
Under review as a conference paper at ICLR 2021

PREPARE FOR THE WORST: GENERALIZING ACROSS
DOMAIN SHIFTS WITH ADVERSARIAL BATCH NOR-
MALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Adversarial training is the industry standard for producing models that are robust to
small adversarial perturbations. However, machine learning practitioners need mod-
els that are robust to other kinds of changes that occur naturally, such as changes in
the style or illumination of input images. Such changes in input distribution have
been effectively modeled as shifts in the mean and variance of deep image features.
We adapt adversarial training by adversarially perturbing these feature statistics,
rather than image pixels, to produce models that are robust to distributional shifts.
We also visualize images from adversarially crafted distributions. Our method,
Adversarial Batch Normalization (AdvBN), significantly improves the performance
of ResNet-50 on ImageNet-C (+8.1%), Stylized-ImageNet (+6.7%), and ImageNet-
Instagram (+3.9%) over standard training practices. In addition, we demonstrate
that AdvBN can also improve generalization on semantic segmentation.

ImageNet

ImageNet-C

Stylized-ImageNet

ImageNet-AdvBN

ImageNet-Instagram
 89.6% goldfinch

 7.4% sulphur butterfly
 0.5% hummingbird

 99.9% goldfinch
 0.05% bulbul
 0.02% house finch

 57.4% goldfinch
 11.8% brambling
 8.8% guillotine

 16.2% gong
 8.8% bolete
 4.5% fox squirrel

10.3% hen-of-the-woods
 5.1% Ibizan hound
 4.0% flamingo

Figure 1: Images from ImageNet variants along with classification scores by a pre-trained
ResNet-50 model. The right-most image is generated by our Adversarial Batch Normalization
module. Details on how we generate this image can be found in Section 3.

1 INTRODUCTION

Robust optimization for neural networks has been a major focus of recent research. A mainstream
approach to reducing the brittleness of classifiers is adversarial training, which solves a min-max
optimization problem in which an adversary makes perturbations to images to degrade network
performance, while the network adapts its parameters to resist degradation (Goodfellow et al., 2015;
Kurakin et al., 2017; Madry et al., 2018). The result is a hardened network that is no longer brittle to
small perturbations to input pixels. While adversarial training makes networks robust to adversarial
perturbations, it does not address other forms of brittleness that plague vision systems. For example,
shifts in image style, lighting, color mapping, and domain shifts can still severely degrade the
performance of neural networks (Hendrycks & Dietterich, 2019).

We propose adapting adversarial training to make neural networks robust to changes in image style
and appearance, rather than small perturbations at the pixel level. We formulate a min-max game in
which an adversary chooses adversarial feature statistics, and network parameters are then updated to
resist these changes in feature space that correspond to appearance differences of input images. This

1

Under review as a conference paper at ICLR 2021

game is played until the network is robust to a variety of changes in image space including texture,
color, brightness, etc.

The idea of adversarial feature statistics is inspired by the observation that the mean and variance
of features maps encode style information, and thus, they enable the transfer of style information
from a source image to a target image through normalization (Huang & Belongie, 2017; Ulyanov
et al., 2016). Unlike standard approaches that rely on feature statistics from auxiliary images to
define an image style, we use adversarial optimization of feature statistics to prepare classifiers for
the worst-case style that they might encounter.

We propose training with Adversarial Batch Normalization (AdvBN) layers. Before each gradient
update, the AdvBN layers perform an adversarial feature shift by re-normalizing with the most
damaging mean and variance. By using these layers in a robust optimization framework, we create
networks which are resistant to any domain shift caused by feature statistics shift. An advantage
of this method is that it does not require additional auxiliary data from new domains. We show
that robust training with AdvBN layers hardens classifiers against changes in image appearance
and style using a range of vision tasks including Stylized-ImageNet (Geirhos et al., 2019) and
ImageNet-Instagram (Wu et al., 2020).

2 BACKGROUND

2.1 FEATURE NORMALIZATION

Feature normalization is an important component of modern neural networks that stabilizes training
and improves model generalization. Let f ∈ RN×C×H×W denote feature maps output by a layer,
where N is the batch size, C is the number of channels, and H and W represent the height and
width of the feature maps, respectively. Different normalization methods compute the mean, µ, and
standard deviation, σ, over different dimensions of the feature maps. They use the derived feature
statistics, often along with learned multiplicative and additive parameters, to produce normalized
features, f ′:

f ′ = γ · f − µ(f)
σ(f)

+ β, (1)

where γ and β are learnable parameters which re-scale and shift normalized features. For example,
Batch Normalization (BN) (Ioffe & Szegedy, 2015) estimates feature statistics along the N,H,W
dimensions. On the other hand, Instance Normalization (IN) (Ulyanov et al., 2016) computes µ and
σ for each individual sample in the batch and only normalizes across the H and W dimensions.

Although feature normalization was originally proposed to accelerate the training process (Bjorck
et al., 2018), previous work (Huang & Belongie, 2017; Li et al., 2017) has shown that feature statistics
effectively capture information concerning the appearance of images. Motivated by this observation,
we impose uncertainty on these statistics during training in order to obtain models that are less
sensitive to non-semantic characteristics, thus generalizing to images with different appearances.

2.2 ADVERSARIAL TRAINING

Untargeted adversarial examples are generated by maximizing classification loss with respect to
the input. One popular method, projected gradient descent (PGD), involves performing gradient
ascent in the signed gradient direction and projecting the perturbation in order to enforce an `∞-norm
constraint (Madry et al., 2018). Adversarial training aims to solve the saddlepoint optimization
problem,

min
θ

E(X,y)∼D

[
max
‖δ‖p<ε

L(gθ(X + δ), y)

]
, (2)

where gθ is a model with parameter vector θ, X, y is a clean input and the corresponding label drawn
from distribution D, and L denotes cross-entropy loss. Adversarial training solves this problem by
iteratively sampling a batch of data, perturbing the batch adversarially, and performing a parameter
update on the new adversarial batch (Madry et al., 2018). We harness adversarial training in order to
create models robust to distributional shifts rather than the standard pixel-wise adversarial attacks.

2

Under review as a conference paper at ICLR 2021

3 ADVERSARIAL BATCH NORMALIZATION

We propose Adversarial Batch Normalization (AdvBN), a module that adversarially perturbs deep
feature distributions such that the features confuse CNN classifiers. We iteratively compute adversarial
directions in feature space by taking PGD steps on batch statistics. In the next section, we will train
on these perturbed feature distributions in order to produce models robust to domain shifts.

Consider a pre-trained classification network, g, with L layers. We divide g into two parts, g1,l and
gl+1,L, where gm,n denotes layersm through n. Now, consider a batch of data, x, with corresponding
labels, y. Formally, the AdvBN module is defined by

BNδadv(x; g, l, y) = δ′σ · (f − µ(f)) + δ′µ · µ(f), where f = g1,l(x),

(δ′µ, δ
′
σ) = argmax(δµ,δσ) L

[
gl+1,L

(
δσ · (f − µ(f)) + δµ · µ(f)

)
, y

]
,

subject to ‖δµ − 1‖∞ ≤ ε, ‖δσ − 1‖∞ ≤ ε,

(3)

where the maximization problem is solved with projected gradient descent. Simply put, the AdvBN
module is a PGD attack on batch norm statistics which can be inserted inside a network. Note that
δµ, δσ are vectors with length equal to the number of channels in the output of layer l, and we multiply
by them entry-wise, one scalar entry per channel, similarly to Batch Normalization. Additionally,
note that this module acts on a per-batch basis so that features corresponding to an individual image
may be perturbed differently depending on the batch the image is in.

We formulate the perturbation by first subtracting out the mean so that δµ · µ(f) is the new mean
of the adversarial features, and δµ directly controls the new mean. We choose δµ · µ(f), rather than
simply δµ, to represent the new mean of the perturbed features so that `∞ bounds and steps size do
not need to depend on the mean of f .

Visualizing feature shifts To verify our assumption that adversarially perturbing feature statistics
corresponds to transforming the distribution in image space, we visualize the effects of AdvBN. We
adopt the VGG-19 based autoencoder from Huang & Belongie (2017). At the bottleneck of the
autoencoder, we plug in an AdvBN module We visualize perturbations by feeding the AdvBN outputs
to the decoder.

In Figure 2, images crafted through this procedure are visibly different from the originals; semantic
content in the original images is preserved, but the new images exhibit differences in color, texture,
and edges. We draw two major conclusions from these visualizations which highlight the adversarial
properties of these domains. The first one concerns textures: according to Geirhos et al. (2019),
CNNs rely heavily on image textures for classification. Images from the adversarial domain, on the
other hand, have inconsistent textures across samples. For example, the furry texture of a dog is
smoothed in column 2, and the stripes disappear from a zebra in column 4, whereas visible textures
appear in columns 6 and 8. The second conclusion pertains to color. Results in Zhang et al. (2016)
suggest that colors serve as important information for CNNs. In the adversarial domain, we find

Figure 2: Examples of perturbed ImageNet images generated by AdvBN with a decoder. The
first row contains the original versions from the ImageNet validation set.

3

Under review as a conference paper at ICLR 2021

suppressed colors (columns 1, 3) and unnatural hue (columns 5, 7). See Appendix A.3 for additional
example images generated by this procedure. Figure 3 illustrates how the appearance of reconstructed
images shifts as adversarial perturbations to feature statistics become larger.

We use this visualization technique to process the entire ImageNet validation set and denote it as
ImageNet-AdvBN in Figure 1. By evaluating different methods on this dataset, we observe that
performance on ImageNet-AdvBN is consistently degraded, which validates the adversarial property
of features generated by AdvBN. Experiments concerning performance on ImageNet-AdvBN are
listed in Appendix A.2.

Original

Adversarial Strength

Figure 3: The effect of adversarial strength on visualized examples. ε = 0 corresponds to images
reconstructed by our autoencoder without AdvBN.

4 TRAINING WITH ADVERSARIAL BATCH NORMALIZATION

In this section, we use the proposed AdvBN module to train networks on the perturbed features. The
goal is to produce networks that generalize well to unseen domains while maintain performance on
training data distribution, all without having to obtain auxiliary data from new domains.

We start with a pre-trained model, g = gl+1,L ◦ g1,l, and we fine-tune the subnetwork, gl+1,L, on
clean and adversarial features simultaneously. To this end, we solve the following min-max problem,

min
θ

E(x,y)∼D

[
max
δ
L(gl+1,L

θ ◦ BNδadv ◦ g1,l(x), y) + L(g
l+1,L
θ ◦ g1,l(x), y)

]
, (4)

where L denotes cross-entropy loss, andD is the distribution of batches of size n. In order to maintain
the network’s performance on natural images, we adopt a similar approach to Xie et al. (2020) by
using auxiliary batch normalization in gl+1,L for adversarial features; we use the original BNs when
propagating clean features, and we use auxiliary ones for adversarial features. See Algorithm 1 for a
detailed description of our method.

Since we start with pre-trained models, we only need to fine-tune for 20 epochs, yielding improved
robustness with little additional computation. Moreover, we only modify the parameters of later
layers, so we do not need to backpropagate through the first half of the network. See Appendix
B for an analysis of training budget using our method. In the following section, we measure the
performance, on several datasets, of our model fine-tuned using adversarial training with AdvBN.

5 EXPERIMENTS

5.1 IMPLEMENTATION

Our method begins with a torchvision ImageNet pre-trained ResNet-50 (He et al., 2016). We insert
the AdvBN module at the end of the 2nd convolutional stage. The model is fine-tuned following
Algorithm 1 for 20 epochs. The learning rate starts at 0.001 and decreases by a factor of 10 after 10
epochs with a batch size of 256. We use SGD with momentum 0.9 and weight decay coefficient 10−4.
We augment inputs with a fixed AutoAugment (Cubuk et al., 2019) policy. Adversarial parameters
are τ = 0.2 and ε = 1.1 with 6 repeats.

4

Under review as a conference paper at ICLR 2021

Algorithm 1: Training with Adversarial Batch Normalization

Input: Training data, pretrained network g = gl+1,L
θ ◦ g1,l, PGD bound ε, and PGD step size τ

Result: Updated network parameters, θ, of subnetwork gl+1,L
θ

for each training step do
Sample mini-batch x with label y;
Obtain feature map f = g1,l(x);
Initialize perturbation: δ = (δµ, δσ);
Let fadv = f ;
for adversarial step = 1, . . . , m do

fadv ← δσ · (f − µ(f)) + δµ · µ(f);
Update δ: δ ← δ + τ · sign(∇δL(gl+1,L

θ (fadv), y));
δ ← clip (δ, 1− ε, 1 + ε);

end
fadv ← δσ · (f − µ(f)) + δµ · µ(f);
Minimize the total loss w.r.t. network parameter:
θ ← argmin

θ
L(gl+1,L

θ (fadv), y) + L(gl+1,L
θ (f), y);

end
return θ

5.2 GENERALIZATION TO IMAGENET VARIANTS

Datasets. We compare our method to other methods designed to produce classification networks
which generalize better. The datasets we consider are variants of ImageNet (Deng et al., 2009):

• ImageNet-C (Hendrycks & Dietterich, 2019) contains distorted images with 15 categories
of common image corruption applied, each with 5 levels of severity. Performance on this
dataset is measured by mean Corruption Error (mCE), the average classification error over
all 75 combinations of corruption type and severity level, weighted by their difficulty.

• ImageNet-Instagram (Wu et al., 2020) is composed of ImageNet images filtered with a
total of 20 different Instagram filters. This dataset contains 20 versions of each ImageNet
image, each with a different filter applied.

• Stylized-ImageNet (Geirhos et al., 2019) consists of images from the ImageNet dataset,
each stylized using AdaIN (Huang & Belongie, 2017) with a randomly selected painting.
Textures and colors of images in this dataset differ heavily from the originals.

Models. Our baseline model is the publicly available torchvision ResNet-50 pre-trained on Ima-
geNet, denoted as “Standard” in Table 1. All models we compare to, aside from SIN (Geirhos et al.,
2019), are not trained on any of the ImageNet variants that are used for evaluation. The PGD model
is adversarially trained with the PGD attack on inputs and is provided by Engstrom et al. (2019).
MoEx (Li et al., 2020) changes feature moments inside networks but not in an adversarial manner.
IBN-Net (Pan et al., 2018) improves the generalization of networks by combining batch normalization
and instance normalization. AugMix (Hendrycks et al., 2020) is a data augmentation method that
solves the distributional mismatch between training and testing data and increases classification
robustness. SIN is a network trained on both Stylized ImageNet and ImageNet. We do not measure
the accuracy of SIN on Stylized-ImageNet since it acquires knowledge of the target domain during
training. Note that all models we use in our comparisons are the original versions released by the
authors of the original work.

Results. As shown in Table 1, the performance of baseline model significantly degrades on all
three ImageNet variants, highlighting the brittleness of standard classification model when tested
on novel distributions. Fine-tuning with AdvBN, on the other hand, substantially improves the
performance of the standard ResNet-50 model. In particular, we achieve an 8.1% accuracy gain on
ImageNet-C through fine-tuning with AdvBN. On Stylized-ImageNet and ImageNet-Instagram, our
model also achieves the best performance among all methods with which we compare. The consistent
performance boost across all three benchmarks demonstrates that AdvBN can effectively enhance
robustness against various distributional shifts. Note that this AdvBN model has additional auxiliary

5

Under review as a conference paper at ICLR 2021

Table 1: Performance of AdvBN and alternative methods on ImageNet variants.

Model ImageNet-C ImageNet-Instagram Stylized-ImageNet
mCE ↓ top1/ top5 acc. ↑ top1/ top5 acc.↑

Standard 76.7 67.2/ 87.6 7.4/ 16.4

PGD 85.0 49.0/ 71.4 12.5/ 23.9
MoEx 74.8 70.0/ 89.4 5.0/ 12.0
IBN-Net 70.3 69.6/ 89.3 10.7/ 22.2
Augmix 68.4 70.4/ 89.4 11.2/ 23.1
SIN 69.3 66.9/ 87.4 –/ –

AdvBN 68.6 71.1/ 89.5 14.1/ 26.9

BN layers, so its performance on the original ImageNet is well maintained, as will be shown in
Table 4 in the next subsection. Appendix C gives details of inference with auxiliary BN layers.
Besides ResNet-50, we also applied AdvBN to fine-tune other model architectures. From Table 2, we
see that AdvBN improves the performance of both DenseNet and EfficientNet architectures.

Table 2: Applying AdvBN to other architectures.

Architecture ImageNet-C ImageNet-Ins. ImageNet-Styl.
mCE. ↓ top1 acc. ↑ top1 acc. ↑

DenseNet-121 73.4 66.6 7.9
+ AdvBN 70.4 69.3 15.5
EfficientNet-B0 72.1 69.7 12.5
+ AdvBN 68.7 71.3 15.7

Table 3: Performance of AdvBN and
an alternative method: AdvProp, on
EfficientNet-B0.

Dataset AdvProp AdvBN

ImageNet-C 66.2 68.7
ImageNet-Ins. 70.6 71.3
ImageNet-Styl. 14.6 15.7

With our results on EfficientNet, we are able to compare to another alternative method, AdvProp(Xie
et al., 2020), which also adopts adversarial training framework for improving the performance of
neural networks. Since no official ResNet-50 model of this method is available, we list the comparison
results in Table 3 separately with a EfficientNet-B0 architecture.

5.3 ABLATION STUDY

Where should the AdvBN module be placed within a network? The proposed AdvBN module
can be inserted after any layer in a network. In this part, we try AdvBN with different positions,
conv3_4 and conv4_6. From the results in Table 4, we observe that conv4_6 yields the worst
performance among all three ImageNet variants, indicating that using AdvBN at such deep layer is
not as helpful as at shallower layers. We hypothesize two possible explanations for this phenomenon:
(1) there are fewer trainable parameters when only very deep layers are fine-tuned; (2) features are
more abstract in deeper layers, and perturbing these high-level features can lead to extremely chaotic
feature representations that are harmful for classification.

Table 4: Ablation studies.

Model ImageNet ImageNet-C ImageNet-Ins. ImageNet-Styl.
top1 acc. ↑ mCE. ↓ top1 acc. ↑ top1 acc. ↑

Standard 76.1 76.7 67.2 7.4

l = conv2_3 76.5 68.6 71.1 14.1
l = conv3_4 76.0 70.0 70.2 19.5
l = conv4_6 75.3 75.0 68.5 11.0

ε = 0.5 76.5 69.4 70.8 13.3
ε = 0.7 76.4 69.0 70.9 13.5
ε = 0.9 76.6 69.0 71.0 13.8
ε = 1.1 76.5 68.6 71.1 14.1
ε = 1.3 76.4 68.3 70.7 13.2
ε = 1.5 76.2 68.8 70.4 13.1

AutoAugment∗ 76.4 72.1 70.1 8.2

Adversarial strength. The strength of the adversarial attack in the adversarial training framework
has a major impact on model performance (Madry et al., 2018). We test a range of PGD parameters
to demonstrate how the strength of AdvBN affects model performance. We measure strength by the
perturbation bound ε, where we fix τ to be 0.2 for all settings, and change the number of repeats for

6

Under review as a conference paper at ICLR 2021

different bounds. The number of repeats n for each ε is set to be n = [ε/0.2] + 1. Results concerning
the impact of adversarial strength are listed in Table 4.

Data augmentation. AdvBN performing in feature space can easily be combined with input space
data augmentation. To determine what portion of the improvements we observed can be credited to
AdvBN, we fine-tune a pre-trained ResNet-50 following the same routine as before but without the
AdvBN module, adopting the same fixed AutoAugment policy along with all other hyperparameters.
This method is denoted by AutoAugment∗ in Table 4. We see that fine-tuning with AutoAugment
alone does not result in nearly as much improvement as the combined method on all datasets we
consider; even performance on the original ImageNet dataset benefits from the AdvBN module.

5.4 FEATURE DIVERGENCE ANALYSIS

We compare the features extracted by our network to those of a standard ResNet-50 trained on
ImageNet. Following Pan et al. (2018), we model features from each channel using a normal
distribution with the same mean and standard deviation, and we compute the symmetric KL divergence
between the corresponding distributions on the two datasets (A and B). For two sets of deep features,
FA and FB , each with C channels, the divergence D(FA||FB) is computed using the formula,

D(FA||FB) = 1
C

∑C
i=1(KL(F

i
A||F iB) +KL(F iB ||F iA)),

KL(F iA||F iB) = log
σiB
σiA

+
σi

2

A +(µiA−µ
i
B)2

2σi
2
B

− 1
2 ,

(5)

where F i denotes the features of i-th channel with mean µi and standard deviation σi.
In Figure 4, we compare the baseline model with our own on two pairs of datasets in the fine-tuned
layers. Since ImageNet-Instagram contains 20 filter versions, we use the “Toaster” filter found in
(Wu et al., 2020) to cause the sharpest drop in classification performance. We find that the feature

8 9 10 11 12 13 14 15 16
Block index

0.0

0.2

0.4

0.6

0.8

Fe
at

ur
e

di
ve

rg
en

ce

(a) ImageNet vs. Stylized-ImageNet
Standard
AdvBN

8 9 10 11 12 13 14 15 16
Block index

(b) ImageNet vs. ImageNet-Instagram
Standard
AdvBN

Figure 4: Feature divergence between pairs of datasets using features extracted by AdvBN and
a standard ResNet50.

divergence in our network trained with AdvBN is substantially smaller on all layers in the fine-tuned
subnetwork. The small divergence between feature representations explains the effectiveness of
AdvBN from a different angle and explains why our model generalizes well across datasets.

5.5 GENERALIZATION ON SEMANTIC SEGMENTATION

We now evaluate AdvBN in the context of semantic segmentation. The segmentation model we
use is a ResNet-50 based network with dilated convolutions (Yu & Koltun, 2016). We present
generalization results under two scenarios: the first is from Cityscapes (Cordts et al., 2016) to
GTA5 (Richter et al., 2016), where both datasets contain similar urban road scene imagesand have
compatible label categories; the second is generalizing across traffic situations under different
weather/illumination/season conditions with the Synthia video sequences dataset (Ros et al., 2016).
Our baseline models for both scenarios are trained following the training protocol in Pan et al. (2018).

We train a baseline model on Cityscapes, which contains 2975 for training, and test the generalization
performance of the model on GTA5 with 6382 images for validation. We apply AdvBN by plugging it

7

Under review as a conference paper at ICLR 2021

after layer conv2_3 of baseline model, and fine-tuned on Cityscapes for 20 epochs, with adversarial
training parameters τ = 0.15, ε = 0.4, and 4 repeats.

Table 5: Cityscapes→ GTA5.

mean IoU (%) Pixel Acc. (%)

Baseline 72.0→ 30.6 95.3→ 68.5

AdvBN 71.5→ 38.8 95.2→ 79.8

In table 5, we observe a performance gain of 8.2% in
mean IoU on the GTA5 dataset compared to the base-
line model. The pixel accuracy also improves by 11.3%.
Numbers on the left side of arrows denote performance
on Cityscapes, and numbers on the right side of arrows
denote performance on the GTA5 dataset.

For Synthia dataset, we use the left-front view images of each sub-dataset by randomly selecting
900 images for training and 500 for validation. We consider two different road scene: "Highway"
and "New York-like City", each one with 5 different domain shifted variants: "dawn", "fog", "night",
"spring" and "winter". We obtain our baseline models and AdvBN fine-tuned models following the
same hyperparameter settings as for Cityscapes.

Table 6: Semantic segmentation results (mean IOU) on Synthia dataset.

New York-like City

Dawn Fog Night Spring Winter

baseline 32.6 29.0 25.4 24.2 24.8
Highway/Dawn AdvBN 33.7 30.7 28.4 28.5 27.5

Highway

Dawn Fog Night Spring Winter

baseline 18.6 21.0 16.9 21.6 15.3
NY.Like C./ Spring AdvBN 21.6 24.2 22.2 27.2 19.8

In table 6, we compare the mean IOU of baseline models and AdvBN fine-tuned models. We train two
models on "Highway/Dawn" and "New York-like City/Spring" datasets separately and test them on
the opposite road scene with different weather conditions. We can see AdvBN consistently improve
the performance on each train-test pairs.

6 RELATED WORK

Adversarial training Adversarial training and its variants (Goldblum et al., 2020; Madry et al., 2018;
Shafahi et al., 2019) have been widely studied for producing models that are robust to adversarial
examples (Moosavi-Dezfooli et al., 2016; Szegedy et al., 2014). Recent work considers adversar-
ial training as data augmentation (Tsipras et al., 2019). Xie et al. (2020) finds that deep features
corresponding to adversarial examples have different mean and standard deviation than those corre-
sponding to natural images. This work takes advantage of the distributional discrepancy to improve
performance on non-adversarial data. Our work also adopts the adversarial training framework to
make models robust against other kinds of perturbations, but instead of crafting adversarial examples
in image space, we craft adversarial feature distributions by perturbing feature statistics.

Robustness to distributional shifts While extensive effort has been made to improve the robustness
of classifiers to adversarial examples, there are other kinds of robustness that deep neural networks
must address in order for them to be reliable. Corrupted images and new domains pose major
challenges to networks with standard training (Geirhos et al., 2019; Hendrycks & Dietterich, 2019;
Wu et al., 2020). Performance degradation on these images can be attributed to shifts in data
distributions (Gilmer et al., 2018). In order to produce networks which generalize well, one common
practice is to perform data augmentation (Cubuk et al., 2019; Hendrycks et al., 2020; Yun et al.,
2019). However, the benefits of data augmentation are largely limited by the types of augmentations
used during training (Geirhos et al., 2018). Feature space augmentation (Li et al., 2020) replaces
feature statistics corresponding to one sample with ones corresponding to another sample. Our work
can be also considered as feature space augmentation, we instead consider a worst-case scenario in
the context of feature space distributional shifts by adopting the adversarial training framework.

7 CONCLUSION

Our work studies how adversarially perturbing feature statistics simulates distributional shift in image
data. We find that adversarial fine-tuning on features perturbed in this way improves robustness to data
stylization and corruption without ever training on auxiliary data. Training with Adversarial Batch
Normalization (AdvBN) is computationally cheap and can quickly make pre-trained models less
brittle. We fine-tune a ResNet-50 with our algorithm and surpass the performance of state-of-the-art
methods on both ImageNet-Instagram and Stylized-ImageNet. Adversarial feature statistics are a
promising direction for creating models that generalize well to a variety of domains.

8

Under review as a conference paper at ICLR 2021

REFERENCES

Nils Bjorck, Carla P Gomes, Bart Selman, and Kilian Q Weinberger. Understanding batch normaliza-
tion. In NIPS, 2018.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban
scene understanding. In CVPR, 2016.

Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment:
Learning augmentation strategies from data. In CVPR, 2019.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical
Image Database. In CVPR09, 2009.

Logan Engstrom, Andrew Ilyas, Shibani Santurkar, and Dimitris Tsipras. Robustness (python library),
2019. URL https://github.com/MadryLab/robustness.

Robert Geirhos, Carlos RM Temme, Jonas Rauber, Heiko H Schütt, Matthias Bethge, and Felix A
Wichmann. Generalisation in humans and deep neural networks. In NIPS, 2018.

Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A. Wichmann, and
Wieland Brendel. Imagenet-trained cnns are biased towards texture; increasing shape bias improves
accuracy and robustness. In ICLR, 2019.

Justin Gilmer, Ryan P. Adams, Ian J. Goodfellow, David Andersen, and George E. Dahl. Motivating
the rules of the game for adversarial example research. CoRR, abs/1807.06732, 2018.

Micah Goldblum, Liam Fowl, Soheil Feizi, and Tom Goldstein. Adversarially robust distillation. In
AAAI, 2020.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In ICLR, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

Dan Hendrycks and Thomas G. Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. In ICLR, 2019.

Dan Hendrycks, Norman Mu, Ekin Dogus Cubuk, Barret Zoph, Justin Gilmer, and Balaji Lakshmi-
narayanan. Augmix: A simple data processing method to improve robustness and uncertainty. In
ICLR, 2020.

Xun Huang and Serge Belongie. Arbitrary style transfer in real-time with adaptive instance normal-
ization. In ICCV, 2017.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In ICML, 2015.

Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial machine learning at scale. In
ICLR, 2017.

Boyi Li, Felix Wu, Ser-Nam Lim, Serge J. Belongie, and Kilian Q. Weinberger. On feature normal-
ization and data augmentation. CoRR, abs/2002.11102, 2020.

Yanghao Li, Naiyan Wang, Jianping Shi, Jiaying Liu, and Xiaodi Hou. Revisiting batch normalization
for practical domain adaptation. In ICLR Workshop, 2017.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In ICLR, 2018.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a simple and
accurate method to fool deep neural networks. In CVPR, 2016.

9

https://github.com/MadryLab/robustness

Under review as a conference paper at ICLR 2021

Xingang Pan, Ping Luo, Jianping Shi, and Xiaoou Tang. Two at once: Enhancing learning and
generalization capacities via ibn-net. In ECCV, 2018.

Stephan R. Richter, Vibhav Vineet, Stefan Roth, and Vladlen Koltun. Playing for data: Ground truth
from computer games. In ECCV, 2016.

German Ros, Laura Sellart, Joanna Materzynska, David Vazquez, and Antonio M. Lopez. The synthia
dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.

Ali Shafahi, Mahyar Najibi, Mohammad Amin Ghiasi, Zheng Xu, John Dickerson, Christoph Studer,
Larry S Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for free! In NeurIPS, 2019.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. In ICLR, 2014.

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry.
Robustness may be at odds with accuracy. In ICLR, 2019.

Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky. Instance normalization: The missing
ingredient for fast stylization. CoRR, abs/1607.08022, 2016.

Zhe Wu, Zuxuan Wu, Bharat Singh, and Larry S. Davis. Recognizing instagram filtered images with
feature de-stylization. In AAAI, 2020.

Cihang Xie, Mingxing Tan, Boqing Gong, Jiang Wang, Alan L. Yuille, and Quoc V. Le. Adversarial
examples improve image recognition. In CVPR, 2020.

Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convolutions. In ICLR,
2016.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In ICCV, 2019.

Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful image colorization. In ECCV, 2016.

10

Under review as a conference paper at ICLR 2021

A IMAGENET-ADVBN EXPERIMENTS

A.1 CREATION OF THE IMAGENET-ADVBN DATASET

We process the entire ImageNet validation set using the visualization technique introduced in Section 3.
We consider two encoder architectures: one is the VGG-19 encoder we use for visualization, another
consists of layers of a ResNet-50 up to conv2_3. Both encoders are paired with the same decoder
architecture from Huang & Belongie (2017). The resulting datasets, denoted by ImageNet-AdvBN-
VGG and ImageNet-AdvBN-ResNet respectively, contain 50000 images each. The data we synthesize
for testing other models is generated using these autoencoders that contain the AdvBN module but
on ImageNet validation data. AdvBN is conducted with 6 steps, stepsize = 0.20, ε = 1.1, and a
batchsize of 32. We do not shuffle the ImageNet validation data when generating these batches.

A.2 CLASSIFICATION ON IMAGENET-ADVBN

Table 7: Classification performance on ImageNet and ImageNet-AdvBN.

Method ImageNet Im-Adv-VGG VGG Reconstructed Im-Adv-ResNet ResNet Reconstructed
top1 acc. ↑ top1/ top5 acc. ↑ top1/ top5 acc. ↑ top1/ top5 acc. ↑ top1/ top5 acc. ↑

Standard 76.1 1.6/ 4.7 45.8/ 70.6 0.4/ 1.3 65.7/ 86.9
PGD 62.4 15.4/ 30.2 54.7/ 77.8 1.0/ 2.2 61.2/ 83.1
MoEx 79.1 1.0/ 2.9 40.2/ 63.8 0.3/ 1.1 65.7/ 86.8
IBN-Net 77.2 2.3/ 6.2 49.2/ 73.9 0.6/ 1.9 69.4/ 89.4
AugMix 77.6 3.9/ 9.9 53.5/ 77.0 1.0/ 2.7 71.9/ 90.7
SIN 74.6 10.9/ 24.4 51.7/ 75.8 1.7/ 4.3 67.2/ 87.9

Ours 76.5 6.3/ 15.6 54.6/ 78.3 2.9/ 6.4 66.4/ 87.3

Table 7 shows the classification performance of various models on the two ImageNet-AdvBN
variants, denoted as Im-Adv-VGG and Im-Adv-ResNet respectively. We also test these models on
ImageNet images that are reconstructed using our autoencoders, denoted as VGG Reconstructed and
ResNet Reconstructed, for each autoencoder. The performance gap between ImageNet-AdvBN and
Reconstructed ImageNet indicates that the degradation on ImageNet-AdvBN is not solely caused by
the reconstruction loss due to the autoencoders we use.

A.3 ADDITIONAL EXAMPLE IMAGES

We include more images from ImageNet-AdvBN-VGG in this section. Example images in Figure 5
are randomly chosen. We do not include the ImageNet-AdvBN-ResNet, because the resulting images
are mostly in extreme contrast with small textures that are hard to observe. It is possible that features
output from ResNet based encoders are more sensitive to AdvBN perturbations; another explanation
is that the features we extract from ResNet-50 are relatively shallow features compared to their VGG
counterparts.

B RUNTIME ANALYSIS

B.1 RUNTIME OF TRAINING WITH ADVBN

We evaluate the training time of our method on a workstation with 4 GeForce RTX 2080 Ti GPUs.
We use the default settings for AdvBN on ResNet-50: an AdvBN module after the conv2_3 layer, a
fixed AutoAugment policy, and 20 epochs of fine-tuning with 6-step PGD inside the AdvBN module.
Fine-tuning is conducted on the ImageNet training set, containing 1.3 million images. Training in
this setting takes approximately 40 hours with batchsize set to 256 .

B.2 COMPARISON WITH OTHER METHODS CONCERNING TRAINING BUDGET

We use the same infrastructure above to evaluate the training time of other ResNet-50 models that
appear in Table 1. Training code for all other methods are obtained from official repository. For
all methods, we use a batch size of 128, because augmix(Hendrycks et al., 2020) cannot run with

11

Under review as a conference paper at ICLR 2021

Figure 5: More example images. For each pair of adjacent columns, original versions are on the left,
ImageNet-AdvBN-VGG is on the right.

a batch size of 256 on our workstation due to limited GPU memory. The number of processes in
the dataloader is set to be 16. The speed values in Table 8 are averaged over 100 iterations. The
estimated training duration is calculated by multiplying the speed and corresponding total number of
iterations. Time spent on evaluation after each epoch is not considered in this estimation.

Table 8: Runtime Analysis.

Model Speed Epochs Estimated training duration
(seconds/ iter.) (hours)

Standard 0.17 90 43
PGD 2.95 90 738
MoEx 0.19 300 168
IBN-Net 0.22 100 61
AugMix 0.67 180 335
SIN 0.34 45 43

AdvBN 0.83 20 46

Training with AdvBN takes a long time per iteration because each iteration contains 6 PGD steps.
The SIN (Geirhos et al., 2019) runtime speed is estimated based on standard training, since the model
architectures and training procedures of these two methods are the same, except that SIN is trained
for half the epochs but twice the data and thus twice the number of iterations per epoch. Training SIN
requires additional access to Stylized-ImageNet as training data, which takes 134GB disk space; the
time for generating the Stylized-ImageNet dataset and the extra storage cost are not considered in
Table 8.

C INFERENCE USING MODELS TRAINED WITH ADVBN

Models containing Batchnorm layers will have two set of BN statistics in deeper layers that have been
fine-tuned by AdvBN because we use auxiliary BNs introduced by (Xie et al., 2020) for propagating
adversarial features crafted by the AdvBN module. During evaluation, we can choose either of
the BN statistics to normalize features. The results we report in previous sections with regard to
ImageNet, ImageNet-C and ImageNet-Instagram are obtained by using BN statistics corresponding
to original features. We only use auxiliary BNs, which keep the batch statistics of adversarial features,
to test performance on Stylized-ImageNet in Table 1. We also use auxiliary BNs for evaluating
performances on ImageNet-AdvBN and Reconstructed ImageNet in Table 7.

12

Under review as a conference paper at ICLR 2021

D DETAILED RESULTS ON IMAGENET-C

In this section we provide a detailed version of the results shown in Table 1 concerning the ImageNet-
C dataset, which technically contains a total of 75 variants of the ImageNet dataset. The 75 variants
fall into 15 categories of corruptions, each category presents 5 gradually increasing degrees of severity,
where “degree=1" denotes the lowest degree of severity. From Table 9, we can see that AdvBN is

Table 9: Detailed results on ImageNet.

Noise Blur Weather Digital

Network Clean Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG mCE

Standard 23.9 80 82 83 75 89 78 80 78 75 66 57 71 85 77 77 76.7
AdvBN 23.5 65 64 65 70 84 75 82 71 70 58 52 49 85 70 71 68.6

Degree Degree Degree Degree

Model Corruption 1 2 3 4 5 Corruption 1 2 3 4 5 Corruption 1 2 3 4 5 Corruption 1 2 3 4 5

AdvBN Blur-Defocus 38 44 56 69 79 Blur-Glass 39 52 80 86 90 Blur-Motion 33 42 59 76 85 Blur-Zoom 48 59 66 73 79
AugMix 35 40 50 62 74 39 50 74 78 84 28 33 42 58 71 38 45 49 57 65

AdvBN Weather-Snow 42 62 59 69 75 Weather-Frost 36 52 63 65 71 Weather-Fog 33 37 44 52 69 Weather-Bright 26 27 28 31 35
AugMix 39 59 57 69 77 35 50 62 64 71 37 42 52 58 75 25 26 29 33 40

AdvBN Digital-Contrast 29 30 34 46 68 Digital-Elastic 32 56 44 58 84 Digital-Pixel 32 33 48 65 74 Digital-JPEG 34 37 39 47 58
AugMix 29 33 39 59 85 31 53 37 48 71 30 32 41 53 60 32 35 37 43 52

AdvBN Noise-Gauss. 35 42 54 69 86 Noise-Shot 35 43 54 71 82 Noise-Impulse 40 48 55 71 85
AugMix 32 40 55 76 94 33 42 55 77 88 36 46 56 79 95

capable of improving the baseline model on almost all corruption types, except for the “zoom blur".
By looking into the bottom table where we compare to the AugMix method in detail, we can see that
AdvBN can achieve comparable results with AugMix specifically on subcategories of “Weather" and
"Noise", where it outperforms AugMix under more severe corruptions.

E MORE ABLATION STUDIES

We enclose more ablation studies in the appendix.

Table 10: More ablation studies.

Model ImageNet ImageNet-C ImageNet-Ins. ImageNet-Styl.
top1 acc. ↑ mCE. ↓ top1 acc. ↑ top1 acc. ↑

Standard 76.1 76.7 67.2 7.4

multiplicative δ 76.5 68.6 71.1 14.1
additive δ 75.9 69.4 70.2 13.7

γ = 0.5 76.5 69.4 70.8 14.4
γ = 1.5 75.5 68.5 71.1 14.1
γ = 2.0 75.3 68.5 71.1 14.0

AdvBN∗ 77.0 72.6 69.5 11.9

Multiplicative vs. additive perturbations. We originally chose a multiplicative noise so that a
single perturbation bound can be applied to various layers and architectures regardless of the range
in which feature values lie. To adjust the perturbation bound for an additive noise for each batch
of feature, we compute maximum mean and standard deviation values across channels, µmax and
σmax. Then, in the projection step of the PGD attack, we project perturbations to the mean and
standard deviation into the ranges (−ε · µmax, ε · µmax) and (−ε · σmax, ε · σmax), respectively. The
model is denoted “additive δ” in Table 10. This variant results in slightly degraded accuracy on each
dataset, but notice that we use the same hyperparameter setting as the multiplicative case, and there
are possible better settings for the additive case.

13

Under review as a conference paper at ICLR 2021

Weighted adversarial loss Note that in Algorithm 1, our final objective is a equally weighted
combination of clean loss and adversarial loss. It is possible that there are better way to combine the
two term. In this section, we try adding a weigh to the adversarial loss, and see how the performance
would be affected by it. That is, we now run the last step in Algorithm 1 by:

θ ← argmin
θ

(
γL(gl+1,L

θ (fadv), y) + L(gl+1,L
θ (f), y)

)
(6)

We try γ with range of values [0.5, 1.5, 2.0] for this ablation study, adn the results are shown in
Table 10.

Standalone AdvBN In section 5.1, we propose to train AdvBN with a set of more sophisticated
augmentation operations than standard ImageNet augmentation, which is proposed by auto aug-
mentation(Cubuk et al., 2019) as the optimal set of data augmentation for the task of ImageNet
classification. Therefore, the presented performance gain actually comes from both the image space
data augmentation and AdvBN. The results prove that AdvBN, as a method orthogonal to image space
data augmentation approaches, can be combined with and further improve these approached. In order
to see the effectiveness of the standalone AdvBN method, we provide a results of training AdvBN
with only basic ImageNet augmentations (random resized cropping and random flipping). The result
for standalone AdvBN is denoted as “AdvBN∗" in Table 10. We use the same hyperparameter setting
for this result as we use for the “AdvBN + auto augmentation" experiment, and it is likely not the
optimal setting.

14

	Introduction
	Background
	Feature normalization
	Adversarial training

	Adversarial Batch Normalization
	Training with Adversarial Batch Normalization
	Experiments
	Implementation
	Generalization to ImageNet Variants
	Ablation Study
	Feature divergence analysis
	Generalization on Semantic Segmentation

	Related work
	Conclusion
	ImageNet-AdvBN Experiments
	Creation of the ImageNet-AdvBN dataset
	Classification on ImageNet-AdvBN
	Additional Example Images

	Runtime Analysis
	Runtime of training with AdvBN
	Comparison with other methods concerning training budget

	Inference using models trained with AdvBN
	Detailed results on ImageNet-C
	More ablation Studies

