
Towards Localization via Data Embedding for TabPFN

Anonymous Author(s)
Affiliation
Address
email

Abstract

Prior-data fitted networks (PFNs), especially TabPFN, have shown significant1

promise in tabular data prediction. However, their scalability is limited by the2

quadratic complexity of the transformer architecture’s attention across training3

points. In this work, we propose a method to localize TabPFN, which embeds data4

points into a learned representation and performs nearest neighbor selection in this5

space. We evaluate it across six datasets, demonstrating its superior performance6

over standard TabPFN when scaling to larger datasets. We also explore its design7

choices and analyze the bias-variance trade-off of this localization method, showing8

that it reduces bias while maintaining manageable variance. This work opens up a9

pathway for scaling TabPFN to arbitrarily large tabular datasets.10

1 Introduction11

Prior-data fitted networks (PFNs; Müller et al., 2022) are a class of neural networks that are trained12

on synthetic prior data and perform in-context learning for new tasks. TabPFN (Hollmann et al.,13

2023), a specific implementation of PFNs for tabular data, has shown impressive performance, often14

rivaling state-of-the-art models such as random forests and gradient boosting (McElfresh et al., 2023).15

However, a key limitation of TabPFN is its use of a transformer architecture (Vaswani et al., 2017),16

which scales quadratically with the number of training points due to the self-attention mechanism.17

TabPFN was trained on up to 1024 training data points, yet, in a scaling experiment, the model18

demonstrated improved performance up to 4096 data points. Nagler (2023) studied the underlying19

statistical foundations and conducted a bias-variance analysis of the PFN model and found that20

improved performance for larger datasets is due to a reduction in variance and demonstrated this21

using a simple toy experiment. In this work, we extend this preliminary experimental study and22

1) propose a method to localize TabPFN that we dub LE-TabPFN, 2) study design decisions of23

LE-TabPFN, and 3) study its performance on 6 datasets. We show that the localization method that24

we dub LE-TabPFN leads to improved performance over TabPFN with dataset subsamples for large25

datasets and is a promising candidate for scaling TabPFN to arbitrary dataset sizes.26

2 Background27

TabPFN (Hollmann et al., 2023) belongs to the broader class of prior-data fitted networks (PFNs,28

Müller et al., 2022). It is a foundation model that is pre-trained on synthetic datasets to approximate29

p(y|x∗,D), i.e. a training dataset D and a query point x∗, for which we want to make a prediction30

y. TabPFN conducts in-context learning, which is in contrast to traditional machine learning, which31

requires training and hyperparameter tuning of a supervised learning algorithm for every new dataset.32

For a new dataset, only a forward pass through the PFN is required.33

While TabPFN has demonstrated robust predictive performance, its reliance on a transformer-based34

self-attention mechanism means that the computational cost scales quadratically with the number35

Submitted to 3rd Table Representation Learning Workshop at NeurIPS (TRL@NeurIPS 2024). Do not distribute.



Figure 1: Bias-variance decomposition of the prediction error of TabPFN. Left: bias, Right: variance.

of data points. Although the model was trained with a maximum of 1024 data points, experiments36

by Hollmann et al. (2023) suggest that its performance continues to improve when presented with37

up to 4096 points. However, this comes at a significant memory and computational cost, making38

it impractical for even larger datasets. Nagler (2023) provided a theoretical explanation for this39

phenomenon through a bias-variance decomposition. In particular, the improved prediction quality40

can be entirely attributed to a decrease in variance. The predictions remain biased, however, because41

the TabPFN arichtecture does not adequately localize the predictions around the feature values. To42

alleviate this, Nagler (2023) proposed a simple localization strategy:43

1. Construct a reduced training set D̃(x) by keeping only the k nearest neighbors of x from D.44

2. Predict the label corresponding to x using only D̃(x) as training data.45

This strategy leads to a decreasing bias when going beyond what TabPFN was trained for, and46

additionally, could be a promising strategy for scaling TabPFN to arbitrary dataset sizes.47

3 Method48

We propose to refine the localization by basing it on a learned representation that we read out at49

intermediate layers of TabPFN. Concretely, this requires several design decisions: 1. A layer in50

TabPFN to read out the transformed representation. 2. A separate and fixed context, that is used to51

embed new data points into the intermediate representation 3. A distance function between two points52

in the embedded space.53

The choices of the readout layer depend on the TabPFN architecture. The current implementation54

available uses an encoder-only architecture with 12 layers, followed by a 3-layer fully-connected55

neural network. For this initial study we chose the simplest possibilities for 2 and 3: a random context56

of size 1024, and the Euclidean distance. For the readout layer we chose the last encoder block,57

unless specified otherwise. By wrapping this method around the scikit-learn interface (Pedregosa58

et al., 2011), we localize the context on a per-query basis, scaling the features for each test point59

independently. Because our method localizes the context using embeddings, we dub it LE-TabPFN.60

4 Bias-Variance Decomposition of the Localized Embedded TabPFN61

To validate our localization approach, we replicate the bias-variance decomposition experiment from62

Nagler (2023) and compute the bias-variance decomposition of the RMSE. For this, we first simulate63

100 datasets Dn from p0(1|X) = 1
2 + sin(1TX)/2 with Y ∈ {0, 1}, X ∼ N (0, I5), and apply64

TabPFN and LE-TabPFN. Then, we compute the average squared bias and variance over 500 samples65

Xtest ∼ N (0, I5). In contrast to the original experiment, that only used up to 4000 data points in a66

single dataset, we use up to 8096 data points. Our results in Figure 1 confirm that the localization67

method reduces bias compared to the original TabPFN, while the increase in variance remains small.68

5 Exploratory Experiments69

5.1 Experimental Setup70

Because of the exploratory nature of our paper, we restrict ourselves to a small number of datasets.71

Concretely, we use three datasets that were previously used to demonstrate scaling effects in72

TabPFN (adult-census, electricity and eeg-eye-state, Thomas et al., 2024). We note that adult-census73

and electricity are suboptimal to examine TabPFN as they contain missing values and categorical74

2



adult-census electricity eeg-eye-state

102 103 104

dataset size

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

AU
C

256512
1024

102 103 104

dataset size

0.750

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

AU
C

256
5121024

102 103 104

dataset size

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

AU
C

256

512
1024

HIGGS Covertype MiniBOONE

102 103 104

dataset size

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

0.925

AU
C 256

512
1024

103 104

dataset size

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

AU
C

256512

1024

102 103 104

dataset size

0.93

0.94

0.95

0.96

0.97

0.98

0.99

AU
C

256
512
1024

Figure 2: Median AUC over dataset size.

Figure 3: Performance of LE-TabPFN as a function of the readout layer. -1 is the raw data, 0 is the
embedding layer of the transformer, and positive numbers are the respective encoder blocks.

features, two dataset characteristics that TabPFN was not trained on, and which are currently handled75

by preprocessors that wrap the actual model. In addition we use three large datasets that only contain76

numerical features (Higgs, Covertype and MiniBooNe) and less than 100 features to replicate the77

training setting of the TabPFN. We obtained the datasets from OpenML (Vanschoren et al., 2014)78

using OpenML-Python (Feurer et al., 2021). Furthermore, we restricted ourselves to only the 1st fold79

and only 2000 test data points of the respective OpenML tasks to keep the computational cost low.80

We impute missing values with the per-feature mean and conduct three repetitions per dataset.81

5.2 Does the Localization allow Scaling to Arbitrary Dataset sizes82

Next, we investigate whether LE-TabPFN can leverage additional data to improve performance, as83

hypothesized. We compare learning curves for LE-TabPFN, TabPFN with 4096 data points, TabPFN84

with random subsamples, and a random forest (Breiman, 2001). As shown in Figure 2, LE-TabPFN85

continues to improve with larger training sets, while standard TabPFN with random subsamples86

plateaus. LE-TabPFN also improves over TabPFN with up to 4096 data points, which suggests that87

the reduction in bias outweighs the reduction in variance due to the increased number of data points.88

5.3 Understanding the impact of the readout layer on predictive quality89

We hypothesize that later layers better capture the relation between data points, and thereby, lead to90

embeddings that produce a better context, giving rise to improved performance. However, as seen in91

Figure 3, the impact of the readout layer is surprisingly small, with only minor improvements for92

later layers on a subsample of the CoverType dataset. This suggests that the original feature space93

remains highly informative for the datasets in question.94

Surprised by the small impact of the readout layer, we now try to find possible causes for this95

unexpected outcome. First, we check if using a "remote" context – comprising the most distant96

data points – rather than a local one, results in degraded performance. As shown in the bottom of97

3



Table 1: Quantitative comparison of LE-TabPFN with TabPFN on all dataset. Top: results using 8000
training data points. Middle: results using all training data points. Bottom: ablation using a remote
context, where the performance drops when using the last layer for the embedding (Section 5.3).

train_size model_name context_layer CoverType Higgs MiniBooNe adult-census eeg-eye-state electricity

8000.0
TabPFN on random subsamples 90.99 69.87 96.81 88.30 94.75 85.59
TabPFN 93.40 73.25 97.46 89.73 97.75 87.82
RandomForest 95.01 77.02 97.26 89.56 97.38 93.21

LE-TabPFN
raw features 94.68 73.97 98.12 89.65 99.73 90.72
0 95.35 73.45 98.11 89.66 99.72 90.86
11 95.81 73.48 98.14 89.89 99.61 90.82

full
TabPFN on random subsamples 91.97 67.63 97.51 87.82 94.53 85.34
RandomForest 99.79 81.55 98.54 89.80 98.38 97.13

LE-TabPFN
raw features 99.71 80.87 98.60 90.19 99.82 96.07
0 99.74 80.85 98.61 90.02 99.80 96.30
11 99.87 80.83 98.66 90.34 99.81 95.82

full Remote context TabPFN
raw features 46.54 56.00 53.42 77.69 44.82 62.68
0 35.49 44.21 10.67 29.20 45.32 30.22
11 27.85 34.21 20.24 16.40 9.63 25.64

Figure 4: Performance of LE-TabPFN as a function of the readout layer when adding various amounts
of random features (X ∈ {0.1, 0.2, 0.5, 0.8} stands for X ∗nfeatures random features that are added
to the original dataset to reduce the meaningfullness of the original representation).

Table 1, the results confirm our hypothesis: performance declines significantly when embeddings98

from deeper layers are used, with AUC dropping below chance level. This indicates that later layers99

capture different information compared to earlier ones. We suspect that the raw feature space is "too100

informative" for our task, meaning that Euclidean distances in the original space are already highly101

meaningful. To analyze this, we augment the dataset with random features, reducing the relevance of102

the original features and expecting better performance from embeddings derived from deeper layers.103

The results in Figure 4 support this hypothesis: when we add random features, the performance104

improves as we use embeddings from later layers, outperforming both earlier layers and raw features.105

5.4 Main Results: TabPFN vs Localized Embedded TabPFN106

Lastly, we draw a quantitative comparison between TabPFN on 8000 data points, the random107

subsample TabPFN (subsampled to 1024 data points), a random forest trained on all data, and the LE-108

TabPFN, on subsamples of 8000 data points as well on the full datasets. We give all results in Table 1,109

and can observe that LE-TabPFN improves over TabPFN using a random subsample on all studied110

datasets. Also, while TabPFN is inferior to the RandomForest on all studied datasets, LE-TabPFN111

is superior to RandomForest on four out of six datasets, and almost closes the performance gap on112

the remaining two datasets. We do not find a strong impact of the readout layers on these datasets.113

Overall, we can see that localization can scale TabPFN to arbitrary training sizes.114

6 Conclusion and Future Work115

We demonstrated that the localization principle is a powerful paradigm to scale PFNs to large datasets.116

The localization principle is especially helpful for the TabPFNs model, which can now be applied117

to machine learning datasets with more than 1024 data points. In the future, we plan to include118

the localization in the pre-training step, as suggested by Nagler (2023). In addition, we want to119

compare against a similar idea motivated by RAG (Thomas et al., 2024). Since our work is mostly a120

proof-of-concept, we have not yet optimized it for inference speed. Finally, we also plan to extend121

the empirical study, and to compare against methods to learn a single, static context (Feuer et al.,122

2024; Rundel et al., 2024; Ma et al., 2024), and other standard models (boosting, neural networks) in123

large-scale settings, such as TabZilla (McElfresh et al., 2023).124

4



References125

Müller, S., N. Hollmann, S. Arango, J. Grabocka, and F. Hutter (2022). “Transformers Can Do126

Bayesian Inference”. In: Proceedings of the International Conference on Learning Representations127

(ICLR’22). Published online: iclr.cc.128

Hollmann, N., S. Müller, K. Eggensperger, and F. Hutter (2023). “TabPFN: A Transformer That129

Solves Small Tabular Classification Problems in a Second”. In: International Conference on130

Learning Representations (ICLR’23). Published online: iclr.cc.131

McElfresh, D., S. Khandagale, J. Valverde, V. Prasad C, G. Ramakrishnan, M. Goldblum, and C. White132

(2023). “When Do Neural Nets Outperform Boosted Trees on Tabular Data?” In: Proceedings133

of the 37th International Conference on Advances in Neural Information Processing Systems134

(NeurIPS’23). Curran Associates, pp. 76336–76369.135

Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, L. Kaiser, and I. Polosukhin136

(2017). “Attention is All you Need”. In: Proceedings of the 31st International Conference on137

Advances in Neural Information Processing Systems (NeurIPS’17). Ed. by I. Guyon, U. von138

Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett. Curran Associates,139

Inc.140

Nagler, T. (2023). “Statistical Foundations of Prior-Data Fitted Networks”. In: Proceedings of the141

40th International Conference on Machine Learning (ICML’23). Ed. by A. Krause, E. Brunskill,142

K. Cho, B. Engelhardt, S. Sabato, and J. Scarlett. Vol. 202. Proceedings of Machine Learning143

Research. PMLR, pp. 25660–25676.144

Pedregosa, F. et al. (2011). “Scikit-learn: Machine Learning in Python”. In: Journal of Machine145

Learning Research 12, pp. 2825–2830.146

Thomas, V., J. Ma, R. Hosseinzadeh, K. Golestan, G. Yu, M. Volkovs, and A. Caterini (2024).147

“Retrieval & Fine-Tuning for In-Context Tabular Models”. In: 1st ICML Workshop on In-Context148

Learning.149

Vanschoren, J., J. van Rijn, B. Bischl, and L. Torgo (2014). “OpenML: Networked Science in Machine150

Learning”. In: SIGKDD Explorations 15.2, pp. 49–60.151

Feurer, M., J. van Rijn, A. Kadra, P. Gijsbers, N. Mallik, S. Ravi, A. Müller, J. Vanschoren, and F.152

Hutter (2021). “OpenML-Python: an extensible Python API for OpenML”. In: Journal of Machine153

Learning Research 22.100. Ed. by B. Kegl, pp. 1–5.154

Breiman, L. (2001). “Random Forests”. In: Machine Learning Journal 45, pp. 5–32.155

Feuer, B., R. Schirrmeister, V. Cherepanova, C. Hegde, F. Hutter, M. Goldblum, N. Cohen, and156

C. White (2024). “TuneTables: Context Optimization for Scalable Prior-Data Fitted Networks”. In:157

arXiv:2402.11137 [cs.LG].158

Rundel, D., J. Kobialka, C. von Crailsheim, M. Feurer, T. Nagler, and D. Rügamer (2024). “Inter-159

pretable Machine Learning for TabPFN”. In: Explainable Artificial Intelligence. Ed. by L. Longo,160

S. Lapuschkin, and C. Seifert. Vol. 2154, pp. 465–476.161

Ma, J., V. Thomas, G. Yu, and A. Caterini (2024). “In-Context Data Distillation with TabPFN”. In:162

arXiv:2402.06971 [cs.LG].163

5

iclr.cc
iclr.cc

	Introduction
	Background
	Method
	Bias-Variance Decomposition of the Localized Embedded TabPFN
	Exploratory Experiments
	Experimental Setup
	Does the Localization allow Scaling to Arbitrary Dataset sizes
	Understanding the impact of the readout layer on predictive quality
	Main Results: TabPFN vs Localized Embedded TabPFN

	Conclusion and Future Work

