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Abstract
Uncertainty quantification is a principled ap-
proach to ensuring the robustness, reliability, and
safety of large language models (LLMs). How-
ever, progress in this field is hindered by the lack
of a unified framework for benchmarking. Addi-
tionally, creating suitable datasets for uncertainty
quantification is computationally demanding
because it often requires sampling LLMs multiple
times per each sample. In this work, we propose
and describe a software framework that (i) unifies
the benchmarking of uncertainty quantification
methods for language models, and (ii) provides
an easy-to-use tool for practitioners developing
more robust and safer LLM applications.

1. Introduction
Large language models (LLMs) have rapidly become the
primary tool in many real-world scenarios, such as in clin-
ical applications (Thirunavukarasu et al., 2023), to extract
key points from legal documents (Lai et al., 2024), or as re-
search assistants (Yamada et al., 2025). Moreover, they are
increasingly employed as autonomous or semi-autonomous
agents (Yao et al., 2023; Schick et al., 2023). Projections
indicate that LLMs are expected to become even more ca-
pable, assuming the correctness of existing scaling laws
(Kaplan et al., 2020; Wu et al., 2024).

Given the increasing adoption of LLMs in real-world ap-
plications, including high-stakes applications, it is crucial
to assess and ensure their reliability. However, as of today,
LLM applications often suffer from hallucinations (Ji et al.,
2023), meaning they “generate content that is nonsensical
or unfaithful to the provided source content” (Ji et al., 2023).
Moreover, Xu et al. (2024) argue that hallucinations are
inevitable problem for LLMs. Thus, LLM hallucinations
threaten reliability in safety-critical tasks, such as clinical
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documentation (Asgari et al., 2025) or data-to-text tasks,
where the tolerance towards unfaithful content generation is
very low or privacy concerns exist (Carlini et al., 2021).

A promising avenue to mitigating hallucinations is quanti-
fying the uncertainty of the model. High predictive uncer-
tainty has been shown to be associated with incorrect re-
sponses (Kadavath et al., 2022). Thus, knowing the model’s
uncertainty can help detect and prevent hallucinations and
allows LLM providers to decide when to return the gener-
ated response and whether to forward a question to a human
expert for detailed assessment. Consequently, several tech-
niques for uncertainty quantification (UQ) in LLMs have
been proposed, including measuring the maximum predicted
probability (Hendrycks & Gimpel, 2017), estimating the pre-
dictive entropy (Malinin & Gales, 2020), approximating the
semantic uncertainty of the model (Farquhar et al., 2024;
Nikitin et al., 2024b), or use the Bayesian framework (Yang
et al., 2024; Li et al., 2025). Moreover, uncertainty quan-
tification has also recently been investigated in instruction-
following tasks (Heo et al., 2025).

However, despite the importance of mitigating hallucina-
tions, software tooling that supports the development and
benchmarking of mitigation techniques is still in its infancy.
Consequently, many research works re-implement previous
methods, but do not provide a coherent toolkit. Moreover,
implementing and testing probabilistic tools for uncertainty
quantification can be particularly challenging due to their
inherent stochasticity. The current lack of software not only
hinders the use of existing uncertainty quantification meth-
ods in LLM applications but also impedes the development
and advancement of novel techniques.

Contribution. We propose the Language Models Uncer-
tainty Quantification Toolkit (LUQ) for uncertainty quantifi-
cation experimentation and benchmarking in LLMs. Our
software framework aims to democratise and advance re-
search on uncertainty quantification in LLMs by providing:
(i) implementations of popular uncertainty quantification
methods, (ii) readily available datasets for uncertainty quan-
tification experimentation, and (iii) evaluation metrics for
benchmarking the quality of the uncertainty estimates.

The LUQ toolkit available on GitHub: https:
//github.com/alexandervnikitin/luq
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with documentation available under: https:
//alexandervnikitin.github.io/luq.

2. LUQ: Language Models Uncertainty
Quantification Toolkit

Framework overview. LUQ is a comprehensive toolkit
that simplifies every stage of uncertainty estimation for LLM
responses. It provides a unified API for generating sam-
ples, curated high-quality datasets for LLM experimenta-
tion, user-friendly uncertainty quantification (UQ) methods,
and a robust evaluation framework for comparing different
UQ techniques. Additionally, LUQ includes educational tu-
torials to help LLM developers better understand and apply
UQ methods. The following sections explore each of these
components in more detail.
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Figure 1: LUQ delivers three key outputs: datasets for un-
certainty quantification, benchmark evaluation procedures,
and tools for measuring uncertainty. These outputs are built
using LUQ’s main components: models (wrappers around
LLMs, natural language inference models, and others), eval-
uators (modules that assess UQ performance), and methods
(the core of LUQ, various techniques for quantifying uncer-
tainty in LLMs). See the corresponding paragraphs below
for details on each building block.

Methods luq.methods. LUQ incorporates a variety of
methods for uncertainty quantification (UQ) in LLMs, in-
cluding maximum predicted probability (as in Hendrycks
& Gimpel (2017)), top-k probability gaps, predictive en-
tropy (PE)(Malinin & Gales, 2020), P(True) (Kadavath
et al., 2022), semantic entropy (SE) (Farquhar et al., 2024),
and kernel language entropy (KLE) (Nikitin et al., 2024b).
These methods generally involve sampling multiple re-
sponses from an LLM and assessing the model’s uncertainty
based on these samples. Some techniques, such as SE and
KLE, analyse the semantic similarity between sampled re-
sponses, while others, like PE, focus on the distribution of
predicted probabilities across the samples.

Let the set T be a vocabulary of tokens, S ∈ T N be a
sequence of length N , consisting of tokens, si ∈ T . Then
the probability of a sentence for an input x is given as

p(S = s | x) =
∏

i
p(si|s<i, x), (1)

where s<i denotes all tokens preceding si.

luq.models.max_probability. This estimator
computes the maximum probability of the outputs as

MP(x) = 1−max
s

p(s | x), (2)

where the maximum is taken over all possible output se-
quences s. LUQ approximates this value by considering
only a finite set of sampled sequences.

luq.models.top_k_gap. Analogous to MP, the
Gapk estimator analyses the probability distribution over
output sequences. It quantifies uncertainty by measuring
the difference between the highest probability and the k-th
highest probability, defined as

Gapk(x) = 1− (max
s′

p(s′ | x)−max
s

kp
(
s | x

)
), (3)

where maxk denotes the k-th largest value of p(s | x) over
all sequences s.

luq.model.predictive_entropy. The predic-
tive entropy for an input x and a random output sequence
S is defined as

U(x) = H(S | x) = −
∑

s
p(s | x) log p(s | x), (4)

where the summation is over all possible output sequences
s. As in previous cases, this score is approximated using
a finite number of sampled outputs.

luq.model.p_true. Multiple responses are gen-
erated by an LLM using a high temperature setting to
encourage diversity. Separately, a single response is
generated at a low temperature, which is treated as the
final answer. The LLM is then prompted to assess the
correctness of this final answer. The model’s uncertainty
is quantified based on the token probability distributions
associated with the generated response.

luq.model.semantic_entropy. For an input x
and a set of semantic clusters Cj ∈ Ω, where each semantic
cluster is a set of semantically equivalent texts, Semantic
Entropy (SE) is defined as

SE(x) ≈ −
∑M

j=1
p′(Cj | x) log p′(Cj |x), (5)

where Cj is one of M clusters extracted from the genera-
tions and p′(Cj | x) is a normalized semantic probability,
i.e., p′(Cj | x) = p(Cj | x)/

∑
i p(Ci | x).
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luq.model.kernel_language_entropy. One
limitation of SE is that it relies on coarse semantic clusters
and ignores the semantic distances between individual
samples. KLE generalises SE by replacing the entropy cal-
culation over semantic clusters with a semantic kernel—that
is, a positive semi-definite matrix that captures the semantic
similarities between generated samples. It then uses the von
Neumann Entropy of this kernel to measure uncertainty.

Models luq.models. LUQ provides wrappers for
LLMs and NLI models to standardise the APIs across dif-
ferent providers. For example, HFLLMWrapper can be
used for integration with HuggingFace (Wolf et al., 2019)
or ClaudeWrapper for integration with Claude1.

Evaluators luq.evals. Uncertainty quantification
methods are commonly assessed based on how well they
predict the correctness of a model’s outputs. Following the
approach of Farquhar et al. (2024) and Nikitin et al. (2024b),
for each sample in the NLG datasets, we generate multiple
responses by an LLM and a final low-temperature response.
The correctness of the final response is evaluated by an-
other language model acting as a judge (Gu et al., 2024).
We also plan to incorporate additional methods to enhance
the accuracy assessment. We use two standard evaluation
metrics: the Area Under the Receiver Operating Character-
istic Curve (AUROC) and the Area Under the Accuracy-
Rejection Curve (AUARC) (Nadeem et al., 2009). LUQ
implements these metrics along with user-friendly APIs
for ease of use. A challenge in applying UQ methods
to LLMs for mitigating hallucinations is ensuring that the
model is calibrated for the specific task. The luq.evals
.CalibrationEval tool helps evaluate an LLM’s cal-
ibration on a given dataset by computing the expected cal-
ibration error and visualising calibration curves.

Datasets luq.datasets. A key challenge in evalu-
ating the above methods on natural language generation
(NLG) benchmarks is the creation of high-quality datasets.
This process is resource-intensive: for each example in an
existing NLG dataset and for each LLM under evaluation,
multiple responses must be generated. Additionally, the
final responses for each initial sample must be manually as-
sessed for correctness to compute evaluation metrics such as
AUROC and AUARC, as described earlier. To address this
challenge, we provide pre-generated datasets for several pop-
ular LLMs, helping to democratise and streamline research
on uncertainty estimation in language models. LUQ has con-
nectors for CoQA (Reddy et al., 2019), BioASQ (Krithara
et al., 2023), and NQ (Kwiatkowski et al., 2019) datasets,
and provides a step-by-step tutorial on adding new datasets.

1https://claude.ai/
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Figure 2: Dataset for UQ Preparation. Step 1: Augment the
initial NLG dataset with outputs generated by various large
language models (LLMs). Step 2: Evaluate each sample in
the augmented dataset using an LLM-based judge to assess
the accuracy of the generated content.

2 import torch
3 import luq
4 from luq.methods import *
5 from luq.models import HFLLMWrapper
6 from transformers import AutoTokenizer,

AutoModelForCausalLM

8 model_id = "gpt2"
9 tokenizer = AutoTokenizer.from_pretrained(

model_id)
10 model = AutoModelForCausalLM.

from_pretrained(
model_id, torch_dtype=torch.float32)

11 llm = HFLLMWrapper(tokenizer=tokenizer,
model=model)

12 samples = luq.models.
generate_n_samples_and_answer(
llm,
prompt="A, B, C, or D"

)

13 mp_estimator = MaxProbabilityEstimator()
14 print(mp_estimator.estimate_uncertainty(

samples))

Listing 1: LUQ code example: evaluating uncertainty of a
model on synthetic prompt with MP.

Code Examples LUQ provides a concise API and is easy
to integrate with large LLM providers, such as HuggingFace,
and APIs such as OpenAI. We provide an example of source
code in Listing 1, which we explain in detail below.

In Listing 1, we use HuggingFace’s transformers li-
brary to instantiate a GPT-2 (Radford et al., 2019) model and
wrap it with LUQ’s HuggingFace wrapper HFLLMWrapper
(lines 8 – 11). Once instantiated, we can use LUQ’s Hugging-
Face wrapper to generate a dataset, i.e., multiple samples
from the model for a given prompt (line 12). Finally, we
use the MaxProbabilityEstimator to compute the
maximum probability of the outputs, c.f., Equation (2).

Software development practices. LUQ follows modern
software development practices. It is implemented in
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Python 3 and supports all versions from 3.10 onward. The
framework uses PyTorch (Paszke, 2019) as its core deep
learning library, and supports integration with Hugging-
Face (Wolf et al., 2019), the OpenAI API2, and the Claude
API3. Additionally, it provides a generic wrapper for com-
patibility with custom LLM implementations.

The framework includes comprehensive unit tests, and all
changes to the main branch are automatically checked with
a linter4 and unit tests. Code coverage statistics are mea-
sured for each pull request using codecov5 displayed on
the project’s front page, and for each pull request. Pre-
commit hooks ensure that tests pass and PEP8 compliance
is maintained across the entire codebase history. The project
follows semantic versioning for all releases. The documenta-
tion is deployed on a separate web page ANONYMIZED. The
package can be installed from PyPI6 or from the sources.

Tutorials. LUQ offers a series of tutorials on best prac-
tices for using LUQ, with a particular focus on uncertainty
quantification in LLMs. We plan to expand these tutorials
to include new methods and use cases.

3. Related Work
Open source software for ML. Open-source soft-
ware (OSS) has been instrumental in the recent advance-
ments of machine learning and deep learning. Frameworks
such as PyTorch (Paszke, 2019), TensorFlow (Abadi et al.,
2016), and Jax (Bradbury et al., 2018) have significantly
simplified the development of complex neural architectures
while enabling efficient use of hardware accelerators. In
parallel, numerous tools have been developed to improve the
safety and reliability of machine learning systems, including
TrueLens (Datta et al., 2022), TSGM (Nikitin et al., 2024a),
ART (Nicolae et al., 2018), Foolbox (Rauber et al., 2017),
and Torch-Uncertainty. Building on the best practices from
large amount of OSS for ML, our work advances the field
of trustworthy AI by focusing on uncertainty quantification
for LLMs. The concurrent UQLM (Bouchard & Chauhan,
2025) library focuses on hallucination detection in LLMs.
LUQ not only focuses on methods for uncertainty quantifica-
tion and hallucination detection, but also addresses datasets
and evaluation metrics, providing a framework to advance
research on uncertainty quantification in LLMs.

Safety and reliability of LLMs. Safety and reliability of
LLMs are crucial for the successful adoption of LLMs in
practical scenarios (Achiam et al., 2023). A key challenge in

2https://platform.openai.com
3https://docs.anthropic.com
4https://flake8.pycqa.org/en/latest/
5https://codecov.io
6https://pypi.org/

the field of LLM safety is preventing hallucinations (Ji et al.,
2023). Various approaches have been proposed to address
this issue, including uncertainty quantification (Farquhar
et al., 2024), training-time techniques (Kang et al., 2024),
and the use of external information for fact-checking (Lewis
et al., 2020). Uncertainty quantification methods that help to
mitigate hallucinations in LLMs include P(True) (Kadavath
et al., 2022), spectral graph metrics (Lin et al., 2023), seman-
tic entropy (SE) (Farquhar et al., 2024), and kernel language
entropy (KLE) (Nikitin et al., 2024b). LUQ progresses to-
wards more reliable LLMs by implementing uncertainty
quantification techniques and providing a coherent frame-
work for uncertainty quantification and benchmarking of
uncertainty quantification techniques.

4. Conclusion
Ensuring the safety and reliability of LLMs is essential for
their successful adoption in real-world applications. A key
component to achieving reliability in LLMs is minimising
hallucinations—or alternatively, clearly communicating the
model’s uncertainty in its responses to users.

LUQ addresses this challenge by democratizing uncertainty
quantification (UQ) methods for developers building LLM-
based applications. It offers user-friendly abstractions that
support both research and development of new UQ tech-
niques. The framework includes datasets, model wrappers
covering a wide range of LLMs, evaluation metrics, and a
broad collection of UQ methods. In the future, we plan to
enhance the framework by adding benchmarks of current
methods and providing seamless access to UQ datasets and
evaluation metrics.

LUQ is rigorously tested and follows software engineering
best practices to ensure robustness and usability.

Broader Impact. As LLMs are increasingly adopted in
real-world settings, effectively detecting and reducing hal-
lucinations in LLMs is key to improving the trustworthiness
of modern machine learning applications. An important
step to achieve this is providing a concise framework to
quantify uncertainties and benchmark technologies, thus
democratising uncertainty quantification research on LLMs.
Thus, we anticipate that our work will positively impact
fields applying LLMs in real-world settings while also
supporting LLM researchers in developing new techniques
by providing an open-source framework for experimentation
and benchmarking of uncertainty quantification in LLMs.

Limitations. While uncertainty quantification enhances
the robustness of LLMs, it does not offer an absolute mea-
sure of reliability or guarantee the correctness or incorrect-
ness of a given answer.
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