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Abstract

Ensuring safety in dynamic and unpredictable001
environments is a crucial challenge in the rapidly002
evolving field of autonomous driving. In this003
work, we propose the Safedrive Dreamer, a novel004
vision-based navigation framework that integrates005
world models with safety-critical decision ability,006
enabling autonomous vehicles to navigate com-007
plex situations safely in the real world. Our ap-008
proach proactively learns potential dangers and009
plans safer routes, leveraging the predictive capa-010
bilities of world models and significantly reducing011
the reliance on extensive trial-and-error learning012
in the real world. The effectiveness of Safedrive013
Dreamer is validated through a series of experi-014
ments in real-world sim-to-real driving conditions,015
covering a diverse range of safety-critical scenar-016
ios, such as abrupt obstacle avoidance. Our re-017
sults show that Safedrive Dreamer achieves supe-018
rior performance in safety metrics, such as colli-019
sion avoidance and risk minimization, compared020
to other end-to-end solutions. This framework ad-021
vances autonomous driving safety and offers in-022
sights into integrating world models for enhanc-023
ing decision-making in safety-critical applications.024
Safedrive Dreamer paves the way for developing025
more resilient and trustworthy autonomous driving026
systems that are adept at handling the dynamics027
and uncertainties of the real world.028

1. Introduction 029

The advancement of machine learning (ML) in 030
autonomous driving (AD) represents a paradigm 031
shift, offering a nuanced approach to navigat- 032
ing complex, dynamic environments [15] [26]. 033
As a safety-critical application [16] [25], the au- 034
tonomous driving system faces challenges regard- 035
ing robustness and safety in the real-world deploy- 036
ment process [28] [2]. Unreliable autonomous driv- 037
ing systems may threaten human life and the sur- 038
rounding environment [20]. 039

Direct learning in real-world environments is 040
costly and potentially dangerous [9]. Most of the 041
time, agents are trained within designed simulated 042
environments before being deployed into reality, 043
referred to as ”sim-to-real” [14]. The real world 044
is characterized by uncertainties including stochas- 045
tic interactions with other road users and the possi- 046
bility of encountering rare weather or lighting con- 047
ditions [9]. Thus, creating a perfect high-fidelity 048
training environment is computationally costly and 049
impractical [22]. The inevitable discrepancy be- 050
tween simulation and reality leads to the potential 051
degradation of an agent’s performance upon real 052
deployment [12] [5], known as the ”reality gap” 053
(RG). One solution for bridging the RG is domain 054
randomization [12] [20] [13], which involves ex- 055
posing extensive training environments with ran- 056
domized parameters to the agent during the learn- 057
ing stage, enhancing its adaptability to variable 058
real-world conditions after deployment. Although 059
this method usually works well, it lacks a guarantee 060
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of reliability.061
While ensuring the transferability of the agent,062

another challenge is to guarantee the safety of the063
agent’s real-world behaviors. In the absence of064
safety constraints, the intermediate policies during065
the training may lead to severe physical damage,066
as data-driven approaches such as the Reinforce-067
ment learning (RL) method explore all possible ac-068
tions to derive the optimal policy through trial and069
error [4]. Real-world behavior safety also suffers070
from the inevitability of the reality gap. Some071
rare but safety-critical real-world scenarios such as072
abrupt obstacles or actors that are hard to identify073
due to obstructions [25], may not be commonly fea-074
tured in the simulation but still play a crucial role075
in forming the safety metrics [1].076

To tackle these challenges, we introduce077
”Safedrive Dreamer”, a framework that integrates078
advanced world models with safety-aware learn-079
ing algorithms to bridge the sim-to-real transi-080
tion (reality gap). Furthermore, this framework081
is validated using a test vehicle in the real world.082
”Safedrive Dreamer” aims to make predictions and083
navigate through safety-critical scenarios with un-084
precedented reliability and safety, marking a sig-085
nificant step forward in the quest for autonomous086
driving. Our main contributions are:087

• We integrate world models with safety-critical088
decision-making to enhance autonomous driving089
safety and efficiency.090

• We close the reality gap between sim-to-real in091
safety-critical scenarios through our safe sim-to-092
real framework.093

• We demonstrate superior performance in safety094
metrics like collision avoidance and risk mini-095
mization through real-world testing.096

2. Related work097

Generating and testing safety-critical scenar-098
ios is crucial in autonomous driving testing.099
Wang et al. [25] proposed an adversarial frame-100
work designed to generate safety-critical scenar-101
ios for LiDAR-based autonomous driving systems.102
Hanselmann et al. [11] introduce KING, a method103
for generating safety-critical driving scenarios us-104
ing the CARLA simulator. They employ a kine-105

matic bicycle model to optimally perturb back- 106
ground traffic trajectories, enhancing the genera- 107
tion of challenging scenarios for self-driving sys- 108
tems. However, they didn’t evaluate the perfor- 109
mance in a real-world setting. 110

Our framework is closely related to Model- 111
based Reinforcement Learning (MBRL), which in- 112
volves learning a system dynamics model from the 113
environment. The accuracy of MBRL heavily de- 114
pends on the model’s fidelity [18]. While construct- 115
ing an accurate model presents challenges, com- 116
pared to model-free RL approaches, MBRL gen- 117
erally has a higher sample efficiency and requires 118
less real data [7], [3], [8], [17], [6]. For exam- 119
ple, MBRL [4] offers high-probability safety as- 120
surances of stability by leveraging Lyapunov func- 121
tions, with regularity assumptions in terms of a 122
Gaussian process prior. However, constructing a 123
Lyapunov function is often challenging and in- 124
volves hand-crafted elements without a universal 125
principle [8]. Zanon et al. [30] combine RL’s 126
adaptability with MPC’s ability to enforce safety 127
and stability constraints. However, linear MPC 128
might fail to provide satisfactory performance and 129
safety in systems with strong nonlinearities. 130

Numerous previous studies investigated how to 131
bridge the sim2real gap while providing a way to 132
ensure generalizability. Wang et al. [24] introduced 133
a novel reinforcement learning framework for au- 134
tonomous driving that combines traditional modu- 135
lar pipelines with end-to-end approaches. They ad- 136
dressed key challenges such as effective represen- 137
tation learning, sim-to-real generalization to com- 138
plex real-world scenarios, and training cost bal- 139
ance, followed by validation on a real-world ve- 140
hicle. Akhauri et al. [1] employ a CNN-LSTM 141
network that undergoes a two-phase training pro- 142
cess to improve robustness, capitalize on the invari- 143
ance of spatio-temporal features across domains 144
and utilizes salient data augmentation to aid tar- 145
get domain training. A bi-directional domain adap- 146
tation (BDA) method with high sample efficiency 147
proposed by Truong et al. [23], comprises a real- 148
to-sim observation adaptation module (OA) and 149
a sim-to-real dynamic adaptation module (DA), 150
bridges the vision domain the dynamic domain 151
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gaps. Yuan et al. [29] introduce a learning-efficient152
DRQfD framework for modeling lane-changing de-153
cisions within a hierarchical decision-making ar-154
chitecture for learning-based autonomous driving155
(HAD). They employ a twin high-fidelity simula-156
tor based on ROS-Gazebo and use a domain ran-157
domization method to bridge the sim-to-real gap.158
Mozifian et al. [19] present an Intervention-Based159
Invariant Transfer Learning (IBIT) approach, merg-160
ing domain randomization with data augmentation,161
which allows the agent to focus on essential visual162
features for task completion, therefore enhances the163
agent’s generalization across real-world scenarios.164
Although these past studies have improved the gen-165
eralization performance and quantified generaliz-166
ability to some extent, they still lack an index to167
quantify the guaranteed degree of generalization168
performance. Moreover, in these studies, although169
the testing unseen scenarios differ from the train-170
ing scenarios, they are still relatively similar, which171
means there needs to be more investigation on the172
safety performance and generalizability for some173
rare, uncommon scenarios that are even hard to174
generate in the simulator.175

Further contributing to this field, Ren et al. [21]176
employed a two-stage approach where it first177
constructs a policy distribution through a condi-178
tional variational autoencoder (cVAE) with expert179
demonstrations. It then refines a posterior distribu-180
tion over latent variables in fresh environments, fo-181
cusing on optimizing a generalization performance182
bound derived from PAC-Bayes theory. However,183
to ensure a high guarantee of the generalization per-184
formance, it relies on the assumption of the same185
underlying distributions between training and novel186
environments, which is challenging to satisfy in a187
sim-to-real process. Moreover, it also needs proof188
of robustness in safety-critical scenarios.189

In summary, although novel frameworks pro-190
posed in past research have bridged the gap191
between simulation and reality (sim2real) and192
achieved excellent generalization performance193
compared to their baselines, these studies did not194
delve deeply into sim-to-real transfer in uncom-195
mon, safety-critical scenarios. Additionally, sev-196
eral studies among the related work still needed to197

be validated in real-world environments. The in- 198
sights gained from these previous studies have been 199
organized into a table, which intuitively compares 200
their sample efficiency (measured by training sam- 201
ple size), the deployment process of experimental 202
validation (sim2sim: trained in a simulated envi- 203
ronment and then deployed to another unseen sim- 204
ulated environment; sim2real: trained in a simu- 205
lated environment and then deployed to an unseen 206
real environment), the specific training task, and 207
whether there is a way to quantify the guaranteed 208
of generalization performance. 209

3. Method 210

We propose the Safedrive Dreamer framework 211
which integrates world models with safety-aware 212
learning to address the challenges of autonomous 213
driving in safety-critical scenarios. At its core, the 214
framework adapts the concept of Safe Reinforce- 215
ment Learning (SafeRL) through a Constrained 216
Markov Decision Process (CMDP) setup, enabling 217
the autonomous system to learn policies that maxi- 218
mize safety and performance simultaneously. 219

Safedrive Dreamer leverages a world model to 220
simulate future states and actions, allowing the au- 221
tonomous agent to anticipate and navigate through 222
complex driving scenarios safely. The world model 223
is trained on data collected from both real-world 224
driving and high-fidelity simulations, ensuring a 225
comprehensive understanding of diverse driving 226
conditions. This model facilitates the agent’s abil- 227
ity to predict outcomes of actions before execution, 228
crucial for making informed decisions in dynamic 229
environments. 230

zt+1, rt+1, ct+1 = WorldModel(st, at) (1) 231

where zt+1 is the predicted next state, rt+1 the an- 232
ticipated reward, and ct+1 the potential cost or risk 233
associated with action at from state st. 234

The world model on which Safedrive Dreamer 235
is based is depicted in Fig. 1. In this world model, 236
the input is defined as the content stored in the Re- 237
play Buffer. The use of the Replay Buffer facilitates 238
the removal of correlations among data, thereby en- 239
hancing the diversity of the samples. The input data 240
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Table 1. Wang et al. [24] considered some rare scenarios, such as dense pedestrian flow and high beam lighting conditions
during testing but did not investigate the model’s performance in more safety-critical environments. Ren et al. [21],
during the testing, added an object with a relatively unique geometry. However, the results showed that the trained
model could not perfectly complete the task, which means still lacks consideration for such rare scenarios.

Figure 1. The architecture of Safedrive Dreamer’s World
Model consists of two main components: On the left-
hand side, there is the Replay Buffer, responsible for
processing input data and facilitating learning through
the policy network and value network trained within
Dreamer. On the right-hand side, there is the feature
reconstruction and online observation area. Although
this section does not directly participate in the decision-
making process, the feedback it provides is crucial for
model evaluation and performance calibration.

includes not only RGB images but also additional241
modal information, Such as vehicle speed informa-242
tion, radar, and simulated imagery. These high-243
dimensional sensory inputs are processed by an en-244
coder, which then transforms them into discrete,245
low-dimensional state variables. These discrete,246

low-dimensional state variables are combined with 247
information ht from the hidden layer to obtain the 248
latent state zt. The hidden layer’s ht encompasses 249
all prior observations and actions up to the current 250
timestep (next state, reward, cost, etc.), enabling 251
Safedrive Dreamer to make decisions based on the 252
entire sequence of observations. 253

Model updating for the prediction of the cur- 254
rent action constitutes a key emphasis within the 255
Safedrive Dreamer algorithm. The hidden layer 256
state ht captures all antecedent observations and 257
actions, which, combined with the latent state zt−1, 258
facilitate the forecasting of future actions and states 259
within the latent space. Prognostications are con- 260
ducted via the Safe Actor-Critic Network, which 261
extrapolates not just the ensuing latent state but also 262
prospective rewards, costs, and additional salient 263
information. These ”imagined” results are inter- 264
nally construed without direct engagement with the 265
tangible environment, thus empowering the model 266
to internally evaluate potential outcomes of dis- 267
parate behaviors prior to actual implementation. 268
This modality mitigates the exigency for empirical 269
exploration in volatile environments, thereby ame- 270
liorating the security and efficacy of the learning 271
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trajectory.272
We define ψ as parameters of Safedrive Dreamer

that are continuously adjusted during the optimiza-
tion process to better predict state transitions and
rewards. Within the Safedrive Dreamer framework,
the update of world model parameters is governed
by a loss function as defined below(equation2),
which synthesizes regularization loss, future pre-
diction loss, observation loss, reward loss, and cost
loss. In addition, to bolster the model’s exploratory
capabilities, an entropy loss is introduced. These
collective loss components guide the adjustment of
model parameters towards minimizing predictive
errors and enhancing behavioral diversity([10]).
The sg(∗) represents the gradient stopping opera-
tion, employed to regulate or stabilize the learning
process.

L(ψ) =
T∑
t=1

α1KL(zt||sg(ẑt)) + α2KL(sg(zt)||ẑt)(2)

−β1 lnOψ(ot|st)− β2 lnRψ(rt|st)
−β3 lnCψ(ct|st) + ξH(πψ(·|st))

Additionally, the latent state zt can be recon-273
structed into RGB images via the decoder, allowing274
the model to evaluate the quality of its state repre-275
sentation and predictions. By comparing the output276
of the decoder with actual observations, an error277
signal can be generated to guide the learning pro-278
cess of the model, and the accuracy of the model’s279
predictions regarding obstacles or traffic conditions280
on the road can be visually inspected through on-281
line observation.282

4. World Model-based Safe RL and Sim-283

to-Real Transition284

In the framework of Constrained Markov Deci-285
sion Processes (CMDP), we seek an optimal policy286
π′ that maximizes expected return and satisfies pre-287
defined constraints. This is expressed as:288

π′ = arg max
πθ∈ΠC

Jr(πθ), (3)289

where Jr(πθ) is the return function under policy290
πθ, and ΠC represents the policy space meeting all291
constraints.292

We extend the model-based transition probabil- 293
ity P to PWorldModel, enabling simulation of ac- 294
tions’ outcomes through the world model to opti- 295
mize policy while managing risks. 296

5. Experimental Setup and Results 297

In our study, a comprehensive series of exper- 298
iments were conducted within simulation environ- 299
ments crafted to replicate the driving conditions of 300
the real world, encompassing urban traffic flows, 301
highway travel, and scenarios involving pedestri- 302
ans and cyclists. We evaluated the performance 303
of Safedrive Dreamer against benchmark methods 304
in terms of safety metrics, such as the number of 305
safety incidents, and performance metrics, like av- 306
erage travel time. Likewise, Safedrive Dreamer 307
was deployed on the Pix-Hooke platform and sub- 308
jected to a variety of challenges in the real world 309
through a series of meticulously designed experi- 310
ments. 311

5.1. Experiment setup 312

Hardware Setup: The hardware utilized in this 313
study is built on the PIX-Hooke open-source au- 314
tonomous driving development platform, which in- 315
tegrates perception, decision-making, and control 316
into a single system. The test vehicle is pow- 317
ered by a 72-volt lead-acid battery and equipped 318
with high-precision steering, braking, and propul- 319
sion systems. Moreover, the PIX-Hooke platform 320
operates on the Ubuntu 18.04 operating system and 321
is equipped with a Core I7-8700 processor and 322
an NVIDIA RTX2080 GPU, providing substantial 323
computational power for autonomous driving tasks. 324
The platform is also equipped with various percep- 325
tion hardware, including LiDAR and RGB cam- 326
eras, as shown in Fig. 2. 327

Evaluation Metrics: To thoroughly evaluate 328
the performance of the Safedrive Dreamer algo- 329
rithm across various scenarios, the defined evalu- 330
ation metrics are as follows: 331

• Meters Per Intervention(MPI, m): This metric 332
measures the distance traveled between interven- 333
tions. For example, if the vehicle travels 200 me- 334
ters before an intervention is needed, the MPI is 335
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200. A higher MPI value indicates better perfor-336
mance, as it signifies fewer interventions.337

• Travel Time (TT, s): The total time taken to travel338
from the start point to the endpoint. This metric339
helps evaluate the efficiency of the autonomous340
vehicle; shorter travel times indicate higher effi-341
ciency.342

• Success Rate (SR, %): The percentage of the343
journey completed successfully without any in-344
terventions before the first one occurs. A higher345
SR indicates that the vehicle can navigate longer346
distances independently, which is a sign of better347
performance.348

• Standard Deviation of Speed (Std[v], m/s): This349
represents the consistency in speed variation and350
is related to the longitudinal smoothness of the351
travel trajectory. A lower standard deviation in-352
dicates a smoother driving experience.353

Figure 2. Pix-Hooke hardware description.

5.2. Real-world physical scenarios test354

Experiment Description: To evaluate the per-355
formance of Safedrive Dreamer in real-world phys-356
ical environments, we established a series of test357
environments based on actual vehicular scenarios.358
as shown in Fig. 3, we constructed planar and three-359
dimensional representations of the entire scene us-360
ing LiDAR scanning. Based on the transition from361
simulation to reality, real-vehicle experiments were362
conducted as depicted in the figure, with the scene363
segmented into simple straight roads and complex364
environments.365

The complexities of these environments are366
diverse, encompassing interactions with external367

agents of varying scales. Specifically, we designed 368
a variety of agent quantities and condition com- 369
binations within these environments and progres- 370
sively demonstrated how the Safedrive Dreamer’s 371
capability to understand the environment evolves 372
with increasing training durations. 373

(a) (b)

Figure 3. LiDAR scanning is utilized for the visualiza-
tion of real physical scenarios, with red arrows indicating
the driving trajectories in simple vehicle scenes, and pale
orange arrows depicting the trajectories in more complex
scenarios.

Progressive Scenario Analysis: In setting up 374
the environment for scenarios and scaling interac- 375
tions with external agents, we selected five typi- 376
cal scenarios to analyze and validate the evolution 377
of Safedrive Dreamer’s interactive capabilities with 378
the environment and agents at different stages. As 379
depicted in Fig. 4, the design of the scenarios and 380
interactions was progressively developed. 381

During the scenario construction process, we 382
implemented a progressively increasing difficulty 383
design strategy, akin to the ”level-by-level chal- 384
lenge” mode found in games. Within the Bridge en- 385
vironment, we initially collected a set of data based 386
on the Carla platform, covering: 387

• basic simple straight-line driving scenarios. 388
• more complex scenarios combining straight 389

roads and curves. 390

This collected data was used for preliminary train- 391
ing in Safedrive Dreamer to ensure that the world 392
model-based agent could initially adapt to and un- 393
derstand the traffic environment. Subsequently, the 394
training results obtained in Bridge were transferred 395
to real-vehicle environments for validation and ap- 396
plication. Given the relatively limited training data 397
from Carla, we had to continue more in-depth train- 398
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(a) Simple scenarios, from left to right, the sequence displays the
LiDAR path, a straight driving scenario with only a single sim-
ple static obstacle, and a straight driving scenario that includes
a manually operated small remote-controlled vehicle in addition
to the static obstacle.

(b) Complex scenarios, from left to right, the sequence displays
the LiDAR path, a curve and straight path scene with fewer
pedestrians, a curve and straight path scene with more pedes-
trians, and a curve and straight path scene incorporating both
dynamic obstacles and pedestrians.

Figure 4. Experiment scenarios for Safedrive Dreamer
performance evaluation

ing in the real-vehicle environment.399

As shown in Fig. 5, in the real-vehicle train-400
ing phase, following the design strategy previously401
described, we placed the vehicle in a straight-line402
driving scenario with a simple static obstacle. Man-403
ual interventions were made to address unsafe be-404
haviors as the vehicle learned the forward progres-405
sion strategy, with the scenario being reset multi-406
ple times for enhanced learning. Once the vehi-407
cle mastered the simple static obstacle scenario, we408
increased the number of interactive agents within409
the scene, introducing additional challenges to the410
training process.411

After the vehicle had mastered specific strate-412
gies within the simple static obstacle environment413
and demonstrated robustness in interactions with414
agents, we generalized its capabilities to the more415
complex scenarios of turns and straight lines that416
had been defined in both the Bridge and Real en-417
vironments. This process mirrored the learning ap-418

Figure 5. We present the curve showing the variation
of the average reward of Safedreamer over time during
training. On this curve, the actual reward at several spe-
cific time points is recorded. Concurrently, the vehicle
states corresponding to these time points are displayed
and illustrated through images A to D. For instance, dur-
ing the process of generalizing the vehicle to real-world
scenarios for learning, there was an increase in the re-
ward curve, indicating an action to avoid obstacles. How-
ever, a collision still occurred, leading to a subsequent
decrease in reward. This collision is represented on the
reward curve by dashed line A, with the corresponding
state time point documented.

proach in simpler scenarios, where the number of 419
interactive agents was incrementally increased. 420

5.3. Comparison with Baseline Model 421

In the comparison with the baseline model, we 422
conducted analyses against advanced safety mod- 423
els and the World Model to demonstrate the per- 424
formance advantages of our model. Specifically, 425
in Table 1, we present the results of our perfor- 426
mance comparison between our model and the 427
Daydreamer model, as well as the Efficient Rein- 428
forcement Learning Framework for Autonomous 429
Driving. This comparison serves to illustrate the 430
superior performance of our model and underscores 431
its potential in the realm of autonomous driving. 432

The Dreamer algorithm[27]: by planning within 433
a learned world model, effectively reduces trial and 434
error and has demonstrated superior performance 435
to pure reinforcement learning in video games. Ex- 436
periments have shown that Dreamer can rapidly 437
adapt to environmental changes and accomplish 438

7



CVPR

#*****
CVPR

#*****
CVPR 2024 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table 2. Performance Comparison with Baseline Model

Model MPI(m) TT(s) SR(%) Std[V] MPI(m) TT(s) SR(%) Std[V]

Simple scenario Complex scenario

DayDreamer 86.1 21 82.3 0.25 55.2 25 59.5 0.44
Efficient-IL 94.2 25 83.7 0.31 71.4 28 66.3 0.38
Efficient-RL 91.6 27 77.5 0.27 62.8 26 64.7 0.36
Our 97.8 21 91.3 0.22 80.7 23 71.8 0.33

complex tasks when applied to autonomous vehi-439
cles.440

Efficient Reinforcement Learning441
Framework[24]: A fully functional autonomous442
vehicle was constructed for real-world validation,443
exhibiting exceptional generalizability and training444
efficiency through the integration of end-to-end445
and modular approaches.446

In Table 1, we present the performance of the447
Safedrive Dreamer model across four key metrics448
and compare it with other models to demonstrate449
its performance under different evaluation crite-450
ria. The analysis indicates that, in both simple451
and complex scenarios, our model achieves the best452
performance in terms of Meters Per Intervention453
(MPI), demonstrating its capability to generalize454
from simple to complex scenarios and exhibiting455
strong robustness. In terms of travel time, Safedrive456
Dreamer performs on par with DayDreamer in sim-457
ple scenarios, reaching the lowest level, surpass-458
ing all other algorithms in complex environments,459
and maintaining high efficiency. This underscores460
the model’s strong adaptability in complex environ-461
ments.462

Additionally, regarding the success rate and463
standard deviation of speed, Although the success464
rate in complex scenarios is slightly lower than in465
simple ones, the model still demonstrates stabil-466
ity and maintains optimal performance, further re-467
flecting the enhancement in safety brought about468
by employing safe reinforcement learning in the469
Safedrive Dreamer.470

6. Conclusion471

In this work, we introduced Safedrive Dreamer,472

a novel framework integrating world models with 473
safety-critical decision-making for autonomous 474
driving in dynamic and uncertain real-world con- 475
ditions. Our approach enhances autonomous vehi- 476
cles’ ability to navigate safely by proactively learn- 477
ing potential dangers and planning safer routes. 478
Through a comprehensive series of experiments 479
based on sim-to-real scenarios, Safedrive Dreamer 480
demonstrated superior performance in safety met- 481
rics, including collision avoidance and risk mini- 482
mization, outperforming existing end-to-end solu- 483
tions. 484

Our findings demonstrate the effectiveness of 485
leveraging predictive world models for decision- 486
making in safety-critical applications. Further- 487
more, the transition from simulation-based train- 488
ing to real-world deployment highlighted the im- 489
portance of bridging the sim-to-real gap, ensuring 490
the reliability and robustness of autonomous driv- 491
ing systems in handling diverse and unpredictable 492
traffic conditions. However, due to safety concerns, 493
we didn’t evaluate the model in some other more 494
extreme scenarios such as high speed, congested 495
intersections, and multi-vehicle collaboration sce- 496
narios. We will add more baselines and compare 497
them in more extreme scenarios. 498

In conclusion, Safedrive Dreamer shows in- 499
sights of developing more resilient and trustwor- 500
thy autonomous driving systems that can navigate 501
the complexities and uncertainties of the real world. 502
Future work will focus on extending the framework 503
to incorporate more diverse scenarios and further 504
improving the sim-to-real transferability to ensure 505
even higher levels of safety and efficiency in au- 506
tonomous driving. 507
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