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Abstract

Pre-training transformer models on self-supervised tasks and fine-tuning them on down-
stream tasks, even with limited labeled samples, have achieved state-of-the-art performance
across various domains. However, learning effective representations from complex temporal
structured health data and fine-tuning for health-related risk predictions remains challeng-
ing. While self-attention mechanisms excel in capturing relationships within sequences,
they may struggle to adequately model both long-range dependencies (global attentions)
and short-range dependencies (local attentions) within a sequence of events. Addressing
this limitation typically involves expensive enhancements to the pre-training process. In
this work, we propose a novel method called Global-Local self-Attention (GLA) to augment
pre-trained models during the fine-tuning phase. Our approach encourages the self-attention
mechanism to effectively capture both long and short dependencies within input sequences
simultaneously. This is achieved by introducing noise to the self-attention and then con-
volving it with a 2D Gaussian kernel. The first term encourages attention between distant
events in the input sequence (global attention), while the second term promotes attention
to local events. With GLA, we observe enhanced model performance on downstream tasks.
Furthermore, our method sheds light on the model’s ability to learn complex global and local
relations within a sequence of medical events, providing valuable insights into its behavior
within the attention mechanism.

1 Introduction

Foundation models, deep neural networks pre-trained on broad unlabeled data using self-supervised methods,
have significantly impacted various aspects of our lives, including law, healthcare, education, and more
Bommasani et al. (2021); Guo et al. (2023); Wornow et al. (2023). These models typically acquire general
knowledge about the data through pre-training a variant of the transformer network on a self-supervised
task like Masked Language Model (MLM), and then adapt this knowledge to downstream tasks with only a
few labeled samples during the fine-tuning process.

Pre-training transformers have been employed with various self-supervised objectives and domains. Common
objectives include corrupted text reconstruction tasks like MLM Devlin et al. (2018); Lewis et al. (2019); Lan
et al. (2019) and standard language models such as next-word prediction Radford et al. (2019); Brown et al.
(2020), which have been extensively utilized Liu et al. (2023). These models typically adopt a backbone
architecture inspired by the multi-head attention mechanism in transformers Vaswani et al. (2017), known
for its effectiveness in modeling complex interaction between events (tokens) in a sequence (text). These
foundation models have been pre-trained on different domain data, such as general text Lan et al. (2019);
Radford et al. (2019) and structured temporal health data as sequences of events Li et al. (2020); Rasmy
et al. (2021); Pang et al. (2021); Amirahmadi et al. (2024a).

Modeling Electronic Health Records (EHRs) trajectories presents a critical opportunity for predicting health-
related outcomes, offering benefits like early intervention, cost reduction, and improved public health. This
field has attracted significant attention from deep learning researchers Xiao et al. (2018); Amirahmadi et al.
(2023); Boll et al. (2024). Typically, healthcare specific foundation models are pre-trained on extensive,
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publicly available, unlabeled EHR data, and adapting these models through fine-tuning consistently demon-
strates superior performance across various tasks Li et al. (2022); Amirahmadi et al. (2024b); Ren et al.
(2021).

However, Adapting these pre-trained models for modeling temporal structured healthcare data comes with its
challenges. Researchers have explored the effectiveness of self-attention architectures in capturing complex
long-term and short-term dependencies within healthcare events (Li et al., 2020; Rasmy et al., 2021). While
self-attention architectures offer direct connections within event sequences and global and local attending
abilities, they still face limitations in capturing the full capacity of self-attentions for modeling intricate
dependencies (Choi et al., 2020; Zhu & Razavian, 2021; Amirahmadi et al., 2024a). Challenges such as
data scarcity due to privacy concerns, extensive sparsity in datasets, and imbalanced labeled samples for
specific diseases further compound the issue. To address the lack of attention challenge, researchers have
experimented with various approaches, including initializing self-attentions with domain knowledge (Choi
et al., 2020), employing variational autoencoders (Zhu & Razavian, 2021), and incorporating auxiliary tasks
during pre-training (Pang et al., 2021; Amirahmadi et al., 2024a; Ren et al., 2021). Figure 1 illustrates how
these different solutions impact attention behaviors. However, these methods often come with computational
costs and needs extra effort for implementation and design. In this study, we propose a simple two-step
augmentation method aimed at encouraging self-attention to learn and acquire complex dependencies within
event sequences during the fine-tuning step. This method does not alter the computational graph, making
it applicable to any pre-trained network with minimal effort.

The primary focus of our work is to enhance the performance of pretrained transformers during the fine-
tuning stage in healthcare applications, specifically through on-the-fly augmentation with GLA (Global-Local
self-atttentin Augmentation) without altering its computational graph. This approach is comparable to
recent augmentation methods like Neftune, which also operate within the pretrained transformer framework.
Importantly, our method maintains flexibility and is applicable across any domain utilizing transformers, a
quality that ensures broad applicability beyond the specific healthcare datasets we used.

The main contributions are summarized as follows:

1. We proposed a simple augmentation method for self-attention to encourage global and local atten-
tions without altering the computational graph during the fine-tuning step.

2. We conducted several evaluations on various downstream tasks, examining the effect of the novel
method on model performance, model robustness with limited training samples,and the balance of
attention distribution between distant and nearby events. Our results demonstrate how it improves
the performance of pre-trained transformers.

2 Preliminary

2.1 Transformer encoder and self-attention

The core back-bone of transformers encoder is the multi-head self-attention. Each self-attention head is:

Qh = XW Q
h , Kh = XW K

h , Vh = XW V
h , (1)

Ah = softmax(QhKT
h√

dk

) (2)

Hh = Self-attention(X) = AhVh (3)

Where, Q, K ∈ Rn×dk and V ∈ Rn×dv and n is the length of input sequence and dk and dv are dimenssion
of Key and Value. Ah is the attention score matrix and each Ai,j indicates how much attention token xi put
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(a) Transformer (b) GCT (c) VGNN (d) Pre-trained
Transformer

(e) TOO-Bert

Figure 1: Visualization of attention score patterns for five different models from previous studies. (a)
A randomly initialized transformer displaying a poor structure Zhu & Razavian (2021). (b) GCT model
exhibiting improved structures through the incorporation of domain knowledge Choi et al. (2020). (c)
VGNN revealing complex structures with a variational regularization encoder Zhu & Razavian (2021). (d)
A transformer pre-trained on MLM predominantly attending to the time distance between events and the
final outcome Amirahmadi et al. (2024a). (e) Pre-training a transformer on MLM and trajectory order
prediction showcasing a complex structural pattern Amirahmadi et al. (2024a). Panels (a), (b), and (c) are
adapted from Zhu & Razavian (2021), trained for AD prediction, while panels (d) and (e) are adapted from
Amirahmadi et al. (2024a), trained for HF prediction.

on xj . Transformer encoders, is built on concatenation of | h | number attention heads in parallel, so each
one has its own weights. Then, the concatenation is projected:

MultiHead(X) = Concat(H1...., H|h|)W O (4)

Where, W O ∈ R|h|×dv Multiple self-attention heads in parallel, help the model to attend to information from
different representation subspaces (Vaswani et al., 2017; Hao et al., 2021).

2.2 Pre-training, fine-tuning

Pretraining typically involves the model acquiring general knowledge, which is then used to initialize the
final network. Subsequently, the final network adjusts these weights to obtain optimized weights for specific
downstream tasks Chen et al. (2021). This approach has been extensively utilized for adapting foundation
models to downstream tasks Lan et al. (2019); Liu et al. (2023).

3 Related works

Regularization and augmentation methods have been vastly used to enhance model fine-tinning. Regulariza-
tion methods are primarily developed to prevent overfitting and leverage acquired prior knowledge effectively.
Various approaches have been proposed for fine-tuning regularization, including adding L2 norm regulariza-
tion between pretrained and downstream model parameters (Xuhong et al., 2018), knowledge distillation
(Yim et al., 2017), and utilizing pretrained labels to regulate the fine-tuning process (You et al., 2020).
Attention maps have been incorporated into convolutional neural networks for regularization purposes (Li
et al., 2019; Zagoruyko & Komodakis, 2016), while (Zhou et al., 2023) enforced classification error of the
downstream tasks’ head on the pre-trained feature distributions. Additionally, (Kim et al., 2023) prioritized
discriminative information during the fine-tuning step to regularize the fine-tuned model. (Zehui et al., 2019)
proposed DropAttention, a self-attention specialized regularization method that masks the attention score
matrix randomly and expands the mask with the span length. (Wu et al., 2023) advanced self-attention
generalization by introducing an adversarial structural bias to the attention score matrix, demonstrating
that naively masking the attention score can improve transformer performance, albeit with the complexity
and training overhead of adversarial training being a notable issue.

Moreover, researchers have also focused on enhancing the performance and generalizability of various models
by augmenting noise into the model during fine-tuning. Zhu et al. (2019) improved the generalization of
BERT (Devlin et al., 2018) and RoBERTa (Liu et al., 2019) by adding adversarial perturbation noise to
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the word embeddings. This approach has been extended to graph neural networks by Kong et al. (2022),
enhancing generalizability to out-of-distribution samples. Wornow et al. (2023) added normal noise to the
latent space representation of an encoder-decoder architecture to improve image captioning. Additionally,
Jain et al. (2023) applied uniform noise to the embedding vectors during fine-tuning, defined within a range
of [−α/

√
Ld, α/

√
Ld], where L is the sequence length, d is the embedding dimension, and α is a tunable

parameter. This method significantly improved the performance of LLaMA-1 (Zhang et al., 2022) and
LLaMA-2 (Touvron et al., 2023) on structured fine-tuning tasks.

4 Methods

Unlike traditional RNNs, self-attentions enable models to focus on key interactions within nearby events
(local attention) and across temporally distant sets (global attention) through direct connections between
all events in a sequence, leading to superior performance.

We start by defining ideal local and global attention mechanisms and then explore how the GLA method
enhances robust modeling in complex event sequences.

4.1 Local and Global Attention

Local attention, denoted as AttenLi , is defined as:

AttenLi
=

⋃
j∈Ni

{ej} where j ≥ 1 (5)

Here,
⋃

j∈Ni
{ej} refers to all sets of events in the neighborhood Ni of a specific event i that exhibit significant

interaction within a specific set of input events.

Similarly, global attention, denoted as AttenGi,m , is the intersection between local attentions:

AttenGi,m
=

⋃
j∈Ni

{ej}
⋂ ⋃

n∈Nm

{en} where j, n ≥ 1 (6)

Finally, a global-local self-attention AttenGL is the union of both global and local interactions:

AttenGL =
⋃ (

AttenGi,m
, AttenLi

)
(7)

Thus, local attention targets interactions within specific event neighborhoods, global attention captures
broader interactions across neighborhoods, and global-local self-attention combines both to provide a com-
prehensive view of sequence interactions.

4.2 GLA

In this subsection, we introduce a simple two-step augmentation technique, termed Global-Local self-
Attention (GLA) (Algorithm 1), designed to enhance the global-local self-attention mechanism within trans-
former models without altering the computational graph gradient in neural networks, making it applicable
to any pre-trained or transformer encoder network:

GLA =
(
(Ah+ ∼ N (µ, σ2

GN )) ∗ nσeh

)
V (8)

µ =
∑n−1

i=0
∑n−1

j=0 Ai,j

n2 (9)
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Figure 2: Global-Local self-Attention (GLA) mechanism

σGN =

√∑n−1
i=0

∑n−1
j=0 (Ai,j − µ)2

n− 1 (10)

Here, ∼ N (µ, σ2
GN ) ∈ Rn×n introduces an adaptive normal noise based on the current values of the attention

scores. nσeh
[i, j] denotes a two-dimensional Gaussian kernel, determining the effective event horizon of

neighborhoods (locality), with σeh being tunable based on the input data’s characteristics as:

nσeh
[i, j] = 1

2πσ2
eh

e
− 1

2

(
i2+j2

σ2
eh

)
(11)

The convolution operation ∗ applies the Gaussian filter to the noised added attention scores, considering the
effect of all events in a neighborhood based on their distance as:

f [i, j] ∗ nσ[i, j] = 1
2πσ2

k∑
m=1

e
− 1

2

(
m2
σ2

)
×

k∑
n=1

e
− 1

2

(
n2
σ2

)
f [i−m, j − n] (12)

Furthermore, k = 2πσ is the kernel size in the convolving operation.

The selection of µ and σGN is guided by the observation that attention scores better capture temporal
changes during fine-tuning. Additionally, since different behaviors are typically observed within each self-
attention head, µ and σGN are calculated and applied separately for each attention head. Figure 2 shows a
schematic representation of the GLA mechanism.

Adding normal noise ∼ N (µ, σ2
GN ) helps to prevent the model from getting stuck in sub-optimal weights

and allows for learning interactions between temporally distant events. Moreover, convolving the result with
a Gaussian filter encourages the model to consider the effects of all events in a neighborhood based on their
distance.

To ensure that the output of each self-attention head is scaled appropriately and not affected by uncertainty
in the normal noise during inference, we deactivate the normal noise and replace it with µ:

GLA = ((Ah + µ) ∗ nσeh
)V (13)

The computational complexity of GLA is O(n2) (for more details, see the technical appendix), and since it’s
primarily used during fine-tuning with limited labeled samples, the additional cost is negligible.
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Algorithm 1 A Transformer Encoder with GLA Augmentation
Input: Dfine-tuning = {(Xi, yi)}N

1 tokenized dataset, embedding layer emb(·), attention score matrix Ah,
normal noise N (µ, σ2

GN), two-dimensional Gaussian noise nσeh , rest of the model f(·)
Parameter: Normal noise µ, σ2

GN calculated from Ah, event horizon hyperparameter σeh based on the
neighborhood radius

1: Initialize θ from a pre-trained model
2: repeat
3: Sample (Xi, yi) ∼ Dfine-tuning
4: Xemb ← emb(Xi)
5: for each Attention Head Ah in Transformer Block do
6: Ah(Xattn)← Ah(Xemb) +N (µ, σ2

GN)
7: Ah(Xattn)← Convolve(Ah(Xattn), nσeh)
8: Hh(Xattn)← Ah(Xattn)V
9: end for

10: MultiHead(H)← concat(H0(Xattn), . . . , Hh(Xattn))
11: ŷi ← f(MultiHead(H))
12: θ ← opt(θ, loss(ŷi, yi))
13: until Stopping criteria met or maximum iterations reached

5 Experiments

5.1 Datasets

In our study, we utilized medical data from two sources: the MIMIC-IV Johnson et al. (2020) hosp module
and the Malmö Diet and Cancer Cohort (MDC) Berglund et al. (1993) dataset, approved by the Ethics
Review Board of Sweden (Dnr 2023-00503-01). Each EHR trajectory represents a sequence of temporally
structured health events. The MIMIC-IV dataset includes 173,000 patient records across 407,000 visits from
2008 to 2019, with 10.6 million medical codes. The MDC dataset, from a cohort study in Sweden, comprises
30,000 individuals with 531,000 visits from 1992 to 2020, offering a more extended patient history—257
codes per patient on average, compared to MIMIC-IV’s 61. To ensure consistency, we used only ICD and
ATC codes, the only types available in MDC at the beginning, aligning with prior work like Med-BERT on
diagnosis codes for risk prediction.

Both datasets use ICD and ATC codes for disease and medication classification. We randomly split each
cohort into 70% for pre-training, 20% for fine-tuning, and 10% for testing. After preprocessing, MIMIC-IV
had 2,195 unique ICD-9 and 137 ATC-5 codes, while MDC had 1,558 ICD-10 and 111 ATC-5 codes. To
assess the generalizability and robustness of our results, the fine-tuning dataset was split into 5 folds. The
model was fine-tuned on 4 folds with early stopping on the remaining fold, repeated 5 times with different
validation sets. We reported the mean and standard deviation of the AUC on the unseen test dataset. For
details, refer to the dataset specifications and implementation details in the technical appendix.

5.2 Problem Formulation

Each dataset D comprises a set of patients P , D = {P 1, P 2, . . . , P |D|}. In our study, we considered a total
of |D| = 172, 980 patients for MIMIC-IV and |D| = 29, 664 patients for the MDC cohort. We represent
each patient’s longitudinal medical trajectory through a structured set of visit encounters as a sequence
of events. This representation is denoted as P i = {V i

1 , V i
2 , . . . , V i

O}, where O represents the total number
of visit encounters for patient i. Each visit V i

j = Ij ∪Mj is the union of all diagnosis codes Ij ⊂ I and
prescribed medications Mj ⊂ M that are recorded for the P i at visit V i

j . To reduce sparsity, we excluded
less frequently occurring medical codes and retained only the initial 4 digits of ICD and ATC codes.

To guide the model in understanding changes in encounter times and the structure of each patient’s tra-
jectory, similar to BERT, we employed special tokens. A [CLS] token is placed at the beginning of each
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patient’s trajectory, while a [SEP ] token is inserted between visits. Consequently, each patient’s trajectory
is represented as P i = {[CLS], V i

1 , [SEP ], V i
2 , [SEP ], . . . , V i

O, [SEP ]}, providing the model with valuable
context for analysis and prediction.

Here, we evaluated our models on 3 downstream tasks edt (Heart Failure (HF), Alzheimer Disease (AD),
Prolonged Length of Stay on the next visit (PLS) predictions), where the model predicts the incidence of the
first HF (IN=HF ) or AD (IN=AD) ICD codes or the presence of PLS (PLSN = 1) on the N th visit, given
the patient’s previous history of medical codes, [V i

1 : V i
N−1], as a sequence of temporally structured health

events:

P(edt ∈ V N | P i = {[CLS], V i
1 , [SEP ], V i

2 , [SEP ], . . . , V i
N−1, [SEP ]}) (14)

For each patient’s trajectory, if there were no occurrences of the target events edt, it is considered a negative
case; otherwise, we exclude the first visit with the target and all subsequent visits and consider it a positive
case. All ATC codes related to HF treatment are excluded to avoid timing-related noise and non-trivial
predictions. Initially, models exhibited bias toward longer visit histories, confounding risk predictions. To
address this, we excluded trajectories with fewer than 30 visits in the MDC dataset and fewer than 10 visits in
the MIMIC-IV dataset. This ensured balanced visit histories between positive and negative cases, resulting
in averages of 19 visits in the MDC dataset and 9 visits in the MIMIC-IV dataset, aligning with their overall
dataset averages prior to preprocessing. Table 1 summarizes the number of positive and negative cases after
these preprocessing steps.

Table 1: Number of positive and negative labeled samples in each downstream task.

Task #Positive labels #Negative labels
PLS prediction 2429 6360
HF prediction on the MIMIC IV 243 641
AD prediction 245 2628
HF prediction on the MDC 103 301

5.3 List of Models

To thoroughly investigate the impact of the proposed GLA regularization, we compared the performance
of following conventional and deep learning models on downstream tasks of HF, AD, and PLS prediction
using both the MDC and MIMIC-IV datasets. These models were trained either from scratch or initiated
from pre-trained weights, fine-tuned on the fine-tuning dataset, and evaluated on the test dataset. We set
the tunable event horizon parameter to σeh = 1.0 (kernel size = 7) for the GLA regularization on the MDC
dataset and σeh = 0.33 (kernel size = 3) on the MIMIC IV after fine-tuning on the fine-tuning dataset.

Baseline Models The baselines in our study were selected based on prior research and practical con-
siderations for modeling temporal health data. The following models were used for baseline comparison:
Logistic regression (LR), random forest (RF), multilayer perceptron (MLP), bidirectional gated recurrent
unit (Bi-GRU), transformer encoder with multi-head attention and a classification feedforward layer at the
top, trained from scratch, and finally a transformer encoder pre-trained on MLM followed by fine-tuning of
all weights for downstream tasks (Rasmy et al., 2021; Li et al., 2020; Meng et al., 2021). For LR, RF, and
MLP we encoded each visit as a multi-hot vector and aggregated visits by summing them. Additionally,
MLM pre-trained transformers, similar to BEHRT and Med-BERT, formed the foundation for representing
temporal health data, enabling us to compare GLA’s performance and demonstrate its ability to enhance
existing methods without major structural changes.

Models with proposed GA/GLA
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• Transformer with GLA augmentation: This model incorporates GLA into all self-attention heads of
the randomly initialized transformer.

• Transformer pre-trained on MLM with Global Attention (GA): In this approach, N (µ, σ2
GN ) (Global

term) is added to all self-attention heads of a pre-trained transformer. This experiment allows us to
isolate the impact of the normal noise and the Gaussian kernel convolution operations.

• Transformer pre-trained on MLM with GLA : This model incorporates GLA into all self-attention
heads of the pre-trained transformer.

5.4 Evaluation on downstream tasks

The results are summarized in Table 2 and suggests that adding GLA improves the AUC of pre-trained
transformers, potentially positioning them as one of the state-of-the-art methods for outcome prediction on
temporal structured health data. Specifically, on the MDC dataset, the AUC for HF and AD prediction
increased to 74.5% and 73.2%, respectively, while on the MIMIC-IV dataset, the AUC for HF prediction
reached 87.2%. The addition of GLA resulted in statistically significant improvements for HF prediction
on both the MDC and MIMIC-IV datasets for the MLM pre-trained transformer. Furthermore, the im-
provement in AD prediction was considerable, showcasing the effectiveness of GLA augmentation. However,
incorporating GLA did not significantly alter the performance of PLS prediction. Additionally, applying
GLA to randomly initialized transformers boosted the AUC for PLS prediction to 60.2%, with negligible
effects on other downstream tasks. To delve deeper into the impact of each local and global augmentation
term – Gaussian kernel and normal noise, respectively – we solely added the normal noise to the pre-trained
transformer. This experiment revealed that the global term alone had a more pronounced effect on down-
stream tasks in the MIMIC dataset, whereas the combined (GLA) terms exhibited greater impacts on the
downstream tasks in the MDC dataset, particularly associated with its longer sequences. This suggests that
emphasizing locality through GLA is especially beneficial for handling longer sequences.

Table 2: Average AUC values (%) and standard deviation for different methods for the HF prediction, AD
prediction, and PLS prediction downstream tasks on the test datasets.

Model / Downstream Task HF predic-
tion (MDC)

AD predic-
tion (MDC)

HF pre-
diction
(MIMIC-IV)

PLS pre-
diction
(MIMIC-IV)

Logistic regression 62.4 (1.1) 56.4 (1.1) 83.9 (1.2) 54.2 (0.4)
Random forest 60.7 (0.5) 51.8 (0.3) 77.2 (2.3) 51.1 (0.3)
MLP 67.9 (3.0) 68.0 (1.5) 85.2 (0.3) 59.3 (1.9)
Bi-GRU 62.3 (1.2) 60.4 (1.1) 86.5 (1.2) 55.9 (1.0)
Transformer 71.4 (0.5) 70.5 (0.8) 84.2 (1.4) 54.4 (0.8)
Transformer+ GLA 72.1 (2.7) 70.4 (0.6) 83.2 (2.5) 60.2 (1.2)
Transformer pre-trained on MLM 72.2 (2.5) 72.2 (1.1) 85.2 (1.1) 60.3 (1.3)
transformer pre-trained on
MLM+ GA

72.6 (1.9) 71.4 (1.0) 86.5 (1.2) 60.7 (0.6)

transformer pre-trained on
MLM+ GLA

74.5 (2.9) 73.2 (0.3) 87.2 (0.4) 60.3 (0.7)

5.5 Performance boost on data insufficiency

One of the advantages of using pre-trained transformers is their robustness and performance in situations
of data insufficiency, observed in both NLP (Brown et al., 2020) and temporal health data (Rasmy et al.,
2021). Here, we investigated the effect of applying GLA on model performance for HF prediction with
reduced data sample sizes. We decreased the fine-tuning sample size to 50%, 20%, and 10%, respectively.
The performance of the pre-trained transformer with and without GLA, was compared on both the MDC
and MIMIC-IV datasets. Figure 3a shows that GLA improves the model performance by around 3% in HF
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(a) AUC values for HF prediction across various fine-
tuning sample sizes on the test dataset in MIMIC IV.

(b) AUC values for HF prediction across various fine-
tuning sample sizes on the test dataset in the MDC.

Figure 3: GLA’s impact on HF prediction across fine-tuning sample sizes in MIMIC IV and MDC datasets.

prediction on the MIMIC-IV dataset across all data sample sizes. Similarly, Figure 3b demonstrates that
GLA consistently outperforms the baseline in HF prediction on the MDC dataset, even with a 50% reduction
in training samples. However, its superiority diminishes with less data.

5.6 VS Naive masking

Randomly masking the attention score matrix during training can be seen as an extreme form of GA
augmentation. Instead of adding normal noise to perturb relationships between events in a sequence, naive
masking directly disrupts these relationships by summing each element with 0 or −Ahi,j

, effectively breaking
the connections between tokens. We compared our method with naive self-attention masking, as described
by Wu et al. (2023), which introduces a bias in the structure of self-attentions:

Ah = softmax
(

QhKT
h√

dk

+ M

)
, M ∈ {0,−∞}N×N , (15)

where Mi,j = −∞ with p = 0.2, optimized based on performance on the fine-tuning dataset. We ex-
tended it to DropAttention (Zehui et al., 2019), which expands the mask with a span length ω and we set
ω = Kernel size. However, neither naive masking nor DropAttention improved the performance of the pre-
trained transformer for HF prediction on the MDC and MIMIC-IV datasets. Instead, these methods only
increased the number of training iterations required for convergence (see Table 3). While these techniques can
help mitigate overfitting, their overly aggressive regularization often disrupts critical dependencies within
sequences, leading to unstable training and poorer overall performance, especially on complex healthcare
prediction tasks. In contrast, GLA provides controlled regularization that balances the attention distribu-
tion and prevents over-reliance on specific patterns, preserving essential relationships within the data and
promoting more effective representations(see the appendix for a detailed justification for GLA).

5.7 VS Noisy embedding augmentation

We also compared GLA with other noise augmentation methods, specifically evaluating the impact of adding
noise to different layers of the transformer, including the embedding layer (as done in NefTune Jain et al.
(2023)). Additionally, we explored noise augmentation in the feedforward layer and compared these ap-
proaches to GLA. As shown in Table 3, although NefTune enhances the performance of pre-trained trans-
formers in HF prediction across both datasets, GLA consistently outperforms both NefTune and feedforward
noise augmentation in predicting outcomes. While GLA demonstrates superior performance in this context,
NefTune has the advantage of being computationally lighter. However, since both methods are applied
during fine-tuning, the computational demands are not a significant concern.
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Table 3: Comparing GLA with naive masking and augmentation methods. The table shows the average
AUC values (%) and standard deviation across HF prediction tasks on the MDC and MIMIC-IV datasets.

Model / Downstream Task HF Prediction (MDC) HF Prediction (MIMIC-IV)
Transformer pre-trained on MLM 72.2 (2.5) 85.2 (1.1)
Transformer pre-trained on MLM+ Naive masking 70.00 (1.5) 85.1 (0.7)
Transformer pre-trained on MLM+ DropAttention 69.7 (1.1) 84.9 (1.3)
Transformer pre-trained on MLM+ NEFTune(α =
5)

73.6 (3.2) 85.2 (0.7)

Transformer pre-trained on MLM+ NEFTune(α =
10)

73.1 (1.7) 85.5 (0.4)

Transformer pre-trained on MLM+ noise in the
feedforward(α = 5)

73.7 (2.2) 85.0 (1.2)

Transformer pre-trained on MLM+ noise in the
feedforward(α = 10)

72.5 (4.4) 84.5 (0.8)

Transformer pre-trained on MLM+ GLA regular-
ization

74.5 (2.9) 87.2 (0.4)

(a) Transformer (b) Trans-
former+GLA

(c) Pre-trained
Transformer

(d) Pre-trained
Transformer+GA

(e) Pre-trained
Transformer+GLA

Figure 4: Comparing the impact of GLA on the self-attention score weights for five fine-tuned models on HF
prediction on the MDC dataset for a specific test sample. The scale of the heatmaps varies across different
models.

5.8 Effect of GLA on self-attention behavior

Analyzing self-attention weights and attention score matrices can highlight how transformers prioritize re-
lationships between events, shedding light on their internal logic and behavior (Clark et al., 2019; Kovaleva
et al., 2019; Hao et al., 2021). To explore the impact of GLA on the transformers, we visualized the attention
score matrices Ah and Ah−GLA = (Ah + µ) ∗ nσeh

of all transformer-based model for a specific sample from
the test dataset fine-tuned for predicting HF on the MDC datasets (see appendix for effect on the MIMIC-IV
dataset).

Light dots in the upper and lower right corners of the attention matrix indicate instances of global attention,
where early events assign more weight to temporally distant events. Figure 4 shows the effect of augmenting
pre-trained transformers with GA and GLA. GA, alone increases global attention, while it often results
in unstructured noise. GLA, however, allows the model to attend adequately to both near and far events,
creating a more balanced and structured model. Additionally, incorporating GLA into a randomly initialized
transformer leads to the emergence of richer structural patterns.

5.8.1 Effect of GLA on the Receptive Field

The self-attention mechanism is designed to capture both long and short-range dependencies effectively.
To quantitatively assess the impact of GA and GLA on the receptive field, we plot the median values of
attention score matrix Ah for each event with respect to all previous and subsequent events (i − j, Ahi,j )
-i, j are positions of ei, ej in the sequence of events- across all test samples for HF and AD predictions
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Figure 5: Impact of GLA on the receptive field of the self-attentions for HF and AD prediction on the MDC
dataset.

on the MDC (Figures 5). Transformers pre-trained on MLM typically allocate more attention weight to
recent events, often in a monotonous fashion. Incorporating GA regularization reduces the steepness of this
attention distribution, allowing events to receive more balanced attention, not solely based on their proximity
to recent events. Ultimately, applying GLA regularization preserves the benefits of GA by providing a more
equal distribution of attention within a local neighborhood, while simultaneously reducing the emphasis on
very distant past events. However, it is important to note that raw self-attention values do not fully reveal
transformer behavior, as they are not directly interpretable and require further processing for accurate
attribution (Hao et al., 2021; Jain & Wallace, 2019; Serrano & Smith, 2019).

6 Conclusion

Transformers’ ability to model both nearby and distant interactions within a sequence enhances performance
on complex data with limited samples. However, the complexity of interactions combined with small sample
sizes can sometimes degrade the effectiveness of pre-trained transformers. We introduced the GLA aug-
mentation method, which seamlessly integrates into any pre-trained transformer during fine-tuning without
altering the computational graph. GLA enhances self-attention by capturing both local and global sequence
complexities through adaptive noise injection and Gaussian kernel smoothing. Our results show that GLA
consistently boosts performance on downstream tasks, enhances robustness with limited data, and better
balances the attention distribution. While this work focused on healthcare applications, GLA’s flexibility
and domain-agnostic design make it applicable across various transformer-based models. By bridging perfor-
mance and practicality, GLA offers a scalable solution to enhance transformer performance within complex
data, paving the way for further exploration across diverse fields.
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A Appendix

A.1 Implementation details

The code compatible with the public MIMIC-IV dataset is available in the Code Appendix.

We initialized our model with a pre-trained transformer encoder block with 5 heads on the MLM task. For
fine-tuning, we aggregated token representations with a GRU layer and fed them into the classifier. The
Adam optimizer with layer-wise learning rate decay was used (coef=0.9, initial learning rate=6e-5). The
input length was set to 200 medical codes. Details of σeh and kernel size are described in the Method Section.
Cross-Validation: The fine-tuning dataset was split into 5 folds. The model was fine-tuned on 4 folds with
early stopping on the remaining fold, repeated 5 times with different validation sets. We reported the mean
and std of the AUC on the unseen test dataset.
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A.2 Dataset specifications

We used medical data from two sources: the Medical Information Mart for Intensive Care IV (MIMIC-
IV) Johnson et al. (2020) hosp module, and the Malmö Diet and Cancer Cohort (MDC) Berglund et al.
(1993) dataset, approved by the Ethics Review Board of Sweden (Dnr 2023-00503-01). Each EHR trajectory
represents a sequence of events of temporal structured health data. The MIMIC-IV hosp module is a
comprehensive collection of inpatient EHR trajectories, containing approximately 173,000 patient records
documented during 407,000 visits spanning from 2008 to 2019. This dataset includes a total of 10.6 million
medical codes representing diagnoses and medications.

On the other hand, the MDC dataset originates from a prospective cohort study conducted in Sweden.
It consists of around 30,000 individuals residing in Malmö between 1991 and 1996, with records of both
inpatient and outpatient visits spanning from 1992 to 2020, resulting in a total of 531,000 visits. While the
MDC dataset has fewer overall samples, it provides a more extensive patient history, with an average of 257
codes per patient compared to MIMIC-IV’s 61.

Both datasets use the International Statistical Classification of Diseases and Related Health Problems (ICD)
and Anatomical Therapeutic Chemical Code (ATC) for disease and medication classification, respectively,
in a hierarchical format.

To facilitate our self-supervised pre-training, supervised fine-tuning, and final testing, we partitioned the
extracted cohort randomly into three subsets: 70%, 20%, and 10%, respectively. Despite being characterized
by extensive sparsity, preprocessing resulted in 2,195 unique ICD-9 and 137 unique ATC-5 codes for the
MIMIC-IV dataset and 1,558 unique ICD10 and 111 unique ATC-5 codes for the MDC dataset.

Table 4: MIMIC-IV dataset summary statistics.

Pre-
training
dataset

Fine-
tuning
dataset

Test
dataset

Total
dataset

#patients 121 K 36 K 16 K 173 K
#visits 285 K 86 K 37 K 408 K
#Medical
codes

7.451
M

2.234
M

937 K 10.622
M

Table 5: MDC dataset summary statistics.

Pre-
raining
dataset

Fine-
tuning
dataset

Test
dataset

Total
dataset

#patients 21 K 6 K 3 K 30 K
#visits 373 K 107 K 52 K 531 K
#Medical
codes

5.339
M

1.554
K

741 K 7.634
M

A.2.1 Data availability

The MIMIC-IV data is available on https://physionet.org/content/mimiciv/2.2/. The MDC dataset
is available upon application and with permission of the Malmo Population-Based Cohorts Joint Database
https://www.malmo-kohorter.lu.se/malmo-cohorts

A.3 Justification for GLA: A Comparison with Dropout

In addition to its demonstrated global-local impact, GLA can be justified by drawing parallels with dropout
regularization, viewing GLA as an “adaptive” extension of it. Dropout works by randomly setting some of
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the activations to zero, effectively disconnecting certain nodes during training. This prevents the model from
becoming overly dependent on specific neurons and encourages a more robust and generalized representation.

Mathematically, for each attention head Ah, dropout can be seen as applying a mask M (where M is a
Bernoulli distribution), resulting in the modified attention head A′

h = M · Ah. In contrast, GLA applies a
more nuanced adjustment:

Ah = Ah + ϵ ∼ N (µ, σ2) =
(

1 + ϵ

Ah

)
Ah = P ·Ah (16)

Here, P =
(

1 + ϵ
Ah

)
acts as an adaptive perturbation factor. Instead of completely severing connections

between tokens (as in dropout), GLA adjusts the attention weights by either amplifying or diminishing the
focus between two events. This approach maintains the relationships within the data while still introducing
variability.

The random perturbation from GLA forces the attention mechanism to avoid over-reliance on specific pat-
terns by continually adjusting the attention distribution. Consequently, GLA can be seen as a form of
ensemble learning, where each perturbation offers a different perspective on the data. This effectively trains
multiple versions of the model in parallel, each slightly varied due to the noise, leading to a more robust and
generalized final model.

A.4 Performance boost on data insufficiency

Table 6 presents the numerical results corresponding to the data insufficiency section.

Table 6: Effect of incorporating GLA into the pre-trained transformer on AUC performance value of HF
prediction across various fine-tunning sample sizes on the test dataset in MIMICIV and the MDC

Model-
dataset /
fine-tuning
percentage

10 % 25% 50% 100%

MLM-MDC 0.5 (0) 0.637
(0.053)

0.710
(0.030)

0.722
(0.025)

MLM+GLA-
MDC

0.5 (0) 0.628
(0.041)

0.738
(0.012)

0.745
(0.029)

MLM-
MIMICIV

0.800
(.003)

0.819
(.011)

0.834
(.005)

0.852
(.011)

MLM+GLA-
MIMICIV

0.835
(.023)

0.849
(.013)

0.860
(.007)

0.872
(.004)

A.5 Computational Complexity and Scalability

GLA involves two primary operations per attention head: adding iid normal noise to an n × n attention
score matrix and convolving the result with a Gaussian filter. Therefore, the computational complexity of
GLA can be expressed as:

O(GLA) = O(addition of n× n matrix) + O(convolution)

O(GLA) = O(n2) + O(k2 × n2) = O(n2) + O(n2) = O(n2)

Here, n represents the input length (where n = 200 in our case), and k is the kernel size (k ≪ n). Since
the noise addition and convolution operations are only performed during the fine-tuning phase—where the
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number of samples is significantly smaller compared to pre-training—GLA introduces minimal scalability
limitations.

A.6 Effect of GLA on self-attention behavior on the MIMIC-IV dataset

Figure 6 shows the effect of augmenting pre-trained transformers with GA and GLA on a specific sample on
the MIMIC-IV dataset.

(a) Transformer (b) Trans-
former+GLA

(c) Pre-trained
Transformer

(d) Pre-trained
Transformer+GA

(e) Pre-trained
Transformer+GLA

Figure 6: The attention score weights for ten fine-tuned models on HF prediction on the MIMIC-IV dataset
for a specific sample.scale of the heatmaps varies across different models.
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