
Representing Positional Information in
Generative World Models for Object Manipulation

Anonymous Author(s)
Affiliation
Address
email

Abstract

The ability to predict outcomes of interactions between embodied agents and1

objects is paramount in the robotic setting. While model-based control methods2

have started to be employed for tackling manipulation tasks, they have faced3

challenges in accurately manipulating objects. As we analyze the causes of this4

limitation, we identify the cause of underperformance in the way current world5

models represent crucial positional information, especially about the target’s goal6

specification for object positioning tasks. We propose two solutions for generative7

world models: position-conditioned (PCP) and latent-conditioned (LCP) policy8

learning. In particular, LCP employs object-centric latent representations that9

explicitly capture object positional information for goal specification. This naturally10

leads to the emergence of multimodal capabilities.11

1 Introduction12

Among RL algorithms, model-based approaches aim to provide greater data efficiency compared13

to their model-free counterparts [4, 6]. With the advent of world models (WM) [5], model-based14

agents have demonstrated impressive performance across various domains [8, 17, 10, 13], including15

Figure 1: The world model compresses input obser-
vations into a single or per object latent state repre-
sentation. The compressed representation serves as
input to the policy for action selection. (top) Goal
information is provided through the input state vec-
tor. (bottom): Both single and object-centric rep-
resentations can be paired to a target-conditioned
policy.

real-world robotic applications [22, 20].16

When considering robotic object manipulation17

tasks, it seems natural to consider an object-18

centric approach to world modeling. Object-19

centric world models, like FOCUS [3] learn a20

distinct dynamical latent representation per ob-21

ject. This contrasts with the popular Dreamer22

method [10], where a single flat representation,23

referring to the whole scene is extracted.24

Model-based generative agents, like Dreamer25

and FOCUS, learn a latent model of the environ-26

ment dynamics by reconstructing the agent’s ob-27

servations and use it to generate latent sequences28

for learning a behavior policy in imagination [8–29

10]. However, these kinds of agents have shown30

consistent issues in succeeding in object manip-31

ulation tasks, both from proprioceptive/vector32

inputs [11] and from images [19].33

After analyzing the causes of failure of generative agents, we propose two solutions to improve34

performance:35

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.

• a simpler solution, where the target is expressed as a vector of spatial coordinates, that36

presents no major changes to the model architecture and minimal changes to policy learning;37

• a tailored solution employing an object-centric approach that integrates positional informa-38

tion about the objects into the latent space of the world model. This approach enables the39

possibility to specify goals through multimodal targets, e.g. vector inputs or visual goals.40

2 Analysis of the Current Limitations41

Figure 2: (left): examples of virtual targets. (top-
right): Dreamer’s success rate and reconstruction
performance over target and entity position (end-
effector position for reacher and cube position for
the cube environment). (bottom-right): Equiva-
lent for the FOCUS object-centric model.

To provide insights into the limitations of42

current world model-based agents in object-43

positioning tasks, we consider the performance44

of Dreamer and FOCUS on a pose-reaching and45

an object-positioning task. For pose-reaching,46

we opted for the Reacher environment from the47

DMC suite [21]. In this task, we consider the48

end-effector of the manipulator as the entity to49

be positioned at the target location. For the more50

complex object positioning task, we opted for51

a cube-manipulation task from Robosuite [24].52

The given cube has to be placed at the specified53

target location to succeed in the task.54

In both environments, the target position is uni-55

formly sampled within the workspace at every56

new episode. We test the environments in two57

different scenarios: first, with a virtual visual58

target that is rendered in the environment, and59

second, without a visual target, where the target location is provided only as a vector in the agent’s60

inputs. Training details are provided in appendix G. Based on Fig. 2, we highlight the significant61

gap in performance between the tasks with the virtual visual targets rendered in the environment and62

the tasks using only spatial coordinates as a target. The agents struggle to solve the tasks without a63

virtual target. It can also be noticed a negative correlation between the agents’ ability to reconstruct64

positional information and the performance on the task. This is particularly evident for the target65

position, but it also seems to apply to the entity position.66

There is a significant difference in the relative significance of the target information compared to67

the entire observation, in terms of their dimensionality. The information pertaining to a positional68

target comprises a maximum of three values (i.e., the xyz coordinates of the target). Conversely, when69

considering a visual cue, there are three values (i.e., RGB values) for each pixel that represents the70

target cue. Consequently, the relative significance of the target information is, at least, greater in71

the case of a large visual target, i.e. larger than a single pixel. This difference in the dimensionality72

affects the computation of the loss, and thus the weight of each component in the decoder’s loss.73

For the entity, the agents have access to this information in the visual observation. Indeed, it’s not74

surprising that both agents reconstruct the entity position accurately. To confirm our hypothesis that75

the improved predictions are due to the greater significance of the visual targets in the overall loss,76

we provide additional experiments in appendix C.77

Discussion. A concurrent work [14] conducted an extensive study between the interplay of the reward78

and the observation loss in a world model. Our analysis provides an additional insight, as we identify79

within the observation loss, an unbalance between the different decoded components. In this work,80

rather than focussing on how to balance the losses (Appendix D), we consider different approaches81

to alleviate this issue. The central idea is to find alternative ways to provide positional information82

about the target directly to the reward computation and policy learning modules, rather than relying83

on the reconstruction of the targets obtained by the model.84

3 Conditioned Policy85

Position Conditioned Policy (PCP). The first declination of our proposed solutions is the condition-86

ing of the policy directly on the positional coordinates of the desired target. By default, the world87

2

model encodes the target’s positional information in the latent states, which are then fed to the policy88

for behavior learning. Instead, as shown in the bottom of Fig. 1, we propose to concatenate the object89

positional coordinates pobjg to the latent states st as an input to the policy network. We refer to this90

strategy as Position-Conditioned Policy (PCP): πPCP (at|st, pobjg)91

When employing PCP, the policy has direct access to the target’s positional information pobjg . This92

can also be leveraged for reward computation. Rather than learning a reward head, we can use the93

world model’s decoder to predict the object’s position at time t, obtaining p̂objt . Then, the reward94

rPCP can be estimated as the distance between the target given to the policy and the reconstructed95

position of the entity of interest: rPCP = dist(p̂objt − pobjg)96

Figure 3: LCP leverages an object-centric represen-
tation. With the latent position encoder network,
the agent learns to predict the latent of each object
in the scene given the sole object position. The
policy is then conditioned on an object latent target
obtained from the target goal observation. Distance
functions are expressed as cosine similarities.

Latent Conditioned Policy (LCP). Condition-97

ing the policy on explicit features has its lim-98

itations, particularly when extending features99

beyond positional ones, or when working with100

different goal specifications, e.g. visual ones.101

Therefore, expressing features implicitly could102

represent a more robust approach. To address103

this, we propose a latent conditioned method104

for behavior learning. This approach is anal-105

ogous to the one adopted in LEXA [15] for106

goal-conditioned behavior learning. However,107

we tailor our strategy for object manipulation108

by designing an object-centric approach. We109

refer to our novel implementation as Latent-110

Conditioned Policy (LCP).111

In LEXA, policy conditioning occurs on the112

entire (flat) latent state, using either cosine or113

temporal distance methods. However, in manip-114

ulation tasks involving small objects, the cosine115

approach is inadequate because it prioritizes matching the robot’s position over visually smaller116

aspects of the scene, such as an object’s position, rather than on bigger visual components of the117

scene, e.g. the robot pose. The temporal approach was introduced to mitigate this issue. However,118

this approach generally requires a larger amount of data to converge, as the training signal is less in-119

formative, being based only on the temporal distance from the goal [15]. We argue that object-centric120

latent representations offer greater flexibility to condition the policy, thanks to the disentangled latent121

information. With LCP, we can condition the policy solely on the object’s latent states, enabling122

fine-grained target conditioning focused exclusively on the entity of interest.123

Latent Positional Encoder. To obtain object latent features for a given target position, we introduce124

the Latent Positional Encoder model, as shown in Fig. 3. This model enables inferring an object’s125

latent state directly from the object’s positional information, namely p(ŝobjt |pobjt).126

During training, the latent positional encoder is trained to minimize the negative cosine distance127

between the predicted and the reference object latent state: Lpos = − ŝobjt ·sobjt

∥ŝobjt ∥∥sobjt ∥
128

Compared to the original loss function of FOCUS (defined in Appendix E), the world model loss129

becomes: Locwm = LFOCUS + Lpos130

Latent-Conditioned Policy Learning. The introduction of the latent positional encoder enables131

the conditioning over the target object’s latent. By encoding a desired target position pobjg , the target132

object’s latent state sobjg is inferred. The latter serves as the conditioning factor for the policy network:133

πLCP (at|st, sobjg). To incentivize the policy to move the entity of interest to the target location, we134

maximize the negative latent distance between ŝobjt and sobjg . The distance function used is cosine135

similarity. rLCP becomes then: rLCP =
ŝobjt ·sobjg

∥ŝobjt ∥∥sobjg ∥
136

Visual targets. Additionally with respect to PCP, LCP enables conditioning the policy on visual137

targets. In this case, the agent does not use the latent position encoder. Instead, given a visual138

observation representing the goal target position for the object, the world model can infer the139

3

corresponding world model state, using the encoder and the posterior. Then given such a state, the140

object extractor allows extracting the target latent state sobjg , which is used in the reward computation.141

Dreamer FOCUS Dreamer
+ PCP

FOCUS
+ PCP

FOCUS
+ LCP

Reacher 0.27 ± 0.11 0.29 ± 0.1 0.8 ± 0.08 0.87 ± 0.04 0.91 ± 0.02
Cube move 0.35 ± 0.05 0.35 ± 0.08 0.54 ± 0.04 0.74 ± 0.04 0.61 ± 0.05
Shelf place 0.4 ± 0.06 0.3 ± 0.1 0.58 ± 0.08 0.59 ± 0.1 0.65 ± 0.08
Pick&Place 0.26 ± 0.13 0.22 ± 0.12 0.48 ± 0.15 0.47 ± 0.17 0.45 ± 0.17
Overall 0.32 ± 0.08 0.29 ± 0.09 0.6 ± 0.09 0.67 ± 0.09 0.65 ± 0.08

Table 1: Average score for 100 goal points equally dis-
tributed over the workspace. Performance is averaged over
3 seeds, ± indicates the std. error.

142

4 Results143

We now present the evaluation of the144

trained models (training details in Ap-145

pendix G) for a set of 4 environments146

(Appendix F). The score function consid-147

ered is presented in Appendix, Eq. 2 .148

Spatial-coordinates goal specification. By providing the different agents with goals uniformly149

distributed in the workspace we extract the overall performance of each method. Results are presented150

in Table 1. Overall, the FOCUS agent equipped with PCP or LCP gives the best performance,151

followed by Dreamer + PCP. In the "Cube move" setting where the cube object is close to the camera,152

PCP has an edge, we think this is influenced by the accurate position prediction coming from the153

world model, which is trained using more accurate position information (bigger segmentation mask154

→ better granularity in position). Instead, in the "Shelf place" environment, the latent representation155

of LCP represents best. Given that the camera is further away from the scene, we believe the agent is156

better able to deal with the inaccuracies that come from the inaccurate position readings.157

Figure 4: The mean score was achieved over 10
episodes with goal observations for latent condi-
tioning. The performance of our method with
spatial-coordinate goals (pos) is shown as a ref-
erence. Performance is averaged over 3 seeds.

Visual goal specification. An emergence prop-158

erty of FOCUS + LCP is the possibility to define159

goals via different modalities. The policy πLCP160

can be conditioned on the goal object latent ŝobjg161

coming from the encoding of the visual goal xg .162

We compare our method with visual goal con-163

ditioning against LEXA cosine and temporal.164

The goal locations are provided to the simulator165

which renders the corresponding goal observa-166

tions by "teleporting" the object to the correct167

location. The agent is then asked to matched the168

visual goal, after resetting the environment. Re-169

sults are shown in Fig. 4, where the positional170

conditioning results are shown for reference.171

As stated before, LEXA matches the flat latent vector to the goal one. This proves helpful in the172

Reacher environment, where the only part that moves is the agent, and thus LEXA cosine achieves173

the best performance. LEXA cosine fails in the other tasks, given the presence of multiple entities in174

the observations and visual goals, i.e. the robotic arm and the object. where the model focuses on175

matching the visually predominant features i.e. the robotic arm. FOCUS+LCP performs better than176

both LEXA with cosine and temporal distance in all environments but the Reacher. When compared177

to the performance of FOCUS+LCP with spatial-coordinates goal specification, there is a decrease of178

only ∼10% in performance.179

5 Conclusion180

We analyzed the challenges in solving visual robotic positional tasks using generative world model-181

based agents. We found these systems suffer from information bottleneck issues when considering182

positional information for task resolution (i.e. goal position).183

The approaches we presented overcome this issue by providing the policy network with more direct184

access to the target information. Positional Conditioning Policy (PCP), allows direct conditioning185

on the target spatial coordinates. We showed PCP improves performance for any class of world186

models, including Dreamer-like "flat" world models and FOCUS-like object-centric world models.187

Latent Conditioning Policy (LCP), is an object-centric approach that we implement on top of FOCUS.188

This allows the conditioning of the policy on object-centric latent targets, enabling multimodal goal189

definition. Results show the promise of this approach as a multimodal goal-specification method.190

4

References191

[1] K. Cobbe, C. Hesse, J. Hilton, and J. Schulman. Leveraging procedural generation to benchmark192

reinforcement learning, 2020. URL https://arxiv.org/abs/1912.01588.193

[2] J. Fan. A review for deep reinforcement learning in atari:benchmarks, challenges, and solutions,194

2023. URL https://arxiv.org/abs/2112.04145.195

[3] S. Ferraro, P. Mazzaglia, T. Verbelen, and B. Dhoedt. Focus: Object-centric world models for196

robotics manipulation, 2023.197

[4] S. Fujimoto, H. van Hoof, and D. Meger. Addressing function approximation error in actor-critic198

methods, 2018.199

[5] D. Ha and J. Schmidhuber. World models. 2018. doi: 10.5281/ZENODO.1207631. URL200

https://zenodo.org/record/1207631.201

[6] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy202

deep reinforcement learning with a stochastic actor, 2018.203

[7] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson. Learning latent204

dynamics for planning from pixels. In ICML, pages 2555–2565, 2019.205

[8] D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi. Dream to control: Learning behaviors by latent206

imagination. 2020. URL https://arxiv.org/pdf/1912.01603.pdf.207

[9] D. Hafner, T. P. Lillicrap, M. Norouzi, and J. Ba. Mastering atari with discrete world models.208

In ICLR, 2021.209

[10] D. Hafner, J. Pasukonis, J. Ba, and T. Lillicrap. Mastering diverse domains through world210

models. arXiv preprint arXiv:2301.04104, 2023.211

[11] N. Hansen, H. Su, and X. Wang. Td-mpc2: Scalable, robust world models for continuous212

control, 2024.213

[12] D. P. Kingma and M. Welling. Auto-encoding variational bayes, 2022.214

[13] P. Lancaster, N. Hansen, A. Rajeswaran, and V. Kumar. Modem-v2: Visuo-motor world models215

for real-world robot manipulation, 2024.216

[14] H. Ma, J. Wu, N. Feng, C. Xiao, D. Li, J. Hao, J. Wang, and M. Long. Harmonydream: Task217

harmonization inside world models, 2024. URL https://arxiv.org/abs/2310.00344.218

[15] R. Mendonca, O. Rybkin, K. Daniilidis, D. Hafner, and D. Pathak. Discovering and achieving219

goals via world models, 2021.220

[16] OpenAI, I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron, A. Paino,221

M. Plappert, G. Powell, R. Ribas, J. Schneider, N. A. Tezak, J. Tworek, P. Welinder, L. Weng,222

Q. Yuan, W. Zaremba, and L. M. Zhang. Solving rubik’s cube with a robot hand. ArXiv,223

abs/1910.07113, 2019.224

[17] S. Rajeswar, P. Mazzaglia, T. Verbelen, A. Piché, B. Dhoedt, A. Courville, and A. Lacoste.225

Mastering the unsupervised reinforcement learning benchmark from pixels. 2023.226

[18] R. Sekar, O. Rybkin, K. Daniilidis, P. Abbeel, D. Hafner, and D. Pathak. Planning to explore227

via self-supervised world models. In ICML, 2020.228

[19] Y. Seo, D. Hafner, H. Liu, F. Liu, S. James, K. Lee, and P. Abbeel. Masked world models for229

visual control, 2022.230

[20] Y. Seo, J. Kim, S. James, K. Lee, J. Shin, and P. Abbeel. Multi-view masked world models for231

visual robotic manipulation, 2023.232

5

https://arxiv.org/abs/1912.01588
https://arxiv.org/abs/2112.04145
https://zenodo.org/record/1207631
https://arxiv.org/pdf/1912.01603.pdf
https://arxiv.org/abs/2310.00344

[21] S. Tunyasuvunakool, A. Muldal, Y. Doron, S. Liu, S. Bohez, J. Merel, T. Erez, T. Lillicrap,233

N. Heess, and Y. Tassa. dm_control: Software and tasks for continuous control. Software234

Impacts, 6:100022, 2020. ISSN 2665-9638. doi: https://doi.org/10.1016/j.simpa.2020.100022.235

URL https://www.sciencedirect.com/science/article/pii/S2665963820300099.236

[22] P. Wu, A. Escontrela, D. Hafner, K. Goldberg, and P. Abbeel. Daydreamer: World models for237

physical robot learning, 2022.238

[23] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine. Meta-world: A239

benchmark and evaluation for multi-task and meta reinforcement learning. In Conference on240

Robot Learning (CoRL), 2019. URL https://arxiv.org/abs/1910.10897.241

[24] Y. Zhu, J. Wong, A. Mandlekar, R. Martín-Martín, A. Joshi, S. Nasiriany, and Y. Zhu. robo-242

suite: A modular simulation framework and benchmark for robot learning. In arXiv preprint243

arXiv:2009.12293, 2020.244

6

https://www.sciencedirect.com/science/article/pii/S2665963820300099
https://arxiv.org/abs/1910.10897

Appendix245

A Preliminaries246

The agent is a robotic manipulator that, at each discrete timestep t receives an input xt from the247

environment. The goal of the agent is to move an object in the environment from its current position248

pobjt to a target goal position pobjg .249

In this work, we focus on observations composed of both visual and vector entities. Thus, xt = (ot, vt)250

is composed of the visual component ot and of the vector vt. The latter is a concatenation of251

proprioceptive information of the robotic manipulator qt, the object’s position pobjt , and the target252

position pobjg . The target position can also be expressed through a visual observation xg , from which253

the agent should infer the corresponding pobjg to succeed in the positioning task.254

A.1 Generative World Models255

Generative world models learn a latent representation of the agent inputs using a variational auto-256

encoding framework [12]. Dreamer-like agents [9, 10] implement the world model as a Recurrent257

State-Space Model (RSSM) [7]. The encoder f(·) is instantiated as the concatenation of the outputs of258

a CNN for high-dimensional observations and an MLP for low-dimensional proprioception. Through259

the encoder network, the input xt is mapped to an embedding et, which then is integrated with260

dynamical information with respect to the previous RSSM state and the action taken at, resulting in261

st features.262

Encoder: et = f(xt)

Posterior: pϕ(st+1|st, at, et+1),

Prior: pϕ(st+1|st, at),
Decoder: pθ(x̂t|st).

Generally, the system either learns to predict the expected reward given the latent features [8], using a263

reward predictor pθ(r̂t|st). Alternatively, some world-model based methods adopt specialized ways264

to compute rewards in imagination, as the goal-conditioned objectives in LEXA [15].265

Rewards are computed on rollouts of latent states generated by the model and are used to learn the266

policy π and value network v in imagination [8–10].267

In our experiments, we consider a world model with a discrete latent space [9]. We also implement268

advancements of the world model representation introduced in DreamerV3 [10], such as the applica-269

tion of the symlog transform to the inputs, KL balancing, and free bits to improve the predictions of270

the vector inputs and the robustness of the model.271

A.2 Object-centric World Models272

Compared to Dreamer-like flat world models, the world model of FOCUS [3] introduces the following273

object-centric components:274

Object latent extractor: pθ(s
obj
t |st, cobj),

Object decoder: pθ(x̂
obj
t , m̂obj

t |sobjt).

Here, xobj
t = (oobjt , pobjt) represents the object-centric inputs and it is composed of segmented RGB275

images oobjt and object positions pobjt . The variable cobj indicates which object is being considered.276

Thanks to the object latent extractor unit, object-specific information is separated into distinct277

latent representations sobjt . Two decoding units are present. The introduced object-centric decoder278

pθ(x̂
obj
t , m̂obj

t |sobjt) reconstructs each object’s related inputs xobj
t and segmentation mask mobj

t . The279

original Dreamer-like decoder takes care of the reconstruction of the remaining vector inputs, i.e.280

proprioception qt and given goal targets pobjg .281

We provide additional descriptions of the world model and policy learning losses, hyperparameters,282

and training details in the Appendix.283

7

A.3 Object Positioning Tasks284

In general terms, we consider positioning tasks the ones where an entity of interest has to be moved285

to a specific location. Two positioning scenarios are considered in this analysis: pose reaching and286

object positioning. Pose-reaching tasks can be seen as simplified positioning tasks where the entity287

of interest is part of the robotic manipulator itself. Pose-reaching tasks are interesting because these288

only require the agent to have knowledge of the proprioceptive information to infer their position in289

space and reach a given target. When interacting with objects instead, there is the additional necessity290

of knowing the position of the object entity in the environment. Then, the agent needs to be able to291

manipulate and move the entity to the provided target location.292

For object positioning tasks, especially when considering a real-world setup, there is a significant293

advantage in relying mainly on visual inputs. It is convenient because it avoids the cost and difficulty294

associated with tracking additional state features, such as the geometrical shape of objects in the295

scene or the presence of obstacles. Some synthetic benchmarks additionally make use of "virtual"296

visual targets for positioning tasks [21, 23], which strongly facilitates the learning of these tasks,297

leveraging rendering in simulation. However, applying such "virtual" targets in real-world settings is298

not often feasible. Non-visual target locations can be provided as spatial coordinates. Alternatively,299

an image showing the target location could be used to specify the target’s position.300

Rewards and evaluation criteria. When applying RL algorithms to a problem, a heavily engineered301

reward function is generally necessary to guide the agent’s learning toward the solution of the task302

[16]. The object positioning setup allows us to consider a natural and intuitive reward definition303

that scales across different agents and environments. We define the reward as the negative distance304

between the position of the entity of interest and the goal target position:305

rt = −distance(object, target) = −∥pobjt − pobjg ∥2. (1)

In the spirit of maintaining a setup that is as close as possible to a real-world one, to retrieve positional306

information pt of the objects we rely on image segmentation information, rather than using the307

readings provided from the simulator. For each entity of interest, the related position is extracted by308

computing the centroid of the segmentation mask and subsequently transformed according to the309

camera extrinsic and intrinsic matrices to obtain the absolute position with respect to the workspace.310

For evaluation purposes, we use the goal-normalized score function:311

normalized score = exp

(
−

∥pobjt − pobjg ∥2
∥pobjg ∥2

)
(2)

As detailed in the Appendix, the above function allows us to rescale performance between 0 and 1,312

where 1 = expert performance, a common evaluation strategy in RL [1, 2].313

B Normalized score314

Scaling performance using expert performance is a common evaluation strategy in RL [1, 2]. In our315

problem, we define the reward as the negative distance:316

rt = −r(pobjt) = −∥pobjt − pobjg ∥2. (3)

For a given goal pobjg , rt ∈] − inf, 0]. In order to compare different tasks, where distances may317

have different magnitudes, we divide the rewards rt by the typical reward range. This is given by318

rmax − rmin, where rmin = r(pobj0), with p0 being the initial position of the object (this is normally319

around the origin, and rmax = r(pobjg) = 0.320

Thus, we obtain:321

st = rt/(rmax − rmin) (4)

= r(pobjt)/(0− r(pobj0)) = (5)

= −∥pobjt − pobjg ∥2/(0 + ∥0− pobjg ∥2) (6)

= −∥pobjt − pobjg ∥2/∥pobjg ∥2 (7)

8

Figure 5: Dreamer virtual visual goal modulation experiments on the Reacher environment. Value
prediction from the value network is shown to highlight the policy’s awareness of the lack of
information with respect to the target goal.

Finally, we apply the exp operator, to make values positive and bring them in the [0, 1] range, where322

1 is the expert score:323

normalized score = exp

(
−

∥pobjt − pobjg ∥2
∥pobjg ∥2

)
(8)

C Target size ablation324

In Figure 5, we present a study where the Dreamer model is trained on the Reacher environment with325

varying visual target sizes.326

We observe that the reduction in pixel information regarding the target adversely affects the target327

representation within the model, resulting in a deficiency of this information being conveyed to the328

policy network. The policy struggles to learn to position the entity at the correct location, and we329

observe that this is correctly reflected in the value function’s predictions. This means the policy330

is aware that is not being able to reach the goal. With small targets (< 5 pixels diameters), the331

representation tends to put more attention on other visually predominant aspects of the environment,332

struggling to predict the position of the target. In the case of a single pixel target, the amount of target333

information equals the one of a positional vector and, as expected, the task performance is equally334

low.335

D Loss rescaling ablation336

To overcome the identified information bottleneck, different strategies can be considered. The337

simplest one is the re-scaling of the loss components in the decoder to incentivize the model’s338

encoding of the target information. This approach requires finding the optimal scaling factor between339

the different decoding components, given the complexity of the environment at hand (i.e. 2D or 3D)340

and the amount of relevant pixels. In Figure 6, we present supporting experiments based on Dreamer,341

where we vary the importance of the target in the loss of the world model, using different coefficients.342

We observe that very high coefficients improve the target’s reconstruction and thus allow the agent to343

learn the task. However, the optimal loss coefficient may vary, depending on the complexity of the344

Figure 6: Dreamer trained with goal scaling modulation on the Reacher and Cube move environments.

9

environment and the presence of information-rich observations. As this naive solution may require345

extensive hyperparameter tuning for each new scenario, we aim to find more robust strategies for346

overcoming this issue.347

E FOCUS objective348

Training of the FOCUS architecture is guided by the following loss function:349

LFOCUS = Ldyn + Lstate + Lobj. (9)

Ldyn refers to the dynamic component of the RSSM, and equals too:350

Ldyn = DKL[pϕ(st+1|st, at, et+1)||pϕ(st+1|st, at)]. (10)

the backpropagation is balanced and clipped below 1 nat as in DreamerV3 [10].351

The object loss component is instantiated as the composition of NLL over the mask and RGB mask352

reconstructions:353

Lobj = − log p(m̂t)︸ ︷︷ ︸
mask

− log

N∑
obj=0

mobj
t pθ(x̂t

obj|sobj
t)︸ ︷︷ ︸

masked reconstruction

(11)

Finally, the decoder learns to reconstruct the rest of vector state information vt by minimization of354

the negative log-likelihood (NLL) loss:355

Lstate = − log pθ(q̂t, p
obj
g |st) (12)

F Baselines and Environments356

For the evaluation of the proposed method we consider several manipulation environments (Figure 7):357

• Reacher (DMControl): which, as described previously, represents a pose-reaching position-358

ing task.359

• Cube move (Robosuite): where considered target locations are on the 2D plane of the table,360

no height placement is considered.361

• Shelf place and Pick&Place (Metaworld): The robotic manipulator has to place the cube362

at the given target location. Considered target locations are on the 2D space in front of the363

robotic arm.364

In all environments, the reward signal is defined as the distance between the entity of interest (in the365

Reacher environment, this is the end-effector) and the target location. All considered environments366

lack any visual target; the target is provided as an input vector containing spatial coordinates.367

We benchmark our methods against various baselines:368

• Dreamer: based on a PyTorch DreamerV2 implementation, but integrated with input vector369

symlog transformation and KL balancing of the latent dynamic representation, from the370

DreamerV3 paper.371

Figure 7: Simulation environments with relative workspace, delimited by an orange dotted line, and
the reference frames indicated with arrows.

10

• FOCUS: An object-centric world model implementation based on DreamerV2, also inte-372

grated with input vector symlog transformation and KL balancing of the latent dynamic373

representation.374

• LEXA: Based on DreamerV2, this is a latent goal-conditioned method. The conditioning is375

based on the full latent target. Both proposed distance methods (cosine and temporal) are376

considered. We adopted our own PyTorch implementation for LEXA.377

G Training details and Hyperparameters378

All methods are trained following an offline RL training scheme. The offline datasets contain 1M379

steps in the environment, which are collected using the object-centric exploration strategy proposed380

in [3]. The datasets are loaded in the replay buffer of the offline agents, and the training is conducted381

for 250K steps. Both world model and agent are updated at every training step. V100-16GB GPUs382

have been used for all experiments. Our proposed methods (i.e. Dreamer/FOCUS + PCP, FOCUS +383

LCP) took roughly 18 hours to complete each training run.384

The hyperparameters used for the main implementation of the world models and agent are the same385

used in DreamerV2 [9] official implementation. Symlog function is applied at every input. KL386

balancing as in DreamerV3 [10] is implemented.387

With reference to FOCUS model, we have the following additional parameters:388

• Object-extractor: MLP composed of 2 layers, 512 units, ReLU activation;389

With reference to FOCUS + LCP model, we have the following additional parameters:390

• Object-encoder: MLP composed of 4 layers, 400 units, ReLU activation;391

• Distance method object-encoder objective: Cosine similarity (also tested MSE)392

• Distance method actor policy objective: Cosine similarity (also tested MSE)393

Figure 8: Heatmaps of the mean achieved score for uniformly spread targets in the workspace.
References frames refers to the one presented in the figures of Table 1. The score notation is
expressed as the notation presented in Eq. 2. Results are averaged over 3 seeds.

11

H Heatmaps positioning tasks394

To highlight the performance distribution over the different goals in the environment, in Fig. 8 we395

present heatmaps with the score function for each target location in the workspace. Results are396

presented for all the different tasks. As expected, both Dreamer and FOCUS have poor performances,397

resulting in only a few positions being reached with a high score. All the proposed methods have a398

similar distribution, reaching goals spread all over the environment.399

I Offline Training Curves400

Offline training curves are presented in Figure 9. In general FOCUS + PCP/LCP have faster401

convergence when compared to all other methods. Only for the Reacher environment, LEXA cosine402

converge faster.403

Figure 9: Offline training curves. Standard deviation is omitted for graphical reasons. Mean score
refers to eq. 2 and is computed over 5 evaluation episodes, performed during the offline training. For
each episode, a random goal is selected out of a pool of 10 manually engineered ones.

J Explorations strategies404

In the presented work each model is trained offline from a pre-recorded dataset. The dataset of405

choice is obtained from pure exploration behavior. In Fig. 10 we compare the general performance406

of LCP when trained on datasets acquired using different exploration strategies. We consider the407

object-centric entropy maximization method proposed by Ferraro et al. [3] and Plan2Explore [18].408

Figure 10: Mean score achieved over 10 episodes for models trained with both datasets obtained
from FOCUS exploration method (Object-Centric entropy maximization) and Plan2Explore. The
score is expressed according to equation 2.

Overall exploring by maximizing the entropy over the object’s latent, gives better performance in409

the downstream task. We hypothesize this is related to the focus the exploration strategy puts on the410

object of interest while disregarding background aspects in the scene.411

12

	Introduction
	Analysis of the Current Limitations
	Conditioned Policy
	Results
	Conclusion
	Preliminaries
	Generative World Models
	Object-centric World Models
	Object Positioning Tasks

	Normalized score
	Target size ablation
	Loss rescaling ablation
	FOCUS objective
	Baselines and Environments
	Training details and Hyperparameters
	Heatmaps positioning tasks
	Offline Training Curves
	Explorations strategies

