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Abstract

Despite growing interest in video-to-music generation systems, their application in
film production remains limited, primarily due to the lack of large-scale datasets
containing aligned pairs of movie clips and soundtracks. Although prior work
has attempted to construct such a dataset [12], this comprises only 36.5 hours of
data, which is insufficient for training robust models. In this paper, we present
Open Screen Soundtrack Library Version 2, a novel dataset comprising pairs of
video clips from films and their corresponding soundtracks, curated with a novel
methodology that automatically identifies and extracts soundtrack segments from
video clips. The dataset consists of 552.70 hours and 76,408 video clips sourced
from both public domain movies as well as commercial ones from a publicly
available dataset [1]. Our objective evaluation results show the usefulness of our
dataset for building a soundtrack generation model for film production.

1 Introduction

Video-to-music generation systems have gained increasing attention in both the audio and symbolic
domains. However, their application in film production remains limited, as most prior work has
focused on use cases such as music videos [29, 23, 16], advertisements [24], or user-generated
content [30]. While some studies have utilized trailer data for video-to-music generation [24], trailer
music possesses unique characteristics that are significantly different from main movie soundtracks.

To date, we have identified only two studies that specifically address video-to-music generation for
film production—one in the symbolic domain [27] and the other in the audio domain [12]. Despite the
success of the former, the symbolic-domain approach requires expert knowledge to convert symbolic
outputs into usable soundtracks, making it impractical for film producers. The latter leveraged video
information to generate soundtracks directly; however, it relied heavily on textual information due to
the limited size of its dataset, which is only about 36.5 hours.

To overcome these limitations, we constructed a large-scale dataset consisting of aligned movie
clips and corresponding soundtracks, totaling 552.70 hours and 76,408 video clips. Using a novel
methodology, we identified and extracted soundtrack segments from video content. As demonstrated
by our experimental results, this dataset enables successful training video-to-music generation models
tailored specifically for film production applications.

2 Related Work

Music-Video Datasets A number of datasets have been developed for video-to-music generation
tasks in the audio domain. These datasets span various types of video content, including music
videos [7, 29, 16, 17, 24], musical performance recordings [15], and user-generated content [7]. The
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Table 1: Comparison of video-music datasets available as of August 2025.

Dataset Self-
Hosted

Video
Content

Length
(Hours)

HIMV-200K [7] ✗
Music Video,

User-Generated Video -

URMP [15] ✗ Music Performance 33.5
TikTok [28] ✗ Dance Video 1.5

SymMV [29] ✗ Music Video 76.5
MuVi-Sync [8] ✗ Music Video -
BGM909 [17] ✗ Music Video -
VidMuse [24] ✗ Music Video, Advertisements, Trailer 18k

OSSL [12] ✓ Films 36.5
OSSL-v2 (ours) ✓ and ✗ (partial) Films 522.7

dataset most closely related to our work is the Open Screen Soundtrack Library, which comprises
music–movie clip pairs sourced from public domain films [12]. In contrast, our dataset is significantly
larger in scale and draws from both public domain and commercial films.

Video-Conditioned Music Generation Several studies have explored music generation condi-
tioned on video input. One of the early and influential works in this area employed human pose
features extracted by pre-trained models to generate music for video clips depicting individuals
playing musical instruments [6]. More recent approaches utilize either handcrafted features [4] or
embeddings from pre-trained video encoders [29, 24, 23, 30, 12] to build video-to-music generation
systems. Our method illustrated in this paper adopts this latter strategy, leveraging learned video
representations to guide the music generation process.

3 Dataset Construction

Our music-movie clip dataset, Open Screen Soundtrack Library Version 2 (OSSL-v2) is constructed
from two types of movie data. The former comprises 1,886 public domain films downloaded from
YouTube 2, and the latter is derived from a publicly available movie dataset, the Condensed Movies
Dataset [1]. Our dataset construction process consists of two main components: source separation
and event detection.

In the first step, we apply an open-source separation model [22] in order to extract music from each
movie clip’s audio track. This model offers a high-quality processing option that requires three times
longer than the default option. We select the high-quality option for audio source separation because
our objective is to create a music-movie clip dataset with the highest possible quality.

In the second step, we employ an event detection model to estimate the probability distribution of
event types in source-separated musical tracks. This step is essential because the source separation
model, even when using a high-quality option, is not perfect; source-separated music often contained
non-musical events. To address this, we use an open-source automatic event detection model [13],
from which we identify 157 out of 527 categories as musical events (e.g., “trance music”). We define
the music probability as the sum of probabilities for the 157 musical events, and the non-music
probability as the sum of probabilities for the 370 non-musical events, to source-separated music.
We extract segments where the music probability exceeds the non-music probability for at least 10
consecutive seconds. However, this fails to filter out cases where both musical and non-musical
events are prominent (e.g., music probability of 0.8 and non-music probability of 0.7). Therefore, we
apply an additional filter to exclude cases where the non-music probability exceeded 0.05.

This approach yields a total of 76,408 video clips with source-separated soundtracks (processed using
the high-quality option) averaging 26.04 seconds in length, along with rich metadata such as genres,
release year, and title. Detailed dataset statistics are presented in Table 2.

2This part is self-hosted, meaning that readers do not need to undergo a separate download process such as
web scraping.
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Table 2: Statistics of the OSSL-v2 Dataset. To obtain commercial movie clips, we used a list of
YouTube IDs from the Condensed Movies Dataset [1] and scraped the corresponding clips from the
web.

Public Domain Commercial [1] Total
Number of Clips 35,705 40,703 76,408
Number of Unique Films 1,886 2,633 4,519
Average Length (seconds) 28.77 23.65 26.04
Total Length(hours) 285.31 267.39 552.70

4 Experimental Setups

4.1 Comparative Models

The goal of our experiment is to validate the potential of our large-scale film-soundtrack dataset,
OSSL-v2, for the video-to-music generation task. We use MMAudio [3], a state-of-the-art model
in video-foley sound generation, as our baseline architecture. We compare this model with three
different models that are built upon this architecture.

Pretrained MMAudio-S-16kHz (Baseline): We employ the pretrained MMAudio model, which
is trained on VGGSound [2] (approximately 500 hours of audio-visual data), AudioCaps [11]
(approximately 128 hours), and WavCaps [19] (approximately 7,600 hours). While MMAudio was
not specifically trained for music generation, its audio-text training data contains substantial music
content, enabling the model to capture associations between visual inputs and musical features, thus
retaining the capacity for video-to-music generation.

Fine-tuning without Text Modality: Since our OSSL-v2 dataset does not contain paired text
prompts. We leverage MMAudio’s capability to handle missing modalities by setting all the text
features as learnable empty tokens during fine-tuning, allowing the model to focus primarily on the
video and music modalities.

Training from Scratch with Visually-Grounded Text Features: We address the missing text
modality by using CLAP [26]-derived audio embeddings to simulate corresponding text embeddings,
following approaches validated in prior work [23]. This model is trained from scratch using these
visually-grounded text features. Since MMAudio has demonstrated that the text modality serves as an
anchor to connect multiple modalities and enhance overall model performance, we adopt this method
to address the absence of text modality in our dataset.

Fine-tuning with Visually-Grounded Text Features: We combine pretrained weights with visually-
grounded text features by adding a mapping layer that transforms CLAP features to match CLIP text
feature dimensions used in MMAudio. This preserves learned representations while adapting text
modality handling to our dataset.

4.2 Evaluation Metrics

Following prior works [21, 12], we evaluate the quality of generated music using a suite of objective
metrics.

To assess distributional properties, we extract CLAP [26] embeddings from generated samples
and a 5K high-quality commercial soundtracks that are not included in the OSSL-v2 dataset, and
compute Fréchet Audio Distance (FAD)[10]. Following [20], we report Precision, Recall, Density,
and Coverage based on CLAP embeddings. Precision measures the proportion of generated samples
close to real data (fidelity), while Recall reflects how well real samples are recovered by generation
(diversity), both using k-NN overlap. Density quantifies the concentration of generated samples
around real data, and Coverage estimates how much of the real data manifold is covered.

For paired fidelity, we report CLAP Similarity and KL Divergence. The former is cosine similarity
between CLAP embeddings; the latter compares PaSST [14] label distributions to capture semantic
differences.

Finally, we assess temporal alignment in terms of dynamics by using our novel metric, Dynamics
Distance (DD), to capture smooth variations in loudness and energy of music that are often overlooked
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Table 3: Comprehensive evaluation results. See Section 4.2 for the choice of metrics.

Method FAD ↓ CLAP Sim. ↑ KL Div. ↓ DD ↓ Precision ↑ Recall ↑ Density ↑ Coverage ↑
Pretrained MMAudio 80.90 44.88 2.19 ± 1.49 1.38 ± 0.23 28.63 0.73 3.02 3.23

Fine-tune w/o Text 51.25 67.36 0.68 ± 1.01 1.10 ± 0.43 37.30 4.50 5.26 9.23
Training from Scratch 61.72 66.55 0.61 ± 0.87 1.06 ± 0.51 34.13 1.91 4.82 5.60

Fine-tune w/ Text 50.80 68.36 0.65 ± 0.98 1.03 ± 0.49 35.63 10.73 5.47 9.20

by existing evaluation methods. Dynamics Distance is calculated as follows. We extract energy
contours using short-time Fourier transform (STFT), apply Savitzky–Golay smoothing for temporal
coherence, as suggested in [25] and compute the root-mean-square (RMS) error between normalized
dynamics curves to quantify alignment quality.

4.3 Details

We partition the OSSL-v2 dataset into training, validation, and test sets with an 8:1:1 ratio, ensuring
uniform distribution of different film genres across all subsets. This results in 138,783 video clips for
training data, 17,352 clips for validation data, and 17,347 clips for final evaluation as our test set,
where the clips are 8 seconds long. We provide more training details in Appendix B.

5 Results and analysis

Table 3 shows the performance of the different methods on the test set.

The experimental results demonstrate that all methods trained with the OSSL-v2 significantly outper-
form the pretrained MMAudio baseline across content quality metrics, indicating that domain-specific
training enables models to generate music content better aligned with film soundtrack characteristics.

Fine-tuning with visually-grounded text features performs optimally on most metrics, particularly
excelling in Recall where it substantially surpasses other approaches, suggesting that text modality
serves as an effective multimodal anchor for enhancing generation diversity. In contrast, while
fine-tuning without text demonstrates strong performance in Precision and Coverage, its lower Recall
reflects that without text guidance, the model tends toward more conservative generation with limited
coverage scope.

From a training strategy perspective, fine-tuning methods consistently outperform training from
scratch, indicating that pretrained weights contain valuable general audio-visual associative knowl-
edge for film scoring tasks, and that additional text-audio datasets help models better capture semantic
relationships. However, all methods show limited improvement in Dynamics Distance (DD) metrics,
revealing fundamental challenges in temporal dynamic alignment with current approaches.

6 Conclusion

In this paper, we introduced the OSSL-v2 dataset, a large-scale dataset of paired movie clips and
their corresponding soundtracks, constructed using a novel methodology that automatically identifies
and extracts soundtrack segments from video clips. We believe this dataset will facilitate the training
of video-to-music generation systems with applications in film production. Although our focus was
specifically on film clips, we also want to emphasize the broad generalizability of our methodology,
which is also applicable to other types of video content, such as vlogs, highlighting its potential for
constructing diverse music–video datasets.

In addition, we demonstrate that our dataset enhanced video-to-music generation capabilities, with
all trained models substantially outperforming general-purpose baselines. However, persistent
challenges in temporal dynamics alignment reveal that current synchronization mechanisms designed
for discrete audio events are fundamentally mismatched with music generation’s continuous temporal
requirements, and we regard this as an important direction for future exploration.
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A List of Music-related Categories from PANNs

PANNs classifies events into 527 categories. Among them, we identified the following 157 as
music-related categories:

• Singing
• Choir
• Yodeling
• Chant
• Mantra
• Male singing
• Female singing

• Child singing

• Synthetic singing

• Rapping

• Humming

• Music

• Musical instrument

• Plucked string instru-
ment

• Guitar

• Electric guitar

• Bass guitar

• Acoustic guitar
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• Steel guitar, slide gui-
tar

• Tapping (guitar tech-
nique)

• Strum

• Banjo

• Sitar

• Mandolin

• Zither

• Ukulele

• Keyboard (musical)

• Piano

• Electric piano

• Organ

• Electronic organ

• Hammond organ

• Synthesizer

• Sampler

• Harpsichord

• Percussion

• Drum kit

• Drum machine

• Drum

• Snare drum

• Rimshot

• Drum roll

• Bass drum

• Timpani

• Tabla

• Cymbal

• Hi-hat

• Wood block

• Tambourine

• Rattle (instrument)

• Maraca

• Gong

• Tubular bells

• Mallet percussion

• Marimba, xylophone

• Glockenspiel

• Vibraphone

• Steelpan

• Orchestra

• Brass instrument

• French horn
• Trumpet
• Trombone
• Bowed string instru-

ment
• String section
• Violin, fiddle
• Pizzicato
• Cello
• Double bass
• Wind instrument,

woodwind instrument
• Flute
• Saxophone
• Clarinet
• Harp
• Bell
• Church bell
• Jingle bell
• Bicycle bell
• Tuning fork
• Chime
• Wind chime
• Change ringing (cam-

panology)
• Harmonica
• Accordion
• Bagpipes
• Didgeridoo
• Shofar
• Theremin
• Singing bowl
• Scratching (perfor-

mance technique)
• Pop music
• Hip hop music
• Beatboxing
• Rock music
• Heavy metal
• Punk rock
• Grunge
• Progressive rock
• Rock and roll
• Psychedelic rock
• Rhythm and blues

• Soul music
• Reggae
• Country
• Swing music
• Bluegrass
• Funk
• Folk music
• Middle Eastern music
• Jazz
• Disco
• Classical music
• Opera
• Electronic music
• House music
• Techno
• Dubstep
• Drum and bass
• Electronica
• Electronic dance mu-

sic
• Ambient music
• Trance music
• Music of Latin Amer-

ica
• Salsa music
• Flamenco
• Blues
• Music for children
• New-age music
• Vocal music
• A capella
• Music of Africa
• Afrobeat
• Christian music
• Gospel music
• Music of Asia
• Carnatic music
• Music of Bollywood
• Ska
• Traditional music
• Independent music
• Song
• Background music
• Theme music
• Jingle (music)
• Soundtrack music
• Lullaby
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• Video game music
• Christmas music
• Dance music
• Wedding music

• Happy music
• Funny music
• Sad music
• Tender music

• Exciting music

• Angry music

• Scary music

B Training Details

B.1 Basic Training Configuration

Our training process largely follows the original MMAudio settings with identical optimizer configu-
rations and learning rate scheduling strategies. Specifically, we use a base learning rate of 1× 10−4

with a linear warmup schedule of 1K steps to train our models for 300K iterations. We employ the
AdamW optimizer [5, 18] with β1 = 0.9 and β2 = 0.95. We notice occasional training collapse (to
NaN) if the default β2 = 0.999 was used instead. The learning rate is reduced to 1× 10−5 after 80%
of training steps, and further to 1× 10−6 after 90% of training steps. We use post-hoc EMA [9] with
a relative width σrel = 0.05 for all models. For efficiency, we use bf16 mixed precision training in
all runs. All audio latents and visual embeddings are precomputed offline and loaded during training.

B.2 Fine-tuning Specific Adjustments

For fine-tuning experiments, we make targeted adjustments to training parameters to accommodate
domain-specific data training requirements:

Learning Rate: Fine-tuning learning rate is set to 1/10 of the original rate (1 × 10−5), following
standard practice for fine-tuning tasks to preserve pretrained knowledge while adapting to new domain
data.

Warmup and Scheduling: Linear warmup steps are adjusted to 500, with learning rate schedule
milestones correspondingly adjusted to 60% and 80% of total iterations.

Validation and Saving Intervals: Validation interval, weight saving interval, and checkpoint saving
interval are all adjusted to more frequent intervals (every 2K-5K steps) for better monitoring of the
fine-tuning process.

Early Stopping: We implement early stopping with patience of 3-5 epochs and minimum delta of
0.001 to prevent overfitting, without changing the maximum iteration limit.

B.3 CLAP-to-CLIP Projection Architecture

To address the missing text modality in our OSSL-v2 dataset, we implement a learnable projection
network that transforms CLAP audio embeddings into CLIP-compatible text features. This design
choice is motivated by the fundamental architectural differences between CLAP and CLIP embed-
dings: CLAP produces single 512-dimensional global audio representations, while CLIP text features
consist of 77 tokens each with 1024 dimensions to capture fine-grained textual semantics.

Our projection architecture addresses both dimensional and sequential mismatches through a four-
stage transformation pipeline. The first stage performs feature projection from the 512-dimensional
CLAP space to the 1024-dimensional CLIP space through an intermediate 768-dimensional hidden
layer with LayerNorm and GELU activation for stable training. The second stage expands the
single global feature into 77 sequential tokens via a linear transformation followed by normalization,
effectively distributing the global audio semantics across the expected text sequence length. The third
stage introduces learnable positional embeddings to provide sequential structure that mimics natural
language token positioning. Finally, the fourth stage applies a refinement projection with dropout
regularization to produce the final CLIP-compatible representations.

Mathematically, the complete transformation can be expressed as:

CLAPtoCLIP(x) = Projfinal (Reshape(Expand(Projfeat(x))) +P) (1)

where x ∈ RB×1×512 represents the input CLAP features, P ∈ R1×77×1024 denotes the learnable
positional embeddings, and the output spans RB×77×1024 to match CLIP text feature dimensions.
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This projection network enables seamless integration of audio-derived semantic features into the
existing multimodal architecture while maintaining compatibility with the original CLIP text feature
space. The learnable nature of all transformation components allows the network to adapt the
audio-text semantic mapping specifically for film soundtrack generation tasks.

B.4 Modality Handling Strategies

Fine-tuning without Text Modality: This approach leverages MMAudio’s inherent capability to
handle missing modalities through its masking mechanism. During training, we replace all text
features with learnable empty tokens (∅t), effectively removing the text branch from the multimodal
attention computation while preserving the architectural integrity. This strategy forces the model to
establish direct semantic correspondences between visual and musical modalities without relying
on textual intermediaries. The model learns to map visual features directly to musical semantics,
potentially capturing more nuanced audio-visual relationships that might be lost in text-mediated
training. However, this approach sacrifices the semantic richness that text modality typically provides,
which may limit the model’s ability to understand abstract musical concepts or emotional associations.

Training from Scratch with Visually-Grounded Text Features: Recognizing that text modality
serves as a crucial semantic anchor in multimodal learning, we implement a simulation strategy
using CLAP-derived audio embeddings to generate pseudo-text features. This approach is motivated
by the observation that CLAP models, trained on large-scale audio-text pairs, learn to encode
semantic information about audio content in ways that partially overlap with text-based semantic
representations. We extract CLAP embeddings from the audio component of each video-music
pair and transform them through our projection network to create CLIP-compatible text features.
This visually-grounded text modality provides semantic grounding while maintaining the three-way
interaction between video, audio, and text that has proven effective in MMAudio’s architecture.
The complete model is trained from scratch using these visually-grounded text features, allowing
all components to co-adapt to the film-specific domain while preserving the multimodal learning
benefits.

Fine-tuning with Visually-Grounded Text Features: This hybrid approach combines the representa-
tional power of pretrained weights with the domain-specific adaptation enabled by visually-grounded
text features. We begin with MMAudio’s pretrained parameters, which encode rich audio-visual cor-
respondences learned from general video data, and integrate our CLAP-to-CLIP projection network
to handle the text modality. During fine-tuning, the projection network learns to map audio-derived
semantic features into the CLIP text space while the pretrained multimodal transformer adapts to
film-specific video-music relationships. This strategy preserves the general audio-visual knowledge
encoded in the pretrained model while introducing film-specific semantic understanding through the
visually-grounded text features. The projection network effectively serves as a domain adaptation
layer that translates film soundtrack semantics into the text feature space that the pretrained model
expects, enabling efficient knowledge transfer while maintaining architectural consistency.

B.5 Training Resources

All experiments are conducted on NVIDIA A100 GPUs. Training from scratch requires 24 hours on
two A100 GPUs, while fine-tuning experiments complete within 8-12 hours on a single A100 GPU.
Table 4 summarizes the computational resources used for each experimental configuration.

Table 4: Training resources for different experimental configurations.

Configuration GPUs Training Hours Total GPU-Hours
Training from Scratch 2 A100 24 48
Fine-tuning w/o Text 1 A100 8 8
Fine-tuning w/ Text 1 A100 12 12
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