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Abstract

Large Language Model (LLM) inference faces unique scheduling challenges due
to the dynamically growing Key-Value (KV) cache during token generation, mak-
ing traditional scheduling algorithms ineffective. We develop a fluid dynamics
approximation to establish an optimal throughput benchmark and propose the
WAIT (Waiting for Accumulated Inference Threshold) algorithm that achieves
near-optimal performance with near-optimal throughput gap. For practical sce-
narios with unknown output lengths, we introduce Nested WAIT that maintains
asymptotic optimality through hierarchical segmentation. Experiments on Llama-
7B demonstrate 20-30% throughput improvements over state-of-the-art systems
like vLLM.

1 Introduction
LLM inference presents a fundamental scheduling challenge: the Key-Value (KV) cache grows
dynamically during token generation, with memory requirements increasing unpredictably from
initial prompt processing (prefill) through autoregressive decoding. This dynamic memory growth
invalidates classical scheduling approaches like Shortest Job First, as jobs with initially small memory
footprints can expand to dominate GPU resources during execution.

Current system-level solutions Kwon et al. [2023], Agrawal et al. [2023] employ engineering op-
timizations but lack theoretical foundations. Our work bridges operations research and machine
learning by developing a queueing-theoretic framework for LLM inference scheduling. Unlike prior
theoretical work that assumes known output lengths, we address the realistic setting where output
lengths are unknown at arrival.

Contributions: We make three key contributions:

• Fluid benchmark: We establish a fluid dynamics model that characterizes optimal through-
put Thoughput∗ =

∑
j λj(l

′
j + 1) under memory constraints, providing a theoretical

performance bound.

• WAIT algorithm: For known output lengths, our threshold-based algorithm achieves
near-optimal throughput with gap O(1/T ) under heavy traffic.

• Nested WAIT: For unknown output lengths, we develop a hierarchical segmentation ap-
proach that maintains asymptotic optimality while “learning” prompt types during execution.
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Our algorithms achieve 20-30% throughput improvements over production systems on real workloads,
demonstrating that principled scheduling can substantially improve LLM serving efficiency. More
detailed literature reviews and problem background can be found in Appendix A

2 Model
We consider an LLM inference system processing prompts on a single GPU with memory capacity
C. Prompts arrive stochastically as m types, where type j ∈ [m] has:

• Arrival rate λj (Poisson process)

• Input length lj tokens (prefill phase)

• Output length l′j tokens (decode phase)

During inference, each prompt undergoes one prefill iteration followed by l′j decode iterations.
A prompt at stage k (k ∈ {0, 1, . . . , l′j}) has processed its input and generated k output tokens,
consuming memory lj + k for its KV cache.

Batching dynamics: The GPU processes batches containing prompts at various stages. For a batch
with n1 prompts in prefill (lengths k1, . . . , kn1

) and n2 prompts in decode (current sizes s1, . . . , sn2
),

the iteration time is:

τ = d0 + d1 ·

(
n1∑
i=1

ki +

n2∑
i=1

si

)
(1)

where d0 is fixed overhead and d1 is per-token memory cost. This linear model, validated experimen-
tally, reflects memory-bound computation in attention mechanisms.

Optimization objective: Maximize throughput subject to memory and latency constraints:

max
π∈Π

E[Thoughput(T,π)] (2)

s.t.
∑
i∈Bt

(lj(i) + kti) ≤ C ∀t

where Π denotes non-preemptive scheduling policies and Bt is the batch at time t.

3 Fluid Dynamics and Benchmark
To establish a performance benchmark, we develop a fluid model where discrete stochastic arrivals
are approximated by continuous deterministic flows. In equilibrium, the system maintains n∗

j active
prompts of type j, with exactly n∗

j/(l
′
j + 1) prompts at each stage k ∈ {0, 1, . . . , l′j}.

Equilibrium analysis: The total memory usage for type j is:

M∗
j = n∗

j

(
lj +

l′j
2

)
(3)

In steady state, arrivals equal completions during each iteration:

(d0 + d1M
∗)λj =

n∗
j

l′j + 1
(4)

Solving this system yields the equilibrium memory:

M∗ =
d0
∑m

j=1 λj(l
′
j + 1)(lj +

l′j
2 )

1− d1
∑m

j=1 λj(l′j + 1)(lj +
l′j
2 )

(5)

The optimal throughput benchmark is:

Thoughput∗ =

m∑
j=1

λj(l
′
j + 1) (6)

Key insight: This fluid benchmark represents the maximum achievable throughput for any non-
preemptive policy. We prove that E[Thoughput(T,π)] ≤ Thoughput∗ for all policies π ∈ Π,
establishing this as the fundamental performance limit for LLM inference scheduling.
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4 WAIT Algorithm for Known Output Lengths
The WAIT (Waiting for Accumulated Inference Threshold) algorithm uses threshold-based batching
to approach fluid equilibrium. For each prompt type j, we set threshold nj and process type j only
when at least nj prompts are waiting at stage 0 (prefill).

Algorithm 1 WAIT Algorithm

1: Initialize inventories njk = 0 for all types j, stages k
2: while true do
3: Wait for arrivals or batch completion
4: for each type j with nj0 ≥ nj do
5: Add min{nj , njk} prompts at each stage k to batch
6: end for
7: if batch is non-empty then
8: Process batch and update inventories
9: end if

10: end while

Threshold selection: Choose nj satisfying:

∆T (n1, . . . , nm) := d0 + d1
∑
j

nj(l
′
j + 1)(lj +

l′j
2
) <

nj

λj
(7)

This ensures arrivals during processing don’t exceed completions, maintaining stability.
Theorem 4.1 (WAIT Optimality). Under heavy traffic scaling with arrival rates λ(ζ)

j = ζλj , suppose
the total memory M > M∗, where M∗ is given in (5), WAIT achieves:

Thoughput∗ − E[Thoughput(ζ,π)] = O((ζT )−1) (8)

E[Latency(ζ,π)] = O(1) (9)

The proof uses coupling arguments from queueing theory, constructing a dominant process to bound
performance gaps. WAIT achieves the optimal O(1/T ) convergence rate, matching theoretical lower
bounds.

5 Nested WAIT for Unknown Output Lengths
Real-world LLM inference faces unknown output lengths at arrival. Nested WAIT addresses this by
organizing processing into m segments corresponding to potential output lengths l′1 < l′2 < . . . < l′m.

Key idea: Prompts become distinguishable as they progress through decoding. Initially, all prompts
enter segment 1 (stages 0 to l′1). After l′1 iterations, type-1 prompts complete while others advance to
segment 2, revealing their true types progressively.

Segment dynamics:

• Segment i contains prompts at stages {l′i−1 + 1, . . . , l′i}

• Arrival rate for segment i:
∑m

j=i λj

• Threshold ni triggers processing when segment i has sufficient prompts
Theorem 5.1 (Nested WAIT Optimality). With thresholds satisfying ni+1/ni >
(
∑m

j=i+1 λj)/(
∑m

j=i λj) and the total memory satisfying equation (9) in Ao et al. [2025],
Nested WAIT achieves:

Thoughput∗ − E[Thoughput(ζ,π)] = O((ζT )−1)

Despite unknown types, Nested WAIT maintains the same asymptotic optimality as WAIT, demon-
strating robustness to uncertainty.
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Algorithm 2 Nested WAIT Algorithm

1: Initialize segment inventories, thresholds [n1, . . . , nm]
2: while true do
3: Find largest i where all segments 1 to i meet thresholds
4: if such i exists then
5: Form batch from segments 1 to i
6: Process batch, advance prompts to next segments
7: else
8: Wait for more arrivals
9: end if

10: end while

6 Experiments
We evaluate (Nested) WAIT against vLLM Kwon et al. [2023] and Sarathi Agrawal et al. [2023]
using Llama-7B on A100 GPU (Microsoft Vidur simulator Agrawal et al. [2024]).

Workloads: (1) Synthetic: For WAIT with known lengths, we test low demand (2 types, l′ = (10, 20),
λ = (1000, 1000)) and high demand (3 types, l′ = (100, 200, 300), λ = (6000, 4000, 2000)). For
Nested WAIT, we use 4 types with l′ = (20, 40, 80, 160). (2) Real: LMSYS-Chat-1M Zheng et al.
[2023] with 50K prompts, grouped into 10 bins (50 tokens each) for Nested WAIT.
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(b) WAIT: Latency
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(c) Nested: Throughput
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Figure 1: Throughput and latency comparison under high load: (a-b) WAIT on synthetic data, (c-d)
Nested WAIT on real data.

Results: Figures (a) and (c) demonstrate consistent 20-30% throughput improvements across both
algorithms. WAIT achieves peak gains under high synthetic load, while Nested WAIT maintains
similar performance on real workloads despite unknown output lengths. Latency plots (b,d) show the
tradeoff: while our algorithms incur slightly higher latency at low loads due to batching, they achieve
superior throughput-latency balance under heavy traffic—the target operating regime for production
systems. The threshold-based approach effectively approaches theoretical fluid limits in practice.

7 Conclusion
We developed a theoretically grounded framework for LLM inference scheduling that bridges opera-
tions research and machine learning. Our fluid dynamics model establishes fundamental performance
limits, while the (Nested) WAIT algorithms achieve near-optimal throughput with provable guaran-
tees. The hierarchical segmentation in Nested WAIT elegantly handles unknown output lengths—a
critical challenge in practical deployments—while maintaining asymptotic optimality.

Future directions: Extensions to multi-GPU systems with pipeline parallelism, handling time-
varying arrival patterns, and incorporating recent system optimizations like multi-head latent attention
present promising research opportunities. Our framework provides a foundation for principled
scheduling in increasingly complex LLM serving scenarios.
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A Extended Introduction and Related Work
A.1 LLM Inference Process: Detailed Description
Understanding the LLM inference process is essential for tackling its associated scheduling challenges.
Figure 2 provides a step-by-step illustration of how a query is processed during inference.

Figure 2: An example of LLM inference. The process begins with a user prompt (“Is apple a fruit?”)
that undergoes prefill (Stage 0) to initialize the KV cache, followed by sequential decode stages (1-4)
where output tokens are generated one at a time. The figure shows how memory usage grows during
decoding and illustrates key metrics: TTFT (Time to First Token), Latency, and Throughput.

The process begins when a user submits a prompt—e.g., “Is apple a fruit?”—which is then passed
through several computational stages. The inference pipeline consists of two main phases:

Prefill Phase (stage 0): Upon receiving the prompt, the model first tokenizes the input into a
sequence of discrete units (e.g., “Is”, “apple”, “a”, “fruit”, “?”). These tokens are then embedded
and simultaneously processed in a single forward pass to compute the Key-Value (KV) cache,
which stores intermediate representations (i.e., attention keys and values) for each token. These
precomputed values are critical for enabling efficient reuse during subsequent decoding steps. This
phase corresponds to Stage 0 in Figure 2, where all prompt tokens are embedded and their KV
representations are added to the cache.

Decode Phase (stages 1 to l′): After the prefill phase, the model enters the decode phase, where it
generates the output one token at a time. At each stage, the model queries the existing KV cache
to compute the next token, appends the new token to the output sequence, and updates the KV
cache with its key-value pair. For instance, the model might first generate “Yes” (Stage 1), then
“it” (Stage 2), followed by “is” (Stage 3), and finally the End of Sequence (EOS) token (Stage 4).
This progression is depicted in the lower part of Figure 2. Each token generation step involves both
reading from and writing to the KV cache, resulting in a memory footprint that grows linearly with
the length of the generated sequence.

Figure 2 also highlights key performance metrics in LLM inference:

• Time-To-First-Token (TTFT) measures the latency from user input to the first generated
token.

• Latency refers to the total time required to complete the generation of all output tokens.

• Throughput captures the average number of tokens generated per unit time.

This inference structure, particularly the growing memory requirements and sequential decoding
pattern, introduces fundamental constraints on scheduling and batching. Efficient scheduling must
account for both prompt heterogeneity and KV cache dynamics in order to optimize latency and
resource utilization.
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A.2 Why Traditional Scheduling Fails for LLM Inference
The KV cache is essential for efficiency, as it prevents the model from recalculating the attention
history for each new token. Without it, the computational cost would scale quadratically with the
sequence length, making real-time inference infeasible. However, the expanding KV cache poses a
significant scheduling challenge, as the memory footprint grows unpredictably during the decode
phase. This variability, combined with stochastic prompt arrivals and differing response lengths,
complicates resource allocation on hardware with finite capacity, such as GPUs. Exceeding memory
limits can force the system to offload data to slower storage mediums, degrading performance and
increasing latency.

Scheduling LLM inference tasks involves grouping prompts into batches processed concurrently on
a GPU, combining prefill and decode phases to optimize resource use. This process is constrained
by GPU memory limits, as the KV cache grows with each generated token, restricting the number
of active prompts. Traditional scheduling methods, such as Shortest Job First (SJF), assume fixed
job sizes and known processing times, making them unsuitable for LLM inference where memory
demands increase dynamically and output lengths are often unknown.

For example, consider two prompts: one with a short input but a long, unpredictable output (e.g.,
“Summarize the history of artificial intelligence”), and another with a longer input but a short output
(e.g., “Is 5 a prime number?”). In a traditional setting, SJF would prioritize the second prompt,
expecting its shorter processing time to minimize average wait times. However, in LLM inference,
the first prompt’s decode phase could generate hundreds of tokens, causing its KV cache to balloon
over time and occupy significant memory, while the second prompt’s quick decode phase releases
resources almost immediately after a longer prefill. Prioritizing the second prompt might reduce
initial latency, but the first prompt’s prolonged memory usage could block other tasks, leading to
GPU under-utilization and reduced throughput.

Beyond SJF, other traditional methods like priority scheduling falter as they prioritize prompts without
accounting for the KV cache’s unpredictable growth, potentially exhausting memory. While batching
remains effective, it requires dynamic adaptation—e.g., adjusting batch sizes based on current
memory usage—to accommodate the KV cache’s expansion, unlike static batching in traditional
settings. These characteristics—stochastic prompt arrivals, multi-phase processing, and unpredictable
resource needs—render classical operations research approaches inadequate, necessitating tailored
scheduling strategies that account for dynamic memory growth and phase-specific demands.

A.3 Recent Work on LLM Inference Scheduling
Recent system-level optimizations for LLM inference Yu et al. [2022], Kwon et al. [2023], Agrawal
et al. [2023], Pope et al. [2023], DeepSeek-AI [2024], Patel et al. [2024], Zhong et al. [2024] focus on
engineering solutions, such as batching and memory compression, but lack a rigorous mathematical
foundation.

Notable theoretical contributions include:

• Jaillet et al. [2025] models LLM inference as an online scheduling problem with KV cache
constraints, developing an adapted shortest-job-first algorithm with near-optimal regret
bounds, though it assumes known output lengths at arrival—a limitation for real-world
scenarios.

• Wang et al. [2025] optimizes serving with variable prefill and decode lengths through a
stochastic optimization framework.

• Chen et al. [2025] proposes robust optimization techniques to handle prediction uncertainty
in LLM inference scheduling.

• Li et al. [2025] proposes a stochastic processing model showing that work-conserving
scheduling algorithms achieve optimal throughput for both individual requests and multi-
agent AI workloads.

In practice, output length predictions are imprecise or costly. For example, as shown in Fu et al.
[2025], high-accuracy prediction is sensitive to the bucket size of output lengths for classification.
When the output length is unknown, the performance of algorithms may degenerate significantly
and performance guarantees obtained in full knowledge scenarios no longer hold. To address this
problem, we develop a fluid dynamics approximation to establish a tractable benchmark, providing
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insights for devising effective scheduling algorithms that can handle unknown output lengths while
maintaining theoretical guarantees.

A.4 Detailed Contributions
This work contributes to LLM inference scheduling through the following:

Mathematical Model: We develop a multi-stage online scheduling model for LLM inference,
accounting for queueable prompts under memory constraints. To analyze performance and inform
practical algorithms, we employ a fluid dynamics approximation based on queueing theory, which
serves as both an analytical tool and a performance benchmark.

Asymptotically Optimal Algorithms: We develop the WAIT algorithm for known output lengths as
a warm-up and extend it to the Nested WAIT algorithm for unknown output lengths, both achieving
asymptotic optimality under heavy traffic via novel waiting time and coupling analyses.

Experimental Validation: We evaluate our algorithms on synthetic and real-world datasets, out-
performing benchmarks like vLLM and Sarathi, which are widely recognized high-performance
inference engines, in average throughput using Llama2-7B on a single A100 GPU.

These contributions bridge operations research and machine learning, addressing analytical challenges
in stochastic, memory-constrained online scheduling problems.

B Extensions
In this section, we present two extensions to our generalize our algorithms and theoretic analysis.
First, we investigate the adaptation of Algorithm 2 to accommodate time-varying arrival rates. Second,
we propose a generalized segment design for Algorithm 2, extending beyond the existing m-segment
parameterization. We establish that these extensions preserve comparable theoretical guarantees as in
Theorem 5.1.

B.1 Time-Varying Arrival Rates
In this part, we analyze the asymptotic optimality of the Nested WAIT algorithm under time-varying
arrival rates, denoted λt

j for prompt type j ∈ [m] at time t ∈ [0, T ]. We assume that λt
j are continuous

functions of time, uniformly bounded by λmax < ∞. Define the accumulated arrivals of type j over
the interval [t1, t2] as λj [t1, t2] :=

∫ t2
t1

λt
j dt. Notice that ∆T[1,2,...,m](n1, · · · , nm) represents the

per-iteration time cost when processing exactly ni prompts at each stage in segment i, for all i ∈ [m]
(ni is the threshold defined in Algorithm 2).

For the Nested WAIT policy defined by π = [n1, . . . , nm], we consider the following conditions for
all t ∈ [0, T ], 0 < ∆t ≤ ∆T[1,2,··· ,m](n1, · · · , nm) and i = 1, 2, . . . ,m− 1.

m∑
j=1

λj

[
t, t+∆t

]
≤

m∑
j=1

λj

[
t, t+∆T[1,2,··· ,m](n1, · · · , nm)

]
< n1,

ni+1/ni > pi[t, t+∆t],

(10)

where pi[t, t+∆t] = (
∑m

j=i+1 λj [t, t+∆t])/(
∑m

j=i λj [t, t+∆t]).

We define that the total number of iterations over time horizon [0, T ] as S. Therefore, we have
T ≥

∑S
s=1 ∆Ts-th Batch ≥ S · min∆TBatch, where ∆Ts-th Batch denotes the time cost of the s-th

iteration and ∆Tmin = mins{∆TBatch}. We now present the following result that extends Theorem
5.1.
Theorem B.1. Suppose the thresholds π = [n1, . . . , nm] satisfy (10), and the memory M (ζ,π) fulfills:

M (ζ,π) ≥ Mπ +

m∑
j=2

(l + l′j−1)
(
nj + θ−1

j ln
(

mζS
δ

))

= O

2Mπ +

m∑
j=1

θ−1
j (l + l′j−1) ln

(
mζS
δ

) ,
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where θj is given in (14) with the lower bound in Equation (15). Then, the following asymptotic
bounds hold:

Thoughput∗ − E
[
Thoughput(ζ,π)

]
= O

(
(ζT )−1

)
,

E
[
Latency(ζ,π)

]
, E
[
TTFT(ζ,π)

]
= O(1).

Additionally, the memory usage remains below Mζ,π with probability at least 1 − δ over the time
hotizon [0, T ].

The proof constructs a coupled dominant stochastic process, extending the approach of Theorem 5.1
with adjustments for time-varying arrival rates. A detailed proof is provided in Appendix E.

B.2 Segment Design
In this subsection, we generalize the segment design in Algorithm 2. We assume constant arrival
rates, though the approach can be extended to time-varying rates as discussed earlier. Consider m
prompt types with decode lengths l′1 < · · · < l′m and arrival rates λ1, λ2, · · · , λm. Our objective is
to merge these into L segments, where L ≤ m. For notational convenience, let ∆L := m/L. We
partition the m types into L segments as follows: types 1 to ∆L, types ∆L+ 1 to 2∆L, . . . , types
(L− 1)∆L+ 1 to m.

For each segment i ∈ {1, . . . , L}, the total arrival rate is defined as λ′
i =

∑
(i−1)∆L+1≤j≤i∆L λj .

Additionally, we define λ′(i1 → i2) :=
∑i2

j=i1
λ′
j for 1 ≤ i1 ≤ i2 ≤ L.

Given a policy π = [n1, . . . , nL] with threshold ni for the i-th segment in Algorithm 2, we formulate
a linear system:

∆T[1:L](n1:L) ≤
n1∑L
j=1 λ

′
j

,

ni+1

ni
> pi, ∀i < L,

(11)

where pi =
λ′(i+1→L)
λ′(i→L) , ∆T[1,...,L](n1, . . . , nL) = d0 + d1M

π(n1, . . . , nL), and the memory Mπ

running with ni at each stage in segment i is given by:

Mπ(n1, . . . , nL) =

L∑
i=1

ni

(
l +

i

2
∆L

)
∆L.

We define that the total number of iterations over time horizon [0, T ] as S. Therefore, we have
T ≥

∑S
s=1 ∆Ts-th Batch ≥ S·min∆TBatch, where ∆Ts-th Batch denotes the time cost of the s-th iteration

and ∆Tmin = mins{∆TBatch}. We demonstrate that the Nested WAIT algorithm (Algorithm 2) with
L segments and thresholds [n1, . . . , nL] satisfying Equation (11) achieves asymptotic optimality
under the heavy-traffic conditions.
Theorem B.2. For any fixed number of segments L and thresholds π = [n1, . . . , nL] satisfying
Equation (11), if the memory capacity M (ζ,π) satisfies:

M (ζ,π) ≥ Mπ +

L∑
j=2

(l + l′j−1)nj +

L∑
j=2

(l + l′j−1)θ
−1
j ln

(
mζS

δ

)

= O

(
2Mπ +

L∑
j=1

(l + l′j−1)θ
−1
j ln

(
mζS

δ

))
,

(12)

where θj is given by Equation (13) with lower bound 8(nj − nj−1pj)/nj .. , then the performance of
Nested WAIT is guaranteed by:

Thoughput∗ − E
[
Thoughput(ζ,π)

]
= O

(
(ζT )−1

)
,

E
[
Latency(ζ,π)

]
, E
[
TTFT(ζ,π)

]
= O(1).

Moreover, memory is not exceeded with probability at least 1 − δ over the total batch counts
s ∈ {1, · · · , S} as well as the time horizon t ∈ [0, T ].

9



The proof follows a similar structure to that of Theorem 5.1, substituting the original arrival rates
(λ1, . . . , λm) with the clustered rates (λ′

1, . . . , λ
′
L) as in Appendix D. We omit here for simplicity.

To show how the memory requirements in (12) varies with different model parameters, we utilize the
dataset from Zheng et al. [2023], with m = 500 prompt types, decode lengths ranging from 1 to 500,
and a fixed prefill length of 62. The distribution of prompt types is shown in Figure 3, where arrival
rates are set proportional to normalized frequencies.
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Figure 3: Arrival rate construction from real data, with rates proportional to normalized frequencies.

We analyze the three components of the memory bound in Equation (12): (1) the peak batch
memory usage

∑L
j=1 nj

(
l + j

2∆
)
∆, (2) the queue length bound

∑L
j=2 nj(l + l′j−1), and (3) the

high-probability queue length bound
∑L

j=2 θ
−1
j (l + l′j−1) ln

(
(L−1)(T+1)

δ

)
.

Simulations under varying total arrival rates, time horizons T , and confidence levels δ are presented
in Figures 4, 5, and 6. These figures depict the memory usage proportions of the three terms across
different segment numbers L, revealing that the overall memory demand is primarily driven by the
first term (fluid equilibrium memory) and follows a U-shaped trend with respect to L, suggesting
that moderate segment number can reduce waste of memory usage. Additionally, Nested WAIT
effectively manages unknown prompt types with only a marginal increase in memory beyond the
fluid equilibrium requirement. In practice, a moderate number of segments, such as L = 10 as used,
is sufficient.
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Figure 4: Memory usage proportions under low arrival rate (total rate = 50, T = 200). Left: δ = 0.1;
Right: δ = 10−5.

C Proof of Theorem 4.1
First we consider the single-type case, and prove some useful lemmas.

C.0.1 Single-Type
First, consider the single-type scenario. For the booking limit policy, it can be inferred from the
recursion that the waiting time is necessarily spent on awaiting the accumulation of sufficient prompts
for prefill.
Lemma C.1. The number of incoming prompts Xt at each time step n follows a Poisson distribution
with parameter λ. The service processes up λ prompts at each time step when there are at least λ
prompts available. Let W t represent the number of prompts in the queue at time t, starting with

10
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Figure 5: Memory usage proportions under high arrival rate (total rate = 500, T = 200). Left:
δ = 0.1; Right: δ = 10−5.
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Figure 6: Memory usage proportions with varying time horizons (total rate = 50, δ = 0.001). Left:
T = 20; Right: T = 2000.

W 0 = 0. The state transition rule is given by

W t+1 = W t +Xt − λ · 1{W t +Xt ≥ λ}
Define the total number of stuck time steps as Tstuck, which is also the total number of time steps of
W t +Xt < λ, and the following relationship holds

E[WT ] = λ · E[Tstuck].

Detailed proof is in Appendix F.1. In order to estimate the expected upper bound, we need to construct
a coupled process to dominate W t.
Lemma C.2. Define a new process {W̃ t} as a coupled version of {W t} as follows:

W̃ 0 = 2λ, W̃ t+1 = max{2λ, W̃ t +Xt − λ}.

Then, we have W̃ t ≥ W t + λ, ∀t ∈ N.

Detailed proof is in Appendix F.2. Next, by Proposition 6.3 in Asmussen et al. [2003], we have that
Lemma C.3.

W̃T = 2λ+max(ST , ST − S1, · · · , ST − ST−1, 0), Sk =

k∑
r=1

(Xr − λ)

Let ξk = Xk − λ, and notice that

max(ST , ST − S1, · · · , ST − ST−1, 0) = max
1≤k≤T

(

T∑
r=k

ξr)+
d
= max

1≤s≤T
(

s∑
r=1

ηr)+, ηr
d
= X1 − λ

So we have that W̃T d
= 2λ+max1≤s≤T (

∑s
r=1 η

r)+.

Since W̃T ≥ λT , we have E[WT ] ≤ E[W̃T ] − λ = E[max1≤s≤T (
∑s

r=1 η
r)+] + λ. Let Y T =

max1≤s≤T (
∑s

r=1 η
r)+, consider the expectation E

[
Y T
]
. By Lemma 2 in Strait [1974], we get that

11



Lemma C.4.

E
[
Y T
]
= E

[
max

1≤s≤T
(

s∑
r=1

ηr)+

]
= E

[
max

1≤k≤T
(Sk)+

]
=

T∑
k=1

1

k
E
[
(Sk)+

]
Then we consider the E[(Sk)+], and just use Cauchy’s inequality

E[(Sk)+] = E[max{Sk, 0}] ≤ E[|Sk|] ≤
√

E[(Sk)2] = σ
√
k =

√
λk ⇒ E[Y T ] ≤

√
λ

T∑
k=1

1√
k
∼

√
λT

So we have that
Lemma C.5.

E[WT ]− λ ≤ E[Y T ] ≤
√
λ

T∑
k=1

1√
k
∼

√
λT , T → ∞

Then consider the average throughput. In the deterministic scenario, the average throughput
Thoughput∗ = λ. Thus, in the stochastic case, the expected gap between the average through-
put Thoughput and Thoughput∗ is given by 1

T E[W
T ].

In Conventional Heavy-Traffic case,

1

T ζ
E[WT,ζ ] =

λζ

T ζ
+

(λT )ζ/2

T ζ
=

(
λ

T

)ζ
+ λζ/2T−ζ/2 → 0 as ζ → ∞

C.0.2 Multiple-Type
When the memory constraint C ≥ M∗, consider the WAIT policy π, which is defined by the
[n1, · · · , nm], where nj represents the threshold of the number of prompts of type j in each stage.

Solving the linear system:

d0 + d1

m∑
j=1

nj(l
′
j + 1)

(
lj +

l′j
2

)
≤ nj

λj
, Mπ =

m∑
j=1

nj(l
′
j + 1)

(
lj +

l′j
2

)
≥ M∗

we obtain the policy class Π, each π = [n1, · · · , nm] ∈ Π with corresponding memory capacity
Mπ ≥ M∗.

∀π ∈ Π, when prompts of all m types are in the same batch, Arrivalj ≤ Completionj . Indeed,
when type j is in the batch, no matter what the other types are in the batch, we have that Arrivalj ≤
Completionj . Specifically, when Mπ = M , the policy is π = [

n∗
1

l′1+1 , · · · ,
n∗
m

l′m+1 ].

Now we define some notations. Let s denote the batch index, Js denote the types contained in the
s-th batch, s(Js) denote the time at the start of the inference of the s-th batch and e(Js) denote the
time at the end of the inference of the s-th batch. Note that s(Js+1) − e(Js) denotes the waiting
time before s+ 1-th batch, this waiting condition only occurs when all m types do not satisfy the
threshold.

At s+ 1-th batch, the state transition rule is given by

W
e(Js+1)
(j) = W

e(Js)
(j) +X

s(Js+1)−e(Js)
(j) + Y

e(Js+1)−s(Js+1)
(j) − nj · 1{j ∈ Js+1}, ∀j = 1, · · · ,m

where X
s(Js+1)−e(Js)
(j) and Y

e(Js+1)−s(Js+1)
(j) are independent with

X
s(Js+1)−e(Js)
(j) ∼ P (λj · (s(Js+1)− e(Js))), Y

e(Js+1)−s(Js+1)
(j) ∼ P (λj · (e(Js+1)− s(Js+1)))

Since s(Js+1) − e(Js) > 0 if and only if when all m types do not satisfy the threshold, so
∀t ∈ [e(Js), s(Js+1)], W e(Js)

(j) + Xt
(j) ≤ nj , ∀j ∈ {1, · · · ,m}. We will use this property to

construct a coupled process to dominate this.

12



Lemma C.6. Define a coupled process W̃ t
(j) with continuous time:

W̃ 0
(j) = 2nj , W̃

t+∆T[1,··· ,m]

(j) = max{2nj , W̃
t
(j)+X

∆T[1,··· ,m]

(j) −nj}, X
∆T[1,··· ,m]

(j) ∼ P (λj ·∆T[1,··· ,m])

We have that W̃t ≥ Wt, ∀t ≥ 0

Detailed proof is in Appendix F.3. For the coupled process W̃ t
(j), since the processing time of a batch

containing all m types ∆T[1,··· ,m] is the same under fixed thresholds [n1, · · · , nm]:

∆T[1,··· ,m] = d0 + d1 ·
m∑
j=1

nj(l
′
j + 1)

(
lj +

l′j
2

)
,

we can use batch index s for simplicity. So the coupled process is equivalent to

W̃ 0
(j) = 2nj , W̃

s+1
(j) = max{2nj , W̃

s
(j)+Xs

(j)−nj} = max{2nj , W̃
s
(j)+Y s

(j)}, X
s
(j) ∼ P (λj ·∆T[1,··· ,m])

1. When ∆T[1,··· ,m] =
nj

λj
, we have that

λj ·∆T = nj ⇒ E
[
Y s
(j)

]
= 0.

So by Lemma C.5, we have that

E
[
WS

(j)

]
≤ E

[
W̃S

(j)

]
≤ λj +

√
λjS,

2. When ∆T[1,··· ,m] <
nj

λj
, the expectation E

[
Y s
(j)

]
< 0. The coupled process W̃ s

(j) has a negative
drift. Since

Var(Y s
(j)) = Var(Xs

(j)) = λj ·∆T[1,··· ,m],
∣∣∣E [Y s

(j)

]∣∣∣ = nj − λj ·∆T[1,··· ,m]

By Kingman, we have that

E
[
WS

(j)

]
≤ E

[
W̃S

(j)

]
≤ 2nj +

Var(Y s
(j))

2
∣∣∣E [Y s

(j)

]∣∣∣ = 2nj +
λj ·∆T[1,··· ,m]

2 ·
(
nj − λj ·∆T[1,··· ,m]

)
So when C = M∗, we have that π = [

n∗
1

l′1+1 , · · · ,
n∗
m

l′m+1 ]. This is a special case where all types satisfy
the condition ∆T[1,··· ,m] =

nj

λj
. So with the union bound, we have the expected upper bound of the

throughput gap to the Throughput∗ under the fluid system.

1

S

m∑
j=1

E
[
WS

(j)

]
≤ 1

S

m∑
j=1

λj +

m∑
j=1

√
1

S
λj

In Conventional Heavy-Traffic case,

1

Sζ

m∑
j=1

λζ
j +

m∑
j=1

√
1

Sζ
λζ
j =

1

ζS

m∑
j=1

λj +

m∑
j=1

√
1

ζS
λj → 0, ζ → ∞.

With the expected end-to-end latency

1

S
·∆T[1,··· ,m] ·

 m∑
j=1

λj +

m∑
j=1

√
λj · S

 ∼ Ω(

√
1

S
)

When all m types satisfy the condition ∆T[1,··· ,m] <
nj

λj
, the expected upper bound of the throughput

gap is bounded:

1

S

m∑
j=1

E
[
WS

(j)

]
≤ 1

S

m∑
j=1

(
2nj +

λj ·∆T[1,··· ,m]

2 ·
(
nj − λj ·∆T[1,··· ,m]

))
with the bounded expected end-to-end latency

∆T[1,··· ,m] ·
1

S

m∑
j=1

E
[
WS

(j)

]
≤ ∆T[1,··· ,m]

1

S

m∑
j=1

(
2nj +

λj ·∆T[1,··· ,m]

2 ·
(
nj − λj ·∆T[1,··· ,m]

)) ∼ Ω(
1

S
)
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D Proof of Theorem 5.1
For the first segment, the state transition rule is given by

W s+1
(1) = W s

(1) + Y s
(1) − n1 · 1{W s

(1) + Y s
(1) ≥ n1}, Y s

(1) ∼ P (∆Ts-th Batch ·
m∑
j=1

λj),

where s denotes the index of all batches, and ∆Ts-th Batch denotes the time cost of the inference of
the t-th batch. Since ∆Ts-th Batch ≤ ∆T[1,··· ,m](n1, · · · , nm), where ∆T[1,··· ,m](n1, · · · , nm) is the
time cost of the inference of the batch containing all m types, we can obtain a dominated process.

W̄ s+1
(1) = W̄ s

(1) + Ỹ s
(1) − n1 · 1{W̄ s

(1) + Ỹ s
(1) ≥ n1}, Y s

(1) ∼ P (∆T[1,··· ,m](n1, · · · , nm) ·
m∑
j=1

λj),

Compared to process {W s
(1)}, the process {W̄ s

(1)} use Y s
(1) ∼ P (∆T[1,··· ,m](n1, · · · , nm) ·

∑m
j=1 λj)

as arrival. And this process is dominated by a Lindley process

W̃ 0
(1) = 2n1, W̃

s+1
(1) = max{2n1, W̃

s
(1) + Ỹ s

(1) − n1}

Since ∆T[1,··· ,m](n1, · · · , nm) ·
∑m

j=1 λj < n1, the coupled process has negative drift.

Since Var(Xs
(1) − n1) = ∆T[1,··· ,m](n1, · · · , nm)

∑m
j=1 λj and

∣∣∣E [Xs
(1) − n1

]∣∣∣ = n1 −
∆T[1,··· ,m](n1, · · · , nm)

∑m
j=1 λj , by Kingman Inequality, we have that

E
[
W s

(1)

]
≤ 2n1 +

∆T[1,··· ,m] ·
∑m

j=1 λj

2
(
n1 −∆T[1,··· ,m] ·

∑m
j=1 λj

)
Notice that the prompts waiting before the first segment is stored in CPU, so do not consume the
GPU memory capacity, so W s

(1) does not affect the memory capacity.

Then we consider the k-th segment, 2 ≤ k ≤ m, the arrival process is that

Y s
(k) ∼ Binomial

(
nk−1,

λk + · · ·+ λm

λk−1 + λk + · · ·+ λm

)
= Binomial(nk−1, pk), ∀s ∈ N

The k-th segment can be modeled as a process where the counting of steps is triggered by the process
of the former segments, since the arrival of the k-th segment occurs if and only if the k−1-th segment
is processed in the former batch. And the state transition rule is given by

W s+1
(k) = W s

(k) + Y s
(k) − nk · 1{W t

(k) + Y t
(k) ≥ nk}

where s denotes the s-th batch which contains segment k − 1. So here the index s of each segment
are indeed different, but are bounded by the total number of the batches.

We set Xs
(k) = Y s

(k) − nk, ∀s ∈ N, and we can construct a coupled process W̃ s
(k) to dominate W s

(k).

Lemma D.1. Define a new process {W̃ s
(k)} as a coupled version of {W s

(k)} as follows:

W̃ 0
(k) = nk, W̃

s+1
(k) = max{nk, W̃

s
(k) +Xs

(k)}, ∀s ∈ N

Then, we have that
W̃ s

(k) ≥ W s
(k), ∀s ∈ N.

Detailed proof is in the Appendix F.4, and with the help of Lemma D.1, when estimating the upper
bound corresponding to {W s

(k)}, we can estimate W̃ s
(k) instead. Note that the process {W̃ s

(k)} is
equivalent to

W̃ 0
(k) = nk, W̃

s+1
(k) = nk +max{0, X1

(k), X
1
(k) +X2

(k), X
1
(k) + · · ·+Xs

(k)}, ∀s ∈ N

Define
Si
(k) = X1

(k) + · · ·+Xi
(k)
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and we have that

W̃ 0
(k) = nk, W̃

s+1
(k) = nk +max{0, S1

(k), · · · , S
s
(k)}, ∀t ≥ 0, where S0

(k) = 0

Next, we will estimate the E
[
W s

(k)

]
for 2 ≤ k ≤ m, since the prompts in segments 2 → m consume

the memory of the GPU. So we consider the expectation of W̃ s
(k), we have that

E
[
W s

(k)

]
≤ E

[
W̃ s

(k)

]
≤ nk + E

[
max

0≤i≤s−1
{Si

(k)}
]

Since the expectation
E
[
Xs

(k)

]
= nk−1 · pk − nk < 0, ∀s ∈ N

the coupled process W̃ s
(k) has negative drift. Since Var(Xi

(k)) = Var(Y i
(k)) = nk−1 · pk(1− pk), and∣∣∣E [Xi

(k)

]∣∣∣ = nk − nk−1 · pk, by Kingman Inequality, we have that

E
[

max
0≤i≤s−1

{Si
(k)}

]
≤

Var(Xi
(k))

2
∣∣∣E [Xi

(k)

]∣∣∣ ≤ nk−1 · pk(1− pk)

2 (nk − nk−1 · pk)

Thus, we obtain the expected upper bound:

E
[
W t

(k)

]
≤ nk +

nk−1 · pk(1− pk)

2 (nk − nk−1 · pk)

The expectation bound derived above ensures that the expected queue length E
[
W s

(k)

]
of the k-th

segment is finite and controlled, which also provides a useful estimate for the expected memory
consumption of the k-th segment.

As we have discussed before, the index s of each segment are different, but are all bounded by the total
number of all the batches. So if we use the total number of all the batches S as the upper bound of the
index s of different segments, the expected gap of the throughput Thoughput∗−E[Thoughput(ζS,π)]
is bounded by

1

S

m∑
j=1

E
[
WS

(j)

]
≤ 2n1

S
+
1

S
·

∆T[1,··· ,m] ·
∑m

j=1 λj

2
(
n1 −∆T[1,··· ,m] ·

∑m
j=1 λj

)+ 1

S

m∑
j=2

nk+
1

S

m∑
j=2

nk−1 · pk(1− pk)

2 (nk − nk−1 · pk)

In Conventional Heavy Traffic, we have the estimation of Thoughput∗ − E[Thoughput(ζ,π)]:

2n1

ζS
+

1

ζS
·

∆T[1,··· ,m] ·
∑m

j=1 λj

2
(
n1 −∆T[1,··· ,m] ·

∑m
j=1 λj

)+ 1

ζS

m∑
j=2

nk+
1

ζS

m∑
j=2

nk−1 · pk(1− pk)

2 (nk − nk−1 · pk)
= O((ζS)−1)

With the end-to-end expected latency and TTFT:

E
[
Latency(ζ,π)

]
≤ ∆T[1,··· ,m] ·

m∑
j=1

1

ζS

T∑
t=1

E
[
W

(j)
t

]
∼ O(1)

E
[
TTFT(ζ,π)

]
≤ ∆T[1,··· ,m] ·

1

ζS

T∑
t=1

E
[
W

(1)
t

]
∼ O(1)

However, while the average is bounded, this does not prevent the queue length W s
(k) from exceeding

this limit in specific sample paths due to stochastic fluctuations. In practical terms, there remains
a positive probability of memory overflow, where W s

(k) grows large enough to exhaust available
resources, potentially disrupting system performance. To address this, we next derive a high-
probability bound to quantify the likelihood of such overflows.

As a result, we need to estimate

P
(
max{0, S1

(k), · · · , S
s−1
(k) } ≥ c

)
= P

(
max

0≤i≤s−1
{Si

(k)} ≥ c

)
,∀c > 0, where S0

(k) = 0
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We construct an exponential martingale M i
(k) = eθS

i
(k) . And to make sure it is a martingale, we first

consider the moment generating function

ϕ(k)(θ) = E
[
eθX

i
(k)

]
= e−θnk(1− pk + pke

θ)nk−1 ,

and find θ > 0 to make the moment generating function equal 1 to make sure the M i
(k) is a martingale.

The following lemma shows that the solution θ > 0 exists. And detailed proof is in the Appendix F.5.
Lemma D.2. Suppose nk−1 > nk > nk−1pk and pk ∈ (0, 1). Then there exists a unique solution
θk > 0 to the equation

e−θknk(1− pk + pke
θk)nk−1 = 1, (13)

where θk is strictly increasing with respect to D = nk − nk−1pk and satisfies the lower bound

θk ≥ 8(nk − nk−1pk)

nk−1
.

So when θk > 0 satisfies ϕ(θk) = 1, M i
(k) is a martingale that starts at M0

(k) = eθk·0 = 1.

By Doob’s inequality, we have that

P ( max
1≤i≤s−1

{eθkS
i
(k)} ≥ a) ≤

E
[
M i
]

a
=

E
[
M0
]

a
=

1

a
.

So we have that

P ( max
1≤i≤s−1

{eθS
i
(k)} ≥ eθc) ≤ 1

eθc
⇒ P ( max

1≤i≤s−1
{Si

(k)} ≥ c) ≤ 1

eθc
.

So consider the probability, we have

P
(
W s

(k) ≥ c
)
< P

(
W̃ s

(k) ≥ c
)
= P ( max

1≤i≤s−1
{Si

(k)} ≥ c− nk) ≤ e−θk(c−nk)

So for 2 ≤ k ≤ m, 0 ≤ t ≤ T , we have that

P
(
W t

(k) ≥ c
)
< e−θk(c−nk)

where θk > 0 is the solution to (13).

To determine the memory lower bound, we need to ensure that the memory consumption does
not exceed the bound at any s ∈ {1, . . . , S} with probability at least 1 − δ. For each segment
k ∈ {2, . . . ,m} and total batch index s ∈ {1, . . . , S}, we have:

P
(
W s

(k) ≥ c
)
< e−θk(c−nk),

There are m − 1 segments (from k = 2 to m) and S batch counts (from s = 1 to S). We allocate
the total failure probability δ across all segments and batch counts. The total number of events is
(m− 1) · S. Set the overflow probability for each segment and batch counts to:

P
(
W s

(k) ≥ ck

)
≤ δ

(m− 1) · S
⇒ e−θk(ck−nk) ≤ δ

(m− 1) · S
⇒ ck ≥ nk +

ln
(

(m−1)·S
δ

)
θk

If we choose

ck = nk +
ln
(

(m−1)·S
δ

)
θk

,

then we have that
P
(
W s

(k) ≥ ck

)
≤ δ

(m− 1) · S
.

Next, we compute the joint probability of overflow across all segments and batch counts using a
union bound:

P

(
m⋃

k=2

S⋃
s=1

{W s
(k) ≥ ck}

)
≤

m∑
k=2

S∑
s=1

P
(
W s

(k) ≥ ck

)
≤ (m− 1) · S · δ

(m− 1) · S
= δ
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Thus:

P

(
W s

(k) ≤ ck for all
k ∈ {2, . . . ,m},
s ∈ {1, . . . , S}

)
≥ 1− δ.

So the memory consumption is bounded:

Memory Consumptions = Mπ +

m∑
j=2

W s
(j) · (l + l′j−1) ≤ Mπ +

m∑
j=2

cj · (l + l′j−1)

where Mπ is the peak batch memory usage and is defined by threshold π = [n1, · · · , nm]

Mπ =

m∑
j=1

nj

(
l +

l′1 + · · ·+ l′j
2

)(
l′j − l′j−1

)
, l′0 = 0

Substitute cj = nj +
ln( (m−1)·S

δ )
θj

, we have that

Memory Consumptions ≤ Mπ +

m∑
j=2

nj +
ln
(

(m−1)·S
δ

)
θj

 · (l + l′j−1).

Define the memory bound MS :

MS = Mπ +

m∑
j=2

nj · (l + l′j−1) +

m∑
j=2

ln
(

(m−1)·S
δ

)
θj

· (l + l′j−1).

By the lower bound in Lemma D.2, we can obtain the upper bound of the third term:

m∑
j=2

ln
(

(m−1)·S
δ

)
θj

· (l + l′j−1) ≤
m∑
j=2

nk−1

8(nk − nk−1pk)
ln

(
(m− 1) · S

δ

)
· (l + l′j−1)

And this MS ensures that with probability at least 1− δ, the memory consumption does not exceed
MS at any batch counts s ∈ {1, . . . , S}.

E Proof of Theorem B.1
For the first segment, the state transition rule is

W s+1
(1) = W s

(1) + Y s
(1) − n1 · 1{W s

(1) + Y s
(1) ≥ n1}, Y s

(1) ∼ P (

m∑
j=1

λj [t(s), t(s) + ∆Ts−th Batch])

where s denotes the total batch counts, t(s) denotes the start time of s-th batch, and ∆Ts−th Batch
denotes the cost of the inference of the s− th batch. Since ∆Ts−th Batch ≤ ∆T[1,...,m](n1, . . . , nm),
where ∆T[1,...,m](n1, . . . , nm) is the time cost of the inference of the s-batch containing all m types,
we can obtain a dominated process {W̄ s

(1)}. Also notice that when thresholds π = [n1, · · · , nm] is
fixed, the time cost ∆T[1,...,m](n1, . . . , nm) is time invariant.

W̄ s+1
(1) = W̄ s

(1)+Ȳ s
(1)−n1·1{W̄ s

(1)+Ȳ s
(1) ≥ n1}, Y s

(1) ∼ P (

m∑
j=1

λj [t(s), t(s)+∆T[1,...,m](n1, . . . , nm)])

By (10), we have that

m∑
j=1

λj [t(s), t(s)+∆T[1,...,m](n1, . . . , nm)] ≤ sup
∀s


m∑
j=1

λj [t(s), t(s) + ∆T[1,...,m](n1, . . . , nm)]

 < n1

We denote sup∀s

{∑m
j=1 λj [t(s), t(s) + ∆T[1,...,m](n1, . . . , nm)]

}
as Λπ < n1, and we can con-

struct a dominate process with time invariant arrival

W̃ s+1
(1) = W̃ s

(1) + Ỹ s
(1) − n1 · 1{W̃ s

(1) + Ỹ s
(1) ≥ n1}, Ỹ s

(1) ∼ P (Λπ)
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We next define that Xs
(1) = Ỹ s

(1) − n1, and {W̃ s
(1)} is dominated by a Lindley process

W
0

(1) = 2n1, W
s+1

(1) = max{2n1,W
s

(1) +Xs
(1)}, ∀s ∈ N

Then we have that
W s

(1) ≤ W̄ s
(1) ≤ W̃ s

(1) ≤ W
s

(1),∀s ∈ N.

Since n1 > Λπ , the process {W s

(1)} has negative drift. Since

Var(Xs
(1)) = Λπ,

∣∣∣E [Xs
(1)

]∣∣∣ = n1 −Λπ

By Kingman Inequality, we have that

E
[
W s

(1)

]
≤ 2n1 +

Λπ

2 (n1 −Λπ)

Next we consider the k-th segment, 2 ≤ k ≤ m. The arrival for the k-th segment is from the last
batch containing the k − 1-th segment, so the index s to the k-th segment denotes the batch counts of
the batch containing the k− 1-th batch. Notice that, the index s to each segment are different, but are
bounded by the total batch counts.

Now consider the s-th arrival of the k-th segment, it comes from the s-th batch containing the k−1-th
batch and the parameter pk(s) is defined by the components of this batch. Although we do not exactly
know the arrival time of these prompts, but we know that the arrival happens from t to t+∆t, where
t < t+∆t ≤ t(s, k − 1), t(s, k − 1) is the starting time of the s-th batch containing the k − 1-th
segment. By (10), we define that

pk(s) =

∑m
j=k+1 λj [t, t+∆t]∑m
j=k λj [t, t+∆t]

≤ p∗k <
nk

nk−1
,∀s ∈ N.

So the arrival process is
Y s
(k) ∼ Binomial(nk−1, pk(s)), ∀s ≥ 0

So the state transition rule is given by

W s+1
(k) = W s

(k) + Y s
(k) − nk · 1{W s

(k) + Y s
(k) ≥ nk}

where s denotes the s-th batch which contains segment s− 1, since there is new arrival to segment s
if and only if the segment s− 1 is contained in the former batch.

We set Xs
(k) = Y s

(k) − nk,∀s ∈ N. Although here the distribution of Y s
(k) ∼ Binomial(nk−1, pk(s))

is time-varying, the coupling construction is still the same as Lemma D.1
Lemma E.1. Define a new process {W̃ s

(k)} as a coupled version of {W s
(k)} as follows:

W̃ 0
(k) = nk, W̃

s+1
(k) = max{nk, W̃

s
(k) +Xs

(k)}, ∀t ≥ 0, Xs
(k) = Y s

(k) − n1.

Then, we have that
W̃ s

(k) ≥ W s
(k), ∀s ∈ N

However, in order to use the Kingman , we should construct another coupled process with time-
invariant arrival. So consider

W̄ 0
(k) = nk, W̄

s+1
(k) = max{nk, W̄

s
(k)+X̄s

(k)}, X̄
s
(k) = Ȳ s

(k)−nk, Ȳ
s
(k) ∼ Binomial(nk−1, p

∗
k), ∀s ∈ N.

Then we have that
W̄ s

(k) ≥ W̃ s
(k) ≥ W s

(k), ∀s ∈ N

Note that the process W̄ s
(k) is equivalent to

W̄ 0
(k) = nk, W̄

s+1
(k) = nk + max

0≤i≤t
{S̄i

(k)}, where S̄0
(k) = 0, S̄i

(k) =

i∑
j=1

X̄j
(k), 1 ≤ i ≤ s

Since the expectation
E
[
X̄s

(k)

]
= nk−1 · p∗k − nk < 0, ∀t ∈ N
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the coupled process {W̄ s
(k)} has a negative drift. Since

Var(X̄s
(k)) = nk−1p

∗
k(1− p∗k),

∣∣∣E [X̄s
(k)

]∣∣∣ = nk − p∗knk−1

by Kingman, we have that

E
[
max
0≤i≤t

{S̄i
(k)}

]
≤ nk−1p

∗
k(1− p∗k)

2(nk − nk−1p∗k)

Thus, we obtain the expected upper bound:

E
[
W s

(k)

]
≤ E

[
W̃ s

(k)

]
≤ E

[
W̄ s

(k)

]
≤ nk +

nk−1p
∗
k(1− p∗k)

2(nk − nk−1p∗k)

The discussion of the asymptotic optimal throughput under bounded latency and TTFT is the same as
the discussion in Appendix D. For the high probability bound, it is also similar to the discussion in
Appendix D considering the coupled process {W̄ s

(k)}. Recall the definition of {W̄ s
(k)}:

W̄ 0
(k) = nk, W̄

s+1
(k) = nk + max

0≤i≤t
{S̄i

(k)}, where S̄0
(k) = 0, S̄i

(k) =

i∑
j=1

X̄j
(k), 1 ≤ i ≤ s

where X̄j
(k) = Ȳ j

(k) − nk, Ȳ j
(k) ∼ Binomial(nk−1, p

∗
k) and p∗k < nk

nk−1
. The same to the discussion

in Appendix D after the Lemma D.2, the memory bound MS here is:

MS = Mπ +

m∑
j=2

nj · (l + l′j−1) +

m∑
j=2

θ−1
j ln

(
(m− 1) · S

δ

)
· (l + l′j−1)

where θj , 2 ≤ j ≤ m here is the solution to the equation similar to (13)

e−θjnj (1− p∗j + p∗je
θj )nj−1 = 1 (14)

Since
p∗j = arg min

0<pj<1
{nj − pjnj−1},

by the strictly increasing property of θj in Lemma D.2, the corresponding θj is the smallest solution

under different 0 < pj < 1, thus obtain the biggest term
∑m

j=2 θ
−1
j ln

(
(m−1)·(S+1)

δ

)
· (l + l′j−1).

And the following discussion considering the lower bound of θj is the same in Appendix D.

F Proof of Lemmas
F.1 Proof of Lemma C.1
We take the expectation on both sides of the state transition equation

E
[
W t+1

]
= E

[
W t
]
+ λ− λP(W t +Xt ≥ λ)

Summing from t = 0 to T − 1, and noting that W0 = 0, we get the lemma

E
[
WT

]
= λT − λE [T − Tstuck] = λ · E [Tstuck]

F.2 Proof of Lemma C.2
We prove this by induction. First, for t = 0, we have W̃ 0 = 2λ ≥ λ = W 0 + λ. Next, assume
that W̃ t ≥ W t + λ holds for some t ≥ 0. We now prove that W̃ t+1 ≥ W t+1 + λ. Consider the
following two cases:

1. If W t +Xt ≥ λ, then W t+1 = W t +Xt − λ. In this case,

W̃ t+1 = max{2λ, W̃ t +Xt − λ} ≥ W̃ t +Xt − λ ≥ (W t + λ) +Xt − λ = W t+1 + λ.

2. If W t +Xt < λ, then W t+1 = W t +Xt. In this case,

W̃ t+1 = max{2λ, W̃ t +Xt − λ} ≥ 2λ = λ+ λ > W t+1 + λ.

Hence, W̃ t+1 ≥ W t+1 + λ. By the principle of induction, we have W̃ t ≥ W t + λ for all t ∈ N.
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F.3 Proof of Lemma C.6
Since W̃ t

(j) ≥ 2nj , when W t
(j) < nj , we have W̃ t

(j) ≥ W t
(j).

At first, W 0
(j) = 0, but W t

(j) will achieve nj and type j starts to join the batch. And after a period of
time, W t

(j) drops back below nj , and repeats the process above.

In each period T0 ≤ t ≤ T1 when W t
(j) ≥ nj , we set τ = max{t ≤ T0|W t

(j) = nj}. So

∀t ∈ [T0, T1], the number of iterations of W t
(j) and W̃ t

(j) from τ to t is that

Iτ→t ≥ ⌊ t− τ

∆T[1,··· ,m]
⌋, Ĩτ→t ≤ 1 + ⌊ t− τ

∆T[1,··· ,m]
⌋ ⇒ Ĩτ→t ≤ 1 + Iτ→t.

So the coupled process at most makes one more iteration than the real process after τ . For example,
at τ , the real process is just at a batch inference without type j, but the coupled process just finished a
batch inference with all the types, which yields a nj drop on W̃ t

(j). So at τ , W̃ t
(j) ≥ nj = W t

(j). And
for time (τ, t], since the arrival dynamic is the same between the two processes, at the real process
type j joins every batch, and the batch may not contain all types compared with the coupled process.
So the numbers of the finish of a batch of coupled process is at most the same as the real ones. So
W̃ t

(j) ≥ W t
(j) holds during (τ, t], hence ∀t ≥ 0.

F.4 Proof of Lemma D.1
We prove the dominance by induction. When t = 0, it is obvious that W̃ 0

(k) = nk ≥ 0 = W t
(k). Next,

we assume that W̃ t
(k) ≥ W t

(k) holds for some t ≥ 0. We now prove that W̃ t+1
(k) ≥ W t+1

(k) . Consider
the following two cases:

1. If W t
(k) + Y t

(k) ≥ nk, then W t
(k+1) = W t

(k) + Y t
(k) − nk. In this case,

W̃ t+1
(k) = max{nk, W̃

t
(k) +Xt

(k)} ≥ W̃ t
(k) +Xt

(k) = W t
(k) + Y t

(k) − nk = W t
(k+1)

2. If W t
(k) + Y t

(k) < nk, then W t
(k+1) = W t

(k) + Y t
(k). In this case,

W̃ t+1
(k) = max{nk, W̃

t
(k) +Xt

(k)} ≥ nk > W t
(k+1)

F.5 Proof of Lemma D.2
First, we prove that the solution θk > 0 exists and is unique and for simplicity, we denote θ = θk
here. Define the function

f(θ) = e−θnk(1− pk + pke
θ)nk−1 .

We need to show that there exists θ > 0 such that f(θ) = 1. First, evaluate f(θ) at θ = 0:

f(0) = e0(1− pk + pk · 1)nk−1 = 1.

Thus, θ = 0 is a solution, but we seek the solution θ > 0. Next, we consider the logarithm of f(θ)

g(θ) = ln f(θ) = −θnk + nk−1 ln(1− pk + pke
θ),

g′(θ) = −nk + nk−1 ·
pke

θ

1− pk + pkeθ
.

At θ = 0,
g(0) = 0, g′(0) = −nk + nk−1pk.

Since E[Xs
(k)] = nk−1pk − nk < 0, we have g′(0) < 0, so f(θ) is decreasing near θ = 0. Consider

the second derivative:

g′′(θ) = nk−1 ·
pke

θ(1− pk)

(1− pk + pkeθ)2
> 0 for θ > 0,

since pk ∈ (0, 1) and nk−1 > 0. Thus, g(θ) is convex, and so is f(θ). Now, consider the limit as
θ → ∞:

f(θ) ≈ p
nk−1

k eθ(nk−1−nk).
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By our settings, nk−1 > nk, this ensures that f(θ) → ∞, θ → ∞. Thus, f(θ) is continuous, convex,
starts at f(0) = 1, decreases below 1 for small θ > 0, and increases to infinity. By the intermediate
value theorem, there exists only one θ > 0 such that f(θ) = 1.

Next, we prove the monotonicity of the solution θ > 0 with respect to D = nk − nk−1pk. Recall
that g(0) = 0, g′(0) = −D < 0, and g′′(θ) > 0 for θ > 0, so g(θ) is strictly convex. The
unique positive solution θ > 0 occurs where g(θ) crosses zero after initially decreasing from
g(0) = 0. Consider two values D1 and D2 such that D1 < D2, with corresponding functions g1(θ) =
−θ(nk−1pk+D1)+nk−1 ln(1−pk+pke

θ) and g2(θ) = −θ(nk−1pk+D2)+nk−1 ln(1−pk+pke
θ),

and solutions θ1 and θ2, respectively.

At θ = 0, g′1(0) = −D1 > g′2(0) = −D2, meaning g2(θ) decreases more steeply from zero than
g1(θ). For a fixed θ > 0, the partial derivative ∂g

∂D = −θ < 0. Thus, increasing D decreases g(θ)
pointwise. Since g(θ) is convex and approaches infinity as θ → ∞, the zero crossing shifts to a larger
θ to restore g(θ;D) = 0. Hence, if D2 > D1, then θ2 > θ1.

Finally, we provide asymptotic behavior and bounds for the solution θ > 0 in terms of D, nk−1, and
pk. When D is small, θ is also small. Expand g(θ) around θ = 0, we have that g(θ) = g(0)+g′(0)θ+
1
2g

′′(0)θ2 + O(θ3) = 0 − Dθ + 1
2nk−1pk(1 − pk)θ

2 + O(θ3). Setting g(θ) = 0 and neglecting
higher-order terms, we obtain that −Dθ + 1

2nk−1pk(1− pk)θ
2 ≈ 0 =⇒ θ ≈ 2D

nk−1pk(1−pk)
. Thus,

for small D, θ = O(D), and specifically, θ ≈ 2(nk−nk−1pk)
nk−1pk(1−pk)

.

Next we apply Taylor’s theorem with remainder to find the general lower bound of the solution θ > 0.

g(θ) = g(0)+g′(0)θ+
1

2
g′′(c)θ2 = −Dθ+

1

2
g′′(c)θ2 = 0 =⇒ θ =

2D

g′′(c)
. for some c ∈ (0, θ)

So we need to find an upper bound for g′′(c), since g′′(x) = nk−1 · pke
x(1−pk)

(1−pk+pkex)2
, we define

h(y) = pky(1−pk)
(1−pk+pky)2

where y = ex ≥ 1. The function h(y) achieves a maximum of 1
4 over y ≥ 1

and 0 < pk < 1. Thus we have that g′′(x) ≤ nk−1 · 1
4 = nk−1

4 =⇒ θ = 2D
g′′(c) ≥ 2D

nk−1/4
= 8D

nk−1
.

So a general lower bound is:

θ ≥ 8(nk − nk−1pk)

nk−1
. (15)
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