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ABSTRACT1

Many music AI models learn a map between music con-2

tent and human-defined labels. However, many annota-3

tions, such as chords, can be naturally expressed within4

the music modality itself, e.g., as sequences of symbolic5

notes. This observation enables both understanding tasks6

(e.g., chord recognition) and conditional generation tasks7

(e.g., chord-conditioned melody generation) to be unified8

under a music-for-music sequence modeling paradigm. In9

this work, we propose parameter-efficient solutions for a10

variety of symbolic music-for-music tasks. The high-level11

idea is that (1) we utilize a pretrained Language Model12

(LM) for both the reference and the target sequence and13

(2) we link these two LMs via a lightweight adapter. Ex-14

periments show that our method achieves superior perfor-15

mance among different tasks such as chord recognition,16

melody generation, and drum track generation. All demos,17

code and model weights are publicly available 1 .18

1. INTRODUCTION19

Many foundational tasks in music AI, such as music infor-20

mation retrieval (MIR) and conditional music generation,21

have traditionally been formulated as mappings between22

music and labels: either from music to task-specific anno-23

tations (e.g., chord recognition), or from descriptive con-24

ditions to music (e.g., chord-conditioned melody genera-25

tion). While these tasks have long been treated separately,26

a key observation is that in many cases, the “labels” them-27

selves can also be represented in the same music modal-28

ity—for example, as note sequences. This suggests a uni-29

fying perspective: a wide range of MIR and generation30

tasks can be reformulated as sequence-to-sequence prob-31

lems within the music domain. We refer to this formulation32

as music-for-music modeling.33

To achieve versatile music-for-music modeling in a34

sample-efficient way, we apply knowledge transfer to35

pretrained foundational Language Models (LMs) using a36

light-parameterized adaptor. As illustrated in Fig. 1(a)-(b),37

many existing methods such as probing [1–3] and prefix38

1 https://ismir2025submission25.github.io/function-alignment/
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Figure 1. Three types of sequence-to-sequence models by
knowledge transfer from pretrained LMs. x and y are in-
put sequences and x̂ and ŷ are predictions, possibly right-
shifted due to the autoregressive targets. (a) Probing; (b)
Prefix tuning; (c) Function alignment (x → y).

tuning [4–6] transfer knowledge of foundation models to39

downstream tasks by adapting them to new input or output,40

but the knowledge resides in only one language—either41

the LM of source x or the LM of target y. In contrast,42

our method distills knowledge from both LMs via aligning43

them in a layer-wise manner, as shown in Fig. 1(c).44

At the methodology level, our approach is inspired by45

function alignment [7], a recently proposed theory of mind46

that attributes the emergence of intelligence to the dynamic47

synergy among interacting agents. In our work, we con-48

tribute two concrete implementations of this idea—treating49

two language models (LMs) as agents and creating synergy50

through Parameter-Efficient Fine-Tuning (PEFT).51

The first approach introduces a trainable cross-attention52

layer between two separately pretrained LMs. The second,53

more concise solution, uses a lightweight self-attentive54

adapter applied to concatenated input-output sequences55

within a single shared LM—a strategy applicable when56

both input and output share the same vocabulary. We57

show the effectiveness of both implementations using ex-58

periments on both generative and analysis tasks, includ-59

ing: (1) chord-conditioned melody generation, (2) melody-60

conditioned chord generation, (3) drum-conditioned song61

generation, (4) song-conditioned drum generation and (5)62

few-shot symbolic music analysis.63

The main contribution of this paper is as follows:64

1. We achieve versatile music-for-music modeling, uni-65

fying a broad range of music understanding and con-66

trollable generation tasks under a shared framework.67

2. At the methodological level, we are the first to68

introduce function alignment—a recently proposed69

theory of mind emphasizing the synergy among70

agents—into the domain of music AI, offering a71

https://ismir2025submission25.github.io/function-alignment/


novel perspective on modeling music sequence-to-72

sequence tasks.73

3. While function alignment remains at a theoretical74

level, we present two concrete, parameter-efficient75

implementations in the context of modern language76

models: one via cross-attentive adapters across two77

LMs, and another via a self-attentive adapter within78

a shared LM. We demonstrate the effectiveness of79

both approaches through theoretical analysis and80

empirical validation.81

2. RELATED WORKS82

2.1 Music Foundation Models83

Since the invention of the Transformer architecture [8],84

transformer-based language models have become the85

mainstream of music foundation models on multiple86

modalities, including audio [9–12], symbolic [13–21] and87

text-based music representation [22]. In addition to au-88

toregressive models, masked language models [2, 23] and89

diffusion models [24–29] and flow-based models [30] can90

also be used as foundation models, but we focus on autore-91

gressive models in the literature review.92

For symbolic music, music transformer [13] is an early93

work to adopt the transformer architecture to music. Some94

follow-up works try to design a better representation of the95

music content. For example, pop music transformer im-96

poses a metrical structure in the data representation [15].97

MuPT trains transformers on their proposed synchronized98

multi-track ABC notation [20]. Other works aim to in-99

troduce controllability to the generative model. Musec-100

oco generates the music score from text [14]. METEOR101

performs melody-aware orchestral music generation with102

texture control [16]. SymPAC trains symbolic generation103

models from transcribed audio data with chord, section,104

and instrument controls [17]. Zhang et al. improve gen-105

eration discriminators to better follow rhythm and melody106

conditions [18]. The Theme Transformer [19] uses a short107

theme condition for generation. MuseBarControl gener-108

ates music with fine-grained control to the bar level [21].109

2.2 Parameter-Efficient Fine-Tuning110

Parameter-Efficient Fine-Tuning (PEFT) methods add111

lightly parameterized adapters to large pretrained models.112

Compared to full-parameter fine-tuning, PEFT requires113

significantly less computation and training data. Existing114

methods include appending task-specific prefixes to input115

sequences [4,31], injecting low-rank adaptation (LoRA) to116

linear layers [32], and adding learnable hidden states to the117

self-attention blocks [5, 33].118

PEFT has been applied to music foundation models to119

support new tasks. Coco-Mulla [6] and MusiConGen [34]120

both adapt MusicGen to follow content controls such as121

chord and rhythm. Additionally, AirGen enables Mu-122

sicGen to infill segments based on content controls [35].123

Instruct-MusicGen extends MusicGen for music editing124

by text instructions [36]. Audio Prompt Adapter extends125

AudioLDM2 for music editing following controls such as126
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genre, timbre, and melody [37]. Ou et al. finetunes a sym-127

bolic language model for band arrangement, piano reduc-128

tion, drum arrangement, voice separation, and more [38].129

3. METHODOLOGY130

3.1 Base Model131

For this study, we choose the base model (the pretrained132

symbolic LM) with two main considerations. First, we133

do not wish to introduce any control in the pretraining134

stage, since we want to demonstrate the controllability us-135

ing PEFT. We refain from using any annotation or meta-136

data (i.e., chord, bar or text annotations) to pretrain the137

base model. Second, we want to adopt a data represen-138

tation that can help the model align multiple sequences in139

time easily. Instead of using a MIDI event-like representa-140

tion [13, 15, 39] where two time-aligned sequences might141

have a significant length difference, we use a fixed time142

step (a 16th note unit) for the input sequence.143

Since multiple notes can occur at the same time step,144

we use a hierarchical scheme to compress (decompress)145

the note lists on the same time step with a local encoder146

(decoder), as shown in Fig. 2.147

3.1.1 Data Representation148

Formally, we represent a score sequence x = {x1, ...,xT }149

with a fixed time step of a 16th note. Since each time step150

may contain multiple note onsets, each xt represents a list151

of Nt notes whose quantized onset time is the t-th 16th note152

(i.e., xt is a simu-note [40] at time step t). We define153

xt = {i1t , n1
t , i

2
t , n

2
t , ..., i

Nt
t , nNt

t , [eos]} (1)

where ikt is the instrument ID for the k-th note. We use154

the MIDI program number 0...127 for pitched instruments155

and ikt = 128 for drums. nk
t = 24pkt + dkt is a flat-156

tened representation of the k-th note’s pitch pkt and du-157

ration dkt . pkt denotes the MIDI pitch from 0 to 127.158

dkt ∈ {0, ..., 23} is the note duration quantized into 24 pos-159

sible bins, dkt = j corrsponds to a duration of bj sixteenth160
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Figure 3. The architecture of a cross-attentive function
alignment adapter. The fire icon denotes trainable parame-
ters, and the snowflake icon denotes frozen parameters.

notes where b = [1, 2, 3, 4, 6, 8, 12, 16, 24, ..., 4096]. [eos]161

is a special token marking the end of the list. All notes in162

xt are sorted primarily by ikt and secondarily by nk
t .163

3.1.2 Model Design164

We use a Roformer [41], a popular transformer architecture165

as the backbone model. The model architecture is shown166

in Fig. 2. Since our input sequence contains nested lists,167

we first encode each xt with a local Roformer encoder:168

[ht, _] = LocalEncoder([cls],xt) (2)

for all t = 1...T . Specifically, we prepend a [cls] token at169

the beginning of xt and pass the sequence to the encoder.170

ht is acquired from the output representation of the [cls]171

token. We then use a global Roformer decoder to autore-172

gressively model the symbolic score:173

ĥt = GlobalDecoder(esos,h1...t−1) (3)

where esos is a learnable start-of-sentence (sos) embedding.174

Finally, a local Roformer decoder generates each note by175

x̂t,j = LocalDecoder([sos]t,xt,1...j−1) (4)

for all t = 1...T . Here, the embedding result of176

Emb([sos]t) := ĥt passes the global state ĥt to the lo-177

cal decoder. xt,j denotes the j-th token of list xt (see178

Eqn. 1). The local decoder terminates when an end-of-179

sentence (eos) token is generated.180

We will use xt = LM(x0...t−1) (or simply LM(x))181

as a shorthand for the autoregressive model of sequence182

x through Eqs. 2-4. Here, x0 denotes the global start-of-183

sentence embedding esos.184

3.2 Parameter-Efficient Fine-Tuning185

Our fine-tuning strategy leverages pretrained LMs for x186

and y, connected via a parameter-efficient module. We187

present two variants: cross-attentive adapters for separate188

LMs, and self-attentive adapters for a shared LM. We apply189

both adapters to the backbone of the foundation model (the190

global decoder in Eqn. 3) only.191
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Figure 4. The architecture of a self-attentive function
alignment adapter. Crossed vertical and horizontal arrows
indicate the flow of information between the corresponding
query and key/value pairs, while all other connections are
masked by the autoregressive self-attention mechanism.
The indices 0 through 4 represent the proposed positional
embeddings for the concatenated sequence.

3.2.1 Cross-attentive Function Alignment192

Our first approach is to use a cross-attention layer between193

the hidden layers of two LMs. A similar architecture has194

been adopted in language processing [42] and speech pro-195

cessing [43]. We refer to the design of [42] and show an196

adapted version in Fig. 3. For the l-th attention layer of197

LM(y), the original self-attention is defined as:198

hl
p = SelfAttn(Wl

qz
l
y,W

l
kz

l
y,W

l
vz

l
y) (5)

where zly denote the l-th layer hidden states for LM(y) and199

Wl denotes pretrained weights. The adapted version can200

be written as:201

hl
a = hl

p + g · CrossAttn(Ul
qz

l
y,U

l
kz

l
x,U

l
vz

l
x) (6)

where g is a zero-initialized trainable gate scaler. Ul are202

trainable parameters. Intuitively, this allows the query203

from LM(y) to attend both to itself (self-attention) and to204

the condition from LM(x) (cross-attention).205

Besides the trainable cross-attention module, we also206

append LoRAs [32] to all Wl
q and Wl

v of both pretrained207

models LM(x) and LM(y), allowing the model to learn208

distinctive features of sequences x and y.209

3.2.2 Self-attentive Function Alignment210

When x and y share the same pretrained LM, alignment211

becomes a special case: it can be achieved by concatenat-212

ing their sequences and feeding them into a single model.213

The LM will first model x and predict y given x as a prefix.214

This implies that prior PEFT methods [35, 38], which215

structure the condition and generated sequence within a216

single language model, can be viewed as broader forms217

of function alignment. We show that a simpler configura-218

tion is also effective and explain why it realizes function219

alignment.220



When we directly concatenate two sequences [x,y] and221

feed them to the decoder self-attention layer, we can de-222

compose it into the self-attention of x and y, and an ex-223

tra component influencing y from x, as shown in Fig. 4.224

Specifically, we have225

[hl
xa,h

l
ya] = SelfAttn(Wl

q[z
l
x, z

l
y],W

l
k[z

l
x, z

l
y],W

l
v[z

l
x, z

l
y])

= SelfAttn([Ql
x,Q

l
y], [K

l
x,K

l
y], [V

l
x,V

l
y])

(7)
for every layer l. In a single-head setting, we have226

SelfAttn(Q,K,V) := softmax(QK⊤/
√
d+M)V, where227

d is the dimension of the key vectors and M is the autore-228

gressive mask. We can rewrite Eqn. 7 by229

hl
xa = SelfAttn(Ql

x,K
l
x,V

l
x) (8)

230

hl
ya =

a

a+ b
SelfAttn(Ql

y,K
l
y,V

l
y)

+
b

a+ b
CrossAttn(Ql

y,K
l
x,V

l
x)

(9)

where a =
∑

j exp
[
(Ql

yK
l
y)j/

√
d+M

]
and b =231 ∑

j exp
[
(Ql

yK
l
x)j/

√
d
]
. Note that Eqn. 9 closely mir-232

rors Eqn. 6 in form. Although the gating vectors a and b233

are not explicitly parameterized, we hypothesize that this234

design remains effective.235

After concatenating x and y, we reset y’s positional236

embeddings to start from 0 to better preserve the pretrained237

behavior of LM(y). To avoid token indistinguishability238

due to overlapping positions, we also add zero-initialized,239

learnable sentence embeddings ex and ey to their respec-240

tive positional encodings, as shwon in Fig. 4.241

Similar to cross-attentive adapters, a trainable LoRA242

module is also appended to the pretrained LM.243

4. EXPERIMENTS244

In the experiments, we first describe the hyperparame-245

ters and the pretraining scheme of our foundation model246

(Sec. 4.1). We evaluate our adapters on both generative247

and analysis tasks. We describe the tasks in Sec. 4.2 and248

models in Sec. 4.3. We then show the setting for subjective249

evaluation (Sec. 4.4) and objective evaluation (Sec. 4.5),250

and analyze the results in Sec. 4.6.251

4.1 Model Pretraining252

We use a Roformer with a 12-layer global decoder (hidden253

size 768, intermediate size 3072, 12 heads). The local en-254

coder and decoder are smaller 3-layer Roformers (hidden255

size 768, intermediate size 768, 8 heads).256

We pretrain our foundation model on the Los Angeles257

MIDI dataset [44], which contains approximately 405,000258

MIDI files. As a score-based model, it relies on accurate259

beat annotations (inferred from tempo change events) for260

correct quantization. However, many files in the pretrain-261

ing dataset contain incorrect tempo information.262

To address this, we apply a rule-based filter. Normally,263

note onsets are not uniformly distributed across odd and264

even time steps. We compute the ratio of notes quantized265

to odd vs. even time steps. If the ratio falls within 0.5 ±266

0.15 for every track, we assume it is poorly quantized and267

discard the song. This yields a cleaned subset of 357,279268

files. During pretraining, we also apply a random pitch269

shift within [−5, 6] semitones for data augmentation.270

We set the global sequence length to T = 384 and271

cap the maximal polyphony by Nt ≤ 16, clipping excess272

notes per time step. A batch size of 48 is used for pre-273

training. We train the model for 2,000,000 iterations using274

AdamW [45] with β=(0.9, 0.999) and weight decay 0.01.275

We use a OneCycleLR [46] scheduler with a maximum LR276

10−4 and 10,000 warm-up steps. Pretraining takes around277

12 days on 4×A100 (40GB) GPUs.278

4.2 Downstream Tasks279

We evaluate the adaptor on different music generation and280

understanding task. Specifically, we have 3 sets of tasks:281

• Melody to chord and chord to melody: we fine-282

tune the model on the Nottingham dataset [47] with a283

total of 1,020 songs. The model is asked to generate284

chords from a given melody or to generate a melody285

given a chord progression.286

• Drum to others and others to drum: we fine-tune287

the model on a subset of 31,000 songs in the Los288

Angeles dataset with a drum track. The model is289

asked to generate the drum track given the full score290

of non-percussive instruments, or to generate other291

instruments given a drum track.292

• Few-shot symbolic music analysis: we fine-tune293

the model on 93 songs in the RWC Pop dataset [48].294

The model is asked to transcribe the chords and met-295

rical structure given a symbolic pop music. We eval-296

uate the results on symbolic chord recognition.297

In each task, we perform a random 8:1:1 split for train-298

ing, validation, and testing. For the drum-to-others and299

others-to-drum tasks, RWC Pop is used as an external test300

set.301

4.3 Compared Models302

We compare the performance of the following models,303

with slight hyperparameter adjustments to ensure compa-304

rable numbers of trainable parameters.305

• FA-Cross: The base model is fine-tuned with a306

cross-attentive adapter (4 heads, hidden size 256),307

inserted every two layers of the global decoder. A308

LoRA with r = 16, α = 32 is used on the query and309

value projectors of both LMs.310

• FA-Self: The base model fine-tuned with a self-311

attentive adapter. A LoRA with r = 64, α = 128 is312

used on the query and value projectors of both LMs.313

• Coco-Mulla: The Cocomulla [6] adapter applied on314

the Roformer model. The adapter has a trainable po-315

sitional encoding size of 384.316



FA-Self FA-Cross Enc-Dec MelodyT5 Coco-Mulla Ground Truth
0

1

2

3

4

5
Ra

tin
g

(a) Chord-conditioned melody generation (Chord to Melody)

Musicality
Adherence
Creativity

FA-Self FA-Cross Enc-Dec Coco-Mulla Ground Truth
0

1

2

3

4

5

Ra
tin

g

(b) Drum-conditioned song generation (Drum to Others)

FA-Self FA-Cross Enc-Dec Assistant Coco-Mulla Ground Truth
0

1

2

3

4

5

Ra
tin

g

(c) Song-conditioned drum track generation (Others to Drum)

Figure 5. Subjective evaluation results. The error bars
show the 95% confidence intervals of the true mean.

• Prober: A 2-layer Multilayer Perceptron (MLP)317

prober as used in [2]. The MLP layer uses a318

weighted sum of all layers’ hidden states and has a319

hidden dimension of 768.320

• Enc-Dec: A baseline trained from scratch with a321

small Roformer encoder-decoder (3 layers, hidden322

size 256, intermediate size 512, 4 heads for both en-323

coder and decoder).324

• MelodyT5 [49]: an external baseline for the melody325

to chord and chord to melody tasks. The model is326

trained on 261K songs represented by ABC nota-327

tions. We do not retrain this baseline.328

• Assistant (Composers Assistant V2) [50]: an exter-329

nal baseline for the others to drum task. We do not330

retrain the baseline.331

All modules are trained for up to 60,000 iterations with332

a fixed learning rate of 10−4 and a batch size of 8 on a333

single A100 GPU. Early stopping is applied if validation334

loss doesn’t improve for 10 rounds (5,000 iterations).335

4.4 Subjective Evaluation336

For the three generative tasks (chord-to-melody, drum-to-337

others, and others-to-drums), we conducted a subjective338

evaluation via a user survey. We selected 8 songs from339

Chord to
melody

Melody to
chord

Drum to
others

Others to
drum

FA-Cross 1.4204
±0.0986

1.4177
±0.1042

2.0459
±0.5598

1.8619
±0.5633

FA-Self 1.4116
±0.1165

1.4104
±0.0994

2.0222
±0.6322

1.8402
±0.5676

Coco-
Mulla

1.8016
±0.1702

1.5996
±0.1437

2.2027
±0.6495

1.9860
±0.6818

Enc-
Dec

1.6113
±0.1780

1.5067
±0.1201

2.5830
±0.9094

1.8765
±0.5352

Ground
Truth

1.3917
±0.0982

1.3917
±0.0982

2.0730
±0.7118

2.0730
±0.7118

Table 1. Test set perplexity on different downstream tasks.

the test set (2 for chord-to-melody, 4 for drum-to-others,340

and 2 for others-to-drums). We asked participants to rate341

both the generated outputs and ground truth on a 5-point342

scale across the following metrics:343

• Musicality: Does it sound good as music?344

• Adherence: Does it respect and follow the input345

condition?346

• Creativity: Given the input conditions, is it creative347

in its musical decisions?348

We received a total of 54 answers, and the results are349

shown in Fig. 5.350

4.5 Objective Evaluation351

For the generative tasks by fine-tuned models, we report352

the generated results’ perplexity on the Roformer base353

model on the test set. Since perplexity is inaccurate on354

long repetitive generations [51], we only calculate the per-355

plexity using 8-bar generative results (128 steps) condi-356

tioned on 2-bar prompts (32 steps). The results are shown357

in Tab. 1.358

For the melody to chord task, we report two additional359

metrics to compare with MelodT5. We first calculate the360

L1 distance between the chromagram (chroma) of the pre-361

dicted chords and the ground-truth chords. We also report362

the CTnCTR [52] metric between the melody and the gen-363

erated chords. Since the test part of the Nottingham dataset364

has significant overlap with MelodyT5’s training set, we365

perform a small pitch shift (up to 2 semitones) for all test366

songs to another commonly used key in the Nottingham367

dataset (e.g., C major to D major, A major to G major etc).368

The results are shown in Tab. 2.369

For the music analysis task, we represent both the chord370

and the metrical labels by MIDI notes. The chord notes are371

represented by block notes using String Ensemble 1 (MIDI372

program 48). The bass note is placed in the range C3 to373

B3 (MIDI pitch 36-41), and other chord notes are stacked374

above them. We use a drum track to represent metrical375

labels. We use a bass drum note (MIDI pitch 35) to rep-376

resent a downbeat and a snare drum note (MIDI pitch 38)377

for subsidiary strong beats. An 8-note infilling by closed378

hi-hat note (MIDI pitch 42) is also used.379

For sequence-to-sequence modeling, the model predicts380

both tracks from the full MIDI input, and final chord la-381

bels are derived via template matching on the average of382



Chroma ↓ CTnCTR ↑
Ground Truth 0.0000±0.0000 0.9675±0.0324
FA-Cross 1.5690±0.7087 0.9113±0.0750
FA-Self 1.2685±0.5024 0.9484±0.0415
Coco-Mulla [6] 3.4613±0.5854 0.6647±0.1219
Seq2Seq 3.0044±0.5613 0.8387±0.0749
MelodyT5 [54] 3.0428±0.8694 0.8463±0.1036

Table 2. Objective evaluation results on unprompted
melody to chord generation on the test split of the Not-
tingham dataset.

Model Root ↑ Majmin ↑ Seventh ↑
Chorder [39] 0.7244 0.6760 0.3374
HMM [55] 0.8386 0.8169 0.6930
FA-Cross 0.8203 0.8455 0.6761
FA-Self 0.8275 0.8693 0.6986
Prober 0.8231 0.8370 0.6191
Seq2Seq 0.1786 0.1500 0.0378

Table 3. Evaluation results on symbolic chord recognition.
The table shows the median result among the test split of
the RWC Pop dataset.

16 generations. The exception is the prober, trained as a383

25-class classifier (12 major, 12 minor, 1 no-chord). We384

evaluate using chord metrics (root, majmin, seventh) from385

the mir_eval package [53]. Results are shown in Table 3.386

4.6 Evaluation Results387

In this subsection, we analyze the results for each down-388

stream task.389

4.6.1 Few-shot Symbolic Music Analysis390

With only 74 training songs, our adapters outperform rule-391

based baselines on both majmin and seventh categories.392

By comparing function alignment models (FA) with the393

prober, we see that using a pretrained LM for the target394

sequence y (chord+drums) improves performance on the395

music understanding task.396

Between the function alignment models, the self-397

attentive adapters achieve better performance compared398

to cross-attentive implementation. Such trend is also ob-399

served in other tasks.400

4.6.2 Chord to Melody401

The results in subjective evaluation (Fig. 5a) shows that the402

our proposed adapters (FA-Self, FA-Cross) achieve com-403

parable performance compared to Melody T5. Cocomulla404

is not effective on the task, achieving even lower perfor-405

mance compared to a encoder-decoder training. is also406

demonstrated in objective evaluation results (Tab. 1).407

4.6.3 Melody to Chord408

Both the perplexity results (Tab. 1) and chord consistency409

results (Tab. 2) demonstrate the effectiveness of function410

alignment, especially self-attentive adapters against other411

baselines. We note that MelodyT5 shows low chroma412

consistency. MelodyT5 often fails to generate music that413

(a)

(b)

(c)

Figure 6. Case study of an others-to-drum example on
RWC-Pop-003. The top displays the non-drum condition
inputs with a piano roll (structure labels are shown for ref-
erence but not used by the model). The bottom shows the
drum track by (a) FA-Cross; (b) FA-Self; (c) Ground truth.

meets the constraints of the condition melody (e.g., re-414

placed by an improvised melody or inconsistent struc-415

tures). This results in a misalignment between the gen-416

erated chords and the ground truth.417

4.6.4 Drum to Others418

FA models demonstrate strong performance in this cate-419

gory. Also, drum-to-others is the only task where Coco-420

Mulla outperforms Enc-Dec, highlighting the value of the421

pretrained LM for the target sequence y. However, Coco-422

Mulla does not utilize the knowledge stored in LM(x),423

leading to a worse performance compared to function424

alignment adapters.425

4.6.5 Others to Drum426

The others-to-drum task yields the interesting results:427

function alignment models outperform even the ground428

truth both subjectively (Fig. 5(c)) and objectively (Tab. 1).429

This is likely because RWC-Pop uses a limited drum set430

and regular patterns, while our training data (Los Ange-431

les MIDI) includes diverse textures and instruments (e.g.,432

Cuica). Function alignment models generate rich, varied433

drum patterns aligned with long-term structure, showing434

strong creativity and musicality (see Fig. 6 for an exam-435

ple). The baseline model Composer Assistant V2 [50] also436

produces less variation.437

5. CONCLUSION AND FUTURE WORKS438

In this paper, we address the problem of versatile music-439

for-music modeling that unifies a broad range of music440

understanding and controllable generation tasks. Inspired441

by function alignment, we adopt a parameter-efficient ap-442

proach by knowledge transfer from the pretrained LM of443

both the input and the output sequence. We introduce444

two implementations, the cross-attentive adapter and the445

self-attentive adapter. Both adapters show competitive re-446

sults on analysis and generation tasks, with self-attentive447

adapters relatively outperforming.448

There are mainly two future works. First, we need449

to refine the representations for different music-for-music450

tasks. We also plan to extend the framework to cross-451

modal adapters, such as text-to-music tasks.452
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