
Towards Localization via Data Embedding for TabPFN

Mykhailo Koshil1 Thomas Nagler2 Matthias Feurer2 Katharina Eggensperger1

1 University of Tübingen
first.last@uni-tuebingen.de

2 Department of Statistics, LMU Munich
Munich Center for Machine Learning

first.last@stat.uni-muenchen.de

Abstract

In-context learning (ICL) using Prior-data fitted networks (PFNs) like TabPFN
has shown significant promise in supervised tabular learning tasks. However,
scalability is limited by the quadratic complexity of the transformer architecture’s
attention across training points provided as context. A recent theoretical analysis
suggested localization to overcome this issue. In this work, we propose LE-
TabPFN implementing a new localization method that performs nearest neighbor
selection using the model’s learned internal representations. We evaluate LE-
TabPFN across six datasets, demonstrating superior performance over standard
TabPFN when scaling to larger datasets. We also explore design choices and
analyze the bias-variance trade-off, showing that it desirably reduces bias while
maintaining manageable variance. This work opens up a pathway for scaling
TabPFN and ICL methods in general to arbitrarily large tabular datasets.

1 Introduction

Prior-data fitted networks (PFNs; S. Müller et al., 2022) are a class of neural networks that are trained
on synthetic prior data, i.e., tabular classification tasks, and perform in-context learning for new
tasks. TabPFN (Hollmann et al., 2023), a specific implementation of PFNs for tabular data, has
shown impressive performance, often rivaling state-of-the-art models such as random forests and
gradient boosting (McElfresh et al., 2023). However, a fundamental limitation of TabPFN is its use
of a transformer architecture (Vaswani et al., 2017), which scales quadratically with the number of
training points due to the self-attention mechanism. TabPFN was trained on up to 1024 training
data points, yet, in a scaling experiment, the model demonstrated improved performance up to 4096
data points (Hollmann et al., 2023). Nagler (2023) studied the underlying statistical foundations,
conducted a bias-variance analysis of the PFN model, and found that improved performance for
larger datasets is due to a reduction in variance, demonstrating this using a simple toy experiment. In
this work, we extend this preliminary experimental study and propose LE-TabPFN. Concretely, we
contribute a practical and principled method to localize TabPFN, an exploration of its design
decisions, and empirical analysis of its performance on 6 datasets. Our localization method
improves performance over TabPFN for large datasets and, thus, is a promising candidate method for
scaling TabPFN and future in-context learning methods to arbitrarily large datasets.

2 Background

TabPFN (Hollmann et al., 2023) belongs to the broader class of prior-data fitted networks (PFNs,
S. Müller et al., 2022). It is a foundation model that is pre-trained on synthetic supervised learning
tasks to approximate p(y|x∗,D), i.e., (x1, y1), (x2, y2), . . . , (xn, yn) = D and a query point x∗,
for which we want to predict ŷ∗. TabPFN uses in-context learning, which, in contrast to traditional
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machine learning models, does not require training, hyperparameter tuning, or gradient updates.
Instead, a forward pass through the network yields predictions for a new, unseen task.

While TabPFN has demonstrated robust predictive performance, its reliance on a transformer-based
self-attention mechanism leads to quadratic scaling of computation costs wrt context size. To
overcome this, prior works studied dataset distillation and context optimization (Thomas et al., 2024;
Feuer et al., 2024; Ma et al., 2024; Rundel et al., 2024). In contrast, LE-TabPFN is motivated by
the theoretical analysis that, for TabPFN trained on a maximum of 1 024 data points performance
improvement when presented with up to 4 096 data points (Hollmann et al., 2023) can be entirely
attributed to a decrease in variance. Since the TabPFN architecture does not adequately localize the
predictions around the test data point, the bias does not decrease with increasing dataset size (Nagler,
2023). Thus, localization is key to scale TabPFN and Nagler (2023) proposed a simple strategy. For
each point x∗

1. reduce the training set D̃(x∗) to the k nearest neighbors of x∗ from D,
2. apply TabPFN to predict the label corresponding to x∗ using only D̃(x∗) as context.

With that, bias and the overall error decrease when going beyond what TabPFN was trained for, giving
rise to a strategy that allows the exploitation of large datasets. These results provide a theoretical
foundation and motivation for exploring localization.

3 Method

We propose to base the localization on learned embeddings, extracted at intermediate layers of
TabPFN; thus, we dub our approach LE-TabPFN. We assume that the internal latent space provides
more meaningful representations for localization than the raw feature space. In practice, this contains
several design choices: (D1) A layer in TabPFN to read out the transformed representation. (D2) A
separate and fixed context that is used to embed new data points into the intermediate representation
(D3) A distance function between points in the embedded space.

Choice (D1) depends on the TabPFN architecture. The current implementation 1 uses an encoder-only
architecture with 12 layers, followed by a 2-layer fully-connected neural network. The embedding
is the output of the transformer encoder block at the respective layer averaged over the ensemble
dimension. We chose the last encoder block unless specified otherwise. For this initial study, we
chose the most straightforward possibilities for (D2) and (D3): a random context of size 1 024 and the
Euclidean distance. By wrapping this around TabPFN’s scikit-learn interface (Pedregosa et al., 2011),
we localize the context on a per-query basis, scaling the features for each test point independently.

4 Exploratory Experiments

Next, we turn to experiments. We first validate our findings by running the same bias-variance
decomposition from Nagler, 2023 with our method and then study the behavior of LE-TabPFN on 6
datasets wrt performance and impact of design decision.

4.1 Bias-Variance Decomposition

To validate our localization approach, we replicate the bias-variance decomposition experiment from
Nagler (2023) and compute the bias-variance decomposition of the RMSE. For this, we first simulate
1000 datasets Dn from p0(1|X) = 1

2 + sin(1TX)/2 with Y ∈ {0, 1}, X ∼ N (0, I5), and apply
TabPFN and LE-TabPFN. Then, we compute the average squared bias and variance over 1024 samples
Xtest ∼ N (0, I5). In contrast to the original experiment, which only used up to 4000 data points
in a single dataset, we used up to 8192 data points. Also, we extend the experiment and not only
use the raw features for localization, but also the learned embeddings as described in the previous
section. Our results in Figure 1 confirm that the localization method reduces bias compared to the
original TabPFN, while the increase in variance remains small. In addition, we observe that using the
embedding for contextualization leads to lower bias and variance than using the raw features.

1See https://github.com/automl/TabPFN, version 0.1.9
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Figure 1: Bias-variance decomposition of the prediction error of TabPFN and LE-TabPFN with
increasing training data size.

4.2 Empirical Evaluation

Experimental Setup. We use a total of 6 datasets: three datasets previously used to demonstrate
scaling effects in TabPFN (adult-census, electricity and eeg-eye-state, Thomas et al., 2024),2 and
three large datasets that only contain numerical features (Higgs, Covertype, and MiniBooNe) and less
than 100 features to replicate the training setting of the TabPFN. We obtained the datasets provided
by OpenML (Vanschoren et al., 2014) using OpenML-Python (Feurer et al., 2021). We utilize 3 folds
and the entire test set of the respective OpenML tasks.

Does the localization allow scaling to arbitrary dataset sizes? We first investigate whether LE-
TabPFN can leverage additional data to improve performance, as hypothesized. We compare median
AUC over dataset size for LE-TabPFN (blue), TabPFN with up to 8 192 data points (black), TabPFN
with random subsamples (red), and a random forest (purple; Breiman, 2001) in Figure 2. LE-TabPFN
continues to improve with larger training sets, while standard TabPFN with random subsamples
plateaus. LE-TabPFN also improves over TabPFN with up to 4 096 data points, which suggests that
the reduction in bias outweighs the reduction in variance due to the increased number of data points.
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Figure 2: Median AUC over dataset size.

What is the impact of the readout layer? Next, we study whether later layers better capture the
relation between data points, leading to embeddings that produce a better context and performance.

2We note that adult-census and electricity are suboptimal to examine TabPFN as they contain missing values
and categorical features, two dataset characteristics that TabPFN was not trained on. We impute missing values
with the per-feature mean.
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Figure 3: Performance of LE-TabPFN as a function of the readout layer. R is the raw data, E is the
embedding layer of the transformer, and positive numbers are the respective encoder blocks.

Table 1: We report AUC in percentage for Random Forests and different variations ofLE-TabPFN
and TabPFN. Top: Using 8 192 training data points. Middle: Using all training data points. Bottom:
LE-TabPFN using a remote context (see Section 4.2).

#train model context layer CoverType Higgs MiniBooNe adult-census eeg-eye-state electricity

8 192

TabPFNrand 0.8928 0.6519 0.9597 0.8707 0.9307 0.8355
TabPFN 0.9382 0.7395 0.9738 0.8992 0.9611 0.8751
RandomForest 0.9563 0.7709 0.9729 0.9037 0.9743 0.9299

LE-TabPFN
raw feature 0.9539 0.7428 0.9813 0.9012 0.9971 0.9042
0 0.9582 0.7364 0.9814 0.9014 0.9972 0.9083
11 0.9610 0.7442 0.9812 0.9024 0.9970 0.9047

full

TabPFNrand 0.9080 0.6914 0.9651 0.8866 0.9265 0.8515
RandomForest 0.9973 0.8156 0.9804 0.9072 0.9851 0.9718

LE-TabPFN
raw features 0.9981 0.8007 0.9847 0.9069 0.9985 0.9624
0 0.9981 0.8000 0.9848 0.9062 0.9984 0.9645
11 0.9985 0.8058 0.9854 0.9084 0.9989 0.9610

full Remote context TabPFN
raw features 0.4441 0.5542 0.6065 0.7693 0.4559 0.6034
0 0.3337 0.4381 0.1213 0.2963 0.4279 0.2770
11 0.2775 0.3422 0.1686 0.1628 0.0972 0.2503

Figure 3 shows that computing the neighborhood based on internal embeddings improves over using
the raw feature space. However, the absolute difference in AUC is surprisingly small (with the largest
difference for CoverType). This suggests that the original feature space remains highly informative
for these datasets.

To investigate this further, we study whether using a "remote" context – comprising the most distant
data points – rather than a local one results in degraded performance. The last row in Table 1 confirms
that performance declines drastically when using the last layer compared to the first, with AUC
dropping below the chance level of 0.5. This indicates that later layers indeed capture different
information compared to earlier ones. We suspect the raw features are "too informative" for our
datasets, and Euclidean distances in the original space are good enough for localization. To examine
this, we augment the dataset with random features, simulating irrelevant features (as is typical for
real-world tabular data). This reduces the meaningfulness of distances in the raw feature space.
Results in Figure 4 support this hypothesis: when we add random features, the performance improves
as we use embeddings from later layers, outperforming both earlier layers and raw features. This
suggests that learned representations are more informative for building a local context.

How does TabPFN perform compared to LE-TabPFN? Lastly, we draw a quantitative comparison
between TabPFN, using 1 024 randomly subsampled datapoints (TabPFNrand) , a random forest (RF)
trained on all data, and our LE-TabPFN, on subsamples of 8 192 data points, and the full datasets. We
give all results in Table 1 and can observe that LE-TabPFN improves over TabPFNrand on all studied
datasets. Also, while TabPFN is inferior to the RF on all studied datasets, LE-TabPFN is superior to
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Figure 4: Performance (AUC) of LE-TabPFN as a function of the readout layer when adding various
amounts of random features (X ∈ {0.1, 0.2, 0.5, 0.8} stands for X ∗ nfeatures random features that
are added to the original dataset to reduce the meaningfulness of the original representation).

RF on four out of six datasets and almost closes the performance gap on the remaining two datasets
(using all training data). As indicated by the experiment before, we do not find a strong impact of the
readout layers on these datasets. Overall, we can see that localization can scale TabPFN to arbitrary
training sizes.

5 Conclusion and Future Work

We demonstrated that the localization principle is a powerful paradigm for scaling TabPFN to
supervised learning tasks with more than 1 024 training points. In the future, we plan to (1) include
the localization in the pre-training step, as suggested by Nagler (2023), (2) optimize our approach for
inference speed, and (3) study localization for other ICL models, such as TabLLM (Hegselmann et al.,
2023) or MotherNet (A. Müller et al., 2023). Furthermore, we want to (4) extend this proof-of-concept
to a large-scale comparison, including a similar idea motivated by RAG (Thomas et al., 2024), and
other methods aiming to scale TabPFN by learning a single, static context (Feuer et al., 2024; Rundel
et al., 2024; Ma et al., 2024).
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A Datasets used

Table 2: List of datasets used in the experiments

Name OpenML Task ID #Features #Instances #Classes

CoverType 7593 54 581 012 7
Higgs 360114 28 1 000 000 2
MiniBooNe 168335 50 130 064 2
adult-census 3953 15 32 561 2
eeg-eye 14951 14 14 980 2
electricity 219 8 45 312 2
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