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ABSTRACT

Antibody design is valuable for therapeutic usage and biological research. Ex-
isting deep-learning-based methods encounter several key issues: 1) incomplete
context for Complementarity-Determining Regions (CDRs) generation; 2) inca-
pability of capturing the entire 3D geometry of the input structure; 3) inefficient
prediction of the CDR sequences in an autoregressive manner. In this paper, we
propose Multi-channel Equivariant Attention Network (MEAN) to co-design 1D
sequences and 3D structures of CDRs. To be specific, MEAN formulates antibody
design as a conditional graph translation problem by importing extra components
including the target antigen and the light chain of the antibody. Then, MEAN re-
sorts to E(3)-equivariant message passing along with a proposed attention mecha-
nism to better capture the geometrical correlation between different components.
Finally, it outputs both the 1D sequences and 3D structure via a multi-round pro-
gressive full-shot scheme, which enjoys more efficiency and precision against pre-
vious autoregressive approaches. Our method significantly surpasses state-of-the-
art models in sequence and structure modeling, antigen-binding CDR design, and
binding affinity optimization. Specifically, the relative improvement to baselines
is about 23% in antigen-binding CDR design and 34% for affinity optimization.

1 INTRODUCTION

Antibodies are Y-shaped proteins used by our immune system to capture specific pathogens. They
show great potential in therapeutic usage and biological research for their strong specificity: each
type of antibody usually binds to a unique kind of protein that is called antigen (Basu et al.,
2019). The binding areas are mainly located at the so-called Complementarity-Determining Re-
gions (CDRs) in antibodies (Kuroda et al., 2012). Therefore, the critical problem of antibody design
is to identify CDRs that bind to a given antigen with desirable properties like high affinity and col-
loidal stability (Tiller & Tessier, 2015). There have been unremitting efforts made for antibody
design by using deep generative models (Saka et al., 2021; Jin et al., 2021). Traditional methods
focus on modeling only the 1D CDR sequences, while a recent work (Jin et al., 2021) proposes to
co-design the 1D sequences and 3D structures via Graph Neural Network (GNN).

Despite the fruitful progress, existing approaches are still weak in modeling the spatial interaction
between antibodies and antigens. For one thing, the context information is insufficiently considered.
The works (Liu et al., 2020; Jin et al., 2021) only characterize the relation between CDRs and the
backbone context of the same antibody chain, without the involvement of the target antigen and other
antibody chains, which could lack complete clues to reflect certain important properties for antibody
design, such as binding affinity. For another, they are still incapable of capturing the entire 3D geom-
etry of the input structures. One vital property of the 3D Biology is that each structure (molecular,
protein, etc) should be independent to the observation view, exhibiting E(3)-equivariance1. To fulfill

∗Corresponding authors: Wenbing Huang, Yang Liu.
1E(3) is the group of Euclidean transformations: rotations, reflections, and translations.
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this constraint, the method by Jin et al. (2021) pre-processes the 3D coordinates as certain invariant
features before feeding them to the model. However, such pre-procession will lose the message of
direction in the feature and hidden spaces, making it less effective in characterizing the spatial prox-
imity between different residues in antibodies/antigens. Further, current generative models (Saka
et al., 2021; Jin et al., 2021) predict the amino acids one by one; such autoregressive fashion suffers
from low efficiency and accumulated errors during inference.

To address the above issues, this paper formulates antibody design as E(3)-equivariant graph trans-
lation, which is equipped with the following contributions: 1. New Task. We consider conditional
generation, where the input contains not only the heavy-chain context of CDRs but also the infor-
mation of the antigen and the light chain. 2. Novel Model. We put forward an end-to-end Multi-
channel Equivariant Attention Network (MEAN) that outputs both 1D sequence and 3D structure
of CDRs. MEAN operates directly in the space of 3D coordinates with E(3)-equivariance (other
than previously-used E(3)-invariant models), such that it maintains the full geometry of residues.
By alternating between an internal context encoder and an external attentive encoder, MEAN lever-
ages 3D message passing along with equivariant attention mechanism to capture long-range and
spatially-complicated interactions between different components of the input complex. 3. Efficient
Prediction. Upon MEAN, we propose to progressively generate CDRs over multiple rounds, where
each round updates both the sequences and structures in a full-shot manner. This progressive full-
shot decoding strategy is less prone to accumulated errors and more efficient during the inference
stage, compared with traditional autoregressive models (Gebauer et al., 2019; Jin et al., 2021). We
validate the efficacy of our model on three challenging tasks: sequence and structure modeling,
antigen-binding CDR design and binding affinity optimization. Compared to previous methods that
neglect the context of light chain and antigen (Saka et al., 2021; Akbar et al., 2022; Jin et al., 2021),
our model achieves significant improvement on modeling the 1D/3D joint distribution, and makes a
great stride forward on recovering or optimizing the CDRs that bind to the target antigen.

2 RELATED WORK

Antibody Design Early approaches optimize antibodies with hand-crafted energy functions (Li
et al., 2014; Lapidoth et al., 2015; Adolf-Bryfogle et al., 2018), which rely on costly simulations
and have intrinsic defects because the inter-chain interactions are complicated in nature and cannot
be fully captured by simple force fields or statistical functions (Graves et al., 2020). Hence, attention
has been paid to applying deep generative models for 1D sequence prediction (Alley et al., 2019;
Liu et al., 2020; Saka et al., 2021; Akbar et al., 2022). Recently, to further involve the 3D structure,
Jin et al. (2021) proposes to design the sequences and structures of CDRs simultaneously. It repre-
sents antibodies with E(3)-invariant features upon the distance matrix and generates the sequences
autoregressively. Its follow-up work (Jin et al., 2022) further involves the epitope, but only consid-
ers CDR-H3 without all other components in the antibody. Different from the above learning-based
works, our method considers a more complete context by importing the 1D/3D information of the
antigen and the light chain. More importantly, we develop an E(3)-equivariant model that is skilled
in representing the geometry of and the interactions between 3D structures. Note that antibody de-
sign assumes both the CDR sequences and structures are unknown, whereas general protein design
predicts sequences based on structures (Ingraham et al., 2019; Karimi et al., 2020; Cao et al., 2021).

Equivariant Graph Neural Networks The growing availability of 3D structural data in various
fields (Jumper et al., 2021) leads to the emergence of geometrically equivariant graph neural net-
works (Klicpera et al., 2020; Liu et al., 2021; Puny et al., 2021; Han et al., 2022). In this paper, we
exploit the scalarization-based E(n)-equivariant GNNs (Satorras et al., 2021) as the building block
of our MEAN. Specifically, we adopt the multichannel extension by Huang et al. (2022) that natu-
rally complies with the multichannel representation of a residue. Furthermore, we have developed a
novel equivariant attention mechanism in MEAN to better capture antibody-antigen interactions.

3 METHOD

3.1 PRELIMINARIES, NOTATIONS AND TASK FORMULATION

An antibody is a Y-shaped protein (Figure 1) with two symmetric sets of chains, each composed
of a heavy chain and a light chain (Kuroda et al., 2012). In each chain, there are some constant
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domains, and a variable domain (VH /VL) that has three Complementarity Determining Regions
(CDRs). Antigen-binding sites occur on the variable domain where the interacting regions are mostly
CDRs, especially CDR-H3. The remainder of the variable domain other than CDRs is structurally
well conserved and often called framework region (Kuroda et al., 2012; Jin et al., 2021). Therefore,
previous works usually formalize the antibody design problem as finding CDRs that fit into the given
framework region (Shin et al., 2021; Akbar et al., 2022). As suggested by (Fischman & Ofran, 2018;
Jin et al., 2021), we focus on generating CDRs in heavy chains since they contribute the most to
antigen-binding affinity and are the most challenging ones to characterize. Nevertheless, in contrast
to previous studies, we additionally incorporate the antigen and the light chain into the context in the
form of antibody-antigen complexes, to better control the binding specificity of generated antibodies.
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Figure 1: (A) The structure of a residue, where the backbone atoms we use are N,Cα,C,O. (B)
The structure of an antibody which is symmetric and Y-shaped, and we focus on the three versatile
CDRs on the variable domain of the heavy chain. (C) Schematic graph construction for the antigen-
antibody complex, with global nodes, internal context edges Ein and external interaction edges Eex.

We represent each antibody-antigen complex as a graph of three spatially aggregated components,
denoted as G = (V := {VH ,VL,VA}, E := {Ein, Eex}). Here, the components VH ,VL,VA corre-
spond to the nodes (i.e. the residues) of the heavy chain, the light chain and the antigen, respectively;
Ein and Eex separately contain internal edges within each component and external edges across com-
ponents. To be specific, each node in V , i.e., vi = (hi,Zi) is represented as a trainable feature
embedding vector hi = sai

∈ Rda according to its amino acid type ai and a matrix of coordinates
Zi ∈ R3×m consisting of m backbone atoms. In our case, we set m = 4 by choosing 4 back-
bone atoms {N,Cα,C,O}, where Cα denotes the alpha carbon of the residue and others refer to the
atoms composing the peptide bond (Figure 1). We denote the residues in CDRs to be generated as
VC = {vc1 , vc2 , ..., vcn(c)

}, which is a subset of VH . Since the information of each vci is unknown
in the first place, we initialized its input feature with a mask vector and the coordinates according to
the even distribution between the residue right before CDRs (namely, vc1−1) and the one right after
CDRs (namely, vcn(c)+1). In our main experiments (§ 4), we select the 48 residues of the antigen
closest to the antibody in terms of the Cα distance as the epitope like Jin et al. (2021). Instead of
such hand-crafted residue selection, in Appendix L, we also incorporate the full antigen and let our
method determine the epitope automatically, where the efficacy of our method is still exhibited.

Edge construction We now detail how to construct the edges. For the internal edges, Ein is defined
as the edges connecting each pair of nodes within the same component if the spatial distance in
terms of Cα is below a cutoff distance c1. Note that adjacent residues in a chain are spatially
close and we always include the edge between adjacent residues in Ein. In addition, we assign
distinct edge types by setting eij = 1 for those adjacency residues and eij = 0 for others, to
incorporate the 1D position information. For the external edges Eex, they are derived if the nodes
from two different components have a distance less than a cutoff c2 (c2 > c1). It is indeed necessary
to separate internal and external interactions because their distance scales are very different. The
external connections actually represent the interface between different chains, which dominates the
binding affinity (Chakrabarti & Janin, 2002), and they are formed mainly through inter-molecular
forces instead of chemical bonds that form the internal connections within chains (Yan et al., 2008).
Note that all edges are constructed without the information of ground-truth CDR positions.

Global nodes The shape of CDR loops is closely related to the conformation of the framework
region (Baran et al., 2017). Therefore, to make the generated CDRs aware of the entire context of
the chain they are in, we additionally insert a global node into each component, by connecting it to
all other nodes in the component. Besides, the global nodes of different components are linked to
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Figure 2: The overview of MEAN and the progressive full-shot decoding. In each iteration, we
alternate the internal context encoding and external interaction encoding over L layers, and then
update the input features and coordinates of CDRs for the next iteration with the predicted values.

each other, and all edges induced by the global nodes are included in Ein. The coordinates of a global
node are given by the mean of all coordinates of the variable domain of the corresponding chains.

Task formulation Given the 3D antibody-antigen complex graph G = (V, E), we seek a 3D
equivariant translator f to generate the amino acid type and 3D conformation for each residue in
CDRs VC . Distinct from 1D sequence translation in conventional antibody design, our task requires
to output 3D information, and more importantly, we emphasize equivariance to reflect the symmetry
of our 3D world—the output of f will translate/rotate/reflect in the same way as its input. We now
present how to design f in what follows.

3.2 MEAN: MULTI-CHANNEL EQUIVARIANT ATTENTION NETWORK

To derive an effective translator, it is crucial to capture the 3D interactions of the residues in different
chains. The message passing mechanism in E(3)-equivariant GNNs (Satorras et al., 2021; Huang
et al., 2022) will fulfil this purpose. Particularly, we develop the Multi-channel Equivariant Attention
Network (MEAN) to characterize the geometry and topology of the input antibody-antigen complex.
Each layer of MEAN alternates between the two modules: internal context encoder and external
interaction encoder, which is motivated by the biological insight that the external interactions be-
tween antibodies and antigens are different from those internal interactions within each heavy/light
chain. After several layers of the message passing, the node representations and coordinates are
transformed into the predictions by an output module. Notably, all modules are E(3)-equivariant.

Internal context encoder Similar to GMN (Huang et al., 2022), we extend EGNN (Satorras et al.,
2021) from one single input vector to multichannel coordinates, since each residue is naturally rep-
resented by multiple backbone atoms. Suppose in layer l the node features are {h(l)i |i = 1, 2, ..., n}
and the coordinates are {Z(l)

i |i = 1, 2, ..., n}. We denote the relative coordinates between node i
and j as Z(l)

ij = Z
(l)
i −Z

(l)
j . Then, the information of each node is updated in the following form.

mij = ϕm(h
(l)
i , h

(l)
j ,

(Z
(l)
ij )⊤Z

(l)
ij

∥(Z(l)
ij )⊤Z

(l)
ij ∥F

, eij), (1)

h
(l+0.5)
i = ϕh(h

(l)
i ,

∑
j∈N (i|Ein)

mij), (2)

Z
(l+0.5)
i = Z

(l)
i +

1

|N (i|Ein)|
∑

j∈N (i|Ein)
Z

(l)
ij ϕZ(mij), (3)

where N (i|Ein) denotes the neighbors of node i regarding the internal connections Ein, ∥ · ∥F returns
the Frobenius norm, and ϕm, ϕx, ϕh, ϕZ are all Multi-Layer Perceptons (MLPs) (Gardner & Dor-
ling, 1998). Basically, mij gathers the E(3)-invariant messages from all neighbors; then it is used
to update hi via ϕh and Zi via ϕZ that is additionally left multiplied with Z

(l)
ij to keep the direction

information. As Ein also contains the connections between global nodes in different components,
the encoder here actually involves inter-component message passing, although in a global sense. We
use the superscript (l + 0.5) to indicate the features and coordinates that will be further updated by
the external attentive encoder in this layer.
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External attentive encoder This module exploits the graph attention mechanism (Veličković
et al., 2017) to better describe the correlation between the residues of different components, but
different from Veličković et al. (2017), we design a novel E(3)-equivariant graph attention scheme
based on the multichannel scalarization in the above internal context encoder. Formally, we have:

αij =
exp(q⊤i kij)∑

j∈N (i|Eex)
exp(q⊤i kij)

, (4)

h
(l+1)
i = h

(l+0.5)
i +

∑
j∈N (i|Eex)

αijvij , (5)

Z
(l+1)
i = Z

(l+0.5)
i +

∑
j∈N (i|Eex)

αijZ
(l+0.5)
ij ϕZ(vij), (6)

where, N (i|Eex) denotes the neighbors of node i defined by the external interactions Eex; qi, kij ,
and vij are the query, key, and value vectors, respectively, and αij is the attention weight from

node j to i. Specifically, qi = ϕq(h
(l+0.5)
i ), kij = ϕk(

(Z
(l+0.5)
ij )⊤Z

(l+0.5)
ij

∥(Z(l+0.5)
ij )⊤Z

(l+0.5)
ij ∥F

, h
(l+0.5)
j ), and vij =

ϕv(
(Z

(l+0.5)
ij )⊤Z

(l+0.5)
ij

∥(Z(l+0.5)
ij )⊤Z

(l+0.5)
ij ∥F

, h
(l+0.5)
j ) are allE(3)-invariant, where the functions ϕq, ϕk, ϕv are MLPs.

Output module After L layers of the alternations between the last two modules, we further con-
duct Eq. (1-3) to output the hidden feature h̃i and coordinates Z̃i. To predict the probability of each
amino acid type, we apply a SoftMax on h̃i: pi = Softmax(h̃i), where pi ∈ Rna is the predicted
distribution over all amino acid categories.

A desirable property of MEAN is that it is E(3)-equivariant. We summarize it as a formal theorem
below, with the proof deferred to Appendix E.

Theorem 1. We denote the translation process by MEAN as {(pi, Z̃i)}i∈VC
= f({h(0)i ,Z

(0)
i }i∈V),

then f is E(3)-equivariant. In other words, for each transformation g ∈ E(3), we have {(pi, g ·
Z̃i)}i∈VC

= f({h(0)i , g · Z(0)
i }i∈V), where the group action · is instantiated as g · Z := OZ for

orthogonal transformation O ∈ R3×3 and g ·Z := Z + t for translation transformation t ∈ R3.

3.3 PROGRESSIVE FULL-SHOT DECODING

Traditional methods (such as RefineGNN (Jin et al., 2021)) unravel the CDR sequence in an au-
toregressive way: generating one amino acid at one time. While such strategy is able to reduce
the generation complexity, it inevitably incurs expensive computing and memory overhead, and will
hinder the training owing to the vanishing gradient for long CDR sequences. It also acumulates
errors during the inference stage. Here, thanks to the rich expressivity of MEAN, we progressively
generate the CDRs over T iterations (T is much smaller than the length of the CDR sequences), and
in each iteration, we predict the amino acid type and 3D coordinates of all the nodes in VC at once.
We call our scheme as full-shot decoding to distinguish it from previous autoregressive approaches.

To be specific, given the CDRs’ amino acid distribution and conformation {p(t)i , Z̃
(t)
i }i∈VC

from
iteration t, we first update the embeddings of all nodes: h′i =

∑na

j=1 p
(t)
i (j)sj ,∀i ∈ VC , where

p
(t)
i (j) returns the probability for the j-th class and sj is the corresponding learnable embedding as

defined before. Such weighted strategy leads to less accumulated error during inference compared to
the maximum selection counterpart. We then replace the CDRs with the new values {h′i, Z̃

(t)
i }i∈VC

,
and denote the new graph as G(t+1). The edges are also constructed dynamically according to the
new graph. We update the next iteration as {p(t+1)

i , Z̃
(t+1)
i }i∈VC

= MEAN(G(t+1)).

For sequence prediction, we exert supervision for each node at each iteration:

Lseq =
1

T

∑
t

1

|VC |
∑
i∈VC

ℓce(p
(t)
i , p̂i), (7)

where ℓce denotes the cross entropy between the predicted distribution p(t)i and the true one p̂i.

For structure prediction, we only exert supervision on the output iteration. Since there are usually
noises in the coordination data, we adopt the Huber loss (Huber, 1992) other than the common MSE
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loss to avoid numerical instability (further explanation can be found in Appendix F):

Lstruct =
1

|VC |
∑
i∈VC

ℓhuber(Z̃
(T )
i , Ẑi), (8)

where Ẑi is the label. One benefit of the structure loss is that it conducts directly in the coordinate
space, and it is still E(3)-invariant as our model is E(3)-equivariant. This is far more efficient than
the loss function used in RefineGNN (Jin et al., 2021). To ensure invariance, RefineGNN should
calculate over pairwise distance and angle other than coordinates, which is tedious but necessary
since it can only perceive the input of node and edge features after certain invariant transformations.
Finally, we balance the above two losses with λ to form L = Lseq + λLstruct.

4 EXPERIMENTS

We assess our model on the three challenging tasks: 1. The generative task on the Structural Anti-
body Database (Dunbar et al., 2014) in § 4.1; 2. Antigen-binding CDR-H3 design from a curated
benchmark of 60 diverse antibody-antigen complexes (Adolf-Bryfogle et al., 2018) in § 4.2; 3.
Antigen-antibody binding affinity optimization on Structural Kinetic and Energetic database of Mu-
tant Protein Interactions (Jankauskaitė et al., 2019) in § 4.3. We also present a promising pipeline to
apply our model in scenarios where the binding position is unknown in § 4.4.

Four baselines are selected for comparison. For the first one, we use the LSTM-based approach
by Saka et al. (2021); Akbar et al. (2022) to encode the context of the heavy chain and another
LSTM to decode the CDRs. We implement the cross attention between the encoder and the decoder,
but utilize the sequence information only. Built upon LSTM, we further test C-LSTM to consider
the entire context of the antibody-antigen complex, where each component is separated by a special
token. RefineGNN (Jin et al., 2021) is related to our method as it also considers the 3D geometry
for antibody generation, but distinct from our method it is only E(3)-invariant and autoregressively
generate the amino acid type of each residue. Since its original version only models the heavy
chain, we extend it by accommodating the whole antibody-antigen complex, which is denoted as
C-RefineGNN; concretely, each component is identified with a special token in the sequence and a
dummy node in the structure. As denoted before, we term our model as MEAN. We train each model
for 20 epochs and select the checkpoint with the lowest loss on the validation set for testing. We use
the Adam optimizer with the learning rate 0.001. For MEAN, we run 3 iterations for the progressive
full-shot decoding. More details are provided in Appendix D. For LSTM and RefineGNN, we
borrow their default settings and source codes for fair comparisons.

4.1 SEQUENCE AND STRUCTURE MODELING

For quantitative evaluation, we employ Amino Acid Recovery (AAR), defined as the overlapping
rate between the predicted 1D sequences and ground truths, and Root Mean Square Deviation
(RMSD) regarding the 3D predicted structure of CDRs. Thanks to its inherent equivariance, our
model can directly calculate RMSD of coordinates, unlike other baselines that resort to the Kabsch
technique Kabsch (1976) to align the predicted and true coordinates prior to the RMSD computation.
Our model requires each input complex to be complete (consisting of heavy chains, light chains,
and antigens). Hence, we choose 3,127 complexes from the Structural Antibody Database (Dun-
bar et al., 2014, SAbDab) and remove other illegal datapoints that lack light chain or antigen. All
selected complexes are renumbered under the IMGT scheme (Lefranc et al., 2003). As suggested
by Jin et al. (2021), we split the dataset into training, validation, and test sets according to the clus-
tering of CDRs to maintain the generalization test. In detail, for each type of CDRs, we first cluster
the sequences via MMseqs2 (Steinegger & Söding, 2017) that assigns the antibodies with CDR se-
quence identity above 40% to the same cluster, where the BLOSUM62 substitution matrix (Henikoff
& Henikoff, 1992) is adopted to calculate the sequence identity. The total numbers of clusters for
CDR-H1, CDR-H2, and CDR-H3 are 765, 1093, and 1659, respectively. Then we split all clusters
into training, validation, and test sets with a ratio of 8:1:1. We conduct 10-fold cross validation to
obtain reliable results. Further details are provided in Appendix A.

Results Table 1 (Top) demonstrates that our MEAN significantly surpasses all other methods in
terms of both the 1D sequence and 3D structure modeling, which verifies the effectiveness of MEAN
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Table 1: Top: 10-fold cross validation mean (standard deviation) for 1D sequence and 3D structure
modeling on SAbDab (§4.1). Bottom: evaluations under the setting of Jin et al. (2021), denoted
with a superscript ∗.

Model CDR-H1 CDR-H2 CDR-H3
AAR RMSD AAR RMSD AAR RMSD

LSTM 40.98±5.20% - 28.50±1.55% - 15.69±0.91% -
C-LSTM 40.93±5.41% - 29.24±1.08% - 15.48±1.17% -

RefineGNN 39.40±5.56% 3.22±0.29 37.06±3.09% 3.64±0.40 21.13±1.59% 6.00±0.55
C-RefineGNN 33.19±2.99% 3.25±0.40 33.53±3.23% 3.69±0.56 18.88±1.37% 6.22±0.59

MEAN 58.29±7.27% 0.98±0.16 47.15±3.09% 0.95±0.05 36.38±3.08% 2.21±0.16
LSTM∗ 28.02% - 24.39% - 18.92% -

RefineGNN∗ 30.07% 0.97 27.70% 0.73 27.60% 2.12
MEAN∗ 62.78% 0.94 52.04% 0.89 39.87% 2.20

in modeling the underlying distribution of the complexes. When comparing LSTM/RefineGNN with
C-LSTM/C-RefineGNN, it is observed that further taking the light chain and the antigen into account
sometimes leads to even inferior performance. This observation suggests it will cause a negative
effect if the interdependence between CDRs and the extra input components is not correctly revealed.
On the contrary, MEAN is able to deliver consistent improvement when enriching the context, which
will be demonstrated later in § 5. We also compare MEAN with LSTM and RefineGNN on the same
split as RefineGNN (Jin et al., 2021), denoted as MEAN∗, LSTM∗, and RefineGNN∗, respectively.
Specifically, both LSTM∗ and RefineGNN∗ are trained on the full training set, while our MEAN
only accesses its subset composed of complete complexes, which is approximately 52% of the full
dataset. All three models are evaluated on the same subset of the test set for fair comparisons.
Even so, MEAN still outperforms the other two methods remarkably in terms of AAR and achieves
comparable results regarding RMSD in Table 1 (Bottom), validating its strong generalization ability.

4.2 ANTIGEN-BINDING CDR-H3 DESIGN

We perform fine-grained validation on designing CDR-H3 that binds to a given antigen. In addition
to AAR and RMSD, we further adopt TM-score (Zhang & Skolnick, 2004; Xu & Zhang, 2010),
which calculates the global similarity between two protein structures and ranges from 0 to 1, to
evaluate how well the CDRs fit into the frameworks. We use the official implementation2 to cal-
culate TM-score. For autoregressive baselines, we follow Jin et al. (2021) to alleviate the affects
of accumulated errors by generating 10,000 CDR-H3s and select the top 100 candidates with the
lowest PPL for evaluation. Notably, our MEAN reduces accumulated errors significantly by the
progressive full-shot decoding strategy, therefore can directly generate the candidates. We also in-
clude RosettaAD (Adolf-Bryfogle et al., 2018), a widely used baseline of conventional approach,
for comparison. We benchmark all methods with the 60 diverse complexes carefully selected by
Adolf-Bryfogle et al. (2018) (RAbD). The training is still conducted on the SAbDab dataset used
in § 4.1, but we eliminate all antibodies from SAbDab whose CDR-H3s share the same cluster as
those in RAbD to avoid any potential data leakage. We then divide the remainder into the training
and validation sets by a ratio of 9:1. The numbers of clusters/antibodies are 1,443/2,638 for training
and 160/339 for validation.

Results As shown in Table 2, MEAN outperforms all baselines by a large margin in terms of
both AAR and TM-score. Particularly on TM-score, the value by MEAN approaches above 0.99,
implying that the designed structure is almost the same as the original one. To better show this, we
visualize an example in Figure 3, where the generated fragment by MEAN almost overlaps with the
ground truth, while the result of RefineGNN exhibits an apparent bias.

4.3 AFFINITY OPTIMIZATION

It is crucial to optimize various properties like binding affinity of antibodies for therapeutic purposes.
This can be formulated as a search problem over the intrinsic space of generative models. In our
case, we jointly optimize the sequence and structure of CDR-H3 to improve the binding affinity of

2https://zhanggroup.org/TM-score/
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Ground truth: ANWAGDY

MEAN: ANGDGDY

CDR-H3

Ground truth: ANWAGDY

RefineGNN: GSYYFDY

CDR-H3

Original: ARDFYDYDVFYYAMDY

Optimized: YRVFYIYGYMYLYFDV

CDR-H3

A B

Figure 3: (A) The structure of two antigen-binding CDR-H3s (PDB: 1ic7) designed by MEAN
(left, RMSD=0.49) and RefineGNN (right, RMSD=3.04). The sequences are also provided in the
annotations. (B) The antibody-antigen complex structure after affinity optimization (PDB: 2vis,
∆∆G = -5.13), with the original and optimized sequences displayed in the annotations.

any given antibody-antigen complex. For evaluation, we employ the geometric network from Shan
et al. (2022) to predict the change in binding energy (∆∆G) after optimization. Particularly, we
leverage the official checkpoint3 that is trained on the Structural Kinetic and Energetic database of
Mutant Protein Interactions V2.0 (Jankauskaitė et al., 2019, SKEMPI V2.0). ∆∆G is calibrated
under the unit of kcal/mol, and lower ∆∆G indicates better binding affinity. Since all the methods
model backbone structures only, we use Rosetta (Alford et al., 2017) to do sidechain packing before
affinity prediction. To ensure the expected generalizability, we select a total of 53 antibodies from its
training set (i.e. SKEMPI V2.0) for affinity optimization. Besides, we split SAbDab (pre-processed
by the strategy in § 4.1) into training and validation sets in a ratio of 9:1 for pretraining the model.

Following Jin et al. (2021), we exploit the Iterative Target Augmentation (Yang et al., 2020, ITA)
algorithm to tackle the optimization problem. Since the original algorithm is designed for discrete
properties, we adapt it for compatibility with our affinity scorer of continuous values. Please refer to
Appendix B for detailed description of the adaption. During the process, we discard any unrealistic
candidate with PPL above 10 in accordance with Jin et al. (2021). It is observed that our model
learns the constraints of net charge, motifs, and repeating amino acids (Jin et al., 2021) implicitly,
therefore we do not need to impose them on our model explicitly.

Table 2: Left: Amino acid recovery (AAR), TM-score and RMSD for CDR-H3 design on RAbD
benchmark (§ 4.2). Middle: Average affinity change after optimization textsection 4.3). Right:
Average CDR lengths and speedups by our full-shot decoding compared to the iterative-refinement
decoding.

Model AAR TM-score RMSD

RosettaAD 22.50% 0.9435 5.52
LSTM 22.36% - -

C-LSTM 22.18% - -
RefineGNN 29.79% 0.8303 7.55

C-RefineGNN 28.90% 0.8317 7.21
MEAN 36.77% 0.9812 1.81

Model ∆∆G

Random +1.52
LSTM -1.48

C-LSTM -1.83
RefineGNN -3.98

C-RefineGNN -3.79
MEAN -5.33

length

CDR-H1 7.9
CDR-H2 7.6
CDR-H3 14.1
speedup (train / infer)

CDR-H1 2.1x / 1.5x
CDR-H2 2.1x / 1.6x
CDR-H3 4.1x / 2.8x

Results As shown in Table 2 (middle), our MEAN models achieve obvious progress towards dis-
covering antibodies with better binding affinity. This further validates the advantage of explicitly
modeling the interface with MEAN. Moreover, we provide the predicted ∆∆G of mutating the
CDRs to random sequences, denoted as Random, for better interpretation of the results. We provide
further interpretation in Appendix C. We also provide a visualization example in Figure 3 (B), which
indicates our MEAN does produce a novel CDR-H3 sequence/structure, with improved affinity.

4.4 CDR-H3 DESIGN WITH DOCKED TEMPLATE

We further provide a possible pipeline to utilize our model in scenarios when the binding complex is
unknown. Specifically, for antigens from RAbD (Adolf-Bryfogle et al., 2018), we aim at generating
binding antibodies with high affinity. To this end, we first select an antibody from the database
and remove its CDR-H3, then we use HDOCK (Yan et al., 2017) to dock it to the target antigen
to obtain a template of antibody-antigen complex. With this template, we employ our model to

3https://github.com/HeliXonProtein/binding-ddg-predictor
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generate antigen-binding CDR-H3s in the same way as § 4.2. To alleviate the risk of docking
inaccuracy, we compose 10 such templates for each antigen and retain the highest scoring one in
the subsequent generation. We first refine the generated structure with OpenMM (Eastman et al.,
2017) and Rosetta (Alford et al., 2017), and then use the energy functions in Rosetta to measure
the binding affinity. The comparison of the affinity distribution between the generated antibodies
by our method, those by C-RefineGNN, and the original ones in RAbD is shown in Figure 4 (B).
Obviously, the antibodies designed by our MEAN exhibit higher predicted binding affinity. We also
present a tightly binding example in Figure 4 (A).

A B

Heavy

CDR-H3: ARRGRGGGYYFDY

Light Antigen

Figure 4: (A) CDR-H3 designed by MEAN based on a docked template targeting the antigen from
PDB 5b8c (Affinity=-59.6). (B) The affinity distribution of the antibodies.

5 ANALYSIS

We test if each proposed technique is necessary in MEAN. Table 3 shows that the removal of either
the global nodes or the attention mechanism induces performance detriment. This is reasonable
since the global nodes transmit information within and between components globally, and the atten-
tive module concentrates on the local information around the interface of different components. In
practice, the attentive module also provides interpretability over the significance of pairwise residue
interactions, as illustrated in Appendix I. In addition, it is observed that only using the heavy chain
weakens the performance apparently, and fails to derive feasible solution for the affinity optimiza-
tion task, which empirically supports the necessity of inputting antigens and light chains in MEAN.
Moreover, we implement a variant of MEAN by replacing the progressive full-shot decoding with
the iterative refinement operation used in RefineGNN, whose performance is worse than MEAN. As
discussed before, our full-shot decoding is much more efficient than the iterative refinement process,
since the number of iterations in MEAN is 3 which is much smaller than that of the refinement-based
variant. As reported in Table 2 (right), our method speeds up approximately 2 to 5 times depend-
ing on the lengths of the CDR sequences. We also analyze the complexity, MEAN injected with
randomness, and the progressive decoding process in Appendix G, H, and J, respectively.

Table 3: Ablations of MEAN.

Model SAbDab (CDR-H3) RAbD SKEMPI
AAR RMSD AAR TM-score RMSD ∆∆G

w/o global node 33.89±6.81% 2.62±1.03 35.07% 0.9798 1.81 -3.68
w/o attention 35.89±3.44% 2.24±0.31 36.56% 0.9745 1.95 failed

heavy chain only 33.62±6.20% 2.23±0.17 35.82% 0.9728 1.97 failed
iterative refinement 25.85±1.88% 3.61±0.75 35.19% 0.9629 3.20 -5.19

MEAN 36.38±3.08% 2.21±0.16 36.77% 0.9812 1.81 -5.33

6 CONCLUSION

In this paper we formulate antibody design as translation from the the entire context of antibody-
antigen complex to versatile CDRs. We propose multi-channel equivariant attention network
(MEAN) to identify and encode essential local and global information within and between dif-
ferent chains. We also propose progressive full-shot decoding strategy for more efficient and precise
generation. Our model outperforms baselines by a large margin in terms of three generation task in-
cluding distribution learning on 1D sequences and 3D structures, antigen-binding CDR-H3 design,
and affinity optimization. Our work presents insights for modeling antibody-antigen interactions in
further research.
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A DETAILS OF SEQUENCE AND STRUCTURE MODELING

10-fold dataset splits We provide the number of clusters and antibodies in each fold of our 10-fold
cross validation. When selecting fold i for testing, we use fold i− 1 for validation (for fold 1 as the
test set, we use fold 10 for validation) and the union of other folds for training.

Table 4: Statistics of each fold of 10-fold cross validation.
CDR-H1 CDR-H2 CDR-H3

cluster antibody cluster antibody cluster antibody

fold 1 77 299 110 237 166 317
fold 2 77 260 110 343 166 301
fold 3 77 363 110 288 166 348
fold 4 77 286 109 315 166 271
fold 5 77 195 109 419 166 279
fold 6 76 241 109 217 166 345
fold 7 76 427 109 266 166 306
fold 8 76 326 109 321 166 320
fold 9 76 210 109 374 166 309

fold 10 76 520 109 347 165 331
Total 765 3,127 1,093 3,127 1659 3,127

RefineGNN paper setting In Table 1, we also compare LSTM, RefineGNN, and MEAN on the
same split used in the paper of RefineGNN (Jin et al., 2021) and the models are denoted as LSTM∗,
RefineGNN∗, and MEAN∗. Here we provide the sizes of training/validation/test set as well as their
subsets of complete complexes in Table 5. We use the subsets to train MEAN∗, which is only
about 52% of the full sets, and all three models are evaluated on the subset of the test set for fair
comparison. For RefineGNN∗, we directly use the official checkpoints provided by Jin et al. (2021)
for evaluation.

Table 5: Number of antibodies in the training/validation/test set of Jin et al. (2021) as well as their
subsets of complete complexes.

CDR-H1 CDR-H2 CDR-H3
full subset full subset full subset

training 4,050 2,131 3,876 2,035 3,896 2,051
validation 359 170 483 241 403 227

test 326 184 376 209 437 207
Total 4,735 2,485 4,735 2,485 4,735 3,127

B ITERATIVE TARGET AUGMENTATION ALGORITHM FOR AFFINITY
OPTIMIZATION

Notably, the original algorithm is designed for discrete properties, while in § 4.3 the affinity is
continuous. Therefore, we adapt ITA for compatibility with our affinity scorer as follows. The core
is that we maintain a list of high-quality candidates for each antibody to be optimized during the ITA
process. In each iteration, we produce C candidates for each antibody and sort them together with
the candidates in the high-quality list according to the scores. Then we retain the top-k candidates
while dropping all others. The above process goes through all the candidates in the current list
before entering the next iteration. It is expected that the distribution of the generated antibodies will
move towards the higher-affinity landscape. In particular, we run 20 iterations for each pretrained
generative model by setting C = 50 and k = 4.

C THE PREDICTOR USED IN AFFINITY OPTIMIZATION

According to Shan et al. (2022), the output of the ∆∆G predictor has been calibrated under the unit
of kcal/mol, and the correlation between the predicted ∆∆G and the experimental value is 0.65 on
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the test set. It means if the predicted ∆∆G is x, then the binding affinity is decreased by x kcal/mol
under a correlation of 0.65.

D EXPERIMENT DETAILS AND HYPERPARAMETERS

For all models incorporating antigen, we select 48 residues closest to the antibody in terms of the
alpha carbon distance as the antigen information. We conduct experiments on a machine with 56
CPU cores and 10 GeForce RTX 2080 Ti GPUs. Models using iterative refinement decoding have
intensive GPU memory requirements and are therefore trained with the data-parallel framework
of Pytorch on 6 GPUs. Other models only need 1 GPU to train. We use Adam optimizer with
lr = 0.001 and decay the learning rate by 0.95 every epoch. The batch size is set to be 16. All
models are trained for 20 epochs and the checkpoint with the lowest loss on the validation set is
selected for testing. The training strategy is consistent across different experiments in the paper, and
the learning rate of ITA finetuning is also set to 0.001. Furthermore, we provide the hyperparameters
for baselines and our MEAN in Table 6. For the RosettaAD (Alford et al., 2017) used in § 4.2, we
adopt the denovo design protocol initializing with random CDRs presented in its manual4.

Table 6: Hyperparameters for each model.
hyperparameter value description

shared
vocab size 25 There are 21 categories of amino acids in eukaryote, plus the

4 special tokens for heavy chain, light chain, antigen and mask.
dropout 0.1 Dropout rate.

(C-)LSTM
hidden size 256 Size of the hidden states in LSTM.

n layers 2 Number of layers of LSTM.
(C-)RefineGNN

hidden size 256 Size of the hidden states in the message passing network (MPN).
k neighbors 9 Number of neighbors to include in k-nearest neighbor (KNN) graph.
block size 4 Number of residues in a block.
n layers 4 Number of layers in MPN.
num rbf 16 Number of RBF kernels to consider.

MEAN
embed size 64 Size of trainable embeddings for each type of amino acids.
hidden size 128 Size of hidden states in MEAN.

n layers 3 Number of layers in MEAN.
alpha 0.8 The weight to balance sequence loss and structure loss.
n iter 3 Number of iterations for progressive full-shot decoding.

For training our MEAN on the split in RefineGNN paper setting, we set alpha = 0.6, batch size to
be 8, and total training epochs to be 30.

E PROOF OF THEOREM 1

Our MEAN satisfies E(3)-equivariance as demonstrated in Theorem 1:

Theorem 1. We denote the translation process by MEAN as {(pi, Z̃i)}i∈VC
= f({h(0)i ,Z

(0)
i }i∈V),

then f is E(3)-equivariant. In other words, for each transformation g ∈ E(3), we have f({h(0)i , g ·
Z

(0)
i }i∈V) = g · f({h(0)i ,Z

(0)
i }i∈V), where the group action · is instantiated as g · Z := OZ for

orthogonal transformation O ∈ R3×3 and g ·Z := Z + t for translation transformation t ∈ R3.

In the following, we denote f ′(Z) = ZTZ/|ZTZ|F and the orthogonal group as O(3) = {O ∈
R3×3|OTO = OOT = Id}. Prior to the proof, we first present the necessary lemmas below:

4https://www.rosettacommons.org/docs/latest/application_documentation/
antibody/RosettaAntibodyDesign
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Lemma 1. The function f ′ : R3×m → Rm×m is invariant on O(3). Namely, ∀g ∈ O(3), we have
f ′(g ·Z) = f ′(Z), where g ·Z := OZ.

Proof. ∀g ∈ O(3), we have g ·Z := OZ. Therefore, we can derive the following equations:

f ′(g ·Z) =
(OZ)T (OZ)

|(OZ)T (OZ)|F
=

ZTOTOZ

|ZTOTOZ|F
(9)

=
ZTZ

|ZTZ|F
= f(Z), (10)

which conclude the invariance of f ′ on O(3).

Lemma 2. We denote the internal context encoder of layer l as {(h(l+0.5)
i ,Z

(l+0.5)
i )}i∈V =

σin({(h(l)i ,Z
(l)
i )}i∈V), then σin is E(3)-equivariant.

Proof. ∀g ∈ E(3), we have g ·Z(l)
i := OZ

(l)
i + t where O ∈ O(3) and t ∈ R3. Therefore we have

the relative coordinates after transformation as g ·Z(l)
i − g ·Z(l)

j = OZ
(l)
ij . According to Lemma 1

, during the propagations of our internal context encoder, we have E(3)-invariant messages:

mij = ϕm(h
(l)
i , h

(l)
j , f ′(OZ

(l)
ij ), eij) = ϕm(h

(l)
i , h

(l)
j , f ′(Z

(l)
ij ), eij), (11)

Then it is easy to derive that the hidden states are E(3)-invariant and the coordinates are E(3)-
equivariant as follows:

h
(l+0.5)
i = ϕh(h

(l)
i ,

∑
j∈N (i|Ein)

mij), (12)

OZ
(l+0.5)
i + t = O[Z

(l)
i +

1

|N (i|Ein)|
∑

j∈N (i|Ein)
Z

(l)
ij ϕZ(mij)] + t (13)

= (OZ
(l)
i + t) +

1

|N (i|Ein)|
∑

j∈N (i|Ein)
(OZ

(l)
ij )ϕZ(mij), (14)

Therefore we have g · σin({(h(l)i ,Z
(l)
i )}i∈V) = σin({(h(l)i , g ·Z(l)

i )}i∈V).

Lemma 3. We denote the external attentive encoder as {(h(l+1)
i ,Z

(l+1)
i )}i∈V =

σex({(h(l+0.5)
i ,Z

(l+0.5)
i )}i∈V), then σex is E(3)-equivariant.

Proof. Similar to the proof of Lemma 2, we first derive that the query, key and value vectors are
E(3)-invariant:

qi = ϕq(h
(l+0.5)
i ), (15)

kij = ϕk(f
′(OZ

(l+0.5)
ij ), h

(l+0.5)
j ) = ϕk(f

′(Z
(l+0.5)
ij ), h

(l+0.5)
j ), (16)

vij = ϕv(f
′(OZ

(l+0.5)
ij ), h

(l+0.5)
j ) = ϕv(f

′(Z
(l+0.5)
ij ), h

(l+0.5)
j ), (17)

which directly lead to the E(3)-invariance of attention weights αij =
exp(q⊤i kij)∑

j∈N(i|Eex)
exp(q⊤i kij)

.

Again it is easy to derive that the hidden states are E(3)-invariant and the coordinates are E(3)-
equivariant as follows:

h
(l+1)
i = h

(l+0.5)
i +

∑
j∈N (i|Eex)

αijvij , (18)

OZ
(l+1)
i + t = O(Z

(l+0.5)
i +

∑
j∈N (i|Eex)

αijZ
(l+0.5)
ij vij) + t (19)

= (OZ
(l+0.5)
i + t) +

∑
j∈N (i|Eex)

αijOZ
(l+0.5)
ij vij . (20)

Therefore we have g · σex({(h(l+0.5)
i ,Z

(l+0.5)
i )}i∈V) = σex({(h(l+0.5)

i , g ·Z(l+0.5)
i )}i∈V).
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With the above lemmas, we are ready to present the full proof of Theorem 1 as follows:

Proof. For each layer in MEAN, according to Lemma 2 and 3, we have:

{(h(l+1)
i , g ·Z(l+1))

i }i∈V = σex({(h(l+0.5)
i , g ·Z(l+0.5)

i )}i∈V) = σex(σin({(h(l)i , g ·Z(l)
i )}i∈V)),

(21)

Since pi is obtained by applying softmax on the hidden representations from the output module,
which shares the same formula as σin, and Z̃i is the same as the coordination from the output
module, it is easy to derive:

{(pi, g · Z̃i)}i∈V = f({h(0)i , g ·Z(0)
i }i∈V), (22)

g · f({h(0)i ,Z
(0)
i }i∈V) = {(pi, g · Z̃i)}i∈V , (23)

Therefore we have:

f({h(0)i , g ·Z(0)
i }i∈V) = g · f({h(0)i ,Z

(0)
i }i∈V), (24)

which concludes Theorem 1.

F HUBER LOSS

We use Huber loss (Huber, 1992) for the modeling of coordinations, which is defined as follows:

l(x, y) =

{
0.5 (x− y)2, if |x− y| < δ,
δ · (|x− y| − 0.5 · δ), else (25)

It reads that if the L1 norm of |x − y| is smaller than δ, it is MSE loss, otherwise it is L1 loss. At
the beginning of the training, the deviation of the predicted structure and ground truth is large and
the L1 term makes the loss less sensitive to outliers than MSE loss. When the training is almost
done, the deviation is small and the MSE loss provides smoothness near 0. In practice, we find that
directly using MSE loss occasionally causes NaN at the beginning of the training while Huber loss
leads to a more stable training procedure. We set δ = 1 in our experiments.

G COMPLEXITY ANALYSIS

We provide the complexity analysis here. Suppose the numbers of nodes in the antigen, the light
chain, and the heavy chain are NA, NL, and NH , respectively. The message passing in Eq. (1-6) for
each node involves K neighbors at maximum, and it is performed over L rounds at each iteration.
Then, the complexity of our algorithm over T iterations becomes O(2LKT (NA + NL + NH)),
where the number 2 refers to the joint computation of the internal and external encoders. Similarly,
the complexity of RefineGNN with only heavy chain isO(LKT ′NH), where T ′ denotes the number
of iterations, namely, the length of the CDR region. We would like to specify these two points:

1. Even if our algorithm contains more nodes than RefineGNN ((NA +NL +NH) vs NH ),
the extra computation overhead does not remarkably count, since the message passing for
each node can be parallelly computed in current deep learning platforms (e.g. Pytorch).

2. We apply the full-shot decoding other than the autoregressive mechanism used in Re-
fineGNN, hence T (T = 3 in our experiments) is much smaller than T ′ (usually larger
than 10), implying more efficiency of our method.

H MODELING WITH RANDOMNESS

The current model is deterministic given the same inputs, but in some scenarios, the diversity of
samples is required. To tackle this, we inject randomness into our model by adding standard Gaus-
sian noises to the initialized coordinates. We denote this model as rand-MEAN and evaluate it on the
tasks of sequence-structure modeling and antigen-binding CDR-H3 design. The results in Table 7
and Table 8 suggest injecting randomness into MEAN has acceptable impacts on the performance.
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Table 7: 10-fold cross validation mean (standard deviation) for 1D sequence and 3D structure mod-
eling on SAbDab (§4.1) of rand-MEAN.

Model CDR-H1 CDR-H2 CDR-H3
AAR RMSD AAR RMSD AAR RMSD

MEAN 58.29±7.27% 0.98±0.16 47.15±3.09% 0.95±0.05 36.38±3.08% 2.21±0.16
rand-MEAN 56.50±6.44% 0.98±0.12 44.01±2.72% 1.18±0.20 35.68±2.29% 2.36±0.19

Table 8: Amino acid recovery (AAR), TM-score and RMSD for CDR-H3 design on RAbD bench-
mark of rand-MEAN.

Model AAR TM-score RMSD

MEAN 36.77% 0.9812 1.81
rand-MEAN 37.30% 0.9794 1.81

I ATTENTION VISUALIZATION

In the external attentive encoder, we apply the attention mechanism to evaluate the weights between
residues in different components. It will be interesting to visualize what patterns these attentions will
discover. For this purpose, we extract the attention weights between the antibody and the antigen
from the last layer, and check if they can reflect the binding energy calculated by Rosetta (Alford
et al., 2017). In detail, for each residue in CDR-H3, we first identify the residue in the antigen
that contributes the most to its binding energy. Then we calculate the rank of the identified residue
according to the attention weights yielded by MEAN. We obtain the relative rank by normalizing it
with the total number of antigen residues in the interface. If the attention weights are meaningful,
then the resultant rank distribution will be bias towards small numbers; otherwise, they are dis-
tributed evenly between 0 and 1. Excitingly, Figure 5 (B) displays that we arrive at the former case,
indicating the close correlation between our attention weights and the binding energy calculated by
Rosetta. Figure 5 (A) also visualizes an example of attention weights and the corresponding energy
map, which shows that their distributions are similar.

A B

Figure 5: (A) The left is the attention weights from the residues in CDR-H3 to those in antigen
(PDB: 4ydk). The right is the relative energy contribution of each pair of residues calculated by
Rosetta. (B) The density maps of the relative ranks for the most contributing residue pairs.

J HOW GRAPH CHANGES DURING PROGRESSIVE DECODING

We depict the variations of the density distribution of PPL and RMSD across different rounds in
the progressive full-shot decoding in Figure 6. Between different rounds, the distribution of PPL
remains similar, which is expected since we exert supervision with the ground truth in all the rounds.
It is beyond expectation that even if we only supervise the predicted coordination of the last round,
the distribution of RMSD shifts rapidly towards the optimal direction.

We additionally calculate the recovery rate of edges in the ground truth graph on the test set, in
terms of internal edges within each component and external edges across different components. For
the internal edges, the recovery rate is 89% in the beginning and 95% in the end; for the external
edges, the recovery rate is 11% in the beginning and 84% in the end. The results above indicate
that the linear initialization is able to recover a large part of the internal edges but only a very small
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Figure 6: The density of PPL and RMSD of different rounds in progressive full-shot decoding. The
area under each curve integrates to 1.

percentage of external edges. By our model, we can predict a major part of both internal and external
edges, suggesting the validity of our design.

K LOCAL GEOMETRY

Since both RMSD and TM-score reflect the correctness of global geometry, we further provide
RMSD of bond lengths and angles to validate the local geometry for Section 4.2. The bond lengths
are measured in angstroms and the angles consist of the three conventional dihedral angles of the
backbone structure, namely ϕ, ψ, ω (Ramachandran et al., 1963). The RMSD of angles is imple-
mented as the average of RMSD on their cosine values. The results shown in Table 9 indicate that
our model still achieves much better performance regarding the local geometry. We find that Re-
fineGNN achieves relatively low performance on modeling local geometry, which might be because
that its indirect loss on various invariant features cannot ensure atoms in the backbone are equally
supervised. For example, the precision of the coordinates of the carboxy carbon is relatively low
with a high RMSD of 10.8, which results in the high error in bond lengths of local geometry.

Table 9: RMSD of bond lengths and dihedral angles of the backbone structure.
Model Bond lengths Angles(ϕ, ψ, ω)

RefineGNN 10.56 0.456
C-RefineGNN 9.49 0.423

MEAN 0.37 0.302

L FULL ANTIGEN OR ONLY EPITOPE

In this paper, we use the 48 residues closest to the antibody to represent the antigen information.
From the perspective of biology, these residues compose the epitope (i.e. the binding position of
antibodies) which is usually located by a biological expert or detected via certain computational
methods (Haste Andersen et al., 2006) beforehand, and they usually provide enough information
for designing the antigen-binding antibodies. Theoretically, only the residues close to the antibody
will affect the message passing between the antigen and the antibody because we construct edges
based on a cutoff of Cα distance, therefore the performance should be similar regardless of using
the full antigen or only the epitope. Practically, we also explore the influence of exclusion of other
residues in the antigen on our model. Specifically, we incorporate full antigen in the experiment of
§ 4.2 and present the results in Table 10. As expected, incorporating full antigen results in similar
performance to the epitope-only strategy with slight change in AAR and structure modeling.

Table 10: Results of antigen-binding CDR-H3 design given different forms of antigen information.
Antigen AAR TM-score RMSD

epitope-only 36.77% 0.9812 1.81
full 37.92% 0.9798 2.00
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M LIMITATIONS AND FUTURE WORK

Sidechain generation In this paper, we follow the previous settings in Jin et al. (2021) and only
model the backbone geometry for fair comparisons. However, sidechains also play an essential role
in the interactions between antigens and antibodies. A potential method is to extend our method to
incorporate sidechains by replacing the current node feature with the local full-atom graph of each
residue. We leave this for future work.

Data augmentation The size of existing data of antibodies is still small since it is hard to obtain
the 3D structures of antibodies in practice. There are several possible ways to do data augmentation
for further improvement. The first is to leverage pretrained models on sequences. Since the 1D
sequence data of antibodies are much more abundant than 3D data, it is possible to pretrain an
embedding model based on 1D sequences and inject the pretrained model into our framework. It
is also promising to conduct the pretraining on general protein data from PDB and then carry out
finetuning on the antibody dataset. Another potential way is to use Alphafold to produce pseudo 3D
structures from 1D sequences for pretraining. We leave the above considerations for future work.

N EXAMPLES

We display more examples of antigen-binding CDR-H3 designed by our MEAN in Figure 7.

CDR-H3

Ground truth: ARERDYRLDY

MEAN: AREGDGYFDY

PDB=1a2y, RMSD=0.39

CDR-H3

Ground truth: ARDSGYAMDY

MEAN: AREYYYYFDY

PDB=1uj3, RMSD=0.42

CDR-H3

Ground truth: ARSEDWFAY

MEAN: ARDSDYFDY

PDB=5d93, RMSD=0.46

CDR-H3

Ground truth: AGNYYGMDY

MEAN: AREYYGFDY

PDB=1fe8, RMSD=0.40

CDR-H3

Ground truth: ARGSGFRWVMDY

MEAN: ARDGGYGSAMDY

PDB=3l95, RMSD=0.39

CDR-H3

Ground truth: ARGLRF

MEAN: ARGFDY

PDB=2vxt, RMSD=0.44

CDR-H3

Ground truth: TRHDGTNFDY

MEAN: AREGSDYMDY

PDB=3s35, RMSD=0.48

CDR-H3

Ground truth: ARGDYYGSNSLDY

MEAN: AREGDYGYYYFDY

PDB=4cmh, RMSD=0.47

CDR-H3

Ground truth: ARDLRTGPFDY

MEAN: ARDDDYGAFDY

PDB=4g6j, RMSD=0.50

Figure 7: More examples from antigen-binding CDR-H3 design by our MEAN.
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O TOWARDS THE REAL-WORLD QUESTION

Note that the efficacy of our pipeline for affinity optimization is influenced by the generalizability of
the predictor, hence how to choose a desirable predictor is vital. As proof of concept, we currently
apply the predictor in Shan et al. (2022) for its easy implementation and fast computation. Since
our pipeline is general, it is possible to replace the predictor with other variants, such as wetlab val-
idation, which can return real affinity but is time-consuming. One can also combine the advantages
of the learning-based predictor and wetlab validation to improve the generalizability while keeping
efficiency, by, for example, choosing only top-k samples and using the wetlab feedback to rectify the
predictor, creating a so-called closed loop between ”dry computation” and ”wet experiment” akin
to the pipeline used in Shan et al. (2022). As increasing attention has been paid to this domain, we
believe more and more robust and efficient predictors will emerge in the future.

While the pipeline for affinity optimization only addresses a narrow need in the field of antibody
discovery, we also discuss the potential pipeline for the ’real-world’ question here (i.e. generate a
binidng antibody given an arbitrary antigen). The ’real-world’ question might be decomposed into
several components: epitope identification, antibody structure prediction, docking, CDR design,
and affinity prediction. Each component itself is challenging and currently a promising topic in the
community. In § 4.4, we actually combined the last three components, where we used HDock for
global docking to form the initial complex, our MEAN for CDR design, and Rosetta for affinity
computation. If we further add the components for epitope identification and antibody structure
prediction (such as Igfold (Ruffolo et al., 2021; 2022)), we are able to set up an end2end pipeline for
antibody discovery: it can output a desirable antibody (1D sequence and 3D structure) for any given
antigen target. However, setting up such an end2end pipeline is challenging, as the accumulated
errors from the former components will easily make the latter fail. A potential solution is making
all components learnable, and tuning them as a whole.

Lastly, our proposed model and the proof-of-concept experiments we implemented will provide
valuable clues for future exploration to derive enhanced techniques. With the efforts of all re-
searchers in the field, we have reason to believe that this ultimate problem will be solved, perhaps
step by step.
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