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ABSTRACT
Depression treatment studies often focus exclusively on changes
in depressive symptoms, such as low mood, anhedonia, or sleep
disruption. However, incorporating other outcomes important to
those experiencing depression, such as the quality of interpersonal
relationships or quality of life, could improve understanding of
the impacts of depression and effectiveness of treatment. After
analyzing in-depth interviews with adolescents, parents, and ther-
apists, clinicians produced a novel coding framework that covers
additional domains of interest that matter to adolescents, such as
relationships, functioning, and well-being. In this paper, we ex-
amine whether large language model embeddings can be used to
classify the outcomes of this framework from annotated interviews.
We compare the suitability of four language models across three
different segmentations of interview transcripts, such as conversa-
tion turns or non-interviewer utterances. The level of performance
achieved by our models makes them useful for a variety of applica-
tions, ranging from aiding human annotation of text transcripts to
quantifying the presence of outcomes for downstream uses, such
as estimating treatment effects or building prognostic models.

CCS CONCEPTS
• Applied computing → Health informatics; • Computing
methodologies→ Information extraction.
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1 INTRODUCTION
Globally, in adolescents aged 10-19 years, the prevalence of major
depressive disorder and dysthymia is estimated at 8% and 4%, re-
spectively [1]. Advancing understanding of treatment outcomes is
critical in addressing this public health problem. In clinical trials
and routine specialist care, around 40% of youth leave treatment
without showingmeaningful improvement in depressive symptoms,
which include low mood, anhedonia, sleep disruption, suicidality,
or irritability, defined by the DSM and ICD-11. Less is known about
the impact of treatment on other outcomes, such as relationships
or quality of life. Between 2007 and 2017, a systematic review of
clinical studies of depression found that 94% of studies measured
depressive symptoms, 52% measured general functioning, and less
than 10% measured any other outcome [2].

Previously, clinical researchers performed a post-hoc analysis of
interview transcript data from the qualitative study IMPACT-My
Experience (IMPACT-ME [3]), a substudy nested within the Improv-
ing Mood with Psychoanalytic and Cognitive Therapies (IMPACT)
study of the psychological treatment of adolescent depression [4, 5].
Using qualitative content analysis, they produced a systematic and
comprehensive framework of adolescent depression treatment out-
comes, identifying seven broad outcome domains, and twenty-nine
specific outcomes of interest [6]. Analysis of these outcomes in
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qualitative data could complement traditional quantitative mea-
surement of symptom change, providing a more holistic impression
of how treatment affects depression.

However, manual qualitative analyses of large volumes of quali-
tative data is time-intensive and may not always be feasible. Recent
developments in natural language processing (NLP), particularly
improvements in large language models (LLMs), can help address
this challenge by automating the analysis of large volumes of data.
A recent survey demonstrated that NLP enables automated screen-
ing for symptoms of several mental disorders from text data [7],
though most of these studies only address a single binary clas-
sification (e.g., depressed and non-depressed) or regression (e.g.,
severity). Additional limitations are the use of social media data,
which complicates clinical integration, and lack of work focused
on adolescents.

We aim to train models capable of reliably detecting mentions
of fine-grained depression outcomes in the IMPACT-ME study data.
We compared several LLMs to investigate whether the use of dif-
ferent embeddings improved detection performance. We use open-
source LLMs deployable within our own servers, which reduces
concerns with protected health information or personally identifi-
able information. In this paper, we demonstrate the feasibility of
using LLM embeddings as part of models for detecting outcomes
across a range of high-level domains. We compare the performance
of embeddings from various LLMs, including the recently released
Llama 3. Overall, we find that LLM embeddings allow for effective
classification of these outcomes, and could be useful for future
work on understanding the holistic experience of depression and
its treatment.

2 RELATEDWORK
Various natural language processing techniques can detect men-
tal health disorders and symptoms by automating the analysis of
large volumes of data, as described in a recent survey of nearly 400
articles [7]. Social media posts are the predominant data source
(81%) [8], followed by interviews (7%), EHRs (6%), screening sur-
veys (4%), and narrative writing (2%) [7]. NLP transforms text into
numerical representations, which may include specific linguistic
features, language representation features, and others. NLP uses
both traditional machine learning (ML) and deep learning-based
methods for tasks related to depression, such as risk assessment,
symptom detection, and more.

Traditional ML methods usually extract handcrafted features
in model training for classification or prediction tasks. Features
include linguistic, statistical, and domain-specific features. For ex-
ample, linguistic features identified by the Linguistic Inquiry and
Word Count (LIWC) [9, 10] tool have proven effective in detecting
depressive moods and other mental health indicators from language
[11–15]. Part-of-speech (POS) tagging [16–18] or extraction of sen-
timents, emotions, topics, word usage, grammar, and readability
have also been used [14, 19–21]. Statistical features also include bag-
of-words (BoW) [16, 22], n-grams [23–25], term frequency-inverse
document frequency (TF-IDF) [26], and sentence or passage length
[27, 28]. Domain-specific features might involve ontologies and
dictionaries, such as UMLS [29] or other specialized vocabularies

[16, 30, 31]. Many traditional ML algorithms, such as support vec-
tor machines (SVMs) [12, 13, 32, 33], decision trees [34], random
forests [34], adaptive boosting [35], k-nearest neighbors (KNN)
[36, 37], and logistic regression [13, 38–40], have been applied for
depression-related tasks.

Deep learning-based methods garner significant attention due
to their superior performance compared to traditional ML meth-
ods [7, 41]. In particular, LLMs have become foundational tools
for transforming text inputs into quantitative vector representa-
tions, or embeddings. In contrast to traditional ML, embeddings
are learned from data using various algorithms, such as neural net-
works, rather than being defined by human experts. These embed-
dings can then be used as inputs for classification models to predict
annotations, such as the presence of specific depression markers.
Various embedding techniques, including GloVe [42], word2vec
[43], and transformer-based models like BERT [44] and RoBERTa
[45], effectively identify depression markers in text [25, 46]. Deep
learning methods are generally categorized into convolutional neu-
ral network (CNN)-based, recurrent neural network (RNN)-based,
and transformer-based approaches [7, 47]. CNN architectures incor-
porate convolutional, pooling, and fully connected layers [48, 49].
RNN architectures, such as long short-term memory (LSTM) and
gated recurrent unit (GRU), often incorporate attention mecha-
nisms and hierarchical attention networks for multi-level semantic
information extraction, making them well-suited for sequential
data like text[13, 50–53]. Transformer-based methods, including
BERT, RoBERTa, Llama [54–56], Mistral [57], and the GPT* series
[58], incorporate an attention mechanism that manages long-range
dependencies, which are crucial in NLP applications. Transformers
can be finetuned for various prediction and classification tasks, and
large-scale pre-training improves performance, as demonstrated in
specialized domains such as depression detection [59–64].

Most previous studies tackle broad binary classification problems
(i.e., depression and control group). Additionally, the lack of inter-
pretability in many models prevents clinicians from relying on the
outcomes of automated screening techniques. Therefore, the scien-
tific community has initiated several efforts to improve the clinical
applicability of machine learning studies, including the Early Risk
Prediction on the Internet (eRisk) workshop, which has been part
of the Conference Labs of the Evaluation Forum (CLEF) since 2017.
eRisk provides a collaborative environment for developing methods
and practical approaches for early detection of health risks on the
Internet, including depression. In 2023, eRisk featured a depression-
related task (Task 1) [65] that involved ranking sentences based on
their relevance to each of the 21 symptoms of depression derived
from the Beck Depression Inventory–II (BDI-II) [66]. Symptoms in-
cluded pessimism, thoughts about suicide, or sleep problems, rated
on a severity scale from 0 to 3. Outside of eRisk, other studies ag-
gregate symptoms from different questionnaires, such as the BDI-II
[67, 68] and PHQ-9 [69], and transformer-based models, such as
BERT, can screen for depression in patients [70].

However, these initiatives mainly rely on social media data,
which limits clinical integration due to issues with standardization
and reliability. Additionally, limited research focuses on adoles-
cent participants, highlighting the need for studies that address the
unique factors affecting depression detection in this age group. Our
work differs in that it focuses only on the detection of symptoms
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particularly relevant to adolescents and uses a psychiatric clinical
dataset rather than social media. In addition, given the sensitiv-
ity of the dataset, our approach was developed using the latest
open-source large language models, such as Llama, rather than
commercial ones such as GPT or Claude.

3 MATERIALS AND METHODS
3.1 Data
3.1.1 IMPACT-ME interviews. Interviewswere taken from IMPACT-
My Experience (IMPACT-ME) [6], a qualitative study within the
Improving Mood with Psychoanalytic and Cognitive Therapies (IM-
PACT) trial [4]. IMPACT examined the efficacy of Brief Psychoso-
cial Intervention (BPI), Cognitive Behavioral Therapy (CBT), and
Short-Term Psychoanalytic Psychotherapy (STPP) for adolescents
aged 11-17 diagnosed with unipolar Major Depressive Disorder.
In IMPACT-ME, interviews were conducted with adolescent pa-
tients, parents, and therapists at treatment start, end, and one-year
follow-up, exploring therapy experiences and observed changes
[6].

3.1.2 Qualitative analysis and annotation. Krause et al. conducted
a secondary qualitative analysis on these interviews to explore the
range of treatment outcomes relevant to patients. Interviews from
the end of treatment were transcribed verbatim and included pauses,
filler words, interruptions, and typos. Participants were excluded if
any of the three interviews were missing, if treatment ended within
the first three sessions, or if they were referred to inpatient care.
Of the remaining 34 cases (9 BPI, 9 CBT, and 16 STPP participants;
102 interviews), the average age was 16.2 years (𝑠 = 1.5, range =
12-19), and 21 (61%) were female. To categorize outcomes, Krause
et al. first designed an a priori coding framework based on existing
taxonomies of treatment outcomes. During annotation, outcome-
relevant passages were extracted, and the coding framework was
further modified to incorporate new themes. The final framework
contained 29 specific outcome categories within seven high-level
domains [6], listed in Table 1 and described further in Table 4 in
Appendix A. All annotations were performed by one researcher.

3.1.3 Dataset splitting. We split the dataset of 34 subject cases into
a training set of 26 subjects and a test (holdout) set of 8 subjects.
Transcripts were grouped by subject (i.e., by triplets of interviews
relating to an adolescent participant) to prevent training and teset-
ing models on data from the same person. Test cases were deter-
mined by manually balancing positive and negative examples for
all specific outcomes. The test set was not used in this paper and is
reserved for future evaluation.

3.2 Preprocessing
3.2.1 Conversion to labeled text blocks. Empty lines and header
information, such as subject ID and interviewer ID, were removed
from transcription files before analysis. Transcripts were split into
speaker blocks, which were marked by the start of a new paragraph
in the transcript. The original IMPACT-ME annotations created
by Krause et al. were produced by highlighting excerpts of the
transcript relevant to a specific outcome. These excerpts could start
or end at any position in a speaker block, and a block could contain
multiple annotations. For our models, an entire text block was

Table 1: Names of the high-level domains and the specific
outcomes found during qualitative analysis [6].

Domain Specific outcomes
(A) Symptom change (1) Mood and affect, (2) anger and aggression, (3)

appetite, (4) sleeping and energy, (5) self-harm, (6)
suicidality, (7) anxiety, (8) other comorbidities

(B) Coping and self-
management

(1) Behavioral activation, (2) coping and resilience,
(3) cognition and behavior

(C) Functioning (1) Global functioning, (2) executive functioning,
(3) academic and vocational functioning, (4) social
functioning

(D) Personal growth (1) Assertiveness, (2) autonomy and responsibility,
(3) identity, (4) processing past and present, (5) con-
fidence and self-esteem, (6) feeling seen and seeing
differently

(E) Relationships (1) Ability to talk, (2) family functioning and rela-
tionships, (3) friendships, (4) peer relationships, (5)
romantic relationships

(F) Wellbeing (1) Peace of mind, (2) optimism, (3) future orienta-
tion

(G) Parental sup-
port and wellbeing

(1) Parental support, (2) parental wellbeing

labeled as positive if any proportion of it contained text flagged as
positive for an outcome. Blocks were labeled for the presence of
31 specific outcomes, 7 domains (each containing a disjoint subset
of the outcomes), and presence of any positive label, totaling 39
binary label indicators for every text block (details in Appendix
A Table 4). The number of positive samples for each label can be
found in in Appendix A Table 5.

3.2.2 Transcript segmentations. The Original segmentation of text
generated from annotations, containing 32,520 blocks, included
various uninformative text segments. Outcome-relevant dialogue
would often be interspersed with interjections, acknowledgments,
or requests for elaboration, e.g., an interviewer saying “okay” or
“yes” to encourage a patient would be included within the excerpt
and labeled as positive in our dataset. To address these uninforma-
tive text blocks, we created two additional segmentations of the
transcript, Monologue and Turns, described below. An example
contrasting these segmentations with the Original segmentation
can be found in Appendix A Table 3.

Monologue: We discarded all interviewer speech and blocks with
twelve or fewer characters. We manually determined the cutoff by
examination of the labeled text in the training set. By only retaining
non-trivial interviewee text, we aimed to produce "monologues"
about the study experience, although some interviews, such as
those conducted jointly with both parents of a patient, retained
multiple interviewees interacting in dialogue. Of the original 32,520
blocks, 12,941 were retained in this filtration.

Turns: We partitioned blocks at each interview utterance, group-
ing together sequential pairs of utterances by interviewer and inter-
viewee into “turns” of the conversation. By concatenating blocks,
the Turns segmentation kept informative interviewer questions
together with short interviewee responses that were otherwise
uninformative (e.g., “I: How has your mood been?” “P: Fine...”). For
interviews with multiple interviewees, all utterances between in-
terviewer utterances were concatenated into the same turn. This
process produced 16,139 blocks of text.
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Table 2: Maximum sequence length (max. seq.), hidden di-
mension size (hidden dim.) and millions of parameters
(params) for the LLMs used to generate embeddings.

Model Max. seq. Hidden dim. Params (106)

BERT 512 768 110
MentalBERT 512 768 110

MentalLongformer 4096 768 102
Llama 2-7B 4096 4096 7,000
Llama 3-8B 8192 4096 8,000

The training set contained 25,852 blocks in the Original, 10,008
blocks in Monologue, and 12,814 blocks in Turns. Full counts of
the number of positive examples for each label in the complete and
training set can be found in Appendix A Table 5.

3.3 Methods
3.3.1 Large language model embeddings. Embeddings were pro-
duced with various transformer-based LLMs. As a baseline, we used
the base variant of BERT [71], a common choice for various NLP
tasks, such as sentiment analysis or summary generation. Addi-
tionally, we included MentalBERT, a BERT model pretrained on
additional data collected from various Reddit communities related
to mental health discussion [72]. Because of the long passages
present in all segmentations, we also included MentalLongformer,
a derivation of Longformer [73] pretrained on the same mental
health data as MentalBERT [74]. Furthermore, we included Llama
2-7B, and Llama 3-8B, state-of-the-art open source models [54, 56].

LLMs produced embeddings of size 𝑏 × 𝑙 ×𝑑 , where 𝑏 is the batch
size, 𝑙 is the sequence length, and 𝑑 is the hidden dimension of the
model. For eachmodel, we used𝑏 = 1, i,.e., passing individual blocks
to the LLM. Sequence length (number of tokens), varied based
on a passage’s length and the model-specific tokenizer. Passages
exceededing a model’s maximum sequence length were truncated
before embedding. Embeddings were averaged across all tokens in
the sequence to produce a 𝑑-dimensional vector of predictors for
each text block. An overview of model details can be found in Table
2.

3.3.2 Training classification models. To classify labels, we trained
L2-penalized logistic regression models on the 𝑑-dimensional aver-
aged embedding vector for each passage. Models were trained and
evaluated with a 4-fold cross-validation (CV) loop. For each of the
4 test folds, the 𝐶 hyperparameter of logistic regression was tuned
with inner 3-fold CV, using the same fold partitions as the outer
4-fold CV. Data were grouped by subject ID and stratified by label.
Models for labels A8, E4, and E5 could not be trained because fewer
than four subjects were present in the development data. To adjust
the loss function for the imbalance between positive and negative
examples in every label, errors in positive examples were multiplied
by the ratio of positive to negative examples in that label.

4 RESULTS
4.1 Classification performance for each label
Our first goal was to investigate classification performance of each
of the embedding models for our 39 binary labels (31 specific out-
comes1, 7 high-level domains, and presence of any outcome). For
each model, we computed the area under the ROC curve (ROC
AUC) for each test fold and reported the average ROC AUC across
folds [75]. Classification performance fell within 0.6-0.9 for the
Original segmentation and 0.7-1.0 for the Monologue and Turns
segmentations, seen in Figure 1. (details in Table 6 in Appendix B).

In the Original segmentation, D1 performs the best across all
models. In Monologue, the best performer was one of D3 or F2.
In Turns, A3 and D3 performed well for all models, but the top
performer for MentalLongformer was F2. For any combination of
model and segmentation, the lowest performer tended to be D2
or G1, with A2 performing poorly in Original. Many labels were
inconsistent across models and segmentations. For example, A5
was in the top four for all models in the Original segmentation, but
underperformed in Monologue and Turns in non-Llama models.
The worst classified labels tended to have high variance in per-
formance across embedding models, though the relative rankings
are consistent. For every embedding, the averaged ROC AUC for
models of “Any” outcome were between 0.75-0.85. Further details
on relative classification performances can be found in Table 7 in
Appendix B.

4.2 Statistical comparison of embedding models
Our second goal was to determine whether embeddings from a par-
ticular large language model had consistently better performance
than others. For our 28 specific outcomes, we tested the null hypoth-
esis of no difference in model performance with the Friedman test
[76]. We excluded aggregate labels, i.e., the seven domain labels and
the “Any outcome” label, to avoid double-counting. Friedman test
results were 𝑄3 = 8.571, 𝑝 = 0.0356 for Original; 𝑄3 = 13.16, 𝑝 =

0.00431 for Monologue; and 𝑄3 = 12.56, 𝑝 = 0.00570 for Turns. At
significance level 𝛼 = 0.05, the Friedman test results supported
rejection of the null hypothesis of model equivalence, and we pro-
ceeded with the post hoc Bayesian comparison tests [77].

The Bayesian post hoc test indicated that both Llama models had
probability ≥ 0.94 of outperforming any other non-Llama model
(Figure 2). BERT had a < 0.04 probability of outperforming any
model except for MentalLongformer, where the probability of BERT
being better was 0.14, 0.15 and 0.08 for Original, Monologue, and
Turns, respectively. Llama 2-7B and Llama 3-8B had a 0.84, 0.71 and
0.92 probability of practical equivalence for Original, Monologue,
and Turns. MentalLongformer and MentalBERT as well as BERT
and MentalBERT had practical equivalence probabilities of 0.19 to
0.38 in Original and Turns. All other pairwise model comparisons
returned ≤ 0.06 probability of practical equivalence.

5 DISCUSSION AND CONCLUSION
Models generally performed well, even for labels with very few pos-
itive examples. Across the 36 labels considered, performance was

1Results are reported for 28/31 specific outcome labels (i.e., 36/39 binary labels), as
three labels did not contain enough subjects for 4-fold CV.
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Figure 1: Average ROC AUC performance for logistic re-
gression models, with horizontal jitter for clarity. Results
for each label are grouped vertically by domain (labeled by
color) and horizontally by segmentation (labeled on right
axis). Domains are "Symptom Change" (A), "Coping and self-
management" (B), "Functioning" (C), "Personal growth" (D),
"Relationships" (E), "Peace of mind" (F), and "Parental sup-
port and wellbeing" (G). Numbers indicate the performance
of each specific outcome within a domain, black letters the
domains, and the red X represents “Any” of the outcomes.

never below an average ROC AUC of 0.60 for every model within
a segmentation. Given these results, we believe that classifiers us-
ing LLM embeddings as inputs could prove useful for detecting
fine-grained outcomes. On the other hand, it is unclear why spe-
cific labels were easier or harder to classify. Even within the same
domain, specific outcomes can run a wide range, e.g., D3 being
best overall while D2 is worst overall. The relative performances of
aggregated labels, such as labels for high-level domains A through
G, tend to be consistent across models within a segmentation, sug-
gesting that some variability may be due to the small number of
positive examples.

The Bayesian comparison test between models suggests that, of
the models investigated, Llama models produce more informative
embeddings for classification. The test also suggests that Llama 2-
7B and Llama 3-8B have a high probability of practical equivalence,
which is unsurprising considering their architectural similarities.

Figure 2: Bayesian model comparison test, with a region of
practical equivalence of 0.01. Results for each segmentation
are grouped by row. (Left, blue) Probability that Model A (y-
axis) outperforms Model B (x-axis). (Right, red) Probability
of Model A and Model B being practically equivalent.

The non-negligible probability of practical equivalence for Men-
talBERT and MentalLongformer is also unsurprising, considering
the models are pre-trained with the same set of mental health data.
MentalBERT, though fine-tuned on domain-specific data, only has
a high (0.98) probability of outperforming BERT on Monologue,
and has a moderate probability of practical equivalence (0.32, 0.38)
on Original and Turns. Additionally, although the Bayesian com-
parison test suggests that Llama models have high probabilities
of outperforming the other models tested, the advantage is not
very large. Other concerns, such as resource usage, may be a de-
ciding factor in choosing an embedding model for different tasks.
Llama 2-7B and Llama 3-8B, for example, require a GPU to perform
inference, while BERT, MentalBERT, and MentalLongformer can
produce embeddings using the CPU available in a standard laptop.

Based on our results, our methodology may be useful for similar
datasets or labels at a comparable level of granularity. However, it
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is unclear how reported performance could reflect idiosyncrasies of
this dataset. The small sample size, both in total positive labels and
number of subjects, may prove an obstacle when applying these
particular models to other datasets. For example, the adherence to
transcribing the exact utterances of the interviews is not common
in written text or in machine transcription, which often removes
pauses, filler words, and accent indicators.

The 𝑘-fold cross-validation results should provide reasonable
estimates of model performance in new participants, given that
we have reported on all the experiments that we have carried out.
Nevertheless, the final analysis of generalization, and model vari-
ance, should be performed on the test set, which we are currently
withholding to allow for further model development on the training
set. When testing on the holdout, we will produce performance
estimates for labels for which models could not be trained and
tuned during the 𝑘-fold cross-validation step due to sparsity.

Future model development will work on two fronts. The first is to
improve text representation, either through more advanced models
or by fine-tuning LLMs for these prediction tasks. The second will
be to improve the generalization of prediction models through, for
example, supplementing the training data with additional synthetic
examples, paraphrased by an LLM from existing ones.
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A ANNOTATION DETAILS
Table 3 illustrates how segmentations might be created from a
passage, though the text example lacks many of the interview tran-
scripts’ idiosyncrasies, such as inclusion of hesitations and filler
words. Additionally, the example Monologue segmentation is more
coherent than the true dataset, as realistic answers are often difficult
to understand without the context of the interview question.

Table 4 provides more description of the specific outcomes of
interest in the IMPACT-ME interviews. The addendum to Krause
et al. also contains examples of specific outcomes to illustrate how
they may appears in the transcript [6].

Table 3: A comparison between how blocks would be formed
between the Original, Monologue, and Turns segmentation.
A change in text color indicates the boundary of the input
block. The example text is not based on any interview in the
dataset.

Original Monologue Turns

I: How are you? I: How are you?
P: Ok... P: Ok...
I: Just ok? I: Just ok?
P: Not feeling the best
about school.

P: Not feeling the best
about school.

P: Not feeling the best
about school.

I: Why? I: Why?
P: I hate this group
project.

P: I hate this group
project.

P: I hate this group
project.

I: Mmhmm. I: Mmhmm.
P: They always ignore
me so I have to work
alone.

P: They always ignore
me so I have to work
alone.

P: They always ignore
me so I have to work
alone.

B MODEL PERFORMANCE DETAILS
ROC AUCs reported in Table 6 are averaged across each of the 𝑘
outer folds, with 𝑘 = 4. By sorting the labels by average overall
rankings (Table 7), we can observe that around half of the specific
outcomes show wide variance in the relative performance for each
model and segmentation.
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Table 4: Names of the labels and a brief description. Unless otherwise indicated, assume descriptions refer to changes with the
adolescent patient.

Abbrev. Name Description

Any 𝐴 ∪ · · · ∪𝐺

A Symptom change 𝐴1 ∪ · · · ∪𝐴8
A1 Mood and affect Less low and depressed; low mood is more fleeting, less overwhelming.
A2 Anger and aggression Less angry, irritable, aggressive; fewer outbursts; better able to manage temper.
A3 Appetite Healthier appetite and weight.
A4 Sleeping and energy Healthier sleep patterns and energy levels.
A5 Self-harm Less self-harm (e.g., cutting, trichotillomania)
A6 Suicidality Reduced suicidal ideation and behavior
A7 Anxiety Fewer fears, worries, panic attacks; less social anxiety; engaging in activities
A8 Other combordities E.g., substance abuse or obsessive-compulsive symptoms

B Coping and self-management 𝐵1 ∪ 𝐵2 ∪ 𝐵3
B1 Behavioral activation More active; returning to hobbies or engaging in new activites; sense of purpose, routine, and

structure
B2 Coping and resilience Specific coping strategies, understanding of feelings, thoughts, and behaviors; anticipating and

managing challenges; more resilient, greater self-efficacy, sense of control
B3 Cognition and behavior Challenges negative automatic thoughts, more flexible thinking styles

C Functioning 𝐶1 ∪𝐶2 ∪𝐶3 ∪𝐶4
C1 Global functioning Better function across range of life domains, engages in typical adolescent activities
C2 Executive functioning Able to get things done; improved concentration, motivation, planning, organization
C3 Academic and vocational functioning Attends school more regularly; works more effectively in school, achieves better results
C4 Social functioning More outgoing and talkative, more present within friendship groups, more socially connected;

easier to make conversation, relate to others, be mindful of others’ feelings
D Personal growth 𝐷1 ∪ · · · ∪𝐷6

D1 Assertiveness Better able to stand up for needs and opinions, overcome urge to please, can express disagree-
ment or disapproval when appropriate

D2 Autonomy and responsibility More independent, takes responsibility for life and actions
D3 Identity Finding out who they are and how to be themselves around other people; less idealised self-

images that can accommodate both positive and challenging personality traits; positive and
negative feelings

D4 Processing past and present Making sense of challenging past or ongoing experiences such as bereavement, parental divorce,
or family conflict

D5 Confidence and self-esteem More confident, less insecure, less vulnerable to judgement, higher self-regard
D6 Feeling seen and seeing differently Feeling listened to, understood, or cared for; experiences of being worth of another’s attention;

new perspectives; opportunity to release feelings, thoughts or memories
E Relationships 𝐸1 ∪ · · · ∪ 𝐸5

E1 Ability to talk More able to talk about feelings and thoughts, which helps deepen relationships; stronger
support network facilitates opening up

E2 Family functioning and relationships Getting on better with their family: less conflict, better understanding from family; easing of
entrenched tensions between family members; families communicate more openly; role within
the family system clarified

E3 Friendships Reactivation or deepening of existing friendships, expanding friendship groups or changing
friends by turning towards more supportive friendships

E4 Peer relationships Getting on better with peers in school
E5 Romantic relationships Getting on better with romantic partner

F Wellbeing 𝐹1 ∪ 𝐹2 ∪ 𝐹3
F1 Peace of mind Calmer, more balanced, relaxed, and carefree; feeling as if a weight had been lifted off their

shoulders; more accepting of things that cannot be changed
F2 Optimism More positive and optimistic outlook into their lives and the future
F3 Future orientation Can make plans for the future and have goals

G Parental support and wellbeing 𝐺1 ∪𝐺2
G1 Parental support Parents are better able to understand their child’s difficulties and more aware of how their

parenting practices may contribute to these difficulties; parents learn to support and parent
their child more effectively

G2 Parental wellbeing Parents feel less guilty, isolated, stressed, and worried; parents feel reassured, supported, and
able to express their own frustrations and issues
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Table 5: Counts of labels of interest within the entire dataset and the training dataset, sorted by segmentation.

All data Training

Label Original Monologue Turns Original Monologue Turns

Any 2116 1042 1166 1543 732 840
A 624 313 345 414 197 225

A1 307 164 179 223 117 130
A2 142 63 75 107 43 55
A3 42 24 24 18 10 10
A4 82 42 43 64 31 32
A5 42 23 25 18 10 11
A6 36 19 21 23 13 14
A7 63 29 35 35 13 18
A8 12 6 7 7 3 4

B 592 275 324 436 191 234
B1 112 52 60 81 33 41
B2 432 204 236 311 140 167
B3 119 48 68 106 42 61

C 404 213 231 351 181 198
C1 19 12 13 12 8 9
C2 87 45 51 80 41 46
C3 206 111 121 180 94 104
C4 144 80 84 124 68 72

D 450 255 267 312 177 188
D1 37 25 25 28 20 20
D2 84 43 44 61 31 32
D3 55 38 39 49 34 35
D4 57 35 35 29 17 17
D5 144 79 83 83 47 50
D6 119 62 68 98 50 56

E 441 228 255 287 147 168
E1 43 27 28 26 15 16
E2 273 139 155 151 77 89
E3 130 69 76 113 60 65
E4 34 15 19 25 11 14
E5 9 2 7 9 2 7

F 134 79 85 109 62 68
F1 48 26 30 36 19 23
F2 24 16 16 22 15 15
F3 65 40 42 53 30 32

G 123 60 66 97 46 51
G1 21 13 13 18 11 11
G2 106 51 57 82 38 43
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Table 6: Averaged ROC AUC across outer 𝑘-fold cross-validation. Abbreviations are as follows: Sgmnt.: segmentation, MBERT:
MentalBERT, MLong: MentalLongformer, L2-7B: Llama 2-7B, L3-8B: Llama 3-8B.

Sgmnt. Original Monologue Turns
Model BERT MBERT MLong L2-7B L3-8B BERT MBERT MLong L2-7B L3-8B BERT MBERT MLong L2-7B L3-8B
Label

Any 0.735 0.737 0.742 0.758 0.757 0.799 0.811 0.822 0.829 0.826 0.806 0.809 0.817 0.844 0.843
A 0.732 0.730 0.766 0.753 0.755 0.811 0.822 0.856 0.844 0.846 0.850 0.852 0.851 0.876 0.858

A1 0.767 0.772 0.782 0.780 0.773 0.815 0.820 0.851 0.836 0.831 0.815 0.834 0.815 0.832 0.830
A2 0.562 0.566 0.671 0.695 0.618 0.757 0.758 0.794 0.851 0.849 0.715 0.754 0.750 0.815 0.792
A3 0.777 0.760 0.741 0.798 0.779 0.910 0.962 0.956 0.909 0.950 0.947 0.937 0.955 0.968 0.961
A4 0.777 0.731 0.785 0.831 0.827 0.895 0.897 0.908 0.954 0.937 0.923 0.932 0.914 0.955 0.945
A5 0.861 0.843 0.856 0.923 0.919 0.801 0.707 0.678 0.880 0.925 0.657 0.780 0.684 0.949 0.932
A6 0.818 0.725 0.791 0.845 0.780 0.806 0.736 0.721 0.873 0.812 0.866 0.771 0.800 0.794 0.755
A7 0.861 0.819 0.802 0.699 0.752 0.804 0.829 0.696 0.773 0.812 0.846 0.854 0.831 0.827 0.851

B 0.717 0.734 0.726 0.757 0.746 0.816 0.808 0.819 0.850 0.846 0.795 0.811 0.816 0.864 0.866
B1 0.615 0.619 0.604 0.690 0.696 0.798 0.752 0.739 0.846 0.836 0.715 0.711 0.710 0.786 0.829
B2 0.762 0.777 0.786 0.790 0.802 0.840 0.854 0.861 0.873 0.869 0.839 0.844 0.860 0.879 0.868
B3 0.702 0.746 0.703 0.780 0.738 0.863 0.890 0.890 0.933 0.929 0.727 0.800 0.814 0.864 0.842

C 0.708 0.714 0.710 0.739 0.733 0.749 0.782 0.787 0.816 0.793 0.784 0.798 0.804 0.834 0.828
C1 0.720 0.791 0.845 0.751 0.817 0.899 0.956 0.898 0.907 0.953 0.772 0.926 0.819 0.815 0.830
C2 0.607 0.659 0.647 0.697 0.716 0.805 0.858 0.791 0.850 0.881 0.796 0.814 0.822 0.829 0.865
C3 0.675 0.683 0.715 0.704 0.669 0.777 0.776 0.833 0.778 0.790 0.788 0.779 0.826 0.799 0.776
C4 0.795 0.781 0.785 0.758 0.755 0.832 0.861 0.850 0.852 0.837 0.853 0.881 0.846 0.863 0.868

D 0.796 0.785 0.790 0.782 0.787 0.863 0.870 0.888 0.864 0.859 0.848 0.850 0.865 0.846 0.847
D1 0.907 0.922 0.956 0.923 0.942 0.918 0.925 0.942 0.900 0.922 0.928 0.933 0.962 0.949 0.944
D2 0.573 0.624 0.569 0.528 0.537 0.690 0.696 0.679 0.689 0.626 0.666 0.608 0.591 0.547 0.546
D3 0.830 0.841 0.861 0.876 0.903 0.962 0.974 0.953 0.957 0.954 0.937 0.946 0.939 0.943 0.955
D4 0.765 0.785 0.758 0.771 0.733 0.818 0.898 0.909 0.919 0.865 0.829 0.855 0.854 0.896 0.882
D5 0.807 0.838 0.839 0.802 0.805 0.921 0.936 0.951 0.892 0.900 0.911 0.915 0.943 0.900 0.917
D6 0.752 0.742 0.766 0.775 0.752 0.793 0.804 0.846 0.819 0.826 0.794 0.801 0.822 0.864 0.869

E 0.761 0.762 0.782 0.784 0.776 0.820 0.832 0.851 0.859 0.855 0.826 0.823 0.833 0.845 0.843
E1 0.737 0.775 0.680 0.699 0.709 0.816 0.824 0.687 0.782 0.811 0.841 0.840 0.739 0.705 0.782
E2 0.721 0.740 0.731 0.760 0.747 0.863 0.879 0.871 0.900 0.887 0.792 0.820 0.804 0.785 0.797
E3 0.737 0.776 0.776 0.757 0.750 0.805 0.842 0.798 0.802 0.758 0.825 0.814 0.815 0.846 0.834

F 0.754 0.761 0.758 0.812 0.806 0.892 0.915 0.901 0.914 0.914 0.876 0.880 0.881 0.933 0.920
F1 0.759 0.762 0.819 0.795 0.825 0.890 0.901 0.868 0.922 0.937 0.835 0.879 0.862 0.918 0.922
F2 0.848 0.871 0.877 0.830 0.828 0.940 0.967 0.985 0.961 0.941 0.869 0.916 0.972 0.940 0.930
F3 0.798 0.784 0.785 0.816 0.810 0.890 0.870 0.892 0.923 0.924 0.888 0.877 0.843 0.921 0.899

G 0.653 0.665 0.565 0.658 0.683 0.772 0.769 0.697 0.775 0.799 0.727 0.692 0.627 0.752 0.794
G1 0.715 0.687 0.476 0.629 0.672 0.595 0.695 0.797 0.879 0.792 0.580 0.592 0.695 0.885 0.814
G2 0.636 0.653 0.571 0.663 0.648 0.747 0.760 0.691 0.772 0.780 0.719 0.693 0.611 0.736 0.736
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Table 7: The performance rank (1-28, 1 is best), measured by average ROC AUC, within a model and segmentation of each
specific outcome. Outcomes are ordered by their average ranking across all models and segmentations. The labels of many
outcomes are shortened, e.g., “D5 Confidence and self-esteem” becomes “Confidence”. Abbreviations: func.: functioning, com.:
communicate, MB: MentalBERT, ML: MentalLongformer, L2: Llama 2-7B, L3: Llama 3-8B.

Original Monologue Turns Avg. rank
Model BERT MB ML L2 L3 BERT MB ML L2 L3 BERT MB ML L2 L3
Label

D3 Identity 5 4 3 3 3 1 1 3 2 1 2 1 5 5 2 2.73
F2 Hope 4 2 2 6 4 2 2 1 1 4 7 6 1 6 6 3.60
D1 Assertiveness 1 1 1 1 1 4 6 5 10 10 3 3 2 4 4 3.73
A3 Appetite 10 16 18 9 12 5 3 2 8 3 1 2 3 1 1 6.27
A4 Energy 11 20 11 5 5 7 9 7 3 5 4 4 6 2 3 6.80
D5 Confidence 7 5 6 8 9 3 5 4 12 11 5 7 4 9 8 6.87
F3 Optimism 8 9 13 7 8 9 12 9 5 9 6 10 11 7 9 8.80
F1 Peace of mind 15 15 7 10 6 8 7 12 6 6 13 9 7 8 7 9.07
C1 Global func. 20 7 5 19 7 6 4 8 9 2 21 5 16 21 19 11.27
D4 Processing past, present 13 8 17 15 20 14 8 6 7 15 14 11 9 10 10 11.80
B2 Resilience 14 11 10 11 10 12 15 13 16 14 12 13 8 12 13 12.27
C4 Social func. 9 10 12 17 14 13 13 15 17 17 9 8 10 15 12 12.73
A5 Self-harm 3 3 4 2 2 21 26 28 13 8 27 21 26 3 5 12.80
B3 Cognition 22 17 21 12 19 11 10 10 4 7 22 20 19 14 16 14.93
A7 Anxiety 2 6 8 22 15 20 17 24 26 22 10 12 12 19 15 15.33
A1 Mood and affect 12 14 14 13 13 16 19 14 21 19 16 15 17 17 18 15.87
E2 Family func. 19 19 19 16 18 10 11 11 11 12 19 16 20 25 22 16.53
A6 Suicidality 6 21 9 4 11 17 25 23 15 21 8 23 21 23 26 16.87
D6 Feeling seen 16 18 16 14 16 23 20 16 22 20 18 19 14 13 11 17.07
E3 Friendships 17 12 15 18 17 19 16 18 23 27 15 17 18 16 17 17.67
C2 Executive func. 26 24 24 23 21 18 14 21 19 13 17 18 15 18 14 19.00
E1 Com. feelings, thoughts 18 13 22 21 22 15 18 26 24 23 11 14 23 27 24 20.07
C3 Academic func. 23 23 20 20 25 24 21 17 25 25 20 22 13 22 25 21.67
A2 Anger 28 28 23 24 27 25 23 20 18 16 25 24 22 20 23 23.07
G1 Parental wellbeing 21 22 28 27 24 28 28 19 14 24 28 28 25 11 21 23.20
B1 Behavioural activation 25 27 25 25 23 22 24 22 20 18 24 25 24 24 20 23.20
G2 Parental support 24 25 26 26 26 26 22 25 27 26 23 26 27 26 27 25.47
D2 Autonomy 27 26 27 28 28 27 27 27 28 28 26 27 28 28 28 27.33
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