Optimization with RNO

Input: RNO Gθ, random initial input λ0, learning rate
η > 0, buffer list B with size N2, Ground truth solution
ugt = None with empty initialization, warm up steps
for optimization before the first validation, radius r
around ugt as a criterion to trigger validation.
for i = 1 to T − 1 do

if i > warm up steps and Dist(ut, ugt) > r then
Update ugt with numerical solver
Reset buffer B = [ugt]

end if
Compute ut by Eq. (14) and δJ by Eq. (13)
Store ut in B
Update λt+1 ← λt − η · δJ

end for

optimization problem that minimizes both pressure drop
and flow velocity variance between channels. For eletro-
magnetics we have Inductor2D: A 3D axial-symmetric
shape optimization problem that aims to reduce material
cost while maximizing inductance. For solid mechanics
we have Drone3D: A 3D topology optimization problem
that minimizes elastic strain energy under two distinct load
cases: vertical acceleration and motor torque. All datasets
are organized as num traj×num step, where num traj
and num step are the number of trajectories and the num-
ber optimization steps. Train and test sets are split in 8:2
by trajectories. Please check more details of each dataset in
Appendix. C.

7

Accelerating PDECO by the Derivative of Neural Operators

Figure 5: Trade-off between operator and derivative accu-
racy. This plot illustrates the trade-off for three models
trained with different values of the hyperparameter α on the
Microreactor2D dataset. R-VF consistently achieves points
on the Pareto front, demonstrating a strong balance between
accurate operator predictions and accurate derivative esti-
mations.

Computing the sensitivity loss (Equation 6) requires the
objective function value, J , for each data point. To ensure
differentiability, we employ simplified approximations for
the objective function. For example, we approximate the
average value on irregular meshes by averaging node values
and incorporate constraints as additional objectives using
Lagrange multipliers. These simplifications can introduce
discrepancies between the true objective function used in
data generation and the approximated objective used for
computing neural operator sensitivities. To address this
discrepancy, we utilize an equivalent form of the cosine sim-
ilarity for the sensitivity loss for all datasets except Microre-
actor2D, where the original formulation is used. Details of
this equivalent formulation are provided in Appendix B.

We compare Virtual-Fourier (VF) layer to two baselines:
linear attention (LA) from GNOT (Hao et al., 2023) and
physics attention (PA) from Transolver (Wu et al., 2024).
Except for the layer structure, all models share the same
architecture, e.g., lifting and projection operators, and the
number of parameters are similar. We add prefix “R-” to
models that are modified into RNO framework.

4.1. Learning Results

Table 1 reveals several key observations. Limitations of tra-
ditional training: Vanilla neural operators trained with stan-
dard methods exhibit poor performance across all datasets.
This is likely due to the inherent similarity of data points
within optimization trajectories near the optimal region,
leading to a lack of diversity compared to traditional training
datasets. Limited diversity can easily result in overfitting.

Figure 6: Objective Function Values during Optimization on
Microreactor2D. The horizontal axis represents the number
of calls to the numerical solver. “Hybrid R-VF” refers to
the optimization algorithm (Algorithm 1) using the trained
R-VF model. “R-VF w/o reference” represents the optimiza-
tion process relying solely on the R-VF model without any
calls to the numerical solver.

Effectiveness of RNO: All RNO variants demonstrate effec-
tive learning across all datasets. Notably, R-VF consistently
outperforms baselines in both operator and derivative learn-
ing. We highlight that the error reduction of sensitivity loss
from the second best is between 3.8% to 17.5%, suggesting
that the Virtual-Fourier (VF) layer effectively reduces bias
in derivative learning.

Overfitting suppression: Interestingly, the RNO training
procedure itself appears to mitigate overfitting. When op-
erating without a reference solution (by setting the refer-
ence dropout ratio to 1), RNO effectively degenerates into
a vanilla neural operator. However, even in this degenerate
state, its performance often surpasses that of all traditional
neural operators, as observed in the “R-VF w/o reference”
column.

4.1.1. THE TRADEOFF DUE TO SENSITIVITY LOSS

The sensitivity loss (6) introduces a tradeoff between op-
erator accuracy and derivative accuracy. To investigate
this trade-off, we analyze the Pareto front of each model
on Microreactor2D for different values of the coefficient
α = {0, 0.1, 0.5, 0.9}. Figure 5 presents the results, where
the relative l2 error represents the average error across all
components. R-VF outperforms both baselines and demon-
strates strong performance on all α’s.

4.1.2. SCALING ABILITY OF VIRTUAL-FOURIER

In order to study the scaling ability of VF, we doubled the
size of Microreactor dataset to 200 trajectories (each of

8

Accelerating PDECO by the Derivative of Neural Operators

12 steps and effectively 2400 samples). 40 trajectories are
kept as test set. We train models on 80, 160 trajectories
respectively. In Table 3 of Appendix E, we observe that
with larger dataset, R-VF keeps advantage over baselines
on predicting both physical fields and sensitivities.

4.2. Optimization Results

To evaluate our hybrid approach (Algorithm 1), we ran-
domly selected a test case from the Microreactor2D dataset
and performed optimization from scratch using a fully
trained R-VF model. We employed the Method of Mov-
ing Asymptotes (MMA) (Svanberg, 1987) and Gaussian
smoothing for sensitivity updates. We compared our hybrid
approach with traditional numerical gradient-based opti-
mization. Additionally, we benchmarked the R-VF model’s
performance within Algorithm 1 against a baseline where
the R-VF model operated without feedback from the numer-
ical solver. In this “w/o reference” scenario, we validated
intermediate objective values every 20 optimization itera-
tions.

As shown in Figure 6, the hybrid approach (R-VF with Algo-
rithm 1) demonstrates rapid and stable convergence. In con-
trast, optimization relying solely on the R-VF model quickly
derails without numerical solver feedback. Although the
hybrid approach may converge to a suboptimal solution due
to factors such as derivative accuracy errors, objective func-
tion discrepancies, constraint handling, density projection,
etc., it exhibits robust convergence behavior.

Importantly, within the first four calls to the numerical
solver, the hybrid R-VF optimizer achieves objective values
comparable to, or even exceeding, those obtained by the
numerical optimizer, suggesting potential for computational
cost savings. Furthermore, each call to the numerical solver
in our hybrid approach costs approximately half as much as
one adjoint method step (due to the expense of solving the
adjoint equations), further amplifying the potential savings.

4.2.1. WALL-CLOCK TIME COMPARISON

The runtime of our hybrid method consists of the time
spent optimizing with RNO and the time calling numerical
solvers.The latter dominates the runtime, and optimization
with RNO is much cheaper. Thus, a major potential cost
saving of the hybrid method lies in fewer calls for numerical
solvers.

A crucial aspect of optimization with neural operators is the
method of optimization. In our implementation, we adopted
GD and MMA, but there are many other choices, such as
Adam, L-BFGS, and SIMP (Bendsøe, 1989). A well-chosen
optimization method can achieve higher objective values
and reduce both the number of iterations and the number of
function calls. Thus, the optimization method significantly

Microreactor2D Drone3D
Mesh nodes 4.9e3 2.1e4
R-VF (GPU) 0.53 0.62
R-VF (CPU) 1.89 3.20

Numerical (CPU) 3.20 49.40

Table 2: Wall-clock runtime comparison in second/iter.

affects the overall wall-clock time. Moreover, there are
some important techniques in optimization, such as gradient
filtering, projection, and clipping. A comprehensive and
fair comparison requires all these techniques. We provide a
primitive reference for wall-clock time in Table 2.

Experiments were conducted on both a laptop with CPU
2.5 GHz (11th Gen Intel i7) and a GPU Nvidia V100. The
reported time is the average value of 10 iterations, measured
in seconds per iteration. The runtime of traditional numeri-
cal methods increases sharply as the problem scales, since
numerical methods suffer from the curse of dimensionality.
In contrast, R-VF runtime increases moderately due to its
linear computational complexity w.r.t. the number of mesh
nodes.

5. Conclusion
This work addresses the challenges of applying neural opera-
tors to PDECO problems using gradient-based methods. We
propose a novel framework that incorporates a specialized
training procedure that leverages data generated from opti-
mization process, a novel Virtual-Fourier layer to improve
the accuracy of derivative predictions, and a hybrid approach
that integrates neural operators with traditional numerical
solvers. Through extensive experiments, we demonstrate the
effectiveness of our proposed framework in accurately learn-
ing operators and their derivatives, leading to significant
improvements in the robustness of gradient-based optimiza-
tion with neural operators.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Acknowlegement
This research is a result of the collaboration within Bosch-
Tsinghua Machine Learning Center. This work was sup-
ported by the National Key Research and Development
Program of China (No. 2020AAA0106302), NSFC Projects
(Nos. 92370124, 62350080, 92248303, 62276149).

9

Accelerating PDECO by the Derivative of Neural Operators

References
Allen, K. R., Lopez-Guevara, T., Stachenfeld, K., Sanchez-

Gonzalez, A., Battaglia, P., Hamrick, J., and Pfaff, T.
Physical design using differentiable learned simulators.
arXiv preprint arXiv:2202.00728, 2022.

Audet, C., Denni, J., Moore, D., Booker, A., and Frank, P. A
surrogate-model-based method for constrained optimiza-
tion. In 8th symposium on multidisciplinary analysis and
optimization, pp. 4891, 2000.

Bendsøe, M. P. Optimal shape design as a material dis-
tribution problem. Structural optimization, 1:193–202,
1989.

Bendsoe, M. P. and Sigmund, O. Topology optimization:
theory, methods, and applications. Springer Science &
Business Media, 2013.

Borel, É. La mécanique statique et l’irréversibilité. J. Phys.
Theor. Appl., 3(1):189–196, 1913.

Bower, A. Applied mechanics of solids, 2009.

Cao, S. Choose a transformer: Fourier or galerkin. Ad-
vances in neural information processing systems, 34:
24924–24940, 2021.

Cheng, Z., Hao, Z., Wang, X., Huang, J., Wu, Y., Liu, X.,
Zhao, Y., Liu, S., and Su, H. Reference neural operators:
Learning the smooth dependence of solutions of pdes
on geometric deformations. In Forty-first International
Conference on Machine Learning, 2024.

Cohen, A., Schwab, C., and Zech, J. Shape holomorphy of
the stationary navier–stokes equations. SIAM Journal on
Mathematical Analysis, 50(2):1720–1752, 2018.

Czarnecki, W. M., Osindero, S., Jaderberg, M., Swirszcz,
G., and Pascanu, R. Sobolev training for neural networks.
Advances in neural information processing systems, 30,
2017.

Evgrafov, A. The limits of porous materials in the topology
optimization of stokes flows. Applied Mathematics and
Optimization, 52(3):263–277, 2005.

Evgrafov, A. Topology optimization of slightly compress-
ible fluids. ZAMM-Journal of Applied Mathematics and
Mechanics/Zeitschrift für Angewandte Mathematik und
Mechanik: Applied Mathematics and Mechanics, 86(1):
46–62, 2006.

Fahl, M. and Sachs, E. W. Reduced order modelling
approaches to pde-constrained optimization based on
proper orthogonal decomposition. In Large-scale PDE-
constrained optimization, pp. 268–280. Springer, 2003.

Forrester, A., Sobester, A., and Keane, A. Engineering
design via surrogate modelling: a practical guide. John
Wiley & Sons, 2008.

Hao, Z., Wang, Z., Su, H., Ying, C., Dong, Y., Liu, S.,
Cheng, Z., Song, J., and Zhu, J. Gnot: A general neu-
ral operator transformer for operator learning. In Inter-
national Conference on Machine Learning, pp. 12556–
12569. PMLR, 2023.

Haubner, J., Neumann, F., and Ulbrich, M. A novel den-
sity based approach for topology optimization of stokes
flow. SIAM Journal on Scientific Computing, 45(2):A338–
A368, 2023.

Hendrycks, D. and Gimpel, K. Gaussian error linear units
(gelus). arXiv preprint arXiv:1606.08415, 2016.

Hsieh, J.-T., Zhao, S., Eismann, S., Mirabella, L., and Er-
mon, S. Learning neural pde solvers with convergence
guarantees. arXiv preprint arXiv:1906.01200, 2019.

Hwang, R., Lee, J. Y., Shin, J. Y., and Hwang, H. J. Solving
pde-constrained control problems using operator learn-
ing. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pp. 4504–4512, 2022.

Kennedy, J. and Eberhart, R. Particle swarm optimization.
In Proceedings of ICNN’95-international conference on
neural networks, volume 4, pp. 1942–1948. ieee, 1995.

Kohn, W. and Sham, L. J. Self-consistent equations includ-
ing exchange and correlation effects. Physical review,
140(4A):A1133, 1965.

Kovachki, N., Li, Z., Liu, B., Azizzadenesheli, K., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Neural
operator: Learning maps between function spaces with
applications to pdes. Journal of Machine Learning Re-
search, 24(89):1–97, 2023.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Fourier
neural operator for parametric partial differential equa-
tions. arXiv preprint arXiv:2010.08895, 2020.

Li, Z., Meidani, K., and Farimani, A. B. Transformer for
partial differential equations’ operator learning. arXiv
preprint arXiv:2205.13671, 2022.

Li, Z., Huang, D. Z., Liu, B., and Anandkumar, A. Fourier
neural operator with learned deformations for pdes on
general geometries. Journal of Machine Learning Re-
search, 24(388):1–26, 2023.

Li, Z., Zheng, H., Kovachki, N., Jin, D., Chen, H., Liu,
B., Azizzadenesheli, K., and Anandkumar, A. Physics-
informed neural operator for learning partial differential

10

Accelerating PDECO by the Derivative of Neural Operators

equations. ACM/JMS Journal of Data Science, 1(3):1–27,
2024.

List, B., Chen, L.-W., and Thuerey, N. Learned turbulence
modelling with differentiable fluid solvers: physics-based
loss functions and optimisation horizons. Journal of Fluid
Mechanics, 949:A25, 2022.

Liu-Schiaffini, M., Berner, J., Bonev, B., Kurth, T., Aziz-
zadenesheli, K., and Anandkumar, A. Neural operators
with localized integral and differential kernels. arXiv
preprint arXiv:2402.16845, 2024.

Lu, L., Jin, P., and Karniadakis, G. E. Deeponet: Learning
nonlinear operators for identifying differential equations
based on the universal approximation theorem of opera-
tors. arXiv preprint arXiv:1910.03193, 2019.

Lu, L., Jin, P., Pang, G., Zhang, Z., and Karniadakis, G. E.
Learning nonlinear operators via deeponet based on the
universal approximation theorem of operators. Nature
machine intelligence, 3(3):218–229, 2021.

Neal, R. M. Bayesian learning for neural networks, volume
118. Springer Science & Business Media, 2012.

O’Leary-Roseberry, T., Chen, P., Villa, U., and Ghattas, O.
Derivative-informed neural operator: an efficient frame-
work for high-dimensional parametric derivative learning.
Journal of Computational Physics, 496:112555, 2024.

Pontryagin, L. S. Mathematical theory of optimal processes.
Routledge, 2018.

Proakis, J. G. Digital signal processing: principles algo-
rithms and applications. Pearson Education India, 2001.

Snoek, J., Larochelle, H., and Adams, R. P. Practical
bayesian optimization of machine learning algorithms.
Advances in neural information processing systems, 25,
2012.

Sokolowski, J. and Zolésio, J.-P. Introduction to shape
optimization. Springer, 1992.

Svanberg, K. The method of moving asymptotes—a new
method for structural optimization. International journal
for numerical methods in engineering, 24(2):359–373,
1987.

Tran, A., Mathews, A., Xie, L., and Ong, C. S.
Factorized fourier neural operators. arXiv preprint
arXiv:2111.13802, 2021.

Tsay, C. Sobolev trained neural network surrogate models
for optimization. Computers & Chemical Engineering,
153:107419, 2021.

Um, K., Brand, R., Fei, Y. R., Holl, P., and Thuerey, N.
Solver-in-the-loop: Learning from differentiable physics
to interact with iterative pde-solvers. Advances in Neural
Information Processing Systems, 33:6111–6122, 2020.

Wang, S., Bhouri, M. A., and Perdikaris, P. Fast pde-
constrained optimization via self-supervised operator
learning. arXiv preprint arXiv:2110.13297, 2021.

Wu, H., Luo, H., Wang, H., Wang, J., and Long, M. Tran-
solver: A fast transformer solver for pdes on general
geometries. arXiv preprint arXiv:2402.02366, 2024.

Xiao, Z., Hao, Z., Lin, B., Deng, Z., and Su, H. Improved
operator learning by orthogonal attention. In Proceed-
ings of the 41st International Conference on Machine
Learning, pp. 54288–54299, 2024.

Xue, T., Beatson, A., Adriaenssens, S., and Adams, R.
Amortized finite element analysis for fast pde-constrained
optimization. In International Conference on Machine
Learning, pp. 10638–10647. PMLR, 2020.

Zhang, L., Han, J., Wang, H., Car, R., and E, W. Deep
potential molecular dynamics: a scalable model with the
accuracy of quantum mechanics. Physical review letters,
120(14):143001, 2018.

Zhu, Y. and Zabaras, N. Bayesian deep convolutional
encoder–decoder networks for surrogate modeling and
uncertainty quantification. Journal of Computational
Physics, 366:415–447, 2018.

11

Accelerating PDECO by the Derivative of Neural Operators

A. Derivative of Virtual-Fourier Layer
First, let us take a closer look at the derivative of nonlinear attention, d

dx softmax(QK)V , ignoring constant coefficient and
the transpose of matrix. Suppose t ∈ RN and s = softmax(t). Then ∂sj

∂ti
= sj(δij − si). Thus, the derivative would be

roughly and informally sj(δij − si)(Q
′K+QK ′)+softmax(QK)V ′. Hence, the derivative of such layers is assigned with

strong inductive bias (probably undesired), and the expressiveness would be severely restricted. Even for linear transformers,
e.g., GNOT (Hao et al., 2023), the derivative of normalization for linear attention has a complicated form due to the quotient
rule.

In contrast, the computation of the derivative of Virtual-Fourier layers essentially occurs on the Softmax function. For
equation (8), its derivative is

∂zj
∂xi

= w
(1)
i,j +

N∑
k=1

w
(1)
k,j(δi,k − w

(1)
i,j)

∂li,j
∂xi

xi︸ ︷︷ ︸
Additional bias

(15)

Proof. Notice that li,j only depends on xi by (7). w(1)
i,j = exp(li,j)/

∑N
i=1 exp(li,j), i = 1, · · · , N , which is softmax(·)

along the first dimension of li,j . Then it directly follows from the derivative of softmax(·), product rule and chain rule. □

In equation (10) since the dependence on zj is linear, we mainly focus on the derivative of w(2)
k,j . Similarly, we have

∂w
(2)
k,j

∂xi
= w

(2)
k,j(δi,j − w

(2)
k,i)

∂lk,i
∂xi

(16)

Proof. Again, due to (7) and w
(2)
i,j = exp(li,j)/

∑M
j=1 exp(li,j), j = 1, · · · ,M , which is softmax(·) along the second

dimension of li,j . It directly follows from the derivative of softmax(·), product rule and chain rule. □

Both the derivative of (8) and (10) introduce some bias to the derivative of operators due to the derivative of softmax(·), but
compared to transformer-based neural operators, the derivative of Virtual-Fourier layer is considerably simpler.

B. Sensitivity Loss
Two technical challenges arise in computing the sensitivity loss (equation 5):

Sensitivity Representation: For shape optimization datasets, COMSOL provides sensitivities with respect to curve
parameters (e.g., coefficients of Bernstein polynomials), not directly with respect to the coordinates of mesh nodes. To
simplify the comparison, we obtain the shift in node coordinates and maximize the cosine similarity between this shift and
the sensitivity of the neural operator with respect to the node coordinates. Equivalently, we normalize both vectors and
minimize the l2 loss between them.

Constraint Handling: The optimization method used within COMSOL to handle constraints introduces complexities in
sensitivity computation. To simplify this aspect, we incorporate constraints as additional objectives in the objective function
J using Lagrange multipliers. This simplification may introduce errors in the computed sensitivities. To mitigate this,
we again prioritize maximizing the cosine similarity (minimize the L2 loss between normalized sensitivities), while also
choosing a small value for the coefficient α in equation 6.

C. Dataset and Dataloader
C.1. Reference Dataloader

To train RNO with pairwise data as query and reference, we use a custom dataloader to select a reference point from the
same optimization trajectory for each query point. Given a trajectory {(λi, ui)}Ns

i=0, where Ns is the number of steps. the
reference for the i-th data point is chosen from the index range [l, r], where l = max(0, i − d) and r = min(Ns, i + d).
Note that the reference index j can be equal to i. Additionally, the relative difference between the reference solution ur

and the query uq must be less than a threshold dr. The dataloader randomly selects a reference point that satisfies both
conditions. In our implementation, d = 2 and dr = 0.5.

12

Accelerating PDECO by the Derivative of Neural Operators

Because both the query and reference are selected from the same trajectory, they share a one-to-one correspondence between
mesh grids. This is inherently true for data generated from topology optimization, where all meshes are identical. For shape
optimization, this one-to-one correspondence is preserved after shape deformation. This consistent mesh correspondence is
a key advantage of using optimization trajectories as training data. Without it, constructing appropriate transformations φ
and implementing interpolations between different meshes, as required in (Cheng et al., 2024), would be necessary.

C.2. Microreactor

(a) (b)

Figure 7: (a) The optimized density ε of porous media. (b) The corresponding concentration c.
We modified a model from COMSOL optimization gallery that designs a catalytic microreactor by topology optimization.
The objective function is

max
ε

J =
1

volume(Ω)

∫
Ω

ka(1− ε)cdΩ (17)

where c is concentration, ka = 1 is the rate constant and ε(·) ∈ [0, 1] denotes the control variable, the volume fraction of
solid catalyst. Let D be diffusion coefficient and u be the velocity, and the overall physics is governed by Navier-Stokes and
diffusion equations,

ρ(u · ∇)u = −∇p+∇ · µ(∇u + (∇u)T)− α(ε)u
∇ · u = 0

∇ · (−D∇c) = r − u · ∇c.

The data is structured as λ = (x1, x2, ε,m) is a 4-tensor with first two dimensions of spatial coordinates and ε the control
variable. The last dimension is a mask m ∈ {0, 1}N for active domain where ε is defined, and N is the number of mesh
nodes. u = (p, u, v, c, s), which are pressure, velocity components, concentration and the sensitivity s = dJ

dε . Finally, let
φ = εr − εq be the transformation between reference and query.

We randomly draw the widths and heights of the reaction region, as well as the heights of inlet and outlet. The size of the
dataset is num traj × num steps = 100× 12.

C.3. Fuelcell Bipolar Plate

We model a simple distribution area for a fuel cell bipolar plate, the governing equation is Navier-Stokes equation and the
objective function consists of two parts: the total pressure drop and the variance of flow among all channels,

min
λ

J = (p|inlet − p|outlet) + ∥(u− ū)|channel∥2. (18)

where λ is the control variable of the internal walls in distribution areas close to inlet and outlet. The objective can be
further simplified if we set p|outlet = 0 and assume that flow velocity in each channel is constant and hence we only need to
measure the velocity at end of arm area (or the inlets of channels). In COMSOL, λ is the control variable of shapes which is
modeled by the coefficients of Bernstein polynomials. In our implementation of optimizing shape with neural operators, we
simply optimize the coordinates of the movable mesh nodes in arm area so that λ stands for the coordinates of those points.

The data is structured as λ = (x1, x2, w,m), a 4-tensor with first two dimensions of spatial coordinates and w,m ∈ {0, 1}N
are a mask for internal walls and a mask for arm area (free shape domain), where N is the number of mesh nodes.

13

Accelerating PDECO by the Derivative of Neural Operators

(a) (b)

Figure 8: (a) The pressure of optimized design. (b) The velocity component u of optimized design.

u = (p, u, v, dx1, dx2), where (dx1, dx2) is the shift of coordinates. φ = (x1, x2)r − (x1, x2)q is the difference of spatial
coordinates of mesh nodes between reference and query.

We randomly draw the widths and heights of channels, as well as the widths and heights of inlet and outlet. The size of the
dataset is num traj × num steps = 30× 20.

C.4. Inductor

Axial
symmetry

Infinite boundary

Core

Air

Coil

r

z

2.0 T

0.0 T

Figure 9: (Left) The 2D inductor model, consisting of core, coil, air, and infinite boundary. (Right) The complete 3D domain
after revolving the domain around the symmetry axis.
We model the magnetic field response of an inductor under axial symmetry assumption as seen in Fig. 9. The objective
function consists of two competing components: maximizing the inductance (magnetic energy storage capability) while
minimizing the cross sectional area of the inductor,

min
λ

J = −γ
∫
Ω
(B ·H)2πrdrdz

I2
+ (1− γ)

∫
Ω

1drdz (19)

where H stands for magnetic field intensity, B for magnetic flux density, I for current, and λ for the control variable for the
cross section shape. Particularly, we randomly draw γ ∈ [0.7, 0.9] to enable diversity on objective functions. For simplicity,
we investigate the steady state frequency domain response at f = ω

2π = 1 kHz by solving the magnetic wave equation in the
2D inductor cross section Ω using COMSOL,

∇2H + ω2ϵµH = −∇× J (20)

14

Accelerating PDECO by the Derivative of Neural Operators

where J stands for current density, ω is the angular frequency, µ and ϵ are permeability and permittivity. The excitation
current is set to have a small amplitude so that the induced magnetic field can be assumed to stay within the linear regime
(µ = 600 Tm/A) of the core material without hysteresis effect. Therefore, the steady state field response takes the form
(B,H) = (B̃, H̃)eiωt at identical phase. The objective function in Eq. 19 can then be simplified by replacing B ·H with the
corresponding amplitude µH̃

2
and performing integral only within the core region, as µ is only significant within the core

region.

The data is structured as λ = (r, z, γ,m1,m2), a 5-tensor with first two dimensions of axial-symmetrical spatial coordinates
(r, z) and m1,m2 ∈ {0, 1}N are masks for coils and magnetic core, where N is the number of mesh nodes. u =
(Br, Bz, dr, dz), where (dr, dz) are shifts of coordinates. φ = (r, z)r − (r, z)q is the difference of spatial coordinates of
mesh nodes between reference and query.

We randomly draw the radius and heights of core, the radius and heights of inner hole, the widths and heights of coil and the
parameter γ in objective function. The size of the dataset is num traj × num steps = 100× 10.

C.5. Drone

(a) (b)

Figure 10: (a) The optimized density ε filtered by a threshold. (b) The magnitude of corresponding displacement u of the
loadcase of vertical acceleration.
We modified a model from COMSOL optimization gallery that designs the arms of a drone with linear elastic material. The
problem minimizes elastic strain energy with physical variables such as 3× 3 strain, stress tensors and displacement. Our
modification on the objetive is, with Einstein sum notation,

min
ε

J =

∫
V

biuidV +

∫
∂R

tiuidA, (21)

where ui is the displacement, bi is force, ti is traction on surface ∂R and ε denotes the density of the plastic material. This
is equivalent to elastic strain energy due to the principle of minimum potential energy (Bower, 2009). Also, the governing
equation will be simplified as the Navier equations of elasticity (Chapter 5. Bower (2009)). The only field variable of
interest is displacement. The problem is optimized under two load cases, a vertical acceleration on the whole body and a
torque on the motor surface. The optimization process is performed on a single arm, and the final result is then mirrored
twice to obtain the complete drone body. See Fig. 10.

The data is structured as λ = (x1, x2, x3, θ, f1, f2, f3,m1,m2,m3), a 10-tensor with first 3 spatial coordinates and
θ ∈ [0, 1]N the control variable of density model for topology optimization where N is the number of mesh nodes. f ’s are
force components and m’s are masks for the surface where torque is applied, surfaces for symmetry conditions and volume
assigned with θ. Displacement u = (u1, u2, u3, s), sensitivity s = ∂J

∂θ , and transformation φ = θr − θq .

We randomly draw the widths, heights and thickness of the arm of drones, as well as the torque and accelerations of of two
loadcases. The size of the dataset is num traj × num steps = 10× 20.

D. Algorithms

15

Accelerating PDECO by the Derivative of Neural Operators

Algorithm 2 Optimization-oriented training of RNO

Input: RNO Gθ, dataloader that loads data in pairs, (λq, uq) and (λr, ur), flag Sens for training with sensitivity loss,
dropout ratio rdrop that drops reference.
for epoch = 0 to Ne − 1 do

Draw a ∼ U [0, 1]
if a < rdrop then

Drop ur and φ
end if
upred = Gθ(λq, ur, φ)
Compute loss L = ∥upred − uq∥
if Sens then

Compute J and ∂J
∂λq

by autodiff
Update loss L by (6).

end if
optimizer.zero()
L.backward()
optimizer.update()

end for

E. More Experiments

p u v c Ls

R-LA-80 1.64e-2 3.25e-2 7.83e-2 2.65e-2 2. 69e-2
R-PA-80 1.51e-2 2.74e-2 7.46e-2 2.48e-2 2.54e-2
R-VF-80 1.48e-2 2.57e-2 7.56e-2 2.42e-2 2.30e-2

R-LA-160 1.40e-2 2.42e-2 7.16e-2 2.29e-2 2.37e-2
R-PA-160 1.32e-2 2.18e-2 6.81e-2 2.15e-2 2.30e-2
R-VF-160 1.31e-2 2.17e-2 6.95e-2 2.15e-2 2.18e-2

Table 3: The results of scaling dataset Microreactor2D. Errors are shown by each component. Ls is sensitivity error. Bold is
the best and underline is the second best.

Models p u v c Ls

R-LA 1.29e-2 ± 3.3e-4 2.33e-2 ± 1.04e-3 6.85e-2 ± 1.94e-3 2.32e-2 ± 9.3e-4 2.16e-2 ± 3.55e-4
R-PA 1.25e-2 ± 4.1e-4 2.22e-2 ± 6.6e-4 6.6e-2 ± 1.23e-3 2.28e-2 ± 2.1e-4 2.02e-2 ± 7.8e-4
R-VF 1.2e-2 ± 3.2e-4 2.06e-2 ± 6.1e-4 6.42e-2 ± 1.42e-3 2.14e-2 ± 6.89e-4 1.76e-2 ± 3.81e-4

Table 4: Results of Microreactor2D with 5 random seeds. Showing consistent advantage of VF.

16

