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Abstract

Numerous applications of large language models (LLMs) rely on their ability to1

perform step-by-step reasoning. However, the reasoning behavior of LLMs remains2

poorly understood, posing challenges to research, development, and safety. To3

address this gap, we introduce landscape of thoughts (LoT), the first landscape4

visualization tool to inspect the reasoning trajectories with certain reasoning meth-5

ods on any multi-choice dataset. We represent the textual states in a trajectory as6

numerical features that quantify the states’ distances to the answer choices. These7

features are then visualized in two-dimensional plots using t-SNE. Qualitative8

and quantitative analysis with the landscape of thoughts effectively distinguishes9

between strong and weak models, correct and incorrect answers, as well as differ-10

ent reasoning tasks. It also uncovers undesirable reasoning patterns, such as low11

consistency and high uncertainty. Additionally, users can adapt LoT to a model that12

predicts the property they observe. We showcase this advantage by adapting LoT13

to a lightweight verifier that evaluates the correctness of trajectories. Empirically,14

this verifier boosts the reasoning accuracy and the test-time scaling effect.15

1 Introduction16

Large language models (LLMs) have revolutionized the paradigm of solving problems. Many practical17

applications, e.g., LLM as agent [41, 28, 64], critically depend on step-by-step reasoning [58, 27].18

Despite progress in advanced models like OpenAI o1 [22] and decoding methods such as test-time19

scaling [44], the underlying reasoning behavior of LLMs remains poorly understood, hindering the20

development of these models and posing deployment risks [5].21

A few pioneer attempts [53, 39, 40, 14] probe LLM reasoning, but their insights often hinge on specific22

decoders and tasks. In practice, practitioners debug by manually reading the reasoning trajectories23

generated by LLMs, which has two drawbacks: (i) scalability—human inspection does not scale24

(e.g., at 30s per trajectory, 100 trajectories require 50min); and (ii) aggregation—deriving reliable,25

dataset-level conclusions (e.g., from 10,000 trajectories) is difficult, yielding subjective and even26

biased summaries. These costs compound during iterative development, where fast, interpretable27

feedback is essential. Consequently, there is a clear need for general, reusable tools to analyze28

LLM reasoning in users’ settings. This tool can potentially benefit engineers by speeding iteration,29

reasoning researchers by informing decoder improvements, and safety researchers by monitoring30

and improving model behavior.31

To this end, we introduce the landscape of thoughts (LoT), a visualization of LLM reasoning trajec-32

tories that delivers automatic, objective analysis from single examples to full datasets. Analogous33

to the t-SNE [52], LoT highlights structure in high-dimensional reasoning space. By pairing quali-34

tative landscapes with quantitative metrics (consistency, uncertainty, and perplexity), LoT enables35

comparison and reveals insights beyond manual inspection.36
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1. First, let‘s calculate the …
2. Next, let‘s use the number of …
3. The answer is C.

1. 2% of the non-defective …
2. The number of non-defective …
3. The answer is A.

Question: A class of 35 students 
has an average height of 180 cm. …
Calculate the new average height of 
the students of the class is (in cm)? 

Choices: (A) 204.6, (B) 404.6,
(C) 224.6, (D) 184.0, (E) 256.6.

Figure 1: Landscape of thoughts for visualizing the reasoning steps of LLMs. Note that the red
landscape represents wrong reasoning cases, while the blue indicates the correct ones. The darker
regions in landscapes indicate more thoughts, with indicating incorrect answers and marking
correct answers. Specifically, given a question with multiple choices, we sample a few thoughts from
an LLM and divide them into two categories based on correctness. We visualize the landscape of
each category by projecting the thoughts into a two-dimensional feature space, where each density
map reflects the distribution of states at a reasoning step. With these landscapes, users can easily
discover the reasoning patterns of an LLM or a decoding method. In addition, a predictive model is
applied to predict the correctness of landscapes and can help improve the accuracy of reasoning.
Specifically, given any multi-choice reasoning dataset, LoT visualizes the distribution of intermediate37

states in any reasoning trajectories of interest w.r.t. the answer choices, which enables users to uncover38

reasoning patterns in both success and failure trajectories (Fig. 1). The core idea is to characterize the39

states of textual thoughts in a trajectory as numerical features that quantify the states’ distances to40

the answer choices. These distances are estimated by the perplexity metric, with the same LLM to41

generate thoughts and explain to itself. Then, these state features (i) produce three metric plots and42

(ii) are projected into a two-dimensional space with t-SNE to generate the landscape.43

We examine LoT with different dimensions of model sizes, decoding methods, and reasoning datasets.44

LoT reveals several insightful observations regarding the reasoning behaviors of LLMs. Some notable45

observations include: 1) The convergence speed of trajectories towards correct answers reflects the46

accuracy, no matter what base model, decoding method, or dataset is used; 2) The convergence speed47

of trajectories in success and failure cases is distinct, indicating that we may use the convergence48

speed of a reasoning trajectory to predict its accuracy; 3) Low consistency and high uncertainty are49

generally observed in the intermediate thoughts, presenting the unstable properties of the reasoning50

process. LoT reveals them by bridging localized text understanding with global reasoning dynamics.51

To our knowledge, these patterns have not been reported by prior analyses of reasoning, which52

primarily rely on manual text inspection or aggregate performance metrics.53

Since our tool is built on top of state features, it can be adapted to a machine-learning model54

to quantitatively predict certain properties, such as the findings mentioned above. We showcase55

this advantage by training a lightweight model to predict the success and failure cases, which is56

equivalent to verifiers commonly used in LLM reasoning [11]. Even though this verifier is lightweight57

compared to most LLM-based verifiers, it consistently improves the reasoning performance on most58

combinations of models, decoding methods, and datasets in our experiments. Hence, users can further59

leverage this advantage to predict the properties in their scenarios.60

In summary, our main contributions are three-fold:61

• We introduce the first tool for automatic and scalable visualization of the LLM reasoning procedure,62

applicable to any open-source models and decoding methods on multi-choice datasets (Sec. 2).63

• Our tool reveals several observations regarding the reasoning behaviors of different language64

models, decoding methods, and reasoning datasets, offering several new insights (Sec. 3).65

• Our tool can also be adapted to a model to predict certain properties and guide the reasoning66

process, improving LLM reasoning without modifying the model parameters (Sec. 4).67
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2 Landscape of Thoughts68

2.1 Problem Formulation69

Our goal is to visualize the reasoning trajectories of LLMs across a variety of task domains. Specif-70

ically, we target datasets consisting of multiple-choice questions, where each datapoint (x, y, C)71

comprises a question x, a correct answer y, and a finite set of candidate choices C = {cj}kj=1, all72

represented in texts. 1 The visualization tool applies to the following models and methods.73

Language models. To explore the landscape of thoughts generated by an LLM pLLM(·), the model74

should produce diverse reasoning trajectories for solving a problem. In each trajectory, the reasoning75

thoughts are decoded autoregressively as t̂i ∼ pLLM(ti|x, C, t̂1, . . . , t̂i−1): each thought t̂i is condi-76

tioned on the question x, the candidate set C, and the sequence of preceding thoughts t̂1, . . . , t̂i−1.77

To characterize intermediate states within these trajectories, the LLM must also function as a likeli-78

hood estimator, enabling the computation of the probability pLLM(ŷ|x, C, t̂1, . . . , t̂i) of any answer79

ŷ. These two requirements are generally satisfied by open-source LLMs, such as Llama [13] and80

DeepSeek [32]. However, closed-source LLMs like GPT-4 [1] and Gemini [48] are excluded, as their81

likelihood estimation is not publicly supported.82

Reasoning methods. While there are many approaches to solving reasoning problems with LLMs [12,83

24], this work focuses on chain-of-thought (CoT) [58] and its derivatives [70, 63], owing to their84

widespread use and development. These decoding methods generally guide the model in generating85

a structured trajectory of intermediate reasoning thoughts before arriving at the final answer. To86

visualize a large number of reasoning thoughts effectively, these thoughts should be automatically87

parsed into distinct units (e.g., via sentence tokenization). Most LLMs can satisfy this requirement. 288

2.2 Qualitative Visualization with Landscapes89

Given a collection of reasoning trajectories generated by an LLM, our tool seeks to visualize how90

different trajectories lead to either correct or incorrect answers within a two-dimensional (2D) space,91

as illustrated in Fig. 1. A key challenge lies in the absence of a direct mapping from the textual space92

of thoughts to numerical 2D coordinates. To address this gap, we utilize the same LLM to represent93

intermediate states as numerical features. These state features are then projected into a 2D space for94

visualization. For simplicity, we denote a thought as ti instead of t̂i, which is clear in the following.95

Characterizing the states. Here, the intermediate thoughts {ti}ni=1 in a reasoning trajectory naturally96

define a sequence of states {si}ni=0, where s0 = [x] and si = [x, t1, t2, . . . , ti]. Here, we propose to97

characterize the states as features using the likelihood function of the LLM. Specifically, the k-dim98

feature fi for state si indicates the relative distances from the state si to all possible choices {cj}kj=1:99

fi ≜ [d(si, c1), d(si, c2), . . . , d(si, ck)]
⊤, (1)

where d(si, cj) measures the distance between state si and choice cj . To reduce the effect of length100

on choices, we calculate d(si, cj) through the perplexity metric [42, 35]:101

d(si, cj) ≜ exp

− 1

|cj |

|cj |∑
t=1

log pLLM(cj [t]|si, cj [: t])

 = pLLM(cj |si)−1/|cj |, (2)

where |cj | is the number of tokens in cj , and pLLM(cj |si) is the accumulated probability in an autore-102

gressive manner. Assume |cj | = T , we have pLLM(cj |si) = pLLM(cj [1]|si) · pLLM(cj [2]|si, cj [1]) ·103

pLLM(cj [3]|si, cj [1], cj [2]) . . . pLLM(cj [T ]|si, cj [1], cj [2] . . . cj [T − 1]). The token-level probabilities104

are normalized over the entire vocabulary; cj [1] is the first token of cj , and cj [T ] is the last token.105

We further normalize the vector fi to have a unit ℓ1 normalization. Additionally, to represent the106

choices as landmarks in the visualization, it is necessary to encode the choices as feature vectors.107

Notably, the perplexity decreases as the model’s prediction confidence increases. To align with this108

observation, we define the feature vector f c
j for a choice cj as:109

f c
j ≜

1

k
[1(j ̸= 1), . . . ,1(j ̸= k)]⊤. (3)

1LoT is positioned for multi-choice questions. Appendix B.7 discusses its extension to open-ended tasks.
2We empirically verify the robustness of LoT if this requirement does not hold (please see Appendix E.9).
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For r trajectories, each with n states, we compute the feature vectors for all r · n states. The indicator110

function 1(j ̸= 1) will output 1 if j is not 1, and output 0 if and only if j is 1. Here, the element 0111

in c1 indicates this choice has 0 distance to the first anchor, which is c1 itself. Besides, elements 1112

indicate that the distances among anchors are assumed to be the same. 3 Together with the feature113

vectors of k choices, we obtain a feature matrix F ∈ Rk×(r·n+k) as:114

F ≜ [f
(1)
1 , . . . ,f (1)

n , . . . ,f
(r)
1 , . . . ,f (r)

n ,f c
1 , . . . ,f

c
k ]. (4)

Note that a sufficiently large number of trajectories is necessary to generate a comprehensive vi-115

sualization of the reasoning landscape. For computational efficiency, we sample d trajectories per116

question across all questions, yielding r = d|questions| total trajectories. We then normalize feature117

vectors by reordering choices so the correct answer appears in the first dimension across all questions.118

As such, we can visualize the landscape of multiple questions by putting their trajectories together,119

which is more efficient than visualizing by generating enough trajectories per question.120

Visualization. After constructing the feature matrix F , we project the states and choices into121

a 2D space for visualization. This step can be accomplished using various existing methods of122

dimensionality reduction [38, 52, 36]. We employ t-SNE [52] due to its ability to preserve the123

underlying manifolds of the original high-dimensional space and its robustness to a wide range124

of transformations. 4 By applying t-SNE to the k-dim F , we obtain the 2-dim coordinates F̄ ∈125

R2×(rn+k). The two dimensions are reduced from the original space, which represents all possible126

answers, and each state’s coordinates show its distance from different answers. Finally, the coordinates127

of the states define a discrete density function in the 2D space, presented by the landscape’s color128

depth.129

2.3 Quantitative Visualization with Metrics130

Besides the qualitative visualization, we introduce three quantitative metrics to help understand the131

LLMs’ behavior. These metrics are defined based on the intermediate states in Sec. 2.2.132

Consistency. To understand whether the LLM knows the answer before generating all thoughts, we133

compute the consistency of state si by checking whether fi and fn agree134

Consistency(si) = 1(argminfi = argminfn). (5)

Uncertainty. To know how confident the LLM is about its predictions at intermediate steps, we135

compute the uncertainty of state si as the entropy of fi (note
∑

d∈fi
d = 1)136

Uncertainty(si) = −
∑
d∈fi

d · log d. (6)

Perplexity. We are also interested in how confident the LLM is about its thoughts. We use the137

perplexity of thought ti, since it is comparable across thoughts of different length138

Perplexity(ti) = pLLM(ti|si−1)
−1/|ti|. (7)

Remark 2.1. Note that in previous works, these metrics are mainly used to evaluate the performance139

of language modeling on each token. We repurpose them to analyze intermediate thoughts in the140

trajectories, which is a new lesson for the community. Appendix C introduces related works in141

detail. The following section demonstrates that the LoT, containing the qualitative landscape and the142

quantitative metrics, is effective for automatic and scalable visualization of reasoning trajectories.143

3 Results and Observations144

In this section, we utilize the landscape of thoughts to analyze the reasoning behavior of LLMs145

by comparing the visualizations across three dimensions: (1) diverse scales and types of language146

models in Sec. 3.1, (2) different reasoning tasks in Sec. 3.2, and (3) various reasoning methods in147

Sec. 3.3. Unless stated otherwise, we employ Llama-3.1-70B with CoT as the default configuration148

in evaluations. All the visualizations are built upon the model’s estimation of their own thoughts. 5149

3LoT can be applied to trajectories with different numbers of states. We assume n states for demonstrations.
4Appendix E.8 shows that LoT is compatible and robust with different methods of dimensionality reduction.
5Appendix E.1 validates each qualitative observation from LoT. Full visualizations are in Appendix F.
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Figure 2: Comparing the LoT of different language models (with CoT on the AQuA dataset). Darker
regions represent higher state density, with indicating incorrect answers and marking the correct
ones. Through the reasoning trajectories, spanning from early (0-20% states) to the later stages
(80-100% states), the visualization shows correct cases (bottom rows in blue) with incorrect cases
(top rows in red). Metrics are calculated w.r.t. each bin, e.g., 20% - 40% of states. The reasoning
accuracy of the four subfigures is: (a) 15.8%, (b) 42.0%, (c) 53.2%, and (d) 84.4%.

Since probabilities can't exceed 1, the maximum 
value of P(A and B) can be the minimum of P(A) 
and P(B). The minimum of 0.56 and 0.74 is 0.56. 
Wait, maybe. Let me check again.

Wait, this might be a 
bit more complicated. 
Let's try to think of it 
in terms of relative 
motion.

Wait, actually when 
solving D = 
\u221a3*(D - 10v), 
let's do it again step 
by step.

Let me check that again. Yes: the non-
defective total is 0.9N, and 2% of that is 
rejected. Therefore, 0.02*(0.9N) = 72.

But maybe it's a trick question 
where the letters have to be 
distinct? Wait, the first part 
might assume whether letters 
can repeat or not,

Wait, first 
maybe I 
need to find 
the total 
distance.

…plus 54,400 gives 1,180,800? Wait, let me 
check again. 626,400 +554,400….

Wait, but perhaps I 
missed something.

Wait, in the previous 
step, the time 
remaining is (d/v). So 
after substitution,…

Wait, let me 
redo the 
division.

Wait, but maybe I made an arithmetic 
mistake somewhere. Let me check the 
division again:

Wait but let me think again. Maybe the question is 
asking for the number of staplers produced that 
day, which is the total N, so yes. The steps seem 
correct. Let me check with another approach.

But wait, looking at the 
answer options, E is 110. 
However, the problem 
says \"at least\" so 
maybe there's a catch 
here?

Let me do the 
calculation in decimals 
without converting to 
fractions. Maybe I 
made a mistake there.

Wait, perhaps 
subtract 
equation 1 
multiplied by 
some factor.

Let me check the options again. The problem's 
options are A)27, B)81, C)90, D)99, E)110. So 
according to this, the answer should be E. But the 
question might be a trick here?

…perhaps the original price must be a value that 
when discounted and subtracted by 20 gives 
exactly the value needed. Let me check.

Wait, maybe 
I confused 
steps here. 
Let me re-
express

Wait a second. 
But hold on, let 
me double-
check because 
maybe I'm 
oversimplifying.

Wait, but this calculation gives exactly 5(\u221a3 
+1), which is option A. But wait, let me check once 
more.

Hmm, that discrepancy is 
odd. Maybe I made a 
mistake in the equation 
setup?

Wait, sorry, let me 
recast…

…Wait, but maybe 
there is another 
approach?

Wait, wait. Wait a second, 
no, actually, maybe I made a 
calculation error here. Let me 
double-check because that 
result seems a bit low. Let me 
recalculate the division:

(N -10 -20e) = (N 
-20 -10e)/2 * 2? 
Wait, no. Wait, 
perhaps better to 
substitute.

Wait, but the options 
include C as 36. So that 
works. Let me confirm 
again step by step. Let 
me see:

But wait the options are A)4 B)4.5 C)5 D)5.5 E)6.5. 
So yes, C is correct. Let me check if there was 
any miscalculation. Hmm, yes, all steps check out.

Wait, let me 
double-check my 
calculation step 
again. Maybe my 
math was wrong.

That's not among the options 
provided. Did I make a 
mistake somewhere?

Wait, perhaps my total cost calculation was 
wrong. Let me check again.

Figure 3: The LoT of the reasoning model QwQ-32B (using CoT prompting on the AQuA dataset).

3.1 Comparison across Language Models150

We study several LLMs’ behavior across parameter scales (from 1B, 3B to 70B). We run each model151

with CoT prompting on 50 randomly selected problems from the mathematical reasoning dataset152

AQuA. Their landscapes are shown in Fig. 2, from which we have the following observations.153

Observation 3.1 (The landscape converges faster as the model size increase). As model parameters154

scale from 1B to 70B, the corresponding landscape demonstrates faster convergence to the correct155

answers with higher density in the last 20% states, aligning with the increasing accuracy. With more156
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Figure 4: Comparing the LoT of different datasets (using Llama-3.1-70B with CoT). The accuracy of
reasoning for the four subfigures is: (a) 84.4%, (b) 80.2%, (c) 75.8%, and (d) 64.8%.

parameters, larger models can store broader knowledge [3]. This leads to more confident solutions,157

demonstrated by more focused answer patterns and lower uncertainty.158

Observation 3.2 (Larger models have higher consistency, lower uncertainty, and lower perplexity).159

As the model size increases, the consistency increases; at the same time, the uncertainty and perplexity160

decrease significantly. This also aligns with the higher accuracy for the large models. 6161

In addition, we apply LoT to up-to-date reasoning models QwQ 32B [49] and observe:162

Observation 3.3 (Reasoning models present more-complex reasoning behaviors in landscapes.). As163

shown in Fig. 3, the landscapes can capture complex reasoning patterns such as self-evaluation and164

self-correction. Specifically, correct trajectories tend to include more instances of self-evaluation165

and self-correction compared to incorrect ones. These behaviors often occur early in the reasoning166

process, especially when the model is far from the correct one. Compared to non-reasoning models,167

correct trajectories here show greater diversity, with green and yellow points more widely scattered.168

3.2 Comparison across Reasoning Tasks169

Besides AQuA dataset, we include MMLU, CommonsenseQA, and StrategyQA datasets. We run the170

default model with CoT on 50 problems per dataset. These observations are derived from Fig. 4:171

Observation 3.4 (Similar reasoning tasks exhibit similar landscapes). The landscapes of AQuA,172

MMLU, and StrategyQA in Fig. 4 exhibit organized search behavior with higher state diversity,173

while CommonSenseQA presents concentrated search regions, reflecting direct retrieval of common-174

sense knowledge rather than step-by-step reasoning processes. These distinct landscape patterns175

demonstrate the potential to reveal underlying domain relationships across different reasoning tasks.176

Observation 3.5 (Different reasoning tasks present significantly different patterns in consistency,177

uncertainty, and perplexity). The histograms in Fig. 4 show that the perplexity consistently increases178

as reasoning progresses across all datasets. Specifically, different datasets, e.g., AQuA and MMLU,179

show distinctly higher levels of uncertainty. As for StrategyQA, correct trajectories show increasing180

consistency that surpasses incorrect trajectories at around 60% states, while incorrect trajectories181

6Appendix E.3 presents additional analyses of the consistency metric: the consistency does not relate to the
length of the trajectory. In addition, Appendix E.5 supports the validity of comparing perplexity across models.
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Figure 5: Comparing the LoT of four reasoning methods (using Llama-3.1-70B on the AQuA dataset).
The reasoning accuracy is: (a) 84.4%, (b) 82.2%, (c) 75.8%, and (d) 81.6%, respectively.

The answer is B.

Conclusion: The original 
price of the item was 
approximately $63.32. The 
answer is A

Let‘s think step by step to 
solve the problem.

3. This leaves 1-1/4 = 3/4 of 
the pool to be filled by both 
hoses working together in 
the following 3 hours.

We can represent the 
commission of 15% on 
the monthly sale as: 0.15 
* total monthly sale.

To find the percentage 
increase, we'll use the 
formula: ((Increase / 
Original) 100).

Let's think step by step 
to solve this problem.

Step 3: The total cost can 
be expressed as the sum of 
costs of brown and white 
sharpeners: b X + (18 - b) 
(X + 1) = 100.

Next, we divide the total 
profit by the profit per 
bag: $3,000 / $25 = 120.

Step 8: Solve for x 
using the equation 
identified in step 7.

Figure 6: Case Study of LoT, with Llama-3.1-8B using CoT on AQuA.

show decreasing consistency. However, when the trajectory is longer than the ground truth trajectory,182

the later stages (60-100% of states) exhibit both increasing perplexity and decreasing uncertainty. 7183

3.3 Comparison across Reasoning Methods184

Setup. We evaluate the default model with four reasoning methods: chain-of-thought (CoT) [58],185

least-to-most (LtM) [70], MCTS [68], and tree-of-thought (ToT) [63]. We run these methods on 50186

problems from AQuA and observe that:187

Observation 3.6 (Cross-method comparison: Among correct reasoning trajectories, methods with188

faster convergence to correct answers achieve higher accuracy.). From Fig. 5, we observe that the189

states scatter dispersedly at early stages and gradually converge to correct (or incorrect) answers190

7We show detailed analysis for trajectories in StrategyQA in Appendix E.4.
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Figure 7: The accuracy of reasoning under different decoding methods and model scales (averaging
across all four datasets). Results for each dataset are in Appendix F.

in later stages. Here, converge means the trend of a reasoning trajectory approaching one answer.191

Generally, methods with more scattered landscapes (that converge more slowly) present lower192

accuracy than those that converge faster. For example, the blue landscape in Fig. 5(a) converges faster193

than the blue landscapes in Fig. 5(c), and the former is with a higher accuracy than the latter.194

Observation 3.7 (Within-method comparison: For any single method, incorrect trajectories converge195

faster to wrong answers than correct trajectories converge to right answers.). As can be seen from196

Fig. 4, failure trajectories usually converge to the wrong answers at earlier states of reasoning, e.g.,197

20-40% states in Fig. 4(c). By contrast, the states in the success trajectories converge to the correct198

answers at later 80-100% states. This implies that early states of the reasoning process can lead to any199

potential answers (from a model perspective), while the correct answers are usually determined at the200

end of reasoning trajectories. In addition, Fig. 6 showcases the corresponding text of thoughts. 8201

Observation 3.8 (Compared to failure trajectories, the intermediate states in correct trajectories202

have higher consistency w.r.t. the final state). By comparing the consistency plots in Fig. 5, we203

found that the model generally has low consistency between the intermediate states and the final state.204

Notably, the consistency of wrong trajectories is significantly lower than that of correct trajectories.205

This implies that the reasoning process can be quite unstable. Even though decoding methods like206

CoT and LtM are designed to solve a problem directly (without exploration), the generated thoughts207

by these methods do not consistently guide the reasoning trajectory to the answer.208

4 Adapting Visualization to Predictive Models209

One advantage of our method is that it can be adapted to a model to predict any property users210

observe. Here, we show how to convert our method to a lightweight verifier for voting trajectories,211

following the observations in Sec. 3. Note that this methodology is not limited to verifiers. Users can212

use this technique to adapt the visualization tool to monitor the properties in their scenarios.213

4.1 A Lightweight Verifier214

Observation 3.7 and 3.8 show that the convergence speed and consistency of intermediate states215

can distinguish correct and wrong trajectories. Inspired by these observations, we build a model216

g : R(k+1)×n → {0, 1} to predict the correctness of a trajectory based on the state features {fi}ni=1217

and consistency metric {Consistency(fi)}ni=1. The insight is that the state features, used to compute218

the 2-D visualization, encode rich location information of the states and can be used to estimate the219

convergence speed. Due to the small dimensionality of these features, we parameterize f with a220

random forest [6] to avoid overfitting. We use this model as a verifier to enhance LLM reasoning [11].221

Unlike popular verifiers [30] that involve a moderately sized language model on textual thoughts, our222

verifier operates on state features and is quite lightweight. We train a verifier on thoughts sampled223

on the training split of each dataset and apply it to vote trajectories at test time. Given q trajectories224

sampled by a decoding method, the final prediction is produced by a weighted majority voting:225

ŷ =argmax
c∈C

q∑
i=1

1(ŷ(i) = c) · g({fi}ni=1, {Consistency(si)}ni=1). (8)

8In Appendix E.2, only a few incorrect trajectories (1.8%) are close to the correct answer in middle thoughts.
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Figure 8: Demonstration of the
inference-time scaling effect of the
verifier. We show the voting accu-
racy (%) on StrategyQA scales with
the number of trajectories.

(a) Transfer across datasets (b) Transfer across models

Figure 9: Absolute accuracy changes (∆ Acc) with the verifier,
compared to performance in Fig. 7 (without the verifier). The
verifier is trained on each column (dataset or model) and eval-
uated on all rows (other datasets or models). Positive values
indicate improvement in accuracy with the verifier.

4.2 Experimental Results226

We evaluate our numerical verifier against an unweighted voting baseline [55] with various models,227

decoding methods, and reasoning datasets. We report the accuracy here instead of commonly seen228

pass@k, which will be easily hacked by a simple random guess or a traverse of all candidates to229

obtain a high score. Detailed settings of experiments are in Appendix D. We also provide ablation230

studies on training the verifier and discuss and compare the variance of the verifier in Appendix E.6,231

and experiment on the scaling effect with different features in Appendix E.7.232

Effectiveness of the verifier. We first compare our verifier against the unweighted voting baseline,233

each applied to 10 trajectories. As shown in Fig. 7, our verifier consistently enhances the reasoning234

performance of all models and decoding methods, even though our verifier does not use any pre-235

trained language model. Notably, smaller language models (1B and 3B) show significant performance236

gains with the verifier’s assistance, achieving substantial improvements over their original capabilities237

of reasoning. We also compare the verifiers between reward-guided methods.238

Test-time scaling. While the improvement of the verifier seems marginal with 10 trajectories, our239

verifier can provide a substantial performance gain with more trajectories. We adjust the number of240

trajectories from 1 to 50, and plot the results of the verifier and the unweighted voting baseline in241

Fig. 8. Models with our verifier exhibit significantly stronger scaling behaviors, achieving over 65%242

accuracy. In contrast, the performance of the baseline saturated around 30% accuracy. These results243

suggest that our state features, which are used in both the visualization tool and the verifier, capture244

important information about the reasoning behavior of LLMs. Thus, the verifier can boost test-time245

scaling, especially in solving complex problems.246

Cross-dataset and cross-model transferability. One interesting property of the state features and247

metrics is that their shape and range are agnostic to the model and dataset, suggesting that we may248

deploy the verifier trained on one dataset or model in another setting. As illustrated in Fig. 9, we249

evaluate how the verifier transfers across reasoning datasets (e.g., train on AQuA and test on MMLU)250

and model scales (e.g., train on 1B model and test on 70B model). We observe some positive transfers251

across datasets and models. For example, a verifier trained on AQuA can improve the performance252

of StrategyQA by 4.5%. A verifier trained on the 70B model also improves the performance of the253

3B model by 5.5%. However, some cases do not benefit from the transferring verifiers. We leave254

improving the transferability of the state features and metrics as future work.255

5 Conclusion256

This paper introduces the landscape of thoughts, a visualization tool for analyzing the reasoning257

trajectories produced by large language models with chain-of-thought. Built on top of feature vectors258

of intermediate states in trajectories, our tool reveals several insights into LLM reasoning, such as the259

relationship between convergence and accuracy, and issues of low consistency and high uncertainty.260

Our tool can also be adapted to predict the answer of reasoning trajectories based on the observed261

property, which is demonstrated by a lightweight verifier developed based on the feature vectors and262

our observations for distinguishing the correctness of trajectories. We foresee that this tool will create263

several opportunities to develop, understand, and monitor the LLM reasoning.264
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A Impact Statement470

Our work presents a tool for visualizing and understanding reasoning steps in large language models.471

We foresee that our work will introduce more interpretability and transparency into the development472

and deployment of LLMs, advancing us toward more trustworthy machine learning. However, we473

must acknowledge that malicious activities can also be augmented by our tool. For example, attackers474

may use this tool to find prompts that bypass the alignment safeguards in LLMs. We believe such475

risks will be mitigated if this tool is widely adopted by safety researchers. Overall, the positive476

societal consequences of our work outweigh the negative ones, which stem primarily from misuse.477

B Further Discussions478

B.1 Challenges in Analyzing LLM’s Reasoning Automatically479

Currently, the fundamental mechanisms behind both successful and unsuccessful reasoning attempts480

in LLMs remain inadequately understood. Traditional performance metrics, such as accuracy, provide481

insufficient insights into model behavior. While human evaluation has been employed to assess482

the quality of sequential thoughts (e.g., logical correctness and coherence), such approaches are483

resource-intensive and difficult to scale. We identify three challenges in developing automated484

analysis systems for LLMs’ reasoning:485

Challenge 1: Bridging the token-thought gap. Current explanatory tools, including attention maps [10,486

26], probing [2, 50, 20], and circuits [15, 65], primarily operate at the token-level explanation. While487

these approaches offer valuable insights into model inference, they struggle to capture the emergence488

of higher-level reasoning patterns from lower-level token interactions. Additionally, the discrete489

nature of natural language thoughts poses challenges for traditional statistical analysis tools designed490

for continuous spaces. Understanding how thought-level patterns contribute to complex reasoning491

capabilities requires new analytical frameworks that can bridge this conceptual gap.492

Challenge 2: Analyzing without training data access. Existing investigations into LM reasoning493

have predominantly focused on correlating test questions with training data [21, 54]. This approach494

becomes particularly infeasible given the reality of modern LLMs: many models are closed-source,495

while some offer only model weights. Therefore, a desired analysis framework should operate across496

varying levels of model accessibility.497

Challenge 3: Measuring reasoning quality. Beyond simple performance metrics, we need new ways498

to evaluate the quality and reliability of model reasoning. This includes developing techniques to499

understand reasoning paths, creating intermediate representations that capture both token-level and500

thought-level patterns, and designing metrics that can assess the logical coherence and validity of501

reasoning steps.502

Consequently, we propose that a viable analysis of reasoning behavior should satisfy multiple criteria:503

it should operate in a post-hoc manner with varying levels of model access, bridge the gap between504

token-level and thought-level analysis, and provide meaningful metrics for evaluating reasoning505

quality. Given the absence of tools meeting these requirements, we identify the need for a new506

analytical framework that can address these challenges while providing useful insights for improving507

model reasoning capabilities.508

B.2 A Comparison Between Landscape Visualization and Textual Analysis509

Notably, for the language model, one could manually examine the responses to individual questions,510

as their responses are interpretable by humans. However, this approach has two major limitations:511

Limitation 1: Lack of Scalability. Analyzing the individual question is time-consuming and labor-512

intensive. In general, text-based analysis requires human evaluators to carefully read long reasoning513

chains word by word. For example, if it takes 30 seconds to understand a single problem, review-514

ing 100 problems would require around 50 minutes of focused human effort. This burden grows515

quickly, especially as researchers often repeat this process many times while developing models and516

methods. In practice, researchers need quick, easily interpretable feedback, such as accuracy, when517

experimenting with changes to models and methods.518
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Limitation 2: Lack of Aggregation. It is difficult to aggregate insights across multiple problems519

to understand model behavior at the dataset level. Summarizing model behavior across multiple520

problems presents another challenge. Suppose one researcher has 100 reasoning chains; it is hard521

for him/her to reliably synthesize the model’s overall behavior. Different researchers may arrive at522

different, subjective summaries, which hinders consistency and interpretability.523

By contrast, our visualization method provides a more objective and automatic way to analyze a524

model, making it much easier for researchers to analyze the model’s reasoning behavior. Similar525

to the t-SNE [52], the visualization enables a more comprehensive analysis of multiple reasoning526

problems instead of only one problem. The visualization uniquely combines human-readable paths527

with quantitative, scalable metrics for reasoning process analysis, enabling both model comparisons528

and mechanistic insights beyond manual text inspection.529

Notably, the landscape provides unique insights into LLM reasoning that text analysis alone cannot530

capture. This power source bridges the gap between localized text understanding and global reasoning531

behavior. Our analysis in Sec. 3 reveals insights that are not revealed by previous text-based analysis.532

These insights include structural patterns across many reasoning paths, a strong correlation between533

early consistency and accuracy, and model-level differences where larger models explore more534

broadly than smaller ones.535

B.3 The Intrinsic Relationship Between Visualization and Metrics536

In the modeling of this work, we project each thought (state in a trajectory) from text space to537

numerical space, with the thought’s feature vector that each dimension indicates the distance to a538

particular answer (see Eqn. 1). We compute the feature vectors of all the thoughts from multiple539

trajectories and then obtain the feature matrix F . Then, based on this feature matrix, we compute540

(1) the landscape visualization through dimension reduction and (2) the metrics of consistency and541

uncertainty. From this view, the metrics’ information can actually be seen from the landscape. In this542

work, we mainly focus on the landscapes and also use the metrics plots to help analyze.543

In addition, landscape visualizations preserve the information of metrics, including the consistency,544

uncertainty, convergence, and many other metrics that are not covered in this work. The landscape545

provides a “global” view of the overall reasoning trajectories, while each metric provides a “local”546

view of a particular aspect. Note that humans naturally prefer visual matters like figures and videos,547

e.g., researchers prefer to use t-SNE in understanding the classification models. We recommend using548

landscape as a visualization tool to help understand the LLM reasoning, while the metric plots can549

further help inspect some particular aspects.550

B.4 Discussion on Results and Observations551

In the landscape visualizations, red regions map out the reasoning trajectories that end in incorrect552

answers, while blue regions map out those that end correctly. The contour lines and the depth of color553

together convey the density of reasoning states at each step: darker shades mean more trajectories554

passing through that region. As you observe a landscape evolve from its initial scatter of states toward555

later clustering, you’re seeing whether and how quickly the model’s reasoning paths lock onto an556

answer.557

Observation 3.6 arises when we compare only the blue (correct) landscapes of different methods558

in Fig. 5. Early in the process, all methods scatter widely, exploring many possibilities; over time,559

though, some methods’ contours tighten more rapidly than others. Here, the landscape in Fig. 5a560

converges to its correct region much sooner—and with a denser cluster—than the landscapes in561

Fig. 5b to 5c, and this faster, tighter convergence corresponds to its higher accuracy. Namely, methods562

with more scattered landscapes (converge more slowly) present lower accuracy than those that563

converge faster.564

A related pattern appears when we compare models of different sizes in Fig. 2 (Observation 3.1). As565

we scale from the 1B model to the 70B model, the last 20% of the reasoning steps show increasingly566

dense blue clusters. Larger models, with greater capacity to store and retrieve information, steer their567

reasoning more directly and confidently toward the right answer, mirroring their higher accuracy.568

This further supports the positive correlation between convergence speed (of correct landscapes) and569

reasoning accuracy, which is revealed in Observation 3.6.570
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Observation 3.7 emerges from contrasting the red and blue landscapes of the same algorithm in Fig. 5.571

Here, failure trajectories (red) often settle into a wrong answer by roughly 20-40% of the reasoning572

process, while success trajectories (blue) only coalesce around the correct answer toward the very573

end—around 80-100% of the states. This indicates that early reasoning states are exploratory and can574

drift toward incorrect conclusions, whereas correct solutions only converge late in the trajectories.575

This convergence-speed disparity between red and blue landscapes also holds across multiple datasets576

in Fig. 4.577

Finally, Fig. 4 shows that each reasoning task leaves a distinct landscape “fingerprint,” supporting578

Observation 3.4. In AQuA, MMLU, and StrategyQA, the landscapes trace wide, structured sweeps of579

reasoning states—clear evidence of step-by-step deduction and exploration of intermediate hypotheses.580

By contrast, CommonSenseQA produces a tightly clustered trajectory from the outset, indicating581

direct retrieval of knowledge rather than an iterative trajectory. This divergence mirrors the tasks582

themselves: AQuA, MMLU, and StrategyQA require exploratory traversal through multiple reasoning583

steps, resulting in diverse yet organized state distributions, whereas CommonSenseQA depends on584

straightforward recall. These task-specific structures demonstrate how our landscape visualizations585

can uncover both shared patterns and fundamental differences across reasoning challenges.586

In addition, each of these qualitative observations is further supported by statistical analyses in587

Appendix E.1, and we provide full visualizations, including annotated state trajectories (Figs. 23 to588

26) and additional model comparisons (Figs. 27 to 28).589

B.5 Potential Extension to Pruning Unpromising Trajectories590

We showcase that our tool can be utilized to identify potentially incorrect reasoning trajectories at591

test time. In Section 3.3, we build up a lightweight verifier, which is based on the thoughts’ feature592

vectors and the consistency metric from the landscape of thoughts. This verifier indeed aims to593

predict the correctness of a reasoning trajectory, in order to boost the reasoning accuracy at test time.594

It is proven to be beneficial to the voting of multiple reasoning trajectories, as shown in Sec. 4.2.595

Further, this verifier (together with the visualization tool) can be adopted to prune unpromising596

reasoning trajectories in tree-based searching. For instance, in methods like tree-of-thoughts and597

MCTS, a model explores multiple reasoning trajectories and usually uses the same model to identify598

the promising paths to search for the ultimate solution. Here, by leveraging features from the landscape599

of thoughts and the consistency metric, our verifier can identify flawed trajectories early during600

reasoning, acting as an efficient pruning mechanism to boost the search efficiency and reasoning601

performance.602

Therefore, our tool can be integrated into the reasoning methods to monitor particular reasoning603

patterns (e.g., the correctness) and help understand as well as boost reasoning. There are multiple604

directions that deserve future exploration, including the one to identify and prune the potentially605

incorrect reasoning trajectories.606

B.6 Potential Extension to Identify Post-hoc Trajectories607

In the following, we discuss the feasibility of detecting post-hoc trajectory using our framework,608

particularly in defining the post-hoc trajectory. A post-hoc trajectory refers to the trajectory that the609

model exhibits high confidence in a single answer in the early states and maintains high consistency610

across states in the trajectory. Specifically,611

• the “early state” correspond to the “very early tokens of the response”;612

• the “high confidence in a single answer” corresponds to the “model has chosen its answer“;613

• the “high consistency across states in the trajectory” corresponds to the “trajectory is produced as a614

consequence of that decision”.615

Namely, the post-hoc trajectory can be potentially identified by inspecting the confidence and616

consistency of particular positions of states in our framework. Then, we elaborate on the more617

detailed definitions for the three components above.618
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• For defining the “early states”, it should have an absolute threshold of states index, e.g., early 10619

states, or a relative threshold, e.g., early 10% of states. This threshold should be chosen deliberately,620

and the states with an index smaller than this threshold are categorized as “early states”.621

• Similarly, a clear threshold is necessary for defining the “high confidence” or “high consistency”,622

e.g., over 80% confidence and 60% consistency. With the metrics defined in Section 2.3, here,623

we should examine (1) the confidence of the early states in the trajectory and (2) the consistency624

across all states of the trajectory. Here, only the trajectory that exceeds the confidence threshold as625

well as the consistency threshold can be classified as a post-hoc trajectory.626

In conclusion, our framework shows promise for identifying post-hoc trajectories. Meanwhile, we627

should note that it still needs (1) to choose particular thresholds for the precise definition of post-hoc628

trajectory and (2) to collect a set of reliable data to verify the effectiveness in identifying post-hoc629

trajectory. These are quite challenging to conduct. Although it goes beyond the scope of work, we630

believe investigating post-hoc trajectory in reasoning is valuable and merits exploration in future631

work.632

B.7 Limitations and Future Directions633

Scope. While the Landscape of Thoughts offers a practical lens on model reasoning, its current in-634

stantiation is limited to multiple-choice settings. Extending LoT to open-ended reasoning—including635

mathematical problem solving, code generation, and planning—requires handling less structured636

and more entangled reasoning paths. Two complementary threads of future work are: (i) improving637

accessibility by producing intuitive visual and textual explanations that help non-experts inspect638

and trust model behavior, and (ii) developing automated, scalable detectors of reasoning failures to639

improve reliability across applications.640

Key challenge: synthesizing options. The central obstacle is the quality of the synthesized answer641

options. Human-authored distractors are carefully calibrated to be plausible, exposing distinctions642

between (1) correct reasoning and (2) reasonable-but-wrong reasoning (e.g., overlooking information643

or making arithmetic slips). In contrast, LLM-generated distractors can be implausible and thus triv-644

ially eliminated when juxtaposed with the correct option, yielding visualizations that over-emphasize645

the correct trace and limit diagnostic value. Moreover, LLMs may reuse similar reasoning patterns,646

producing near-duplicate error modes across incorrect options and reducing the comprehensiveness647

of the analysis.648

Mitigations. To address these issues, we can elicit higher-quality distractors with state-of-the-art649

LLMs (e.g., OpenAI o3, Gemini 2.5 Pro) and tune sampling hyperparameters (temperature, top-p) to650

promote diversity and explore alternative solution trajectories.651

Binary reformulation. A practical alternative is to recast multiple-choice prompts as binary (yes/no)652

queries. For example, the question “What is the capital of France?” can be reformulated as “Is653

Paris the capital of France?” with options Yes or No. Under this framing, both options remain prima654

facie plausible: the incorrect choice admits coherent yet flawed rationales, and the variety of “No”655

trajectories preserves diversity without resorting to obviously implausible distractors.656

Beyond multiple choice. Although open-ended tasks are beyond the present scope, LoT is, in657

principle, extendable. The key requirement is to construct a candidate set of answers by querying the658

model (a non-trivial step that is given for free in multiple-choice tasks). Treat the ground-truth answer659

as one option and generate additional plausible alternatives using LLMs; LoT can then analyze the660

induced reasoning behaviors in these open-ended scenarios.661

Case: code generation. Code generation introduces additional challenges: there is typically no662

single ground-truth program, and evaluation proceeds via test suites. Candidate programs are diverse663

and do not naturally discretize into options. We propose the following procedure: (i) sample multiple664

candidate solutions from the model under evaluation; (ii) score each by the number of tests passed;665

(iii) apply a threshold to separate more-correct from less-correct solutions; (iv) embed and cluster666

solutions within each partition; and (v) use cluster centroids as anchors for “correct” and “incorrect”667

choices. Cluster quality can be assessed with the Silhouette Score and the Davies-Bouldin Index.668

These anchors enable a LoT-style visualization over the solution space and provide insight into669

reasoning behaviors.670
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In summary, our visualization framework is adaptable beyond multiple-choice scenarios. To our671

knowledge, LoT is the first landscape visualization tool aimed at analyzing LLM reasoning; it is672

imperfect and remains open to improvement and extension. We believe it constitutes a small but673

meaningful step toward understanding and improving the reasoning processes of LLMs.674

B.8 A Comparison Between Lightweight Verifier and Reward-guided Algorithms675

It is worth noting that our goal is not to build a sophisticated verifier, but rather to demonstrate how676

the feature vectors from the landscape visualization can be effectively used.677

In general, reward-guided algorithms are more computationally efficient than the path landscape.678

Specifically, for a reasoning path with n thoughts and c answer choices, constructing the landscape679

requires n× c forward passes through the reasoning model. In contrast, a reward-guided approach680

typically makes a single call to a reward model that evaluates the entire reasoning chain at once.681

Meanwhile, it’s important to consider the overhead involved in training the reward models in reward-682

guided algorithms. Notably, for Process-Reward Models (PRMs) [33, 61], collecting high-quality683

training data often requires detailed, fine-grained annotations of reasoning steps, which can be costly684

and time-consuming. Moreover, training a reward model (often itself an LLM) incurs significant685

computational expense. In contrast, our lightweight verifier is much more efficient to train, as it686

requires no human annotations and uses easily obtainable data.687

C Related Work688

Reasoning with large language models. Chain-of-Thought (CoT) prompting [58, 27] has empow-689

ered LLMs to tackle multi-step reasoning problems by generating intermediate steps before producing690

a final answer. Building upon CoT, numerous methods have been proposed to address various chal-691

lenges, including compositional generalization [70, 25], planning [63, 18], and rule learning [71]692

within the CoT reasoning. Beyond solving reasoning tasks, CoT has also emerged as a foundational693

framework for other techniques, such as fine-tuning LLMs [67], enabling LLM-based agents [64],694

and facilitating test-time scaling [44]. Nevertheless, most of these approaches are developed in a695

trial-and-error manner, largely due to the absence of proper tools for analyzing the CoT.696

Understanding chain-of-thought reasoning. There are a few studies that explore what makes697

CoT prompting effective by perturbing its exemplars. To be specific, Madaan and Yazdanbakhsh698

[34] found that the text and patterns of exemplars help CoT generate sentences resembling correct699

answers. Besides, Wang et al. [53] highlighted the importance of maintaining the correct order700

of reasoning steps, while Ye et al. [66] demonstrated that using complementary exemplars can701

enhance reasoning performance. Furthermore, CoT can benefit from longer reasoning chains, even702

without new information to the prompt [23]. Another line of research investigates CoT’s general703

behavior [47, 39, 40, 43]. For example, CoT heavily depends on the semantic structure of the problem704

to perform reasoning [47], struggles with planning and unification in deductive reasoning [39],705

has difficulty generalizing to longer reasoning paths [40], and can be easily misled by irrelevant706

information in the context [43]. However, these observations are derived from specific reasoning707

tasks and prompt settings, limiting their applicability to other scenarios. In contrast, we introduce a708

general-purpose tool that allows users to analyze reasoning in their contexts.709

Tools for analyzing chain-of-thought. To the best of our knowledge, the only existing tool for710

analyzing CoT is gradient-based feature attribution [59], which computes a saliency score for each711

input token based on the model’s output. However, these token-level saliency scores do not directly712

capture the thought-level, multi-step reasoning process of LLMs. Consequently, the main finding713

in [59] is that CoT stabilizes saliency scores on semantically relevant tokens compared to direct714

prompting. Metrics designed to quantify CoT performance [8, 51] can also be used to analyze the715

reasoning behaviors of LLMs. For instance, Ton et al. [51] employs information gain to identify716

failure modes in reasoning paths, aligning with Observation 3.7 in this paper. However, our 2-D717

visualization offers significantly deeper insights than a single information gain metric. Additionally,718

the verifier derived from our tool is conceptually related to outcome-supervised reward models [11].719

Measuring uncertainty and consistency in LLM reasoning. Several works in this research line720

compute metrics (such as confidence and perplexity) by leveraging the features from LLMs to measure721

and detect hallucination in reasoning [29, 9, 62]. Specifically, low confidence and high perplexity722
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often indicate unreliable reasoning, enabling the development of lightweight detectors to guide723

reasoning and mitigate hallucinations. However, these metrics have limitations [60, 69]: they can724

exhibit over-confidence or low perplexity in incorrect responses, their reliability relies heavily on the725

models’ capability, and they cannot provide more comprehensive insights into the multiple reasoning726

trajectories. By contrast, our landscape of thoughts offers a holistic approach, integrating several727

existing metrics. This framework enables global qualitative analysis, including measures of perplexity,728

consistency, and uncertainty. In addition, the landscape of thoughts enables the development of729

advanced tools to enhance reasoning by using the features and metrics, as mentioned in Sec. 3.3.730

D Experiment Settings731

D.1 Setup732

Visualizing the landscape of thoughts fundamentally relies on the decoding probability of LLMs. To733

this end, we adopted four open-source models with varying parameter sizes, namely Llama-3.2-1B,734

Llama-3.2-3B, Llama-3.1-8B, and Llama-3.1-70B. We repeatedly sample 10 times from the735

target LLM using the same reasoning strategy as self-consistency [55].736

For visualization purposes, we randomly sample 50 questions from the testing split of each dataset737

and generate reasoning paths with the setup described above. For simplicity, we compute distances738

only between each state and all candidate answers. To visualize multiple problems in a shared space,739

we always place the distance to the correct answer as the first element of each feature vector. This740

alignment allows joint analysis across problems, as introduced in the paragraph below Equation 4.741

We then aggregate feature vectors from all problems into a feature matrix (Equation 2), which is742

passed to t-SNE to compute the pairwise distance between any two states and then outputs the 2D743

coordinate of each state.744

For training the lightweight verifier, we randomly sample 20 questions from the training split of745

each dataset to obtain the feature matrix S. We extract these features using three model scales:746

Llama-3.2-3B, Llama-3.1-8B, and Llama-3.1-70B. Despite the relatively small training set,747

it proves sufficient for our lightweight verifier, which we subsequently evaluate on the data for748

visualization in Sec. 3.749

D.2 Datasets750

AQuA [31]. This dataset develops to challenge language models’ quantitative reasoning capabilities.751

The AQuA presents complex algebraic word problems in a multiple-choice format, where only one is752

correct. Each problem requires numerical computation, deep linguistic understanding, and logical753

inference. It provides a nuanced assessment of a model’s ability to translate textual information into754

algebraic reasoning.755

MMLU [19]. Spanning 57 distinct academic and professional domains, MMLU provides a rigorous756

test of language models’ capabilities across humanities, social sciences, hard sciences, and technical757

disciplines.758

StrategyQA [16]. This dataset is designed to evaluate implicit reasoning and multi-hop question759

answering. The dataset is characterized by yes/no questions that demand implicit reasoning strategies.760

Unlike straightforward factual queries, these questions require models to construct elaborate reasoning761

paths, showing hidden logical connections.762

CommonsenseQA [46]. This dataset assesses commonsense reasoning through multi-choice ques-763

tions derived from the ConceptNet knowledge graph [45]. The dataset aims to test a model’s764

understanding of commonsense concepts and ability to make logical inferences. However, the ques-765

tions often require the model to incorporate external knowledge to select the correct answer from766

plausible distractors.767

Note that AQuA, MMLU, and StrategyQA all demand exploratory traversal of intermediate reasoning768

states, resulting in diverse but structured landscapes. CommonsenseQA, conversely, represents a769

distinct domain where answers depend on static knowledge rather than emergent reasoning pathways.770
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Table 1: Statistical verification of the observations in Sec. 3.

(a) Verifying Observa-
tion 3.6

Correct Incorrect

CoT 1.026 0.975
L2M 1.026 0.989
ToT 1.004 0.987

MCTS 1.002 0.985

(b) Verifying Observation 3.7
and 3.1

Speed Accuracy

CoT 0.322 84.4%
L2M 0.224 82.2%
ToT 0.205 81.6%

MCTS 0.198 75.8%

(c) Verifying Observation 3.4

AQuA MMLU StrategyQA Common
SenseQA

AQuA 1.0 0.914 0.895 0.859
MMLU 0.914 1.0 0.870 0.843

StrategyQA 0.895 0.870 1.0 0.889
Common
SenseQA 0.859 0.843 0.889 1.0

D.3 Decoding Algorithms771

Chain of Thought (CoT) [58]. CoT elicits the LLM’s reasoning capabilities by incorporating772

few-shot examples that demonstrate explicit reasoning steps. It provides the model with exemplar773

reasoning traces to guide its problem-solving process.774

Zero-shot CoT [27]. The core idea of this prompt strategy lies in adding simple instructions, e.g.,775

"Let’s think step by step." to the prompt, enabling models to generate reasoning traces without776

assigned task-specific examples.777

Least-to-Most (LtM) [70]. LtM is an innovative reasoning approach that systematically breaks down778

complex problems into progressively simpler subproblems. This approach mirrors human cognitive779

problem-solving strategies, where individuals naturally break down complex tasks into smaller, more780

comprehensible parts.781

Tree-of-Thought (ToT) [63]. ToT expanded this concept by creating a more sophisticated, multi-782

branching reasoning framework. While CoT follows a linear path of reasoning, ToT introduces a783

more dynamic exploration, allowing models to generate multiple reasoning paths simultaneously,784

evaluate them, and strategically prune less promising trajectories.785

Monte Carlo tree search (MCTS) [68]. MCTS is a powerful computational algorithm originally786

developed for game-playing strategies, particularly in complex decision-making environments like787

chess and Go. The method uses probabilistic sampling and tree exploration to systematically navigate788

potential solution spaces, balancing exploring new possibilities with exploiting promising paths. We789

adopt the task-agnostic node expansion and evaluation prompt from ReST-MCTS [68] to conduct our790

experiment across different tasks.791

E Supplementary Results and Analysis792

E.1 Statistical Verification of the Observations793

In this part, we conduct extra experiments and statistically verify Observations 3.1, 3.4, 3.6, and 3.7,794

while the other Observations 3.2, 3.5, and 3.8 have been quantitatively verified by the metrics in795

Sec. 2.3.796

To verify Observations 3.6, we calculate the convergence coefficient (eβ) by fitting a log-linear797

regression model to the sequence of distances di between each state and the final answer as log(di) ≈798

α+ βi, where α is the intercept term; β is the slope coefficient that quantifies convergence behavior;799

i represents the position index in the reasoning chain. Lower values of eβ indicate faster convergence.800

For Observations 3.1 and 3.7, we measure the speed of a reasoning path moving from start to end as801

speed = ∥s̄n−s̄0∥∑
j=1n∥s̄j−s̄j−1∥ ∈ [0, 1], where s̄i represents the 2D coordinate of the state i. Whereas802

Observation 3.4, we compute pairwise histogram intersection scores of the density distributions.803

Lower scores indicate greater dissimilarity between landscapes.804

Notably, for Tab. 1(a), we found that correct paths consistently show slight divergence, while805

incorrect paths show more convergence (p-value = 0.008), thus verifying Obs. 3.6. As shown in806

Tab. 1(b), speed and accuracy correlate strongly (p-value = 9.421e-11), thus verifying Observation 3.7.807

This is also applicable for verifying Observation 3.1. Tab. 1(c) shows that lower scores indicate808

greater dissimilarity between landscapes, which verifies Observation 3.4, i.e., AQuA, MMLU, and809

StrategyQA are more similar, while CommonSenseQA exhibits distinct patterns.810
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E.2 Analysis of Reasoning Trajectory Convergence811

We aim to investigate Observation 3.7 quantitatively to show its consistency with the statistical result.812

Specifically, we analyzed all questions from the AQuA dataset using the Llama-3.1-8B-Instruct813

model with the CoT method. Among the 500 reasoning trajectories (50 questions, with 10 trajectories814

per problem), we observed that cases where a reasoning chain initially approached the correct815

answer’s path but later diverged to an incorrect conclusion were quite rare: only 4 questions (8% of816

all questions) exhibited this phenomenon, accounting for just 9 reasoning trajectories (1.8% of all817

trajectories). This indicates that such failure cases are infrequent within the overall set of generated818

reasoning trajectories.819

Thoughts that diverge from the correct answer exhibit remarkable proximity at certain states. We820

quantify the proximity by measuring the distance between states: a smaller distance indicates that the821

state is closer to the correct answer. Notably, in the following example, the chain’s reasoning reached822

a minimum distance of just 0.077 from the correct path before drifting to a final distance of 0.182.823

This reveals that even incorrect answers may closely track the correct reasoning at key moments.824

We provide a concrete example of such a failure in the following reasoning chain for a question below,825

where the correct answer is B) 28%.826

An example of reasoning that is close to the correct answer at intermediate thoughts but
finally converges to the incorrect answer

> Q: The original retail price of an appliance was 60 percent more than its wholesale cost. If
the appliance was actually sold for 20 percent less than the original retail price, then it was
sold for what percent more than its wholesale cost?
> Options: A) 20% B) 28% C) 36% D) 40% E) 42%
The model’s output is:
> 1. "To find the percent more than the wholesale cost for which the appliance was sold, we
need to break down the calculations step by step."
> ...
> 11. "So, (0.28x / x) * 100 = 28%." → The state that is closest to the correct answer, with a
distance of 0.077.
> 12. "Therefore, the appliance was sold for 28% more than its wholesale cost."
> 13. "The answer is C." → Eventually, this state reaches the incorrect answer, with distance
as 0.182

827

E.3 Further Investigation on the Consistency Metric828

In the Tab. 2, we analyze the model responses for drawing Fig. 5 and report (1) the average number of829

thoughts, (2) the average number of tokens in a thought, and (3) the average consistency of different830

thoughts.831

Table 2: The relation of consistency with the number of thoughts and tokens
Model Avg. Thoughts Avg. Tokens Avg. Consistency

Llama-3.2-1B 8.07 346.81 0.51
Llama-3.2-3B 11.73 439.37 0.40
Llama-3.1-8B 21.38 715.56 0.48

Llama-3.1-70B 13.55 442.72 0.51

As can be seen, the 8B/70B models produce more thoughts than the 1B/3B models; meanwhile,832

their intermediate states of correct chains in blue are more consistent than those of the 1B/3B model.833

The Pearson correlation coefficient between CoT length ( thoughts) and consistency is only -0.0185,834

indicating a very weak negative correlation that is not approaching either +1 or -1. Hence, higher835

consistency doesn’t correlate with shorter chains. Fewer CoT steps do not necessarily indicate836

higher consistency.837

As we introduced in Sec. 2.3, the consistency metric is used to understand whether the LLM knows the838

answer before generating all thoughts. Here, the observation “larger models have higher consistency”839
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Table 3: Consistency Metrics Across Random Thoughts

Consistency The number of random thoughts
2 4 8 16 32

Correct Paths 0.77 0.80 0.80 0.75 0.66
Incorrect Paths 0.90 0.92 0.92 0.79 0.79

Table 4: Accuracy and consistency on MMLU and MMLU-Pro across different models.

Model MMLU
Accuracy

MMLU
Consistency

MMLU-Pro
Accuracy

MMLU-Pro
Consistency

Llama-3.2-1B Instruct 0.20 0.40 0.05 0.17
Llama-3.2-3B Instruct 0.46 0.41 0.30 0.26
Llama-3.1-8B Instruct 0.66 0.41 0.30 0.20

Llama-3.1-70B Instruct 0.86 0.55 0.40 0.52

actually indicates that a larger model has a higher probability of knowing its final answer in its middle840

steps of reasoning. We believe that this observation is new and insightful to the community.841

In addition, we investigate whether the consistency is meaningful for the reasoning outcome or if it842

consistently decreases as the thoughts increases. We ask the Llama 3.1 8B Instruct model to generate843

some random thoughts, using a temperature of 0.7 to encourage more varied responses. For each844

of the 10 questions we select from AQuA, we then randomly combine different numbers of these845

thoughts to create 50 chains for each question, with the number of thoughts ranging from 2, 4, 8, 16,846

or 32. After generating these chains, we calculate the distance matrix and report the consistency, as847

shown in Tab. 3. Notably, as the length of the chain of random thoughts increases, the consistency848

consistently decreases, regardless of the correctness, which justifies that consistency will not849

increase as n increases.850

Besides, we conduct extra experiments on a harder task across model scales and show that larger851

models achieve higher consistency than smaller models on both easy and hard tasks. Specifically,852

we apply the MMLU-Pro [57] as a harder benchmark. MMLU-Pro is a more challenging version of853

MMLU (adopted in this work), extending the MMLU dataset by integrating more reasoning-focused854

questions. We sample problems from the MMLU-Pro Math subset and evaluate models of different855

scales, following the consistency calculation described in equation 5. The experiment results are856

shown as follows:857

The above results show that larger models have substantially higher consistency on both the858

easy task (MMLU) and the hard task (MMLU-Pro) than smaller models. Here are some detailed859

observations: (1) Notably, on the hard task, the 70B model still has a higher consistency than the860

1B/3B/8B model on either the hard task or the easy task. (2) Besides, the 70B model achieves a861

similar consistency on easy and hard tasks (0.55 and 0.52, respectively). (3) However, the 8B model862

drops significantly from easy to hard tasks (from 0.41 to 0.20).863

E.4 Further Discussion on the StrategyQA864

The abnormal reasoning behavior, where states cluster on anchors that differ from their final answer865

in Fig. 4c, is not due to our visualization method but to the unstable reasoning process in the Llama-866

3.1-70B using CoT on StrategyQA. This model struggles to reliably represent its self-generated867

intermediate thoughts, presenting consistency between intermediate thoughts and final predictions,868

thus leading to the abnormal patterns observed.869

Specifically, the consistency of incorrect paths declines steadily. This highlights the model’s unstable870

reasoning, as it fails to maintain coherent reasoning even when approaching the final answer. In871

addition, the landscape exhibits the highest perplexity compared to other models, indicating low872

confidence in its generated thoughts, which undermines the reliability of the estimated feature matrix873

used in our visualization.874
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(a) Llama-3.2-1B with CoT on StrategyQA

(b) Llama-3.2-3B with CoT on StrategyQA

(c) Llama-3.1-8B with CoT on StrategyQA

(d) Llama-3.1-70B with CoT on StrategyQA

Figure 10: The landscapes of the model across scales (using CoT on the StrategyQA dataset).

Further, we provide landscape visualizations for the same dataset using other models and methods in875

Fig. 10 to Fig. 12. These landscapes do not exhibit the same abnormal density patterns, reinforcing that876

the issue is specific to Llama-3.1-70B’s reasoning instability rather than a flaw in our visualization.877

E.5 Comparing the Perplexity among Different Models878

We conduct experiments to calculate the average perplexity of models in our visualization. Consistent879

with the prior works, we find that different models present similar perplexity when decoding the880

same set of CoTs. Here, we first generate a set of CoTs from the AQuA dataset using Llama-3.1-70B881

Instruct. Then, we use models from the same family (i.e., Llama-3.2-1B Instruct, Llama-3.2-3B882

Instruct, Llama-3.1-8B Instruct, and Llama-3.1-70B Instruct) to compute the average perplexity on883

decoding the same set of CoTs. This control experiment isolates the effect of a model’s inherent884

perplexity calculation from the variation of its generated thoughts.885

As shown in Tab. 5, while there is a slight variation in perplexity, the values all fall within a comparably886

narrow range (from 1.4 to 2.0). This demonstrates that for decoding the same CoTs, different models887

in the Llama-3 family produce similar and comparable perplexity scores.888
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(a) Llama-3.2-1B with MCTS on StrategyQA

(b) Llama-3.2-3B with MCTS on StrategyQA

(c) Llama-3.1-8B with MCTS on StrategyQA

(d) Llama-3.1-70B with MCTS on StrategyQA

Figure 11: The landscapes of the model across scales (using MCTS on the StrategyQA dataset).

Table 5: Comparison of the perplexity of CoTs of correct and incorrect reasoning.
Model Avg. Perplexity (Correct CoTs) Avg. Perplexity (Wrong CoTs)

Llama-3.2-1B Instruct 1.68 1.96
Llama-3.2-3B Instruct 1.72 1.69
Llama-3.1-8B Instruct 1.61 1.49

Llama-3.1-70B Instruct 1.56 1.42

In addition, in Fig. 2, we measure the perplexity of decoding CoTs generated by the models themselves.889

In this context, perplexity reflects both a model’s reasoning capabilities and the comprehension of890

its generated content. To some extent, the above findings support the validity of the comparison of891

perplexity across models in our study.892
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(a) Llama-3.2-1B with ToT on StrategyQA

(b) Llama-3.2-3B with ToT on StrategyQA

(c) Llama-3.1-8B with ToT on StrategyQA

(d) Llama-3.1-70B with ToT on StrategyQA

Figure 12: The landscapes of the model across scales (using ToT on the StrategyQA dataset).

Table 6: Absolute accuracy with the verifier, compared to performance in Fig. 7 (without the verifier).

(a) Across datasets
AQuA MMLU StrategyQA Common

SenseQA

AQuA 63.0 (+0.7) 62.3 (+0.0) 62.3 (+0.0) 64.0 (+1.7)
MMLU 53.0 (+0.0) 53.0 (+0.0) 53.0 (+0.0) 53.0 (+0.0)

StrategyQA 41.5 (+4.5) 40.5 (+3.5) 43.0 (+6.0) 37.0 (+0.0)
Common
SenseQA 54.0 (+1.0) 53.0 (+0.0) 53.0 (+0.0) 54.0 (+1.0)

(b) Across models
1B 3B 8B 70B

1B 26.0 (+0.5) 27.5 (+2.0) 27.5 (+2.0) 27.5 (+2.0)
3B 45.5 (+0.0) 48.0 (+2.5) 51.0 (+5.5) 51.0 (+5.5)
8B 60.0 (+0.0) 60.0 (+0.0) 60.0 (+0.0) 60.0 (+0.0)

70B 74.0 (+2.0) 73.0 (+1.0) 72.5 (+0.5) 72.5 (+0.5)

E.6 Additional Experiments on the Verifier893

Absolute Performance of the Verifier. In this part, we provide the absolute performance of894

the experiment conducted in Fig. 9. Shown as Tab. 6, the results demonstrate that our approach895

consistently provides improvements across different domains and models.896

Variants of Verifier. In this part, we extend it into a process verifier and validate its effective-897

ness through additional experiments. Our lightweight verifier functions as an outcome reward898
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Table 7: Performance comparison of reasoning methods across model scales on the AQuA dataset,
with and without verifiers.

Model Method Without Verifier With Outcome Verifier With Process Verifier

Llama-3.2-1B
CoT 0.26 0.28 0.26
L2M 0.22 0.24 0.29
ToT 0.35 0.38 0.35
MCTS 0.29 0.32 0.31

Llama-3.2-3B
CoT 0.46 0.51 0.46
L2M 0.29 0.31 0.31
ToT 0.33 0.35 0.33
MCTS 0.35 0.36 0.35

Llama-3.1-8B
CoT 0.60 0.63 0.60
L2M 0.58 0.62 0.58
ToT 0.50 0.53 0.50
MCTS 0.50 0.51 0.50

Llama-3.1-70B
CoT 0.72 0.73 0.73
L2M 0.72 0.72 0.73
ToT 0.74 0.74 0.74
MCTS 0.72 0.73 0.72

model (ORM), assessing the correctness of an entire reasoning path. Specifically, the process ver-899

ifier predicts the accuracy of each reasoning state using features from the current and all previous900

thoughts. State accuracy reflects whether the current state is closer to the correct answer (measured901

by perplexity) than other answers. We then aggregate these predictions across the chain to estimate902

overall accuracy.903

Empirically, we collect the state-wise data by comparing the state features and the correct answers,904

and train the process verifier. Note, we do not need to manually annotate the step-wise rewards905

to train conventional PRMs. Results in Tab. 7 show that this process verifier is comparable to the906

outcome verifier.907

Comparing the lightweight verifier with existing verifiers. In the following, we compare our908

lightweight verifier with the other two types of existing verifiers: the LM-based verifier and the909

model-self verifier.910

The LM-based verifier leverages another powerful LLM (not the model to do reasoning) to seman-911

tically analyze reasoning trajectories, mimicking human expert evaluation to detect errors in the912

trajectories. These verifiers rely on extensive, specially curated datasets (e.g., PRM800k [30]) to train913

a language model for process verification. Here, collecting high-quality training data often requires914

detailed, fine-grained annotations of reasoning steps, which can be costly and time-consuming. More-915

over, training this verifier (often itself a large language model) incurs much additional computational916

expense. In contrast, our lightweight verifier is much more efficient to train, as it requires no human917

annotations and only uses easily obtainable data that is collected from the model to do reasoning.918

As for the model-self verifier [29, 60], it utilizes features derived from the model itself, such as919

uncertainty, perplexity, or entropy, eliminating the need for an external model and enhancing efficiency920

in search-based methods. While these model-self verifiers are training-free and efficient, they lack921

the learnability to be trained and optimized, as the model is not trained on the downstream task, and922

thus it can be suboptimal. In contrast, our verifier is specifically trained with the downstream task’s923

data collected from the model, ensuring greater reliability compared to model-self verifiers.924

Therefore, our landscape-based lightweight verifier offers distinct advantages in terms of efficiency925

and reliability over the other two types of verifiers.926

Ablation study on verifier. We conduct an extra ablation study on training the verifier with either927

consistency or 2D information. We report the accuracy of reasoning under Least-to-Most with928

different model scales, averaged across different datasets.929

As shown in the Tab. 8, the combination of the consistency score and 2D information delivers the930

best overall accuracy. This shows that our verifier could utilize the complementary aspects of both931

kinds of features to access the reasoning chains and thus boost reasoning accuracy.932
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Table 8: Ablation study on data employed for training the verifier.
1B 3B 8B 70B

Consistency only 0.21 0.31 0.59 0.71

2D information only 0.20 0.31 0.61 0.71

Consistency + 2D information 0.24 0.31 0.62 0.72

Table 9: Performance of the verifier given different numbers of sampled paths.
Sampled Paths Consistency 2D Information Consistency + 2D Information

1 0.32 0.32 0.32
10 0.32 0.32 0.34
20 0.32 0.30 0.46
30 0.32 0.36 0.56
40 0.32 0.34 0.68
50 0.32 0.30 0.66

E.7 Further Experiments on the Scaling Effect933

We present experiments and demonstrate that combining both information sources is the best choice,934

with significant gains from more sampled trajectories (i.e., test-time scaling) compared to the verifier935

trained with either feature, as can be seen in Tab. 9. Here, we report the accuracy using the Llama-3.2-936

3B Instruct model on the StrategyQA dataset as follows. As can be seen, the advantages of using both937

information sources increase with more sampled trajectories, especially for more than 20 sampled938

trajectories. In contrast, verifiers trained only on consistency or 2D information peak earlier, showing939

no notable performance gains beyond 10 sampled trajectories.940

E.8 Landscapes with Different Methods of Dimensionality Reduction941

t-SNE is widely adopted in non-linear projection for visualisations, which makes the plots more942

interpretable. Beyond t-SNE [7], several advanced dimensionality reduction techniques have been943

developed to improve visualization quality and efficiency. UMAP [37] outperforms t-SNE by better944

balancing local and global structure preservation while offering greater speed and scalability for large945

datasets. TriMAP [4] prioritizes both local and global preservation but tends to emphasize global946

structure in practice, potentially at the expense of local details. PaCMAP [56] achieves a robust947

balance between local and global structure preservation by incorporating neighbors, mid-near points,948

and further points, resulting in high-quality visualizations across diverse scenarios.949

In addition, our goal is to develop a visualization tool to help users analyze the reasoning behaviors of950

LLMs. If necessary, we can change the adopted t-SNE to more advanced methods of dimensionality951

reduction. Our tool is designed to be compatible with these methods.952

Next, we experiment with different dimensionality reduction methods, including t-SNE, UMAP, and953

PacMAP, to visualize the landscape. Across all three visualization techniques, we consistently954

observe the same overarching dynamics in the reasoning process. In the early stages (0–40% of955

states), the thought states are widely dispersed. As reasoning progresses, states gradually converge956

toward the final answer choices. Importantly, a clear distinction emerges between correct and incorrect957

reasoning paths, regardless of the selection of different dimensionality reduction methods. Incorrect958

paths tend to converge rapidly toward wrong answers early in the process, while correct paths exhibit959

a more gradual and deliberate progression, only clustering tightly around the correct answer in the960

final stages (80–100% of states).961

We provide landscape visualizations in Fig. 13 with different dimensionality reduction methods.962

While the specific geometry and density of clusters may vary between t-SNE, UMAP, and PacMAP,963

the fundamental narrative is unchanged: the landscape of thoughts consistently reveals that incorrect964

reasoning solidifies quickly, whereas correct reasoning is characterized by a slower, more refined965

convergence. This consistency across different dimensionality reduction algorithms demonstrates that966
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(a) tSNE

(b) PaCMAP

(c) UMAP

Figure 13: The landscapes of thought visualization with different dimensionality reduction methods
(Llama-3.1-70B with CoT on AQuA).

Let's break down the problem step by step. 

To begin, it is helpful to draw a diagram of the situation.

Original 
Thoughts

Let's break down the problem step by step. 

To begin, it is helpful to draw a diagram of the situation.

Over-spilt 
Thoughts

Let's break down the problem step by step. 

To begin, it is helpful to draw a diagram of the situation.

Under-split 
Thoughts

(a) Demonstration of Sentence Tokenization (b) Llama-3.1 8B (c) Llama-3.1 70B

Figure 14: Demonstration of sentence tokenization methods for thoughts splitting.

our observations are not artifacts of a particular visualization technique, but rather reflect intrinsic967

properties of the model’s reasoning process.968

E.9 Robustness of Sentence Tokenization969

To evaluate the robustness of the landscape to the split thoughts’ information volume, i.e., the970

granularity of the sentence tokenization, we conduct a controlled experiment by considering two971

imperfect cases in thought split, namely over-split thoughts and under-split thoughts.972

Specifically, shown as Fig. 14 (a), compared to the original thoughts split that transform sentences to973

thoughts based on the period, over-split thoughts jointly consider the comma, resulting in additional974

splits. For the under-split, two adjacent thoughts are merged into one thought. We then visualize the975

imperfect thought splits using CoT on AQuA following the setting in Fig. 5a and Fig. 2c,976

29



Shown in Fig. 14 (b) and (c), the landscapes are robust to the split thoughts’ information volume,977

which are stable and consistent with our observations. Notably, for over-split thoughts, the states978

are more visually diverse but eventually converge to the answers. Whereas under-split thoughts, the979

states show a more compact pattern and exhibit a clear convergence trend toward the answer.980

F Visulizations981

In this part, we provide the full visualization of the verifier performance and landscapes.982

In Fig. 15 to Fig. 18, we visualize the average voting accuracy (%) of different LLMs reasoning983

with and without verification on various datasets and methods. In Fig. 19 to Fig. 22, we display the984

landscape of different models on various datasets using four methods. We also provide case studies985

by visualizing the landscape with corresponding states in Fig 23 to Fig. 26.986

In addition, we provide the landscape of thoughts on the latest reasoning model. Specifically, we987

conduct experiments on the DeepSeek-R1-Distill models [17] (Llama-70 B and Qwen-1.5 B). As988

shown in Fig. 27 and Fig. 28, the landscape of the reasoning model also aligns with the observation989

drawn from the general-purpose model, but exhibits more complex reasoning patterns, such as990

self-evaluation and back-tracking.991
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Figure 15: Average voting accuracy (%) of reasoning with and without verification on AQuA.

Figure 16: Average voting accuracy (%) of reasoning with and without verification on MMLU.

Figure 17: Average voting accuracy (%) of reasoning with and without verification on StrategyQA.

Figure 18: Average voting accuracy (%) of reasoning with and without verification on Common-
SenseQA.

31



(a) Llama-3.2-1B with CoT on AQuA

(b) Llama-3.2-1B with LtM on AQuA

(c) Llama-3.2-1B with ToT on AQuA

(d) Llama-3.2-1B with MCTS on AQuA

Figure 19: The landscapes of various reasoning methods (using Llama-3.2-1B on the AQuA dataset).
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(a) Llama-3.2-3B with CoT on AQuA

(b) Llama-3.2-3B with LtM on AQuA

(c) Llama-3.2-3B with ToT on AQuA

(d) Llama-3.2-3B with MCTS on AQuA

Figure 20: The landscapes of various reasoning methods (using Llama-3.2-3B on the AQuA dataset).
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(a) Llama-3.1-8B with CoT on AQuA

(b) Llama-3.1-8B with LtM on AQuA

(c) Llama-3.1-8B with ToT on AQuA

(d) Llama-3.1-8B with MCTS on AQuA

Figure 21: The landscapes of various reasoning methods (using Llama-3.1-8B on the AQuA dataset).
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(a) Llama-3.1-70B with CoT on AQuA

(b) Llama-3.1-70B with LtM on AQuA

(c) Llama-3.1-70B with ToT on AQuA

(d) Llama-3.1-70B with MCTS on AQuA

Figure 22: The landscapes of various reasoning methods (using Llama-3.1-70B on the AQuA dataset).
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Step 1: Start by adding 
the positive numbers: 
adding 45 to -30 results 
in 15 since 15 > -15

Conclusion: The original 
price of the item was 
approximately $63.32. 
The answer is A.

To solve the problem, let's 
break it down into a series 
of calculations according 
to the given property.

2. The perimeter of the 
other part is 66 cm 
(perimeter of 16x and 
14y).

Hose A fills the pool in 8 
hours, so its rate is 1/8 of 
the pool per hour.

Step 4: Substitute the 
calculated value for 4/5 
of 25 into the expression 
for the difference.

3. The minimum total 
commission needed to 
reach a salary of at least 
$1000 is 1000.

Step 4: Calculate the 
population 2 years after 
the initial population.

5. Now, divide both 
sides by 1.2, in order 
to solve for C. 
Therefore, C = 360 / 
1.2 = 300.

Based on our calculation, 
the grocer likely sold 
approximately 24.4 bags 
of flour. The answer is C.

Figure 23: Case Study: Landscape of thoughts of Llama-3.2-1B on AQuA using CoT.

Step 2: To find the 
time it takes for them 
to produce 10 yo-yos, 
we need to consider 
the least common 
multiple (LCM) 9 of 
6 and 9 minutes.

Step 8: Since Hose B can 
fill 1/8 of the pool per 
hour, it can fill the entire 
pool in 8 hours. Therefore, 
the answer is D.

Let's break down the steps 
to calculate the average 
speed of the plane around 
the square field.

4. Since the profit is 
25% of the selling 
price, we can calculate 
the total selling price 
for all the bags sold.

6. Since we found that A = 
1/8, we can solve for B by 
substituting A into the 
equation: 1/8 + B = 3/4.

However, the number 
of toys cannot be a 
fraction, so we need to 
round to the nearest 
whole number.

To solve this problem, 
let's break down the 
solution process into 
clear, independent steps.

Step 4: Web those 
formula values into 
the conditional 
probability formula. 
P(A/B) = P(A) / P(B) 
= 0.2 / 0.8.

7. Converting 30/70 to a 
percentage, we get 
(30/70) * 100% = 
42.86%.

The answer is C.

Figure 24: Case Study: Landscape of thoughts of Llama-3.2-3B on AQuA using CoT.
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The answer is B.

Conclusion: The original 
price of the item was 
approximately $63.32. The 
answer is A

Let‘s think step by step to 
solve the problem.

3. This leaves 1-1/4 = 3/4 of 
the pool to be filled by both 
hoses working together in 
the following 3 hours.

We can represent the 
commission of 15% on 
the monthly sale as: 0.15 
* total monthly sale.

To find the percentage 
increase, we'll use the 
formula: ((Increase / 
Original) 100).

Let's think step by step 
to solve this problem.

Step 3: The total cost can 
be expressed as the sum of 
costs of brown and white 
sharpeners: b X + (18 - b) 
(X + 1) = 100.

Next, we divide the total 
profit by the profit per 
bag: $3,000 / $25 = 120.

Step 8: Solve for x 
using the equation 
identified in step 7.

Figure 25: Case Study: Landscape of thoughts of Llama-3.1-8B on AQuA using CoT.

Figure 26: Case Study: Landscape of thoughts of Llama-3.1-70B on AQuA using CoT.
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Wait, that 
might be the 
correct way to 
model it. Let 
me denote

Wait, that seems high. Let me check my 
calculations again. Maybe I made a mistake 
somewhere.

Let me check the options. I don't think I made any 
mistakes here because the steps align with the 
definition of independent events in probability.

But wait, the initial 
number of marbles isn't 
given, so the total 
number in the bag must 
be unknown.

Wait, the question 
is asking for the 
greatest possible 
value for the 
probability that 
neither happens.

Wait, but that can't be right because the selling 
price has to cover the costs. Wait, let me check 
my calculations again because I think I might 
have made a mistake somewhere.

Wait, that seems 
a bit messy. 
Maybe there's 
another way.

Wait, but let me 
double-check my 
calculations to make 
sure I didn't make a 
mistake.

Wait, but let 
me double-
check in 
case I made 
a mistake in 
simplifying.

Wait, let me check: 1.2 times what gives 360. 
Maybe I can do this step by step. 1.2 is the same 
as 6/5, so dividing by 1.2 is the same as multiplying 
by 5/6.

Wait, but I should 
double-check that. Yes, 
tan(60°) is V3, so the 
adjacent side (distance 
to the base) is h / V3 
when the angle is 60°.

But let me make sure I 
didn't make a mistake… 
Yes, that seems correct.

Wait, but let me check again because sometimes 
rounding can cause issues. Let me recalculate 
21.90 divided by 0.28 more accurately.

Wait, maybe 
another way: …

But just to be absolutely sure, let me check with 
another option, say option A is $61.

Wait, but let me check if S=230 would be 
sufficient.

But wait, let me double-
check my initial calculation 
because 78.20 is an option, 
but perhaps I made a mistake 
in my first equation setup.

Wait a second, 
but initially, after 
adding the 20 
black marbles, the 
number of black 
marbles is 20.

Wait, let me check because I think I might have 
made a miscalculation. Let me try another way

Wait, perhaps I should 
compute the per unit 
numbers differently. 
Let me recalculate.

But this seems a 
bit confusing. 
Maybe I made a 
mistake in the 
algebra.

But wait, maybe I made 
an error earlier. Let me 
go back and check my 
steps again.

But wait, the options are 
A)21, B)30, C)31, D)32, 
E)None of the above. So, 
D is available. Therefore, 
the average is 32, which 
matches option

But wait, some-
times when I do 
these problems, I 
might have miss-
ed something. Let 
me think again.

But wait, let me check if 234.2857 would satisfy 
the condition. Let's plug it back in.

Wait, no, in the 
initial example, 
it's a different 
problem. So I 
think my logic 
here is correct. 

Wait, but let me double-check 
that. If the sales-person 
makes 40 sales, each at 
$250, their commission would 
be 40 times $25, which is 
$1000 exactly.

Wait, that 
seems 
similar to 
what I had 
before.

Hmm, so the additional time required is 5(√ 3 +1) 
minutes. Let me check the options given.

Wait, is that right? Let me 
double-check. 420 units/ 
month*12 months=5,040 
units. 5,040* $110=554,400. 
Yeah, that seems correct

Figure 27: Landscape of DeepSeek-R1-Distill-Llama-70B using CoT on AQuA.

Wait, no, that might 
not be the right 
way. Let me 
reframe it.

Then, another 20 
marbles are pulled out, 
and 1 was black. Wait, 
let's analyze this 
carefully

Wait, that seems quite high. Maybe I made a 
mistake. Let me check my calculations again.

But wait, the problem just asks to find the multiple 
of X, not provided specifically, that is divisible by 
both 9 and 12. Hmm, that seems a bit generic. 
Maybe I misread. Let me check again.

Wait, the order might 
matter. So it's 5 + 
(19? -17). Let me 
ensure I'm 
calculating correctly.

Wait a minute, that's 
interesting because 
P(A) is already 0.2, 
so in this case, 
P(A|B) = P(A). Does 
that make sense?

Let me check the setup. After the second pull, 
the bag has N + 40 marbles, with 20 black 
marbles. The percentage of black marbles is 
20/(N + 40) = 5% = 0.05.

Perhaps I made 
a mistake in 
setting up the 
equation. Let's 
check.

Wait, but let me 
double-check my 
calculations to make 
sure I didn't make a 
mistake.

Wait, in the first case, 
the elevator covers 20 
steps in 10 minutes, so 
speed = 20 / 10 = 2 
steps per minute.

But wait, the letters in 'PROBLEC' each have 
different frequencies. Let me check that.

Wait, but I should double-
check to make sure I 
didn't make any mistakes 
in my calculations. 
Alternatively, maybe I can 
think about it another way.

So, unless I made a 
mistake in setting up the 
equation, which doesn't 
seem so, the answer 
should be 4,000, which is 
option A.

So, 21.90 / 0.28 = 77.50, but let me check that 
again because my initial division seems not to align 
with this.

But perhaps I 
made a mistake 
in my reasoning. 
Let me double-
check.

Maybe the problem is designed to have one of the 
options, but I must have miscalculated. Let me 
check the math once more.

Wait, perhaps I read the problem wrong. Let me 
check again.

Wait, I think I need to 
reconsider my approach. 
Let me try again.

Wait, so 
walking more 
steps and 
stopping takes 
longer? 

Still not matching the options. The closest option is 
226 and 230. Did I make a mistake in calculation? 
Let me check.

Wait, maybe I'm 
overcomplicating. Let's 
think about it 
differently.

Wait, that's incorrect. 
It should be (5 + 19? 
-15 -7)/13 =6, which 
simplifies to (19? -
17)/13=6

Wait, perhaps using 
the sine of the angles 
would be more 
straightforward.

Wait, probabilities cannot 
be negative. There must 
be an error in this 
approach. Let me 
reconsider.

Wait, let's go 
back. The 
equation after 
removing 0.5P 
was …

Wait, unless the 2% is on the defective Staplers? 
Let me check the problem again

Wait, but the 
problem says that 
they reach in 10 
minutes. So 
perhaps only T1 
plus T2 equals 10.

Wait, that can't be 
right because 
probabilities can't 
exceed 1.

Wait, maybe it's 
better to 
calculate step by 
step.

But none of the answer choices are given in this 
decimal form. Let me check the answer options 
again

Figure 28: Landscape of DeepSeek-R1-Distill-Qwen-1.5B using CoT on AQuA.
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8. Experiments compute resources1031

Question: For each experiment, does the paper provide sufficient information on the computer1032

resources (type of compute workers, memory, time of execution) needed to reproduce the experi-1033

ments?1034

Answer: [Yes]1035

Justification: The computed requirements are introduced in Sec. 3 and Sec. 4.1036

9. Code of ethics1037
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Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS1038

Code of Ethics https://neurips.cc/public/EthicsGuidelines?1039

Answer: [Yes]1040

Justification: We have carefully checked the NeurIPS Code of Ethics and confirmed that our paper1041

obeys it.1042

10. Broader impacts1043

Question: Does the paper discuss both potential positive societal impacts and negative societal1044

impacts of the work performed?1045

Answer: [Yes]1046

Justification: The broader impacts are introduced in Appendix A.1047

11. Safeguards1048

Question: Does the paper describe safeguards that have been put in place for responsible release of1049

data or models that have a high risk for misuse (e.g., pretrained language models, image generators,1050

or scraped datasets)?1051

Answer: [NA]1052

Justification: This work does not release new models.1053

12. Licenses for existing assets1054

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the1055

paper, properly credited and are the license and terms of use explicitly mentioned and properly1056

respected?1057

Answer: [Yes]1058

Justification: In the paper, we have introduced the resources of the models and datasets used.1059

13. New assets1060

Question: Are new assets introduced in the paper well documented and is the documentation1061

provided alongside the assets?1062

Answer: [NA]1063

Justification: This work does not introduce new assets.1064

14. Crowdsourcing and research with human subjects1065

Question: For crowdsourcing experiments and research with human subjects, does the paper1066

include the full text of instructions given to participants and screenshots, if applicable, as well as1067

details about compensation (if any)?1068

Answer: [NA]1069

Justification: The paper is not about crowdsourcing experiments or research with human subjects.1070

15. Institutional review board (IRB) approvals or equivalent for research with human subjects1071

Question: Does the paper describe potential risks incurred by study participants, whether such1072

risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals1073

(or an equivalent approval/review based on the requirements of your country or institution) were1074

obtained?1075

Answer: [NA]1076

Justification: The paper is not about research with human subjects1077

16. Declaration of LLM usage1078

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-1079

standard component of the core methods in this research? Note that if the LLM is used only for1080

writing, editing, or formatting purposes and does not impact the core methodology, scientific1081

rigorousness, or originality of the research, declaration is not required.1082

Answer: [NA]1083

Justification: The core method development in this work does not involve LLMs as any important,1084

original, or non-standard components.1085

40

https://neurips.cc/public/EthicsGuidelines

	Introduction
	Landscape of Thoughts
	Problem Formulation
	Qualitative Visualization with Landscapes
	Quantitative Visualization with Metrics

	Results and Observations
	Comparison across Language Models
	Comparison across Reasoning Tasks
	Comparison across Reasoning Methods

	Adapting Visualization to Predictive Models
	A Lightweight Verifier
	Experimental Results

	Conclusion
	Impact Statement
	Further Discussions
	Challenges in Analyzing LLM's Reasoning Automatically
	A Comparison Between Landscape Visualization and Textual Analysis
	The Intrinsic Relationship Between Visualization and Metrics
	Discussion on Results and Observations
	Potential Extension to Pruning Unpromising Trajectories
	Potential Extension to Identify Post-hoc Trajectories
	Limitations and Future Directions
	A Comparison Between Lightweight Verifier and Reward-guided Algorithms

	Related Work
	Experiment Settings
	Setup
	Datasets
	Decoding Algorithms

	Supplementary Results and Analysis
	Statistical Verification of the Observations
	Analysis of Reasoning Trajectory Convergence
	Further Investigation on the Consistency Metric
	Further Discussion on the StrategyQA
	Comparing the Perplexity among Different Models
	Additional Experiments on the Verifier
	Further Experiments on the Scaling Effect
	Landscapes with Different Methods of Dimensionality Reduction
	Robustness of Sentence Tokenization

	Visulizations
	NeurIPS Paper Checklist

