
Faster and Cheaper Energy Demand Forecasting at
Scale

Anonymous Author(s)
Affiliation
Address
email

Abstract

Energy demand forecasting is one of the most challenging tasks for grids operators.1

Many approaches have been suggested over the years to tackle it. Yet, those still2

remain too expensive to train in terms of both time and computational resources,3

hindering their adoption as customers behaviors are continuously evolving.4

We introduce Transplit, a new lightweight transformer-based model, which sig-5

nificantly decreases this cost by exploiting the seasonality property and learning6

typical days of power demand. We show that Transplit can be run efficiently on7

CPU and is several hundred times faster than state-of-the-art predictive models,8

while performing as well.9

1 Introduction10

Energy demand forecasting is of utmost importance for grid operators and energy producers to ensure11

the stability of their service. Over the past decades, many approaches to provide the most accurate12

forecasting have been suggested [10]. In the recent years, approaches based on transformers models13

have started to be explored, but the cost to train them at scale, in a context where frequent retraining14

is a norm rather than an exception, hinders their adoption [4, 3]. Indeed recent events (e.g. climate15

change, remote working, energy prices) have highlighted that the way we consume electricity is in16

constant evolution and models need to be regularly retrained to adapt to new contexts. This makes17

previously suggested methods hardly applicable and therefore calls for cheaper and faster models.18

Hence, we introduce Transplit, a transformer-based approach trained to recognize typical days19

of consumption from various profiles, that requires less computation time and resources, while20

conserving state-of-the-art performances. To validate our approach, we compare it against 4 related21

state-of-the-art transformers based approaches on two different datasets of electricity consumption: a22

publicly available one and another from our industrial partner (a national grid operator), that cannot23

be shared for privacy reasons. Overall, we observe that our approach performances are in line with24

the best approaches, while being 380 to 940 times faster to train on a single CPU, without relying on25

dedicated resources such as GPU, allowing it to run on significantly cheaper platforms.26

2 Forecasting Energy Demand27

Load forecasting is essential for electricity grid management and security, with applications ranging28

from peak prediction, incident prevention, to maintenance planning. It usually involves to forecast the29

energy demand of a household or a neighborhood in kWh over a given period of time (from minutes30

to months) based on historical data. Early on, Machine Learning approaches have been suggested [2],31

but their application remained limited by the amount of available data and computing power, which32

is not an issue anymore with the development of smartgrid and the recent increase in computing33

capability. Among ML-based approaches, we distinguish two categories.34

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

⊙

convolution
product

convolution filters

size = n

softm
ax

output vector Vk

input signal Xk

period size

period size

F1

F2

Fn

…

(a) The Slice2Vec process.

×
element-wise

product Σ

output signal
Y

k

input vector
V’ k

F1

F2

Fn

…

convolution filters
(same weights)

(b) The Vec2Slice process.

Figure 1: The SVS module is composed of two layers which share the same weights.

Approaches falling in the first one consist in training one model per household. This was usually35

achieved by models such as random forests, SVMs, or linear regressions [11][3], but more recently36

neural networks based approaches started to be suggested. Neural Prophet (2021) [15] for example37

has been applied to electric load forecasting [14] with interesting results, as well as Deep Probabilistic38

Koopman models [9]. Although these approaches perform well, the number of models to train for a39

grid rapidly becomes too expensive to deploy.40

On the opposite, approaches from the second category rely on a single model which generalizes41

different behaviors of the demand time series, discerns consumers’ profiles and prolong their demand42

curve according to their shape and other factors. Those approaches are usually less costly, but also43

less precise. LSTMs [5] have been widely used in this context [12][18] and are still the subject of44

recent load forecasting research [7][18].45

Yet, with the development of transformers [16], approaches such as LogTrans [8], Reformer [6],46

Informer [19] and lastly Autoformer [17] started to appear with better accuracy and efficiency.47

These approaches all derived from the original work differ in their inner attention mechanism that is48

modify to lower the computation complexity. Still, these models are not entirely applicable to energy49

demand forecasting as they require high computation power and considerable time to train, which is50

problematic when models need to be retrained often. There is therefore a need for a much lighter51

model, requiring less computational power and time, with at least similar performances.52

3 Proposed approach53

In this regards, we introduce Transplit, a lightweight load forecasting model. To design it, we started54

from an observation on a fundamental difference between most of language models and time series55

models, which also impacts their efficiency.56

3.1 Chunking time series57

Whereas language models perform well by tokenizing input text [13] instead of splitting it character by58

character, current time series models process every single input as a vector. As electrical consumption59

data is seasonal, we propose to embed each season – in our case study, the time series is split into60

days. The encoding and decoding parts are achieved by learning a vocabulary of daily consumptions.61

Our solution then consists in reasoning in blocks of consumption days rather than single values.62

3.1.1 Slice2Vec63

As described in Figure 1a, Slice2Vec takes a sequence X ∈ RL, where L = m × T is the input64

sequence length which is a multiple of a period T . X is split into m periods of size T , that we denote65

(Xk)k∈{1,...,m}
1.66

For each Xk, we define a vector V k with the following convolution product:67

∀i ∈ {1, . . . , n}, V k
i = Xk ⊙ F i (1)

1Concretely, if the period T is one day, then Xk is the kth day of the input.

2

Embedding Encoder

n

SVS

n

Average

Repeat

m

Decoder

Linear

SVS

m

…

Transformer

Figure 2: Model architecture of Transplit: (1) the input consumption is split into days; (2) Slice2Vec
converts each day into a vector and passes it to the transformer (3) that forecasts vectors (4) which
are converted to daily consumptions with Vec2Slice.

where n is the chosen size for the vectors, V k
i is the ith coefficient of V k, and F i is a convolution68

filter of size T . Since Xk and F i have the same size, the convolution product is also equivalent to the69

sum of their term-wise product.70

3.1.2 Vec2Slice71

In order to transform a vector V ′k back in a T -sized slice of time series called Y k, the filters F i are72

weighted according to the coefficients of V ′k, then summed:73

Y k =
∑
i

V ′k
i F i (2)

as illustrated in Figure 1b. The slices Y k are concatenated to form the output Y . It is important to74

underline that Vec2Slice is not the inverse function of Slice2Vec: V ec2Slice(Slice2V ec(X)) ̸= X .75

Vec2Slice shares the filters weights with Slice2Vec. The filters are therefore used twice: to recognize76

the input and to match the shape of the expected output.77

3.2 Transplit78

From these two components, we propose Transplit, a new load forecasting model based on the79

original transformer [16] with simple full attention mechanisms. The architecture of the model is80

presented in figure 2.81

4 Evaluation82

4.1 Criteria83

Transplit is designed to (req. 1) maintain state-of-the-art performances for load forecasting, while84

(req. 2) being lighter and faster, in terms of number of parameters and training time.85

To validate these two requirements, we compare Transplit with 4 state-of-the-art approaches: Auto-86

former (2021) [17], Informer (2021) [19], Reformer (2020) [6] and a vanilla Transformer architecture87

(2017) [16]. Classical models such as LSTMs are disregarded as it has been shown that transformers88

perform better for load forecasting [17, 19, 6]. The assessment is done on two forecasting ranges: 789

days and 30 days. We use two datasets and two performance metrics, and also measure training time90

taken by using a GPU and only using a CPU (without multiprocessing).91

4.2 Experimental setting92

We evaluate those approaches on 2 datasets of household’s hourly consumption expressed in kWh.93

The first one, denoted IND, is provided by our industrial partner (a national grid operator) and94

encompasses the consumption of 6010 households over 2 years (2020-2021). The second one ECL[1]95

is an open dataset containing the consumption of 321 households over 3 years (2012-2014).96

3

ECL IND
7 days 30 days 7 days 30 days

MSE MAE MSE MAE MSE MAE MSE MAE
Transplit 0.584 0.178 0.688 0.189 0.177 0.189 0.202 0.205
Autoformer 0.577 0.153 0.736 0.174 0.185 0.210 0.204 0.217
Informer 2.68 0.376 2.71 0.387 0.201 0.213 0.226 0.231
Reformer 1.28 0.262 1.79 0.313 0.172 0.185 0.205 0.207
Transformer 0.781 0.197 0.918 0.213 0.177 0.191 0.203 0.207

Table 1: Error metrics for the ECL and IND datasets

Transplit Autoformer Informer Reformer Transformer
of parameters 183,616 10,505,217 11,306,497 5,782,529 10,518,529
ECL: train. with GPU 3m02s 4h16m 1h53m 4h13m 2h51m
IND: train. with GPU 21m13s 1d 12h15m 19h37m 20h56m 1d 9h00m
ECL: train. with CPU 2m47s 1d 18h01m 17h11m 1d 13h49m 1d 3h01m
IND: train. with CPU 32m05s 20d 21h59m 8d 13h21m 18d 19h47m 13d 10h42m

Table 2: Number of trainable parameters and training time for each model, dataset and infrastructure
used, for a 720 → 720 values forecast.

We set ratios of training / validation / testing to respectively 70 / 10 / 20%, based on the timeline. We97

feed the models with inputs of 720 values (30 days).98

We configure all baseline approaches according to the recommendation from their authors for the99

ECL dataset. Regarding Transplit, we set T = 24 hours and 512 filters for the SVS module and use 1100

encoder and 1 decoder, with a vector size (dmodel) of 64.101

While the training data is standardized, we reverse it at the output in the testing phase to reflect the102

loss with the original scale in kWh. Further details are available on our repository2.103

4.3 Results104

Results for both datasets are presented in Table 1. Although there is no significant improvement,105

Transplit succeeds in keeping the performance of state-of-the art time series transformer models.106

The key element of Transplit is its lightness: what is important to distinguish is the time taken to107

train these models, shown in Table 2. We observe that Transplit took 21 minutes to learn the 6010108

consumers profiles of the IND dataset using a GPU, and is then 102 times faster than the Autoformer.109

Another big advantage for Transplit is that using a CPU instead of a GPU doesn’t significantly slow110

down the model’s computation time, as processing smaller sequences implies smaller operations, and111

data still has to be cached in the GPU, which can take a lot of time in total. The non-necessity of112

GPU to efficiently run the model allows it to be used on less expensive infrastructures, while being113

faster and conserving good forecasting performances.114

5 Conclusion115

We have seen that Transplit remains in line with state-of-the-art time series deep learning models that116

are able to generalize consumption profiles and predict a detailed state of the grid in terms of electric117

load, while being several hundreds of times faster and lighter.118

It opens up the possibility to run a deep-learning predictive model globally at a lower cost, as only119

one CPU is enough to keep Transplit efficient, making it possible to run it locally. This finally offers120

the possibility to update the model regularly with new data. Yet, Transplit might be ineffective to121

predict non-seasonal time series, but could be extended to seasonal signals in general.122

2https://anonymous.4open.science/r/Transplit-BC41

4

https://anonymous.4open.science/r/Transplit-BC41

References123

[1] Electrical consumption load. https://archive.ics.uci.edu/ml/datasets/124

ElectricityLoadDiagrams20112014.125

[2] Hesham Alfares and Nazeeruddin Mohammad. Electric load forecasting: Literature survey and126

classification of methods. International Journal of Systems Science - IJSySc, 33, 01 2002.127

[3] Alfonso González-Briones, Guillermo Hernández, Juan M. Corchado, Sigeru Omatu, and128

Mohd Saberi Mohamad. Machine learning models for electricity consumption forecasting: A129

review. In ICCAIS’19, 2019.130

[4] H.S. Hippert, C.E. Pedreira, and R.C. Souza. Neural networks for short-term load forecasting:131

a review and evaluation. IEEE Transactions on Power Systems, 16(1), 2001.132

[5] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8),133

1997.134

[6] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer, 2020.135

[7] Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long- and short-term136

temporal patterns with deep neural networks. In SIGIR ’18, 2018.137

[8] Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng138

Yan. Enhancing the locality and breaking the memory bottleneck of transformer on time series139

forecasting. In NIPS’19, volume 32, 2019.140

[9] Alex Mallen, Henning Lange, and J. Nathan Kutz. Deep probabilistic koopman: Long-term141

time-series forecasting under periodic uncertainties, 2021.142

[10] Isaac kofi Nti, Adebayo Adekoya, Owusu Nyarko-Boateng, and Moses Teimah. Electricity load143

forecasting: a systematic review. Journal of Electrical Systems and Information Technology, 7,144

09 2020.145

[11] A. Parrado-Duque, S. Kelouwani, K. Agbossou, S. Hosseini, N. Henao, and F. Amara. A146

comparative analysis of machine learning methods for short-term load forecasting systems. In147

SmartGridComm’21, 2021.148

[12] Andrew Pulver and Siwei Lyu. Lstm with working memory. In IJCNN’17, 2017.149

[13] Phillip Rust, Jonas Pfeiffer, Ivan Vulić, Sebastian Ruder, and Iryna Gurevych. How good is150

your tokenizer? on the monolingual performance of multilingual language models. In ACL’21,151

August 2021.152

[14] Md Jamal Ahmed Shohan, Md Omar Faruque, and Simon Y. Foo. Forecasting of electric load153

using a hybrid lstm-neural prophet model. Energies, 15(6), 2022.154

[15] Oskar Triebe, Hansika Hewamalage, Polina Pilyugina, Nikolay Laptev, Christoph Bergmeir,155

and Ram Rajagopal. NeuralProphet: Explainable Forecasting at Scale, 2021.156

[16] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,157

Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS’17, 2017.158

[17] haixu wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition159

transformers with auto-correlation for long-term series forecasting. In NIPS’21, 2021.160

[18] Bailin Yang, Shulin Sun, Jianyuan Li, Xianxuan Lin, and Yan Tian. Traffic flow prediction161

using lstm with feature enhancement. Neurocomputing, 332, 2019.162

[19] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai163

Zhang. Informer: Beyond efficient transformer for long sequence time-series forecasting. In164

AAAI’21, 2021.165

5

https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014

Checklist166

The checklist follows the references. Please read the checklist guidelines carefully for information on167

how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or168

[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing169

the appropriate section of your paper or providing a brief inline description. For example:170

• Did you include the license to the code and datasets? [Yes] See Section 4.2.171

Please do not modify the questions and only use the provided macros for your answers. Note that the172

Checklist section does not count towards the page limit. In your paper, please delete this instructions173

block and only keep the Checklist section heading above along with the questions/answers below.174

1. For all authors...175

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s176

contributions and scope? [Yes]177

(b) Did you describe the limitations of your work? [Yes] See the discussion section.178

(c) Did you discuss any potential negative societal impacts of your work? [No]179

(d) Have you read the ethics review guidelines and ensured that your paper conforms to180

them? [Yes]181

2. If you are including theoretical results...182

(a) Did you state the full set of assumptions of all theoretical results? [N/A]183

(b) Did you include complete proofs of all theoretical results? [N/A]184

3. If you ran experiments...185

(a) Did you include the code, data, and instructions needed to reproduce the main experi-186

mental results (either in the supplemental material or as a URL)? [Yes] See Github link187

as a footnote in subsection 4.2.188

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they189

were chosen)? [Yes] Subsection 4.2.190

(c) Did you report error bars (e.g., with respect to the random seed after running experi-191

ments multiple times)? [No]192

(d) Did you include the total amount of compute and the type of resources used (e.g., type193

of GPUs, internal cluster, or cloud provider)? [Yes] 4.2 and 4.3.194

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...195

(a) If your work uses existing assets, did you cite the creators? [Yes] Link to UCI ML196

repository with no citation request197

(b) Did you mention the license of the assets? [No]198

(c) Did you include any new assets either in the supplemental material or as a URL? [No]199

(d) Did you discuss whether and how consent was obtained from people whose data you’re200

using/curating? [Yes] for the dataset from our industrial partner, [No] for ECL.201

(e) Did you discuss whether the data you are using/curating contains personally identifiable202

information or offensive content? [Yes] with our partner.203

5. If you used crowdsourcing or conducted research with human subjects... [N/A]204

6

	Introduction
	Forecasting Energy Demand
	Proposed approach
	Chunking time series
	Slice2Vec
	Vec2Slice

	Transplit

	Evaluation
	Criteria
	Experimental setting
	Results

	Conclusion

