Under review as a conference paper at ICLR 2026

QUESTION DECOMPOSITION USING MASKED LAN-
GUAGE MODELING FOR KNOWLEDGE EDITING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) acquire vast amounts of knowledge during
computationally expensive pre-training. Knowledge Editing has emerged as a
lightweight bypass for updating factual information in LLMs. To handle multi-hop
question-answering (MQA), knowledge editors rely on compositional reasoning
to decompose multi-hop questions into their constituent subquestions. State-of-
the-art knowledge editors perform question decomposition using large causal lan-
guage models, which often introduce errors manifested as hallucinations. In this
paper, we propose Question Decomposition using Masked Language Modeling
for Editing Knowledge (QMEK), a knowledge editing framework for multi-hop
question-answering. The framework consists of two key components: a question
decomposition module and a subquestion answering module. Our approach is
motivated by the insight that reformulating question decomposition as a masked
language modeling task rather than a causal language modeling task reduces in-
ference complexity and curbs hallucinations. Furthermore, we adopt a relational
triple representation in both modules to eliminate errors that arise when perform-
ing translations between natural language and structured triple formats. We eval-
uate QMEK against 5 state-of-the-art frameworks on 3 datasets and achieve an
average 17.5% accuracy increase and 10.2x speedup.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated strong performance across a range of tasks,
including question-answering (Du et al.| [2025; [Kamalloo et al., 2023)), code generation (Gu et al.,
20244a), and machine translation (Zhu et al., 2024). These models learn knowledge through a com-
putationally intensive training process (L1 et al., [2023; Maslej et al., [2025), making it impractical to
re-train them to update factual information. To mitigate this limitation, knowledge editing provides
a lightweight mechanism for revising LLMs’ internal knowledge without retraining.

Knowledge editing frameworks typically rely on injecting updates to specific locations of an LLM’s
parameters and achieve considerable success in factual information updates (Hu et al.l 2024} Tan
et al., 2024). For example, editors can successfully modify LLMs such that Linus Torvalds is now
the creator of Windows instead of Linux. When the model is queried with What operating system did
Linus Torvalds create?, it now responds with Windows instead of Linux. However, these approaches
fail to cause the model to recall edited knowledge when faced with questions requiring compositional
reasoning (Zhong et al.l|2023). Combining the above edit with the multi-hop question What country
is the creator of Windows a citizen of? should cause the edited model to respond with Finland, but
often the model will not recall the edit and instead responds with the pre-edit answer United States.

To reliably recall edits for use in compositional reasoning tasks such as multi-hop question-
answering (MQA), knowledge editors began storing edited information in external structures (Gu
et al., 2024bj |Simon & Ewetz, |2025; Wang et al., 2024} |[Zhong et al., 2023). During inference,
multi-hop questions are decomposed into subquestions using large causal language models (CLMs)
such as GPT (Brown et al., [2020) and Llama (Grattafiori et al.| |2024). Next, each subquestion is
answered by querying the external structure for relevant edits. We observe that question decomposi-
tion is the bottleneck of state-of-the-art knowledge editors. Specifically, large CLMs that iteratively
generate the next token often fail to correctly decompose multi-hop questions due to errors intro-
duced by hallucinations. We speculate that this challenge could potentially be overcome by directly

Under review as a conference paper at ICLR 2026

identifying the subquestions within the original multi-hop question. Another challenge is that many
recent editing frameworks decompose a question into structured triples and then translate them into
natural-language subquestions. This triplet-to-text step introduces an extra failure mode, inviting
hallucinations and compounding downstream errors.

In this paper, we present Question Decomposition using Masked Language Modeling for Editing
Knowledge (QMEK), a knowledge editing framework for multi-hop question-answering (MQA).
The proposed framework consists of a question decomposition module and a subquestion answer-
ing module. It builds on the insight that large CLMs are not well-suited for question decompo-
sition tasks. Instead, it performs question decomposition using smaller language models such as
BERT (Devlin et al., 2019) via masked language modeling. Moreover, it provides a unified triplet
representation for capturing multi-hop questions to avoid translating questions between different
internal representations. The main contributions of this paper can be summarized as follows:

* We reformulate multi-hop question decomposition into a masked language modeling task,
which identifies subquestions within the original multi-hop question. This significantly
reduces the task complexity compared with the original causal language modeling formu-
lation, i.e., token classification vs. iterative token generation.

* We leverage a unified relational triple representation for both question decomposition and
subquestion answering. The unified representation eliminates translation errors and enables
subquestions to be answered through structured triplet completion. We also use a two-tier
solution for identifying relevant edits in an edit bank.

* In our experimental evaluation, we compare QMEK with 5 state-of-the-art MQA-focused
knowledge editors over 3 datasets. We observe that QMEK is on average 17.5% more
accurate and 10.2x faster.

The remainder of the paper is organized as follows: the problem formulation and related works are
presented in Section [2} the motivation for using a masked language model is given in Section
the methodology is explained in Sectiond] experimental results are discussed in Section 5} and the
paper is concluded in Section [6]

2 BACKGROUND

In this section, we first introduce the MQA problem formulation considered in this paper. Next, we
review closely related work on knowledge editing.

2.1 PROBLEM FORMULATION

Knowledge editors formulate LLM knowledge as a set of factual associations, such as Hideo Kojima
was born in Japan. Factual associations can be simplified to relational triples ¢ = (s, 7, 0), where
subject entities s and object entities o are linked by some relation . The above factual association
can be represented as (Kojima, born, Japan).

Single-hop questions can also be formulated as a relational triple, allowing multi-hop questions to
become sets of relational triples:

T = {(57T0700)a (005 T1, Ol)a ceey (On—la Tny On)}a (1)

where each question hop maps to a relational triple. The multi-hop question What is the capital of
the country of birth of Hideo Kojima? becomes {(Kojima, born in, Japan), (Japan, capital, Tokyo)}.
Relational triples are updated t* = (s, r, 0*) such that the subject s is connected by the relation r
to a new object o*. Multi-hop edits are be achieved by applying edits across intermediate question
hops such that the triple set 7 becomes:

T = {(57 T0, 08)? (08’ T1, OT)?) (0:1—17 T'n, 0:1)} 2)
Editing an object in one triple also modifies the subjects and objects of the downstream triples.

Answering multi-hop questions in the presence of edited knowledge is the purpose of MQA-focused
knowledge editors. However, accurately decomposing these questions into their constituent question
hops for effective editing is a challenging task which we address in this paper.

Under review as a conference paper at ICLR 2026

Table 1: Methods and representations for MQA. Question decomposition and subquestion answer-
ing are performed by a causal language model (CLM), a masked language model (MLM), or a
knowledge graph (KG). Both tasks use natural language (NL), relational triples (triplet), or knowl-
edge graph (KG) representations.

Work in Question Decomposition Subquestion Answering
Methods & Models Representation | Methods & Models ~ Representation

MeLLo CLM NL CLM NL
DeepEdit CLM NL CLM NL
PokeMQA CLM NL CLM NL
RAE CLM NL CLM + KG KG
GMeLLo CLM triplet CLM + KG KG
CHECK CLM triplet CLM NL
QMEK (ours) MLM triplet CLM triplet

2.2 RELATED WORKS

In this section, we provide an overview of related work. We center our discussion on the models
and data representations used by knowledge editors during question decomposition and subquestion
answering, visualized in Table E}

Question Decomposition: State-of-the-art knowledge editors perform question decomposition us-
ing causal language models (CLMs) such as GPT and Llama, typically by reformulating a multi-hop
question into a sequence of subquestions. These subquestions can be represented either in natural
language (Yu et al.l 2024; [Wang et al., 2024; Gu et al., [2024b; |Shi et al., [2024)) or in a structured
triplet format (Chen et al., 2024; Simon & Ewetz, 2025). The triplet format captures the decompo-
sition using a relationship chain C = (s,1¢,- - ,7y), which includes the subject s and relations 7
to r,, of the original multi-hop question. This format has proven to be more effective, as it enables
the entire decomposition to be generated in a single pass. In contrast, natural language decomposi-
tion often proceeds iteratively, requiring the answer to each subquestion before generating the next.
This step-by-step approach is prone to cascading errors due to unintended rephrasings. Rather than
relying on CLMs for the triplet extraction, we decompose the multi-hop question into subquestions
with a masked language model, yielding cleaner triplets and fewer hallucinations.

Subquestion Answering: Decomposed subquestions are answered using a CLM (Chen et al., 2024
Gu et al.| [2024b;|Wang et al.| [2024; Simon & Ewetz, |2025;Zhong et al.| [2023)) which may be supple-
mented with a knowledge graph in some frameworks (Cheng et al.,|2024; |Shi et al.,2024). Knowl-
edge graph editors modify knowledge graph representations with edited information and traverse the
graphs to answer questions. Graph-based editors are promising for domain-specific applications, but
are unable to function in the absence of knowledge graphs. Answering subquestions using a CLM
is straightforward when the decomposed question is represented in natural language. An edit bank
implemented using vector embeddings is used to check each subquestion for edits. However, if the
decomposed question is represented using a relationship chain C, the current subquestion must be
translated back into natural language. For example, (Japan, capital, ?) is required to be translated
into What is the capital of Japan?, which may introduce translation errors. Our proposed solution
circumvents these translation errors by directly answering subquestions through triplet completion.

3 MOTIVATION

In this section, we analyze the capability of state-of-the-art knowledge editors at decomposing multi-
hop questions into subquestions. The subquestion decomposition is necessary in order to check if
any of the intermediate reasoning steps have been subject to an edit. Previous editors use CLMs to
extract question hops as natural language subquestions (Gu et al., 2024bj [Wang et al., [2024} [Zhong
et al.,[2023)) or relational triples (Chen et al., 2024; [Simon & Ewetz, 2025).

We compare the two approaches using the representative frameworks PokeMQA (NL) and
CHECK (triplets) in Figure The frameworks are evaluated on the ability to decom-
pose questions into the correct number of hops on the MQuAKE-2002 (Wang et al.l 2024)
dataset using Llama 3.1 (Grattafiori et all 2024). The figure shows that question decom-
position using natural language achieves a decomposition accuracy of 7%, 33%, 53% for

Under review as a conference paper at ICLR 2026

Multi-hop Question: What | is | the | birthplace | of | the | spouse | of | the | director | of | The | Force | Awakens
Word Index: [0, 1 2 3, 4, 5, 6, 7, 8 9, 10, 11, 12, 13]
Extraction Model: Masked Language Model Causal Language Model
Extraction Technique: One-Step Token Classification Iterative Prompting
¢ ¢ Question
Relation Label q, = Who is the director of The Force Awakens?
Extracted Question Hops: — di - — Question + JJ Abrams
e P To = director k=9r=1 q, = What s J] Abrams’ production company?
_ L =6r=2 Question + BR Productions
T, = spouse i » 0 q, = Who is the CEO of Bad Robot Productions?
b — _ Question +]] Abrams
r, =birthplace [=3,5,=3 q, = What is the birthplace of] Abrams?
Answer: Ireland V United States of America %

Figure 1: A multi-hop question decomposed using a masked (left) and causal (right) language model.
The masked language model labels relations in text and directly extracts the labeled relations to
represent question hops. The causal model iteratively generates new subquestions, with previous
subquestion answers being used as context for the next subquestion.

2-, 3-, and 4-hop questions, respectively. The triplet representation improves the decom-
position accuracy to 65%, 65%, and 54%, respectively. While this is a significant im-
provement, it is important to note that the question decomposition accuracy acts as a hard
upper bound on the question-answering accuracy prior to subquestion answering occurring.
With peak decomposition accuracies
at 65%, it is impossible to answer
35% of the decomposed questions.
Such decomposition accuracies are
unacceptable if the objective is to at-

=
o
o

88888 CLM with NL

CLM with triplets

[e]
o

(%]
c
=l
0
[
]

: e 9 60
tain overall accuracies in the 90%
range. This gap motivated us to re- g 40
think how to perform question de- <«
composition for knowledge editing. o 20

[0
We contrast our proposed approach % %

based on masked language model-

ing with the state-of-the-art approach pjgyre 2: A comparison of question decomposition for two
based on causal language modeling in frameworks that use causal language modeling (CLM) to
Figure[l} CLMs iteratively generate a decompose questions into natural language (NL) or rela-

single next token prediction for some (jona] triples (triplets). Evaluations are performed on the
input token sequence. While CLMs \jQuAKE-2002 dataset.

have remarkable generation capabil-

ities, they are required to generate

complete subquestions or relational triples based on context from the original multi-hop question.
This may introduce errors by (i) incorrectly paraphrasing subquestions and (ii) by incorrectly iden-
tifying the number of hops in the question, shown in Figure [T] (right). We speculate that these
challenges may stem from the model needing to select one option from its vocabulary of tens of
thousands of options for each generated token. In contrast, we observe that the relations that we
aim to extract are present in the original multi-hop question. Therefore, there is an opportunity to
formulate relation extraction as a masked language modeling task, where the problem is to identify
whether each word is part of a relation or not. This simplifies relation extraction to a classification
problem with n,,,4, options, where 7, is the maximum number of question hops.

4 METHODOLOGY

In this section, we present the methodology of the QMEK framework. The input consists of a set of
edits and a multi-hop question, and the output is the final answer to that question. Before answering,
the edits are embedded into an edit bank. As illustrated in Figure [3] the framework performs multi-
hop question-answering (MQA) in two stages: question decomposition and subquestion answering.
In the first stage, the framework decomposes the multi-hop question into single-hop subquestions

Under review as a conference paper at ICLR 2026

Question Decomposition Subquestion Answering

’ Multi-hop Question: Y / 3 N
WhatisthecapitalofthecountryofbirthofW? {(s Lm0,)5(o) L[5,)}

Hop 2 Hop 1 Entity
Pop first set item
Similarit
s |r v

i Ordering

Tokenized Multi-hop Question:
Embedded
Edit
Memory

What | is | the | capital | of | the |country| of | birth | of | Hideo | Kojima

|

Masked Language Model | | Entity Linking Model |

What | is | the | capital | of | the |country of birth | of | Hideo | Kojima

Set of Incomplete Relational Triples
(| Hideo | Kojima |, [country of birth |, object0])
(| object 0 , | capital |, object 1))

0, solved

1
'
'
1
]
'
'
'
1
1
'
'
'
1
1
'
'
'
'
1
1
1
'
'
'
|
'
'
'
'
]
|
1
]
'
'
'
1
1
]
1
1
i
;

Set not empty - update the next tuple Set empty - done

Answer = o,

/

Figure 3: An overview of the QMEK framework. Question Decomposition: A multi-hop ques-
tion is decomposed into the question entity and relations using an entity linking model and masked
language model. The extracted components are combined to form a set of incomplete triples. Sub-
question Answering: The subject and relation of each triple is compared against all edits using
cosine similarity and a cross-encoder. Triples are completed with LLM knowledge or an edit.

using masked language modeling. Each subquestion is represented as an incomplete relational triple,
as detailed in Section[d.1] In the second stage, each subquestion is answered sequentially via rela-
tional triple completion. Before answering, the framework checks whether the subquestion has been
modified by any of the edits in the edit bank. The details of this process are provided in Section 4.2}

4.1 QUESTION DECOMPOSITION

In this section, we describe the question decomposition module. The module takes in a multi-hop
question and outputs a set of incomplete relational triples:

T = {(577"0703)7 (087 1, 0%)7 ey (O;ui—la T'n, OZ}a (3)

where o]* represents an unknown entity. The subquestions answered in the next section are directly
defined by the incomplete triples. We decompose the problem of determining 7 into a subject
extraction problem (identifying s) and a relation extraction problem (identifying rg, ..., 7,).

Subject Extraction using Entity Linking Models: Subject extraction aims to identify the subject
s of the multi-hop question. Entity linking models are pre-trained to locate entities in text and link
extracted entities to a known entity from the knowledge base the model was trained on. We use
the ReFinED (Ayoola et al., [2022) entity linking model to identify the subject of each multi-hop
question. Subject extraction is completed by first passing the multi-hop question Q to the entity
linking model f.. The entity linking model f. then extracts a set of entities S = {sq, S1, ..., 8,} =
fe(Q). We discard any numeric extractions because we are only interested in relations between
entities. We consider the final extracted entity s,, € S to be the question entity because the entities
of interest are typically at the end of the multi-hop question.

Relation Extraction using Masked Language Modeling: Relation extraction aims to identify the
relations within the multi-hop question @ that represent question hops. The relation extraction in
QMEK is performed by fine-tuning an MLM to assign an indicator variable 7 to each token of the
input. The indicator variable is in the form of an integer. The integer Z; specifies if token ¢ is part of
a relation, as follows:

T, = {0, 7, is not part of a relation, @

J, Z;ispartof r; with j € [1, len(Q)]

where j is the relation id and len(-) describes the number of question hops in a multi-hop question
Q. The masked language modeling formulation and notation is show in Figure[T](left). By assigning

Under review as a conference paper at ICLR 2026

each of the words to a relation, accidental paraphrasing is circumvented and the model extracts the
correct number of hops with a higher accuracy.

We use a BERT (Devlin et al., [2019) model as our MLM. The model takes a tokenized question
as input and outputs a 1-by-n,,,, logit array for each input token, where 1,4, is the maximum
number of allowed question hops. All available datasets use between 1 and 4 question hops and a no
relation label is necessary, SO we use n,,4, = 5. The logit labels are described in Equation E} We
generate a finetuning dataset, described in Appendix Section|G] derived from MQuAKE Zhong et al.
(2023)) that does not contain any overlapping edit cases with the datasets used during framework
evaluations. The dataset is composed of edit cases, with each case containing between 1 and 4
questions that are paraphrases of each other. Each case also contains the set of question hops that
represent the case questions. The finetuning inputs are the questions in the training dataset edit
cases. The ground truths are one-hot encoded labels representing the relation j each input token
belongs to, generated from the training dataset. Finetuning is achieved through gradient descent,
by comparing the model output logits and ground truth labels using cross-entropy loss (Mao et al.,
2023)) with the AdamW (Loshchilov & Hutter, 2019) optimizer that has a constant learning rate of
le~*. The model in use is pre-trained, so only 2 epochs are required for the model to converge. We
used a batch size of 32 questions.

4.2 SUBQUESTION ANSWERING

In this section we describe the subquestion answering module. The input to the module is the set of
incomplete relational triples 7 “, which are sequentially completed. By finding the unknown object
oy, for some triple ¢;;, we also find the subject 0,1 of the next triple ¢}; , ;. This allows for iterative
triple completion until all incomplete triples are completed with an object. The output of the module
is the object of the final triple, which is the answer to the multi-hop question.

The method for triple completion is determined by a two-round thresholding approach. The first
round relies on cosine similarity thresholding. The second round relies on cross-encoder similarity
thresholding. If both similarity thresholds are exceeded, the edit memory provides the new object
for ¢%. If either of the similarity thresholds are not exceeded, the LLM is used to complete the triple.

Edit Storage: Prior to question-answering, all edits are inserted into an embedding space. Edits are
typically provided as cloze-style sentences. However, the edits must be converted to subject, relation
pairs (s, r) to match the format of the known subjects and relations of the incomplete triple set 7.
First, all common English stopwords (Loper & Bird, [2002) are removed from the edits. Next, all
capitalized words are moved to the beginning of the pruned edits. Finally the set of pruned edits
£ is inserted into the embedding space w using a dense retrieval model f,, such that £ = f,(&).
QMEK uses the Qwen 3 embedding model (Zhang et al., 2025). The edit objects o are stored as a
set of strings OF = {0f, 0%, ..., o5 }.

Triple Similarity Thresholding: Each of the incomplete relational triples t* € T are sequentially
completed by finding the missing object o, starting with the first triple t§ = (s, g, o}). The current
triple ¢* goes through two rounds of similarity thresholding. We define the variable p to track
whether the current triple ¢, has passed both rounds of thresholding. The thresholding process can
then be described as:

p= {1a (COS(tZae) >T7A)/\(fCE(t;iﬁe) >7—)7 (5)

0, (cos(ty,e) <7—N)V (for(ty,e) <T).

The first round of thresholding is comparing the current triple ¢: against all of the edits using cosine
similarity. The subject of, and relation r; ,; of the current triple ¢;; are joined together to form a
subject, relation pair p = (of,, 75 ;). The pair are then inserted into the embedding space p“ =
fw(p) using the dense retrieval model f,,. Next, the embedded pair p“ is compared against each edit
e¥ € £¥ using cosine similarity cos(-, -). If any edits exceed the cosine similarity threshold 7 — A,
p is set to 1 and the next round of similarity thresholding begins. If no edits exceed the threshold, p
is set to 0 and similarity thresholding ends.

The second round of similarity thresholding employs a cross-encoder to eliminate errors stemming
from cosine similarities near the similarity threshold 7 — A. Cross-encoders are commonly used to
rerank the top-£ documents received from a dense retrieval model, taking as input string pairs and
outputting a similarity score between the strings on the range [0.0,1.0]. QMEK uses the Modern-

Under review as a conference paper at ICLR 2026

BERT (Reimers & Gurevychl 2019) cross-encoder. The subject, relation pair string p is matched
with each top-k cosine similarity edit string e and passed to the cross-encoder fog(-,-). If the
cross-encoder fog(-,-) assigns a similarity score exceeding the threshold 7, p continues to be set
to 1. If no edits exceed the threshold, p is set to 0. It should be noted that the cosine similarity
threshold 7 — X is the cross-encoder threshold 7 with an offset to ensure that edits with similarities
falling below 7 are also considered for reranking, in addition to those that exceed 7. The results of
parameter searches for the optimal k, 7, and A are provided in Appendix Section [F

Edit Memory Completion: If p is 1 after both rounds of thresholding, the current triple is com-
pleted using information from the edit memory. The edit with the greatest similarity assigned by
the cross-encoder €,¢jepant = max(fog(p,e)) is the most relevant edit to the current hop, so the
corresponding object o¢ is retrieved from the set of edit objects O¢ and used to complete the current
triple.

LLM Triple Completion: An edit is unnecessary if p is ever set to 0 and LLM knowledge is
used to complete the triple. Previous frameworks formulate LLM completion as a natural language
question-answering task. However, that formulation requires translating the subject, relation pair p
into a question using a CLM. Given that the current question hop is formatted as a relational triple,
we query the model with a relational triple completion task. This reduces error to hallucinations
from translation, and reduces token usage and runtime. The subject, relation pair p is passed to the
LLM F with an in-context learning prompt P for triple completion 0 = F(p|P). The in-context
learning prompt P is described in Appendix Section

5 EXPERIMENTAL RESULTS

Baselines: We compare QMEK against 4 other vector embedding editors: MeLLo (Zhong et al.,
2023)), DeepEdit (Wang et al.,2024), PokeMQA (Gu et al., [2024b)), and CHECK (Simon & Ewetz,
2025)). We also compare against the question-answering portion of GMeLLo (Chen et al., 2024) for
comparison against a RAG-like (Lewis et al.| 2020) framework. Experimental parameters used by
the frameworks are provided in Appendix Section [B.1]

Models and Datasets: Evaluations are performed using 3 state-of-the-art open-source LLMs
and 4 commonly used datasets. The models are Qwen 2.5 7B (Yang et al., [2025), Mistral v0.3
7B (Jiang et al., |2023)), and Llama 3.1 8B (Grattafiori et al., [2024). The datasets are MQuAKE-
Remastered (Zhong et al.,2025), MQuAKE-2002 (Wang et al.,[2024)), MQuAKE-Hard (Wang et al.,
2024), and KEBench (Wei et al., 2024)).

Metrics: The MQuAKE dataset is broken into sets of multi-hop questions referred to as cases.
Each case is composed of 3 multi-hop questions that contain the same content, but rephrased. A
case is considered correct if at least one of its multi-hop questions was answer correctly. Case
accuracy is defined as Cia“;eif;:f‘ x 100. A question is considered correct if the denoted answer is

the same as the ground truth answer or a ground truth answer alias. Question accuracy is defined

as dueslioneorreet 5 1)), We also evaluate frameworks on decomposition accuracy. A question is
questioniotal

correctly decomposed if the number of extracted questions hops equals the true number of question

hops. Decomposition accuracy is defined as 99ComPeorrect 5 1)),
decompiotal

5.1 QUESTION-ANSWERING ACCURACY

An evaluation of QMEK and other state-of-the-art Knowledge Editing frameworks on question-
answering accuracy is provided in Table The frameworks are evaluated across the MQuUAKE
datasets and all models described above. Across all datasets and LLMs, QMEK achieves the high-
est per-case and per-question accuracies, with an average 15.33% and 17.54% increase over the
next highest accuracy, respectively. A notable performance improvement is the average 29.91% and
27.01% per-case and per-question increase over the next highest accuracies on the MQuAKE-Hard
dataset, which is comprised of only 4-hop questions that have 3 or 4 question hops requiring editing.
Overall, these performance gains demonstrate that QMEK can correctly answer more unique edit
scenarios and more questions per edit scenario due to the superior question decomposition approach.
Question-answering evaluations on additional models and datasets are provided in Appendix Sec-
tion[C] Ablation studies over question hops and edits are provided in Appendix Section

Under review as a conference paper at ICLR 2026

Table 2: Per-case and per-question accuracy across the MQuAKE datasets. Top accuracy per column
and per model is bolded.

Dataset (Zhong et al., 2023) H MQuAKE-R ‘ MQuAKE-2002 ‘ MQuAKE-Hard
Accuracy Type (%) | Case | Question | Case | Question | Case | Question
Model I Qwen 2.5 (Yang et al., 2025) Size: 7B
GMeLLo-QA (Chen et al.,[2024) || 13.24 8.24 14.09 8.37 7.69 3.34
MeLLo (Zhong et al.,[2023)) 23.97 11.94 33.22 16.67 32.17 17.33
DeepEdit (Wang et al.| 2024) 33.20 20.20 50.65 38.44 3.26 1.55
PokeMQA (Gu et al.|[2024b) 43.47 26.37 44.11 25.22 20.75 9.87
CHECK (Simon & Ewetz, [2025) || 44.60 28.19 63.54 41.84 46.39 28.75
QMEK (ours) 55.90 46.08 73.48 57.59 76.92 58.35
Model I Mistral v0.3 (Jiang et al., 2023) Size: 7B
GMeLLo-QA (Chen et al.| [2024) || 13.03 8.13 10.59 7.01 4.66 2.41
MeLLo (Zhong et al.,[2023)) 33.20 20.20 34.12 21.30 7.69 3.50
DeepEdit (Wang et al.,[2024) 36.10 29.79 49.80 39.16 1.63 3.26
PokeMQA (Gu et al .| [2024b) 44.40 32.34 55.54 37.80 33.80 21.06
CHECK (Simon & Ewetz, 2025) || 50.67 3548 66.13 46.59 4592 32.25
QMEK (ours) 5693 4673 7388 5799 176.69 58.12
Model I Llama 3.1 (Grattafiori et al., 2024) Size: 8B
GMeLLo-QA (Chen et al.,[2024) || 12.60 6.63 9.24 4.83 6.29 2.95
MeLLo (Zhong et al.,|[2023) 30.30 1431 28.12 13.32 9.79 3.81
DeepEdit (Wang et al.| 2024) 39.37 25.50 50.85 32.33 2.80 1.09
PokeMQA (Gu et al., [2024b) 45.07 26.89 53.75 30.59 3497 17.72
CHECK (Simon & Ewetz, 2025) || 51.30 38.81 67.68 47.07 48.25 32.71
QMEK (ours) 57.03 4713 74.98 59.34 76.69 58.28

5.2 QUESTION DECOMPOSITION ACCURACY

We present an evaluation on the question decomposition accuracy of QMEK and other frameworks
on the MQuAKE-2002 dataset in Figure [f{a). PokeMQA achieves a low decomposition accuracy
of 30% by using a CLM to extract natural language question hops. CHECK decomposition im-
proves upon PokeMQA decomposition by using a relational triple representation rather than natural
language and achieves a 51% accuracy. However, CLMs are prone to hallucinations and so extract
hallucinated relations. QMEK eliminates many hallucinations by extracting relations with an MLM
and achieves the highest decomposition accuracy of 74%. Clearly, there is still room to improve
question decomposition, but these results indicate that abandoning CLMs in favor of models with
other objectives results in better question decomposition.

5.3 EVALUATION ON UNSEEN DATA

While the MLM used by QMEK is trained on a subset of the MQuUAKE dataset not used in any of
the evaluations, all questions in the MQuAKE subsets share strong sentence structure similarities.
Therefore, it is necessary to evaluate the performance of the MLM on an unseen distribution of
data. To this end, we provide an evaluation of QMEK and other editors on the KEBench dataset
in Figure [[b). PokeMQA and CHECK achieve average decomposition accuracies of 4% and 52%,
respectively. QMEK achieves a decomposition accuracy of 93% on the KEBench dataset, a 36% ac-
curacy increase over CHECK. This high decomposition accuracy again demonstrates the effective-
ness of masked language modeling for question decomposition. Furthermore, it provides evidence
towards the ability of masked language modeling finetuned for question decomposition to generalize
to unseen data. We also provide question-answering accuracy evaluations on KEBench in Appendix
Section [C.2] Finally, to showcase the ability of QMEK’s MLM to generalize to unseen relations,
we provide question decomposition evaluations on the RippleEdit (Cohen et al.| (2024) dataset in

Appendix Section

Under review as a conference paper at ICLR 2026

Decomp. Acc. on MQUAKE-2002 Decomp. Acc. on KEBench

=
o
o
=
o
o

80
60

QHAHHE
. .
; .

o)
o

s

I EEESSSS.S S, m ;
PokeMQA CHECK QMEK
(b)

N
o

o

Percent (%) of Questions

Percent (%) of Questions
A O
o o

Figure 4: PokeMQA and CHECK use the Llama 3.1 LLM while QMEK uses the finetuned MLM
for question decomposition. (a) Question decomposition accuracy on the MQuAKE-2002 dataset.
(b) Question decomposition accuracy over the KEBench dataset.

Table 3: Per-question runtime in seconds across the MQuUAKE datasets. The highest accuracy per
column and per model is bolded.

Dataset || MQuAKE-2002 \ MQuAKE-Hard

Model || Qwen 2.5 | Mistral v0.3 | Llama 3.1 | Qwen 2.5 | Mistral v0.3 | Llama 3.1
MeLLo 3.47 5.28 7.34 4.30 5.92 8.13
DeepEdit 4.53 5.83 14.58 5.08 6.88 17.52
PokeMQA 2.10 2.82 5.10 2.28 3.13 5.81
CHECK 2.82 2.53 4.96 2.39 2.29 4.82
QMEK 0.20 0.23 0.46 0.23 0.27 0.46

5.4 RUNTIME EVALUATION

Knowledge editors are meant to be computationally efficient methods of parameter modification
when updating model knowledge is necessary. One measure of editing efficiency is the average
runtime required for an LLM modified with an editor to answer a question. We present the average
per-question runtime of QMEK and other vector embedding frameworks in Table 3| The runtimes
are provided for the MQuAKE-2002 and MQuAKE-Hard datasets the previously described LLMs.
MeLLo, PokeMQA, DeepEdit, and CHECK take an average 5.74, 3.54, 9.07, and 3.30 seconds.
QMEK only requires an average 0.31 seconds, making it 10.2x faster than the next fastest frame-
work. We attribute the large runtime decrease to QMEK using only a single LLM model call per
question hop. Model calls are the most computationally expensive components of the vector embed-
ding frameworks. In contrast, methods that rely on CLMs make at least one model call for question
decomposition and at least two model calls for subquestion-answering, leading to inflated runtimes.
Runtime ablation studies over the number of question hops and edits are provided in Appendix

Section[D.3]

6 CONCLUSION

In this paper, we introduce the QMEK Knowledge Editing framework. Previous editors experience
a performance bottleneck at the question decomposition stage of multi-hop question-answering due
to a reliance on causal language models. We show that causal language models often incorrectly
decompose questions due to hallucinations. To avoid hallucinations and improve question decom-
position, we propose using masked language models to extract relations directly from questions.
The direct extraction of question relations allows QMEK to formulate subquestion answering as a
relational triple completion task rather than a natural language question-answering task. Subques-
tion answering is then completed using a two-stage thresholding approach for embedding and string
similarity between each intermediate reasoning step and all edits. Our evaluations show the QMEK
achieves a 17.5% average accuracy increase over the next highest editor and a 10.2x faster runtime.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We provide the code for QMEK and the code for generating experimental results with QMEK in the
supplementary materials. We will also release a Github Repository containing this code, contingent
on the paper’s acceptance.

ETHICS STATEMENT

The purpose of the proposed work is to reduce the computational, financial, and environmental
burden of updating Large Language Models (LLMs). There are no ethical considerations unique to
this work. As with all work on improving LLMs, there is always the concern for the dissemination
of incorrect information by these models. Additionally, LLMs were used to aid in the polish of text.
Specifically, LLMs were used to check for grammatical consistency and rephrase text for clarity.

REFERENCES

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Alshamsi, Alessandro Cappelli, Ruxandra Co-
jocaru, Mérouane Debbah, Etienne Goffinet, Daniel Hesslow, Julien Launay, Quentin Malartic,
Daniele Mazzotta, Badreddine Noune, Baptiste Pannier, and Guilherme Penedo. The falcon series
of open language models, 2023. URL https://arxiv.org/abs/2311.16867.

Sakher Khalil Algaaidi and Krzysztof J. Kochut. Relations prediction in knowledge graph comple-
tion using large language models. In Proceedings of the 2024 8th International Conference on
Information System and Data Mining, ICISDM ’24, pp. 122-127, New York, NY, USA, 2024.
Association for Computing Machinery. ISBN 9798400717345. doi: 10.1145/3686397.3686417.
URLhttps://doi.org/10.1145/3686397.3686417.

Tom Ayoola, Shubhi Tyagi, Joseph Fisher, Christos Christodoulopoulos, and Andrea Pierleoni.
Refined: An efficient zero-shot-capable approach to end-to-end entity linking, 2022. URL
https://arxiv.org/abs/2207.04108.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL
https://arxiv.org/abs/2005.14165.

Ruirui Chen, Weifeng Jiang, Chengwei Qin, Ishaan Singh Rawal, Cheston Tan, Dongkyu Choi,
Bo Xiong, and Bo Ai. LLM-based multi-hop question answering with knowledge graph in-
tegration in evolving environments. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen
(eds.), Findings of the Association for Computational Linguistics: EMNLP 2024, pp. 14438-
14451, Miami, Florida, USA, November 2024. Association for Computational Linguistics.
doi: 10.18653/v1/2024.findings-emnlp.844. URL https://aclanthology.org/2024.
findings—-emnlp.844/.

Keyuan Cheng, Gang Lin, Haoyang Fei, Yuxuan zhai, Lu Yu, Muhammad Asif Ali, Lijie Hu, and
Di Wang. Multi-hop question answering under temporal knowledge editing, 2024. URL https:
//arxiv.org/abs/2404.00492.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, lon Stoica, and Eric P. Xing. Vicuna: An
open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https:
//1lmsys.org/blog/2023-03-30-vicuna/.

Roi Cohen, Eden Biran, Ori Yoran, Amir Globerson, and Mor Geva. Evaluating the ripple effects
of knowledge editing in language models. Transactions of the Association for Computational
Linguistics, 12:283-298, 2024. doi: 10.1162/tacl_a_00644. URL |https://aclanthology.
org/2024.tacl-1.16/.

10

https://arxiv.org/abs/2311.16867
https://doi.org/10.1145/3686397.3686417
https://arxiv.org/abs/2207.04108
https://arxiv.org/abs/2005.14165
https://aclanthology.org/2024.findings-emnlp.844/
https://aclanthology.org/2024.findings-emnlp.844/
https://arxiv.org/abs/2404.00492
https://arxiv.org/abs/2404.00492
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://aclanthology.org/2024.tacl-1.16/
https://aclanthology.org/2024.tacl-1.16/

Under review as a conference paper at ICLR 2026

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pp. 4171-4186, Minneapolis, Minnesota, June 2019. Association for Com-
putational Linguistics. doi: 10.18653/v1/N19-1423. URL https://aclanthology.org/
N19-1423/.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu,
Zhiyong Wu, Baobao Chang, Xu Sun, Lei Li, and Zhifang Sui. A survey on in-context learning. In
Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024 Conference
on Empirical Methods in Natural Language Processing, pp. 1107-1128, Miami, Florida, USA,
November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.
64. URL https://aclanthology.org/2024.emnlp-main. 64/,

Xinrun Du, Yifan Yao, Kaijing Ma, Bingli Wang, Tianyu Zheng, King Zhu, Minghao Liu, Yiming
Liang, Xiaolong Jin, Zhenlin Wei, Chujie Zheng, Kaixin Deng, Shawn Gavin, Shian Jia, Sichao
Jiang, Yiyan Liao, Rui Li, Qinrui Li, Sirun Li, Yizhi Li, Yunwen Li, David Ma, Yuansheng Ni,
Haoran Que, Qiyao Wang, Zhoufutu Wen, Siwei Wu, Tyshawn Hsing, Ming Xu, Zhenzhu Yang,
Zekun Moore Wang, Junting Zhou, Yuelin Bai, Xingyuan Bu, Chenglin Cai, Liang Chen, Yifan
Chen, Chengtuo Cheng, Tianhao Cheng, Keyi Ding, Siming Huang, Yun Huang, Yaoru Li, Yizhe
Li, Zhaoqun Li, Tianhao Liang, Chengdong Lin, Hongquan Lin, Yinghao Ma, Tianyang Pang,
Zhongyuan Peng, Zifan Peng, Qige Qi, Shi Qiu, Xingwei Qu, Shanghaoran Quan, Yizhou Tan,
Zili Wang, Chenqing Wang, Hao Wang, Yiya Wang, Yubo Wang, Jiajun Xu, Kexin Yang, Ruibin
Yuan, Yuanhao Yue, Tianyang Zhan, Chun Zhang, Jinyang Zhang, Xiyue Zhang, Xingjian Zhang,
Yue Zhang, Yongchi Zhao, Xiangyu Zheng, Chenghua Zhong, Yang Gao, Zhoujun Li, Dayiheng
Liu, Qian Liu, Tianyu Liu, Shiwen Ni, Junran Peng, Yujia Qin, Wenbo Su, Guoyin Wang, Shi
Wang, Jian Yang, Min Yang, Meng Cao, Xiang Yue, Zhaoxiang Zhang, Wangchunshu Zhou,
Jiaheng Liu, Qunshu Lin, Wenhao Huang, and Ge Zhang. Supergpqa: Scaling llm evaluation
across 285 graduate disciplines, 2025. URL https://arxiv.org/abs/2502.14739.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
renev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, and
Ava Spataru. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.
21783.

Alex Gu, Baptiste Roziere, Hugh James Leather, Armando Solar-Lezama, Gabriel Synnaeve, and
Sida Wang. CRUXEval: A benchmark for code reasoning, understanding and execution. In
Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scar-
lett, and Felix Berkenkamp (eds.), Proceedings of the 41st International Conference on Machine
Learning, volume 235 of Proceedings of Machine Learning Research, pp. 16568-16621. PMLR,
21-27 Jul 2024a. URL https://proceedings.mlr.press/v235/gu24c.html.

Hengrui Gu, Kaixiong Zhou, Xiaotian Han, Ninghao Liu, Ruobing Wang, and Xin Wang.
PokeMQA: Programmable knowledge editing for multi-hop question answering. In Lun-Wei
Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 8069-8083, Bangkok,
Thailand, August 2024b. Association for Computational Linguistics. doi: 10.18653/v1/2024.
acl-long.438. URL https://aclanthology.org/2024.acl-long.438/|

Chenhui Hu, Pengfei Cao, Yubo Chen, Kang Liu, and Jun Zhao. WilKE: Wise-layer knowledge
editor for lifelong knowledge editing. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.),
Findings of the Association for Computational Linguistics: ACL 2024, pp. 3476-3503, Bangkok,
Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
findings-acl.207. URL https://aclanthology.org/2024.findings-acl.207/.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,

11

https://aclanthology.org/N19-1423/
https://aclanthology.org/N19-1423/
https://aclanthology.org/2024.emnlp-main.64/
https://arxiv.org/abs/2502.14739
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://proceedings.mlr.press/v235/gu24c.html
https://aclanthology.org/2024.acl-long.438/
https://aclanthology.org/2024.findings-acl.207/

Under review as a conference paper at ICLR 2026

Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https:
//arxiv.org/abs/2310.06825.

Ehsan Kamalloo, Nouha Dziri, Charles Clarke, and Davood Rafiei. Evaluating open-domain ques-
tion answering in the era of large language models. In Anna Rogers, Jordan Boyd-Graber,
and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 5591-5606, Toronto, Canada, July
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.307. URL
https://aclanthology.org/2023.acl-1ong.307/.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rocktidschel, Sebastian Riedel, and Douwe
Kiela. Retrieval-augmented generation for knowledge-intensive nlp tasks. In Proceedings of the
34th International Conference on Neural Information Processing Systems, NIPS *20, Red Hook,
NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.

Xiang Li, Yiqun Yao, Xin Jiang, Xuezhi Fang, Xuying Meng, Siqi Fan, Peng Han, Jing Li, Li Du,
Bowen Qin, Zheng Zhang, Aixin Sun, and Yequan Wang. Flm-101b: An open llm and how to
train it with $100k budget, 2023. URL https://arxiv.org/abs/2309.03852,

Edward Loper and Steven Bird. NLTK: The natural language toolkit. In Proceedings of the ACL-
02 Workshop on Effective Tools and Methodologies for Teaching Natural Language Process-
ing and Computational Linguistics, pp. 63—70, Philadelphia, Pennsylvania, USA, July 2002.
Association for Computational Linguistics. doi: 10.3115/1118108.1118117. URL https:
//aclanthology.org/W02-0109/.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019. URL https:
//arxiv.org/abs/1711.05101.

Angi Mao, Mehryar Mohri, and Yutao Zhong. Cross-entropy loss functions: theoretical analysis
and applications. In Proceedings of the 40th International Conference on Machine Learning,
ICML’23. JMLR.org, 2023.

Nestor Maslej, Loredana Fattorini, Raymond Perrault, Yolanda Gil, Vanessa Parli, Njenga Kariuki,
Emily Capstick, Anka Reuel, Erik Brynjolfsson, John Etchemendy, Katrina Ligett, Terah Lyons,
James Manyika, Juan Carlos Niebles, Yoav Shoham, Russell Wald, Tobi Walsh, Armin Hamrah,
Lapo Santarlasci, Julia Betts Lotufo, Alexandra Rome, Andrew Shi, and Sukrut Oak. Artificial
intelligence index report 2025, 2025. URL https://arxiv.org/abs/2504.07139.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, 11 2019. URL https://arxiv.
org/abs/1908.10084.

Yucheng Shi, Qiaoyu Tan, Xuansheng Wu, Shaochen Zhong, Kaixiong Zhou, and Ninghao Liu.
Retrieval-enhanced knowledge editing in language models for multi-hop question answering.
In Proceedings of the 33rd ACM International Conference on Information and Knowledge
Management, CIKM 24, pp. 2056-2066, New York, NY, USA, 2024. Association for Com-
puting Machinery. ISBN 9798400704369. doi: 10.1145/3627673.3679722. URL https:
//doi.org/10.1145/3627673.3679722.

Dominic Simon and Rickard Ewetz. Knowledge editing for multi-hop question answering using
semantic analysis. In James Kwok (ed.), Proceedings of the Thirty-Fourth International Joint
Conference on Artificial Intelligence, IJCAI-25, pp. 8241-8249. International Joint Conferences
on Artificial Intelligence Organization, 8 2025. doi: 10.24963/ijcai.2025/916. URL https:
//doi.org/10.24963/1ijcai.2025/916. Main Track.

Chenmien Tan, Ge Zhang, and Jie Fu. Massive editing for large language models via meta learning.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=L6L1CJQ2PE.

Ben Wang and Aran Komatsuzaki. GPT-J-6B: A 6 Billion Parameter Autoregressive Language
Model. https://github.com/kingoflolz/mesh-transformer-jax, May 2021.

12

https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://aclanthology.org/2023.acl-long.307/
https://arxiv.org/abs/2309.03852
https://aclanthology.org/W02-0109/
https://aclanthology.org/W02-0109/
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/2504.07139
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://doi.org/10.1145/3627673.3679722
https://doi.org/10.1145/3627673.3679722
https://doi.org/10.24963/ijcai.2025/916
https://doi.org/10.24963/ijcai.2025/916
https://openreview.net/forum?id=L6L1CJQ2PE
https://openreview.net/forum?id=L6L1CJQ2PE
https://github.com/kingoflolz/mesh-transformer-jax

Under review as a conference paper at ICLR 2026

Yiwei Wang, Muhao Chen, Nanyun Peng, and Kai-Wei Chang. Deepedit: Knowledge editing as
decoding with constraints, 2024. URL https://arxiv.org/abs/2401.10471.

Yanbin Wei, Qiushi Huang, Yu Zhang, and James Kwok. KICGPT: Large language model
with knowledge in context for knowledge graph completion. In Houda Bouamor, Juan Pino,
and Kalika Bali (eds.), Findings of the Association for Computational Linguistics: EMNLP
2023, pp. 8667-8683, Singapore, December 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.findings-emnlp.580. URL https://aclanthology.org/2023.
findings—emnlp.580/.

Zihao Wei, Liang Pang, Hanxing Ding, Jingcheng Deng, Huawei Shen, and Xueqi Cheng. Stable
knowledge editing in large language models, 2024.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi Tang,
Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yugiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
https://arxiv.org/abs/2412.15115.

Lang Yu, Qin Chen, Jie Zhou, and Liang He. Melo: Enhancing model editing with neuron-
indexed dynamic lora. Proceedings of the AAAI Conference on Artificial Intelligence, 38(17):
19449-19457, Mar. 2024. doi: 10.1609/aaai.v38i17.29916. URL | https://ojs.aaai.org/
index.php/AAAI/article/view/29916.

Yanzhao Zhang, Mingxin Li, Dingkun Long, Xin Zhang, Huan Lin, Baosong Yang, Pengjun Xie,
An Yang, Dayiheng Liu, Junyang Lin, Fei Huang, and Jingren Zhou. Qwen3 embedding:
Advancing text embedding and reranking through foundation models, 2025. URL https:
//arxiv.org/abs/2506.05176.

Shaochen Zhong, Yifan Lu, Lize Shao, Bhargav Bhushanam, Xiaocong Du, Yixin Wan, Yucheng
Shi, Daochen Zha, Yiwei Wang, Ninghao Liu, Kaixiong Zhou, Shuai Xu, Kai-Wei Chang, Louis
Feng, Vipin Chaudhary, and Xia Hu. MQuAKE-remastered: Multi-hop knowledge editing can
only be advanced with reliable evaluations. In The Thirteenth International Conference on Learn-
ing Representations, 2025. URL https://openreview.net/forum?id=m9wG6ai2Xxk,

Zexuan Zhong, Zhengxuan Wu, Christopher Manning, Christopher Potts, and Danqi Chen.
MQuAKE: Assessing knowledge editing in language models via multi-hop questions. In Houda
Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pp. 15686—-15702, Singapore, December 2023.
Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.971. URL
https://aclanthology.org/2023.emnlp—-main.971/.

Wenhao Zhu, Hongyi Liu, Qingxiu Dong, Jingjing Xu, Shujian Huang, Lingpeng Kong, Jiajun Chen,
and Lei Li. Multilingual machine translation with large language models: Empirical results and
analysis. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), Findings of the Association
for Computational Linguistics: NAACL 2024, pp. 2765-2781, Mexico City, Mexico, June 2024.
Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-naacl.176. URL
https://aclanthology.org/2024.findings—naacl.176.

A OVERVIEW

We provide an additional 7 sections in the Appendix. The different baseline frameworks, datasets,
and Large Language Models are discussed in Section [B| Additional question decomposition and
question-answering evaluations are provided in Section |C] Ablations studies over per-hop and per-
edit accuracy are provided in Section D] A study on token utilization of QMEK and other frame-
works is provided in Section [E| Parameter searches to find the optimal parameters used by QMEK
are provided in Section[F] How to generate the dataset used to train QMEK’s masked language model
is explained in Section |G| The in-context learning prompt used for the relational triple completion
task is given in Section [H|

13

https://arxiv.org/abs/2401.10471
https://aclanthology.org/2023.findings-emnlp.580/
https://aclanthology.org/2023.findings-emnlp.580/
https://arxiv.org/abs/2412.15115
https://ojs.aaai.org/index.php/AAAI/article/view/29916
https://ojs.aaai.org/index.php/AAAI/article/view/29916
https://arxiv.org/abs/2506.05176
https://arxiv.org/abs/2506.05176
https://openreview.net/forum?id=m9wG6ai2Xk
https://aclanthology.org/2023.emnlp-main.971/
https://aclanthology.org/2024.findings-naacl.176

Under review as a conference paper at ICLR 2026

B BASELINES, DATASETS, AND MODELS DISCUSSION

In this section, we discuss the frameworks used as comparisons, the datasets evaluated over, and
the Large Language Models (LLMs) used in evaluations. Other frameworks are discussed in Sec-
tion[B.1l The datasets used in evaluations are covered in Section[B.2] The models used in evaluations
are discussed in Section [B.3]

B.1 VECTOR EMBEDDING FRAMEWORKS

We use 4 other vector embedding frameworks to put the performance of QMEK in context. These
frameworks are MeLLo (Zhong et al., 2023), DeepEdit (Wang et al., 2024), PokeMQA (Gu et al.,
2024b), and CHECK (Simon & Ewetz,[2025). These are the only vector embedding frameworks that
we know of. We also use GMeLLo (Chen et al.l [2024)) as a baseline. GMeLLo has a RAG (Lewis
et al., [2020) component and a knowledge graph component. We only compare against the RAG
component.

We set the maximum new tokens, maximum number of extracted question hops, and cosine simi-
larity threshold, cross-encoder threshold, cross-encoder threshold offset, and cross-encoder top-k
framework parameters prior to evaluations. We set the maximum new tokens generated from each
model call to 200 because we found that the prompts used by frameworks typically output a number
of tokens far under that amount. We set the maximum number of extracted question hops to be 5.
Through analysis of framework output logs for frameworks that iteratively generate subquestions,
we found that frameworks iteratively generating more than 5 subquestions tend to start repeating a
single subquestion, never arriving at an answer. By cutting those frameworks off after 5 subques-
tions generated, we shorten the time it takes to complete evaluations without harming framework
performance. CHECK uses a cosine similarity threshold of 0.8, which was provided as the best
performing threshold in the paper. QMEK uses a cross-encoder threshold T of 0.7, a cross-encoder
threshold offset A of 0.05, and a cross-encoder top-k of k = 20. Parameter searches for the best
parameter values used by QMEK are provided in Section [F

For the sake of reproducibility, we now provide the hardware used to run all experiments. All
experiments were run on a computing cluster using 1 NVIDIA B200, 16 CPU cores, and 64 GB of
RAM, Red Hat Enterprise Linux version 9.5, and Python version 3.9.21.

B.2 DATASETS

We perform evaluations over the MQuAKE-CounterFact-3k and MQuAKE-Temporal (Zhong et al.,
2023)) datasets. MQuAKE-CounterFact-3k contains 1000 2-hop, 3-hop, and 4-hop edit cases, for
a total of 3000 edit cases. MQuAKE-Temporal contains 1421 2-hop, 445 3-hop, and 2 4-hop edit
cases. Each edit case is broken into 3 questions, with all 3 questions being paraphrases containing
the same question hops. The number of edits per edit case varies. These are the most commonly
used knowledge editing for multi-hop question-answering datasets.

We provide evaluations on the MQuAKE-Remastered Zhong et al.| (2025) dataset. The dataset
was created using the same methods as MQuAKE-CounterFact and MQuAKE-Temporal, but with
additional safeguards to ensure that edit cases do not contain any conflicting edits. The dataset
contains a total of 9171 edit cases with 6334 unique edits. We shorten the dataset to 1000 of each
2-hop, 3-hop, and 4-hop edit cases for a total of 3000 edit cases.

We provide evaluations over MQUAKE-2002 and MQuAKE-Hard (Wang et al., |2024), which are
modifications of the MQuAKE-CounterFact-3k dataset. MQuAKE-2002 removes 998 edit cases
that contain edits that conflict with other edit cases. MQuAKE-Hard contains 429 4-hop edit cases
with each case containing 4 edits. We use MQuAKE-2002 because it is a more consistent dataset
than MQuAKE-CounterFact-3k and MQuAKE-Hard for its more challenging edit cases.

Finally, we perform evaluations over KEBench (Wei et al.l 2024) and Ripple Edit (Cohen et al.,
2024)). KEBench contains 2798 2-hop questions, each containing only 1 edit. Ripple Edit is com-
posed of 3 subsets with different themes. Our evaluations cover 1201, 2243, and 5433 questions from
the popular, random, and recent subsets, respectively. Both datasets are used to evaluate QMEK over
unseen data.

14

Under review as a conference paper at ICLR 2026

Table 4: Per-case and per-question accuracy across the MQuAKE datasets. Top accuracy per column
and per model is bolded.

Dataset (Zhong et al.,[2023) || MQUAKE-CF-3k | MQUAKE-T

Accuracy Type (%) | Case | Question | Case | Question
Model | Qwen 2.5 (Yang et al.,[2025) Size: 7B
GMeLLo-QA (Chen et al., 2024) || 13.90 7.99 4791 28.10
MeLLo (Zhong et al.,|2023) 26.73 13.17 62.69 33.62
DeepEdit (Wang et al.|[2024) 35.53 26.47 80.62 66.18
PokeMQA (Gu et al.,[2024b)) 27.90 14.30 68.74 40.60
CHECK (Simon & Ewetz, 2025) || 47.43 30.49 81.58 61.76
QMEK (ours) 51.33 39.72 81.80 60.92
Model Mistral v0.3 (Jiang et al., 2023) Size: 7B
GMeLLo-QA (Chen et al.}[2024) || 12.83 8.08 55.51 34.51
MeLLo (Zhong et al.,|2023) 30.70 18.36 56.53 33.17
DeepEdit (Wang et al.|[2024) 35.77 27.27 82.49 69.09
PokeMQA (Gu et al.,|2024b)) 42.50 27.68 79.50 53.73
CHECK (Simon & Ewetz, [2025) || 48.00 33.30 86.67 60.76
QMEK (ours) 51.30 39.88 86.56 64.24
Model | Llama 3.1 (Grattafiori et al., 2024) Size: 8B
GMeLLo-QA (Chen et al., 2024) || 11.03 5.71 60.44 35.14
MeLLo (Zhong et al.,[2023)) 28.90 13.30 33.17 61.19
DeepEdit (Wang et al.,[2024) 37.07 22.46 82.12 63.60
PokeMQA (Gu et al., [2024b]) 37.00 18.33 56.00 26.07
CHECK (Simon & Ewetz, [2025) || 50.57 34.63 85.87 64.61
QMEK (ours) 52.17 40.80 85.76 64.22

B.3 MODELS

We provide evaluations using the Qwen 2.5 (Yang et al.| [2025), Mistral v0.3 (Jiang et al.| 2023)),
and Llama 3.1 (Grattafiori et al., |2024) LLMs. We use these LLMs because they are are recent
and have strong language modeling capabilities. We also provide evaluations over GPT-J (Wang &
Komatsuzaki, 2021)), Vicuna (Chiang et al. [2023), and Falcon (Almazrouei et al.l |2023) for easier
comparison against results provided in previous works. All models contain between 6 and 8 billion
parameters so that GPU constraints and forward pass runtimes are not issues.

C ADDITIONAL DATASET EVALUATIONS

We provide additional question-answering accuracy on the MQUAKE (Wang et al., |2024; [Zhong
et al., 2023) datasets in Section [C.I] We provide question-answering accuracy on the KEBench
(Weit et al., |2024) dataset in Section We provide the decomposition accuracy of QMEK on the
Ripple Edit (Cohen et al.,[2024) dataset in Section [C.3]

C.1 MQUAKE

Additional Datasets: We provide results on MQuAKE-CounterFact-3k and MQuAKE-
Temporal [Zhong et al| (2023) in Table [} These datasets have been used as the main modes of
evaluation in previous works, but have been found to contain flaws, such as overlapping edits and
questions that are not correctly structured. As a result, the current value of including these datasets
is dubious, but for the sake of comparison with previous works, we choose to include them.

QMEK achieves the best performance on MQuAKE-CF-3k across all Large Language Models
(LLMs). However, it consistently performs the second best across the language models on the
MQuAKE-Temporal dataset by an average of 0.11% per-case accuracy and 3.5% per-question ac-

15

Under review as a conference paper at ICLR 2026

Table 5: Per-case and per-question accuracy across the MQuAKE datasets. The top accuracy per
column and per model is in bold. Results reported in CHECK are denoted with *.

Dataset (Zhong et al.| 2023)) H MQuAKE-CF-3k ‘ MQuAKE-T

Accuracy Type (%) | Case | Question | Case | Question

Model | GPT-J (Wang & Komatsuzaki, 2021) Size: 6B
GMeLLo-QA* (Chen et al.,[2024) || 10.60 6.04 21.95 10.67
MeLLo* (Zhong et al.| 2023) 14.97 6.89 32.82 18.49
DeepEdit* (Wang et al.,|2024) 19.03 13.44 55.84 41.86
PokeMQA* (Gu et al., [2024b) 15.70 6.97 59.37 31.00
CHECK* (Simon & Ewetz, 2025) || 42.27 29.57 78.69 55.82
QMEK (ours) 49.07 38.33 78.43 58.92
Model I Vicuna (Chiang et al., 2023) Size: 7B
GMeLLo-QA* (Chen et al.,[2024) || 11.23 6.44 28.53 14.38
MeLLo* (Zhong et al.| 2023) 9.93 5.08 68.52 50.18
DeepEdit* (Wang et al.,|2024) 13.87 8.38 34.05 19.04
PokeMQA* (Gu et al., [2024b) 30.97 18.18 68.68 48.11
CHECK?* (Simon & Ewetz, 2025) || 47.57 30.93 81.64 55.84
QMEK (ours) 5133 39.76 8592 64.88
Model | Falcon (Almazrouei et al.,[2023) Size: 7B
GMeLLo-QA* (Chen et al.,|[2024) 7.77 4.27 16.38 7.57
MeLLo* (Zhong et al.| [2023)) 4.01 7.30 52.94 36.42
DeepEdit* (Wang et al.|[2024) 13.37 8.23 59.85 45.38
PokeMQA* (Gu et al., [2024b]) 15.77 7.64 63.97 37.76
CHECK* (Simon & Ewetz, 2025) || 39.10 24.10 81.69 57.51
QMEK (ours) 49.47 38.68 83.94 62.88

curacy. Error analysis points towards the main failure point now being in the subquestion answering
step, where the framework uses similarity thresholding to determine whether an edit is necessary
for an intermediate reasoning step. This also seems to be a failure point across most frameworks,
so work focusing on how to determine whether an edit is necessary in memory-based frameworks
would be useful.

Additional Models: We provide framework question-answering accuries using older LLMs on
MQuAKE-CounterFact (CF-3k) (Zhong et al., 2023) and MQuake-Temporal (T) (Zhong et al.,[2023))
in Table El, and on MQuAKE-2002 (Wang et al., 2024) and MQuAKE-Hard (Wang et al., [2024) in
Table @ Frameworks are evaluated using GPT-J (Wang & Komatsuzaki, [2021)), Vicuna (Chiang
et al.,[2023), and Falcon (Almazrouei et al., 2023)). Across all datasets, models, and metrics, QMEK
outperforms the other knowledge editing frameworks. QMEK achieves an average 14.05% per-case
accuracy increase and 16.04% per-question accuracy increase over the next highest accuracy.

QMEK only relies on model knowledge for subquestion-answering, the point where model knowl-
edge is necessary. The other frameworks rely on model knowledge and language processing capa-
bilities for a range of tasks. Consequently, the ability of the frameworks to successfully complete
tasks required for editing hinges on the underlying LLM’s capabilities. Better models equate to bet-
ter question-answering results, while worse models cause worse results due to failures in framework
components. The models presented in Table [5] and Table [6] are older and less powerful, which we
believe causes the fluctuations in the other frameworks accuracies. We believe QMEK’s relatively
stable performance across main paper and appendix evaluations can be attributed to the low reliance
on causal language model language processing capabilities.

C.2 KEBENCH

We provide the results of question-answering evaluations over the KEBench (Wei et all 2024)
dataset in Table The frameworks are evaluated using the Qwen 2.5 (Yang et al.l 2025), Mis-

16

Under review as a conference paper at ICLR 2026

Table 6: Per-case and per-question accuracy across the MQuAKE datasets. The top accuracy per
column and per model is in bold. Results reported in CHECK are denoted with *.

Dataset (Wang et al., 2024) | MQuAKE-2002 | MQuUAKE-Hard

Accuracy Type (%) | Case | Question | Case | Question

Model | GPT-J (Wang & Komatsuzaki, 2021) Size: 6B
GMeLLo-QA* (Chen et al.,[2024) || 10.39 6.14 8.86 4.35
MeLLo* (Zhong et al.| 2023) 17.18 8.13 6.76 2.64
DeepEdit* (Wang et al.,|2024) 27.17 19.55 6.53 3.96
PokeMQA* (Gu et al., [2024b) 19.98 8.72 11.66 5.59
CHECK* (Simon & Ewetz, 2025) || 56.59 40.86 35.90 23.85
QMEK (ours) 70.43 55.69 76.22 58.12
Model I Vicuna (Chiang et al., 2023) Size: 7B
GMeLLo-QA* (Chen et al.,[2024) || 10.84 6.41 5.59 2.41
MeLLo* (Zhong et al.| 2023) 9.84 5.13 1.86 0.85
DeepEdit* (Wang et al.,|2024) 20.63 12.52 0.93 0.54
PokeMQA* (Gu et al., [2024b) 40.51 25.66 30.77 15.70
CHECK* (Simon & Ewetz, 2025) || 63.74 41.99 48.72 29.68
QMEK (ours) 7388 5801 76.69 5835
Model | Falcon (Almazrouei et al.,[2023) Size: 7B
GMeLLo-QA* (Chen et al.,|[2024) 6.50 3.63 5.36 3.34
MeLLo* (Zhong et al.| [2023)) 10.14 5.56 1.63 0.85
DeepEdit* (Wang et al.|[2024) 19.53 12.02 2.80 1.24
PokeMQA* (Gu et al., [2024b]) 19.93 9.14 13.05 7.46
CHECK* (Simon & Ewetz, 2025) || 52.80 33.72 45.22 31.08
QMEK (ours) 70.93 56.26 76.22 57.58

Table 7: Per-question accuracy (%) on the KEBench dataset. The highest accuracy per column and
per model is bolded.

Dataset || KEBench (Wei et al., 2024)

Model || Qwen 2.5 | Mistral v0.3 | Llama 3.1
PokeMQA 34.27 40.71 33.38
CHECK 36.60 44.57 42.17

QMEK 45.43 52.11 56.43

tral v0.3 (Jiang et al.| 2023), and Llama 3.1 (Grattafiori et al., | 2024) LLMs. PokeMQA (Gu et al.,
2024b) and CHECK (Simon & Ewetz| [2025)) achieve an average 36.12% and 41.11% per-question
accuracy, respectively. QMEK achieves an average 51.32% per-question accuracy, and an average
15.20% and 10.21% increase over PokeMQA and CHECK, respectively.

Additionally, we provided an evaluation of the decomposition accuracy of QMEK on KEBench in
Figure 5 of the main paper. In this evaluation, QMEK achieved a 93% decomposition accuracy. This
is a 15% higher decomposition accuracy than what QMEK achieved on MQuAKE-2002. However,
we attribute this large jump in accuracy to KEBench only being 2-hop questions, while MQuAKE-
2002 is composed 2-, 3-, and 4-hop questions. Questions with more hops are more difficult to
decompose due to the larger error space.

C.3 RIPPLE EDIT
To further illustrate the question decomposition capabilities of QMEK ’s masked language modeling

approach, we present another evaluation over unseen data in Figure [5] We evaluate the masked
language model over the three Ripple Edit (Cohen et al., 2024) subsets, named popular, random,

17

Under review as a conference paper at ICLR 2026

=
o
o

801
60
40/
20

Percent (%) of Questions

o

Popular ' Random ’ - Recent

Figure 5: Question decomposition accuracy of the masked language model used by QMEK on the
Ripple Edit subsets.

Alzz xxxxx ML Under Length &% Correct Length == Over Length
S
EN .
@©
5 401 { '
S0 B s (e
o IS 2522 e

Number of Hops

Figure 6: Question decomposition accuracy of QMEK’s masked language model on the MQuAKE-
2002 dataset, broken down by the number of question hops.

and recent. Each of the subsets is composed of only 2-hop questions. The relations that represent
question hops in Ripple Edit share a low overlap with those used in MQuUAKE, making it a suitable
dataset to test model generalization to unseen relations. The masked language model is evaluated on
its question decomposition accuracy.

QMEK ’s masked language model achieves a decomposition accuracy of 89.8%, 89.2%, and 89.6%
on the popular, random, and recent subsets, respectively. Similar to the KEBench results, the decom-
position accuracies are high because the model only had to decompose 2-hop questions. However,
these results still further indicate that the masked language modeling approach for question decom-
position generalizes well to unseen data.

Ideally, we could further evaluate the effectiveness of the masked language model by checking
to ensure that the correct relations are extracted rather than just the correct number of relations.
However, such an evaluation requires a large amount of human labeling that we do not currently
have access to in order to augment existing datasets. A smaller scale evaluation is possible, but is
heavily subject to the quirks of the small amount of data it would be over.

D ABLATION STUDIES

We present ablation studies for question decomposition accuracy in Section|D.1] question-answering
accuracy in Section[D.2] and runtime in Section[D.3] We also present a comparison of QMEK with
and without a reranker in Section[D.4

D.1 DECOMPOSITION ACCURACY ABLATION

We present an ablation study of the decomposition accuracy of QMEK’s masked language model in
Figure[f] The ablation study is over multi-hop questions with different numbers of question hops on
the MQuAKE-2002 (Wang et al.,|2024) dataset. This study measures whether the masked language
model under extracts the number of question hops (hopScetracted < RODSground_truth), correctly

18

Under review as a conference paper at ICLR 2026

100 100
901 [Qwen2.5 901 PR Qwen2.5
2 Mistral v0.3 AN Mistral v0.3
801 sex Llama 3.1 807 seer Lama 3.1
70 A 70 A
ST oty S
> ool IS > ool i IR ”
E . E . .
3 401 gg | S 401 85:;:; X«:;:; I x
£ o] e £ L L S Tl e HIS:
204 2%::.:.:; 20 SE;:;: %;Z:ﬁ |||§2::::: <
10 &:::::::j 10 - S%.:::: S&:Z:Z ”l% %
o] Nl o] NS ks ks |Iks
’ Number of Hops ' Nuzmber of Ezits)

Figure 7: Per-question accuracy ablation over the number of question hops and edits per question
on the MQuAKE-2002 dataset.

extracts the number of question hops (hopScgtracted == hOPSground_truth), OF over extracts the
number of question hops (hopsecziracted > ROPSground_truth)- For example, the multi-hop question
Who is the wife of the creator of Microsoft? has two question hops. Under extracting from this
sentence is when only wife or creator are extracted. Correctly extracting is when both wife and
creator are extracted. Over extracting from this sentence is when wife, creator, and 1 or more spans
are extracted from the sentence.

QMEK correctly extracts 2 question hops from 88% of 2-hop questions, while extracting less than
2 hops in 11% of questions and more than 2 hops in 1% of questions. The number of correctly
extracted question hops decreases for 3- and 4-hop questions, to 60% and 62%, respectively. Mean-
while, the number of under extracted question hops increases to 39% and 38% for 3- and 4-hop
questions, respectively. At the same time, the number of over extracted question hops decreases to
almost 0% for both numbers of question hops. Based on logs of the evaluations, we can see that
this increase in under extracted question hops occurs because the masked language model labels
two relations with the same question hops label. For example, given the question Who is the wife of
the creator of Microsoft?, this error could manifest as the masked language model labeling wife and
creator as belonging to the same relation. When they are extracted from the sentence, they will only
be extracted as a singular relation rather than two separate relations, resulting in a decomposition
error, and further negatively impacting overall question-answering performance.

D.2 QUESTION-ANSWERING ACCURACY ABLATION

We present the per-question accuracy of QMEK on the MQuAKE-2002 dataset, broken down by
the number of hops and number of edits per question, in Figure|/| Unsurprisingly, as the number of
hops increases, question-answering accuracy decreases. More question hops means more places for
framework components to fail. The main issues QMEK encounters that are amplified by increased
question hops are correctly extracting relations and correctly determining when an edit is necessary.
As discussed in Section [D.T} the masked language model has an error where it erroneously labels
two separate relations as a single relation. More question hops provides more opportunity for this
error to occur. Additionally, determining when an edit is necessary is a currently under-addressed
problem with vector embedding editors. QMEK determines whether an edit is necessary using a
two-stage similarity thresholding method. While this approach is more robust than only using a
cosine similarity threshold like other frameworks, the approach is still prone to error. The thresholds
are set based on heuristics and do not provide any guarantee that necessary edits will always be
similar enough to the current question hop to exceed both thresholds. As result, questions with
greater numbers of question hops increase the overall error space.

It also makes sense the accuracies are relatively stable across different LLMs. QMEK does not
offload any tasks onto the underlying LLM, only relying on the LLM for its knowledge during

19

Under review as a conference paper at ICLR 2026

0.7 0.7
FEET Qwen2.5
0.6 1 AX Mistral v0.3 0.6 1
'.’.‘...' Llama 3.1 e e
0.5 0.5 1 .
204 2 0.4 = 2
g ot g EE o
Z 0.3 § = 0.31
0.2 MRS | o] WK
01 I I I I%:;g; 0.1- I I%;:;: i i%:;:;: I I%;:;: I I%:;:;
0.0 K 0.0
4 1 2 3 4
Number of Hops per Question Number of Edits per Question

Figure 8: The average per-question runtime of QMEK on the MQuAKE-2002 dataset, broken down
by number of hops and edits per question.

Table 8: Per-case and per-question accuracy across the MQuAKE datasets. Top accuracy per column
and per model is bolded. QMEK with only a cosine similarity component (cos) and additionally a
reranking component (rerank) are compared on question-answering accuracy.

Dataset (Zhong et al.,[2023) || MQuAKE-2002 | MQuAKE-Hard
Accuracy Type (%) | Case | Question | Case | Question
Model | Qwen 2.5 (Yang et al.,[2025) Size: 7B
QMEK - cos 70.18 53.85 74.59 53.85
QMEK - rerank 73.48 57.59 76.92 58.35
Model | Mistral v0.3 (Jiang et al.,[2023) Size: 7B
QMEK - cos 70.98 54.71 74.59 54.00
QMEK - rerank 73.88 57.99 76.69 58.12
Model | Llama 3.1 (Grattafiori et al., 2024) ~ Size: 8B
QMEK - cos 71.78 55.71 74.83 54.23
QMEK - rerank 74.98 59.34 76.69 58.28

subquestion-answering. As a result, we would only expect to see minor accuracy fluctuations that
occur based on differences in model knowledge, which is what occurs.

D.3 RUNTIME ABLATION

We present the average per-question runtime of QMEK on the MQuAKE-2002 dataset, broken down
by number of hops and edits per question, in Figure[8] The framework runtime increases as the num-
ber of question hops increase. This is expected behavior because more subquestion-answering iter-
ations are required to answer an increased number of subquestions. However, even when processing
4-hop questions, QMEK only takes 0.26, 0.31, and 0.62 seconds when using Qwen 2.5 (Yang et al.,
2023])), Mistral v0.3 (Jiang et al., 2023)), and Llama 3.1 (Grattafiori et al.,|2024), respectively. These
are incredibly short times when compared against other vector embedding frameworks.

The runtimes generally decrease when going from 1 to 4 edits. Querying the embedding space for
relevant edits is less computationally expensive than prompting the underlying LLM to complete a
triple. When more edits are necessary, QMEK uses edited answers more and queries the model less,
resulting in decreased runtimes.

20

Under review as a conference paper at ICLR 2026

Table 9: Per-question runtime in seconds across the MQuAKE datasets. The highest accuracy per
column and per model is bolded. QMEK with only a cosine similarity threshold (cos) and addition-
ally a reranking threshold (rerank) are compared on runtime.

Dataset | MQuAKE-2002 \ MQuAKE-Hard
Model | Qwen 2.5 | Mistral v0.3 | Llama 3.1 | Qwen 2.5 | Mistral v0.3 | Llama 3.1

QMEK - cos 0.15 0.19 0.44 0.19 0.21 0.48
QMEK - rerank 0.20 0.23 0.46 0.23 0.27 0.46

W [PokeMQA
10 3 r 0]
RRRRIBILES XX% CHECK
] RIRRRXOXKKE
Q EKRRERZKKK QMEK
3 RIS
S IS
@ 107 S RERERE0000
c OS0000 020502020°0°0°020 20
5 SR SR
~ BSKSKK [0S
2L SRIEIKKK,
e 05050000908 SRIIIKIRRR
10t IR RIS
1 [SOGSRIREIKKS
SRS
: QORI e mmemmseemeemmes
Input Tokens Output Tokens

Figure 9: Editor average input and output token utilization of the underlying Qwen 2.5 model being
edited on the MQuAKE-2002 dataset.

D.4 RERANKING ABLATION STUDY

We provide an evaluation of QMEK’s question-answering accuracy when only using a cosine simi-
larity component (cos) and when using both a cosine similarity and reranking component (rerank).
The evaluation is over the MQuAKE-2002 and MQuAKE-Hard datasets using the Qwen 2.5, Mis-
tral v0.3, and Llama 3.1 LLMs. As expected, using a reranker increases the question-answering
accuracy of QMEK. However, the accuracy increase is small, with an average 2.61% per-case and
3.89% per-question increase.

Additionally, a comparison of QMEK’s runtime with only cosine similarity (cos) and with cosine
similarity and reranking (rerank) is provided in Table[] As expected, using only cosine similarity
without reranking is faster. However, the runtime overhead of adding the reranker is only an aver-
age 0.03 seconds. Overall, using reranking gives a small boost to framework question-answering
accuracy at a negligble time cost.

E LLM TOKEN UTILIZATION

To further explain the large gap in runtimes between QMEK and other editing frameworks, we
present an evaluation on the average number of input and output tokens used by the underlying
LLM at runtime in Figure[9] The evaluation is performed on MQuUAKE-2002 using the Qwen 2.5
model. Larger token counts correspond with longer runtimes, so less tokens used points toward a
more efficient framework. PokeMQA and CHECK use an average 2080 and 2766 input tokens and
generate an average 106 and 121 new output tokens, respectively, per question. In contrast, QMEK
uses an average of only 84 input tokens and generates an average of only 3 new output tokens. That
is a 1996 and 2766 input token difference and 103 and 118 output token difference from QMEK

PokeMQA relies heavily on the underlying LLM reasoning capabilities over large contexts, using
the full editing context in each model call. CHECK prompts the model at different temperatures to
find a suitable set of question hops, resulting in a large number of tokens used. Meanwhile, QMEK
only prompts the model to complete a relational triple when model knowledge is required.

21

Under review as a conference paper at ICLR 2026

(%)\) A>eunddy
(%)\) Adeunddy

(%)\) A>eunddy
(%)\) Adeunddy

Tau Tau

Figure 10: The parameter sweep using the Qwen 2.5 large language model. The x-axis shows 7
values on the range [0.0, 1.0] with 0.1 increments. The y-axis shows A values on the range [0.0, 0.25]
with 0.05 increments. The z-axis shows the per-question accuracy over 900 questions from the
MQuAKE-2002 dataset. Each graph shows a different top-% value.

F THRESHOLDING PARAMETER SEARCH

The per-question accuracy of QMEK is evaluated over different values of 7, A, and k. We provide
a parameter sweep over 7 for values on the range [0.0,1.0] with 0.1 increments, over A for values
on the range [0.0,0.25] with 0.05 increments, and over the top-k values 5, 10, 15, and 20. For
each of the 7, A, and top-k value combinations, we evaluate QMEK over 100 2-, 3-, and 4-hop edit
cases each, for a total of 300 unique edit cases and 900 multi-hop questions. We provide results of
the parameter search on Qwen 2.5 in Figure[I0} on Mistral v0.3 in Figure[TT] and on Llama 3.1 in
Figure The x-axis shows the different 7 values, the y-axis shows the different A values, and the
z-axis shows the per-question accuracy associated with the 7, A, and top-k combination. Each of the
individual graphs correspond to a different top-k value.

Across all 3 models, the per-question accuracy steadily rises from 7 values of 0.0 to 0.3. Once 7
reaches 0.3, the per-question accuracy saturates through 7 = 0.8. The fluctuations in accuracy from
changing top-k and \ values are generally within 5%, fluctuating between 58% and 62% accuracy.
Per-question accuracies steeply decrease by after 7 = 0.8, with 7 = 1.0 uniformly achieving less

22

Under review as a conference paper at ICLR 2026

K= K=10
d 0 9 0 0o
obo oO OO Oo 0o o Oo
oOOOoO o 0 o O [5)
60 9
> 50 >
(a) (a)
5 30 a
< <
g2 25,
~ 10 208 =~
15
0 RS
(S
1.008 06 04 02 000035
Tau
K=15
00’ Lo
%%oooooo OOO @) oO
O (@]
60
> 50 >
a 2
S 40 <
8 30 a
< <
3 2 25 2

o

U'ISI—" C
o
7S

10 08 06 04 02 000
Tau Tau

(=]
Tay

Figure 11: The parameter sweep using the Mistral v0.3 large language model. The x-axis shows 7
values on the range [0.0, 1.0] with 0.1 increments. The y-axis shows A values on the range [0.0, 0.25]
with 0.05 increments. The z-axis shows the per-question accuracy over 900 questions from the
MQuAKE-2002 dataset. Each graph shows a different top-% value.

than 1% per-question accuracy. Modifying A values has negligible impact on per-question accuracy
when paired with 7 values on the ranges of [0.0,0.6] and 1.0. Conversely, sweeping through the
whole range of A values produces accuracy fluctuations of no more than 3% for 7 values on the
range of [0.7,0.8]. However, there are large accuracy fluctuations caused by changing the A value
when 7 = 0.9, but the per-question accuracies are around 20% to 40% while the accuracies on
7 =10.7,0.8,0.9] center around 55% — 60%. Finally, the top-k values can be seen to have similarly
minimal effects on accuracy. Overall, the parameter with the largest impact is 7.

The highest per-question accuracies achieved are 58.56, 60.78, and 62.11 for Qwen, Mistral,
and Llama, respectively. The 58.56 accuracy is achieved on Qwen with the parameter pairs
(k = 5,7 = 04, = [0.00,0.05,0.10,0.15,0.20,0.25]), (k = 10,7 = 0.7,\ = 0.05), and
(k = 15,7 = 0.7, A = 0.05). The 60.78 accuracy is achieved on Mistral with the parameter pairs
(k = [10,15],7 = 0.7, \ = 0.05). The 62.11 accuracy is achieved for Llama with the parameter
combination (k = 15,7 = 0.7, A\ = 0.05). The results on Qwen with k¥ = 5 can be seen as an
anomoly occurring due to a small sample set. However, all models have the parameter combina-
tion (k = 15,7 = 0.7, A = 0.05). In our evaluations, we choose to use 7 = 0.7 and A = 0.05.

23

Under review as a conference paper at ICLR 2026

> >
(a) (a)
(@] (@]
(e (e
= =
Q Q
0 0
< <
E E
< <
10 08 06 04 02 (0003
Tau
K=20
> >
(a) (a)
e) e)
C [
= =
[o)] Q
0 (9]
< <
z <
< <

Tau Tau

Figure 12: The parameter sweep using the Llama 3.1 large language model. The x-axis shows 7
values on the range [0.0, 1.0] with 0.1 increments. The y-axis shows A values on the range [0.0, 0.25]
with 0.05 increments. The z-axis shows the per-question accuracy over 900 questions from the
MQuAKE-2002 dataset. Each graph shows a different top-% value.

However, we choose to use £ = 20 instead of k = 15. Qwen, Mistral, and Llama achieve a
58.44%, 60.44%, and 61.78% per-question accuracy, respectively, with the parameter combination
(k = 20,7 = 0.7, A = 0.05). These are only a 0.12%, 0.34%, and 0.33% difference from the top
accuracies, so the difference is negligible. In theory, a larger number of edits passed to the cross-
encoder should result in better reranking because the cross-encoder ranking mechanism provides
better similarity scores than cosine similarity. We attribute this minor deviation again to a small
sample set size. The final parameter combination we use is (k = 20,7 = 0.7, A = 0.05).

G DATASET GENERATION

The masked language model used by QMEK is trained using a dataset that is created by extracting
information from existing knowledge editing datasets. In this paper, we use information extracted
from MQuAKE-CounterFact-3k v2 (Zhong et al.l [2023), but this approach can be used on any
knowledge editing dataset that provides each question hop as a relation.

24

Under review as a conference paper at ICLR 2026

Provide the object for the following triple: | Paris | capital |
Object: France|

Provide the object for the following triple: | Joe Biden | spouse |
Object: Jill Biden|

Provide the object for the following triple: | Hatchet | author |
Object: Gary Paulson|

Provide the object for the following triple: | Rainn Wilson | country of citizenship |
Object: United States|

Provide the object for the following triple: | iPhone5 | manufactured by |
Object: Apple]

Figure 13: The in-context learning prompt provided to the LLM for relational triple completion.

First, we extract all multi-hop questions and ground truth relations that correspond to their question
hops from the knowledge editing dataset. These categories are explicitly given in the MQuAKE
datasets. The questions are paired with their corresponding question hop relations. Next, we match
the relation spans to spans in the multi-hop questions to get the multi-hop question string indices
corresponding to the relations. We also manually create relation aliases for span matching because
the ground truth relations are not always directly represented in the multi-hop question. For example,
the ground truth relation country of citizenship can appear in the multi-hop question as citizen of,
warranting the addition of citizen of as a relation alias.

Each word in the question relations are marked with a start and stop index to denote the true position
of the hop in the multi-hop question. The indices are used to map the words composing each relation
to tokens during training. This further allows for the creation of token labels for training. We also
separate the words by relation hop they belong to so that the masked language model can be trained
to differentiate between different relations instead of a binary is or is not a question hop relation.
We discard any multi-hop questions that we were unable to locate the string position of at least 1
question hop relation. Each data point in the masked language model training set contains a multi-
hop question, the ground truth relations corresponding to question hops, and the indices of each
word that maps to a question hop.

H RELATIONAL TRIPLE COMPLETION

QMEK answers subquestions using LLM knowledge when no edit is necessary. QMEK represents
subquestions as incomplete relational triples ¢ = (s, r, o*), where the incompleteness comes from
the object being unknown o“. The LLM is prompted with a relational triple completion task to find
the unknown object 0%, completing the triple. LLMs are adept at few-shot learning (Dong et al.,
2024) and link prediction (Alqaaidi & Kochut, 2024} Wei et al., 2023)), making this approach a good
choice for answering subquestions with LLM knowledge. Keeping subquestions as relational triples
also eliminates any chance for errors that occur when translating triples to natural language.

The few-shot learning prompt used for triple completion is provided in Figure[I3] Triple completion
can be concretely described using the first example in the prompt. The subject and relation given are
Faris and capital. The expected answer to complete the triple is France, because Paris is the capital
of France. If this example were passed to the model, it would use the context of Paris and capital to
complete the triple with France.

25

	Introduction
	Background
	Problem Formulation
	Related Works

	Motivation
	Methodology
	Question Decomposition
	Subquestion Answering

	Experimental Results
	Question-Answering Accuracy
	Question Decomposition Accuracy
	Evaluation on Unseen Data
	Runtime Evaluation

	Conclusion
	Overview
	Baselines, Datasets, and Models Discussion
	Vector Embedding Frameworks
	Datasets
	Models

	Additional Dataset Evaluations
	MQuAKE
	KEBench
	Ripple Edit

	Ablation Studies
	Decomposition Accuracy Ablation
	Question-Answering Accuracy Ablation
	Runtime Ablation
	Reranking Ablation Study

	LLM Token Utilization
	Thresholding Parameter Search
	Dataset Generation
	Relational Triple Completion

