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Figure 1. OVDiff is an open-vocabulary segmentation method that, given an image and a free-form set of class names, can segment any
user-defined classes. It is fully automatic and does not require any further training.

Abstract

Open-vocabulary segmentation is the task of segmenting
anything that can be named in an image. Recently, large-
scale vision-language modelling has led to significant ad-
vances in open-vocabulary segmentation, but at the cost of
gargantuan and increasing training and annotation efforts.
Hence, we ask if it is possible to use existing foundation
models to synthesise on-demand efficient segmentation al-
gorithms for specific class sets, making them applicable
in an open-vocabulary setting without the need to collect
further data, annotations or perform training. To that end,
we present OVDiff, a novel method that leverages genera-
tive text-to-image diffusion models for unsupervised open-
vocabulary segmentation. OVDiff synthesises support image
sets for arbitrary textual categories, creating for each a set
of prototypes representative of both the category and its
surrounding context (background). It relies solely on pre-
trained components and outputs the synthesised segmenter
directly, without training. Our approach shows strong per-
formance on a range of benchmarks, obtaining a lead of
more than 5% over prior work on PASCAL VOC.

1. Introduction
Open-vocabulary semantic segmentation is the task of seg-
menting images into regions matching several free-form
textual categories. As the field of Computer Vision moves to-
wards large-scale general-purpose models, open-vocabulary
“foundation” models have similarly emerged. Yet, the devel-
opment of ones suitable for dense localisation tasks such as
semantic segmentation incurs both enormous training costs
and requires expensive mask annotations. Instead, we show
that the open-vocabulary segmentation task can be effec-
tively tackled starting from a set of frozen foundation models,
without requiring additional data or even fine-tuning.

In order to do so, we introduce OVDiff, a method that
turns existing foundation models into a “factory” of image
segmenters, i.e., using foundation models to synthesise on-
demand a segmenter for any new concepts specified in natu-
ral language. Thus, OVDiff can be used for open-vocabulary
segmentation, where it achieves state-of-the-art results in
standard benchmarks. Moreover, once synthesised, the seg-
menters can be efficiently applied to any number of images
and easily extended to new categories.

Specifically, segmenting an image using OVDiff can be
done in three steps: generation, representation, and match-
ing. Given a textual prompt, OVDiff uses an off-the-shelf
text-to-image generator like StableDiffusion [50] to generate
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a support set of images. In the representation step, we use a
feature extractor (that can be the same network as in the gen-
eration step) to extract feature prototypes that represent the
textual category. Finally, we use simple nearest-neighbour
matching scheme to segment the target image using the pro-
totypes computed in the previous step.

This approach differs from prior work that largely ap-
proaches the problem in either of two ways. Starting from
multi-modal representations (e.g., CLIP [46]) to bridge vi-
sion and language, the first way relies on labelled data to
fine-tune image-level representations for the segmentation
task. Hence, in line with the zero-shot setting [6], these
methods require costly dense annotations for some known
categories while also extending the segmentation to unseen
categories by incorporating language.

The second category of prior work [9, 37, 43, 49, 70, 71]
observes that large-scale vision-language models such as
CLIP have a limited understanding of the positioning of
objects within an image and extend these models with ad-
ditional grouping mechanisms for better localisation using
only image-level captions, but no mask supervision. This,
however, requires expensive additional contrastive training
at scale. Despite yielding promising results, there are some
additional pitfalls to this approach. Firstly, as the text might
not exhaustively describe all entities in the image or might
mention elements that are not depicted, the training signal
can be noisy. Secondly, similar captions may be used to
describe a wide range of visual appearances, or a similar
concept might be described differently, sometimes even de-
pending on the other context present. There is ambiguity and
a difference in detail between visual and textual data. Lastly,
most methods resort to heuristics to segment the background
(i.e., leave some pixels unlabelled), as it often cannot be
described as a textual category. The usual approach is to
threshold the similarities to all categories. Finding an appro-
priate threshold, however, can be challenging and may vary
depending on the image, often resulting in imprecise object
boundaries. Effectively handling the background remains an
open issue.

Our three-step approach departs substantially from both
of these schemes. We show that large-scale text-to-image
generative models, such as StableDiffusion [50], can help
bridge the vision-and-language gap without the need for
annotations or costly training. Furthermore, diffusion models
also produce latent spaces that are semantically meaningful
and well-localised. This solves a second problem: multi-
modal embeddings are difficult to learn and often suffer from
ambiguities and differences in detail between modalities.
Instead, our approach can use unimodal features for open-
vocabulary segmentation, which offers several advantages.
Firstly, as text-to-image generators encode a distribution of
possible images, this offers a means to deal with intra-class
variation and captures the ambiguity in textual descriptions.

Secondly, the generative image models encode not only the
visual appearance of objects but also provide contextual
priors, which we use for direct background segmentation.

This work presents a simple framework that achieves
state-of-the-art performance across open-vocabulary seg-
mentation benchmarks. It combines several off-the-shelf
pre-trained networks into a segmenter “factory” that seg-
ments images into arbitrary textual categories in three simple
steps. OVDiff requires no additional data, mask supervision,
nor fine-tuning. To summarise, we make the following core
contributions: (1) We introduce a method to use pre-trained
diffusion models for the task of open-vocabulary segmen-
tation, that requires no additional data, mask supervision,
or fine-tuning. (2) We propose a principled way to handle
backgrounds by forming prototypes from contextual priors
built into text-to-image generative models. (3) A set of addi-
tional techniques for further improving performance, such as
multiple prototypes, category filtering and "stuff" filtering.

2. Related work
Zero-shot open-vocabulary segmentation. Open-
vocabulary semantic segmentation is a relatively new
problem and is typically approached in two ways. The first
line of work poses the problem as “zero-shot”, i.e., segment-
ing unseen classes after training on a set of observed classes
with dense annotations. Early approaches [6, 11, 20, 31]
explore generative networks to sample features using
conditional language embeddings for classes. In [30, 69]
image encoders are trained to output dense features that
can be correlated with word2vec [41] and CLIP [46] text
embeddings. Follow-up works [15, 19, 33, 73] approach
the problem in two steps, predicting class-agnostic masks
and aligning the embeddings of masks with language.
IFSeg [74] generates synthetic feature maps by pasting
CLIP text embeddings into a known spatial configuration to
use as additional supervision. Different from our approach,
all these works rely on mask supervision for a set of known
classes.

The second line of work eliminates the need for mask
annotations and instead aims to align image regions with
language using only image-text pairs. This is largely en-
abled by recent advancements in large-scale vision-language
models [46]. Some methods introduce internal group-
ing mechanisms such as hierarchical grouping [49, 70],
slot-attention [71], or cross-attention to learn cluster cen-
troids [35, 37]. Assignment to language queries is performed
at group level. Another line of work [9, 43, 48, 79] aims to
learn dense features that are better localised when correlated
with language embeddings at pixel level. With the exception
of [48, 68, 79], thresholding is often required to determine
the background during inference. Alternatively, a curated
list of background prompts can be used [48].

Our method falls into the second category. However,



in contrast to prior work, we leverage a generative model
to translate language queries to pre-trained image feature
extractors without further training. We also segment the
background directly, without relying on thresholding or
curated list of background prompts. A closely related ap-
proach to ours is ReCO [56], where CLIP is used for im-
age retrieval compiling a set of exemplar images from Im-
ageNet for a given language query, which is then used for
co-segmentation. In our method, the shortcoming of an im-
age database is addressed by synthesising data on-demand.
Furthermore, instead of co-segmentation, we leverage the
cross-attention of the generator to extract objects. Instead
of similarity of support images, we use diverse samples and
both foreground and contextual backgrounds.

Diffusion models. Diffusion models [26, 59, 60] are a class
of generative methods that have seen tremendous success in
text-to-image systems such as DALL-E [47], Imagen [52],
and Stable Diffusion [50], trained on Internet-scale data
such as LAION-5B [54]. The step-wise generative process
and the language conditioning make pre-trained diffusion
models attractive also for discriminative tasks. They have
been recently used in few-shot classification [77], few-shot
segmentation [2] and panoptic segmentation [72], and to
generate pairs of images and segmentation masks [32]. How-
ever, these methods rely on dense manual annotations to
associate diffusion features with the desired output.

Annotation-free discriminative approaches such as [13,
29] use pre-trained diffusion models as zero-shot classifiers.
DiffuMask [67] uses prompt engineering to synthesise a
dataset of “known” and “unseen” categories and trains a
closed-set segmenter with masks obtained from the cross-
attention maps of the diffusion model. DiffusionSeg [38]
uses DDIM inversion [60] to obtain feature maps and at-
tention masks of object-centric images to perform unsuper-
vised object discovery, but relies on ImageNet labels and
is not open-vocabulary. Our approach also leverages the
rich semantic information present in diffusion models for
segmentation; unlike these methods, however, it is open-set
and does not require further training.

Unsupervised segmentation. Our work is also related to
unsupervised segmentation approaches. While early works
relied on hand-crafted priors [12, 44, 66, 75, 76] later ap-
proaches leverage feature extractors such as DINO [8] and
perform further analysis of these methods [21, 39, 55, 57,
58, 63–65]. Some approaches make use of generative meth-
ods, usually GANs, to separate images in foreground and
background layers [3–5, 10] or analyse latent structure to
induce known foreground-background changes [40, 62] to
synthesise a training dataset with labels. Largely focused on
unsupervised saliency prediction, these methods are class-
agnostic and do not incorporate language.

3. Method

We present OVDiff, a method for open-vocabulary segmenta-
tion, i.e., semantic segmentation of any category described in
natural language. We achieve this goal in three steps: (1) we
leverage text-to-image generative models to generate a set
of images representative of the described category, (2) use
these to ground representations from off-the-shelf pretrained
feature extractors, and (3) match these against input image
features to perform segmentation.

3.1. OVDiff: Diffusion-based open-vocabulary seg-
mentation

Our goal is to devise an algorithm which, given a new vo-
cabulary of categories ci 2 C formulated as natural language
queries, can segment any image against it. Let I 2 RH⇥W⇥3

be an image to be segmented. Let �v : RH⇥W⇥3 !
RH

0
W

0⇥D be an off-the-shelf visual feature extractor and
�t : Rdt ! RD a text encoder. Assuming that image and
text encoders are aligned, one can achieve segmentation by
simply computing a similarity function, for example, the
cosine similarity s(�v(I),�t(ci)), with s(x, y) = x

T
y

kxkkyk ,
between the encoded image �v(I) and an encoding of a
class label ci. To meaningfully compare different modalities,
image and text features must lie in a shared representation
space, which is typically learned by jointly training �v and
�t using image-text or image-label pairs [46].

We propose two modifications to this approach. First, we
observe that it is better to compare representations of the
same modality than across vision and language modalities.
We thus replace �t(ci) with a D-dimensional visual repre-
sentation P̄ of class ci, which we refer to as a prototype. In
this case, the same feature extractor can be used for both pro-
totypes and target images; thus, their comparison becomes
straightforward and does not necessitate further training.
Second, we propose utilising multiple prototypes per cate-
gory instead of a single class embedding. This enables us to
accommodate intra-class variations in appearance, and, as
we explain later, it also allows us to exploit contextual priors,
which in turn help to segment the background.

Our approach, thus, proceeds in three steps: (1) a set
of support images is sampled based on vocabulary C, (2) a
set of prototypes P is calculated, and (3) a set of images
{I1, I2 . . . } is segmented against these prototypes. We ob-
serve that in practical applications, whole image collections
are processed using the same vocabulary, as altering the set
of target classes for individual images in an informed way
would already require some knowledge of their contents.
Steps (1) and (2) are, thus, performed very infrequently, and
their cost is heavily amortised. Next, we detail each step.



Figure 2. OVDiff overview. Prototype sampling: text queries are used to sample a set of support images which are further processed by
a feature extractor and a segmenter forming positive and negative (background) prototypes. Segmentation: image features are compared
against prototypes.The CLIP filter removes irrelevant prototypes based on global image contents.

3.2. Support set generation

To construct a set of prototypes, the first step of our approach
is to sample a support set of images representative of each
category ci. This can be accomplished by leveraging pre-
trained text-conditional generative models. Sampling images
from a generative model, as opposed to a curated dataset of
real images, aligns well with the goals of open-vocabulary
segmentation as it enables the construction of prototypes for
any user-specified category or description, even those for
which a manually labelled set may not be readily available
(e.g., ci = “donut with chocolate glaze”).

Specifically, for each query ci, we define a prompt “A
good picture of a hcii” and generate a small batch
of N support images S = {S1, S2, . . . , SN | Sn 2 Rhw⇥3}
of height h and width w using Stable Diffusion [50].

3.3. Representing categories

Naïvely, prototypes P̄ci could be constructed by averaging
all features across all images for class ci. This is unlikely to
result in good prototypes because not all pixels in the sam-
pled images correspond to the class specified by ci. Instead,
we propose to extract the class prototypes as follows.
Class prototypes. Our approach generates two sets of pro-
totypes, positive and negative, for each class. Positive proto-
types are extracted from image regions that are associated
with hcii, while negative prototypes represent “background”
regions. Thus, to obtain prototypes, the first step is segment-
ing the sampled images into foreground and background. To
identify regions most associated with ci, we use the fact that
the layout of a generated image is largely dependent on the
cross-attention maps of the diffusion model [24], i.e., pixels
attend more strongly to words that describe them. For a given
word or description (in our case ci), one can generate a set
of attribution maps A = {A1, A2, . . . , AN | An 2 Rhw},
corresponding to the support set S, by summing the cross-
attention maps across all layers, heads, and denoising steps

of the network [61].
Yet, thresholding these attribution maps may not be op-

timal for segmenting foreground/background, as they are
often coarse or incomplete, and sometimes only parts of
objects receive high activation. To improve segmentation
quality, we propose to optionally leverage an unsupervised
instance segmentation method �. Unsupervised segmenters
are not vocabulary-aware and may produce multiple binary
object proposals. We denote these as Mn = {Mnr | Mnr 2
{0, 1}hw}, where n indexes the support images and r in-
dexes the object masks (including a mask for the back-
ground). We thus construct a promptable extension of �
segmenter to select appropriate proposals for foreground
and background: for each image, we select from Mn the
mask with the highest (lowest) average attribution as the
foreground (background):

M fg
n

= argmax
M2Mn

M>An

M>M
, Mbg

n
= argmin

M2Mn

M>An

M>M
.

(1)
Prototype aggregation. We can compute prototypes P g

n
for

foreground and background regions (g 2 {fg, bg}) as

P g
n
=

(M̂g
n
)>�v(Sn)

mg
n

2 RD, (2)

where M̂g
n

denotes a resized version of Mg
n

that matches
the spatial dimensions of �v(Sn), and mg

n
= (M̂g

n
)>M̂g

n

counts the number of pixels within each mask. In other
words, prototypes are obtained by means of an off-the-shelf
pretrained feature extractor and computed as the average
feature within each mask.

We refer to these as instance prototypes because they are
computed from each image individually, and each image in
the support set can be viewed as an instance of class ci.

In addition to instance prototypes, we found it helpful
to also compute class-level prototypes P̄ g by averaging the



instance prototypes weighted by their mask sizes as P̄ g =P
N

n=1 m
g
n
P g
n
/
P

N

n=1 m
g
n

.
Finally, we propose to augment the set of class and in-

stance prototypes using K-Means clustering of the masked
features to obtain part-level prototypes. We perform spa-
tial clustering separately on foreground and background re-
gions and take each cluster centroid as a prototype P g

k
with

1  k  K. The intuition behind this is to enable seg-
mentation at the level of parts, support greater intra-class
variability, and a wider range of feature extractors that might
not be scale invariant.

We consider the union of all these feature prototypes:

Pg = P̄ g [ {P g
n
| 1  n  N} [ {P g

k
| 1  k  K} (3)

for g 2 {fg, bg}, and associate them with a single category.
We note that this process is repeated for each ci 2 C and

we hereby refer to P fg (and Pbg) as P fg
ci

(Pbg
ci

), i.e., as the
foreground (background) prototypes of class ci.

Since P fg
ci

(Pbg
ci

) depend only on class ci, they can be
precomputed, and the set of classes can be dynamically
expanded without the need to adapt existing prototypes.

3.4. Segmentation via prototype matching
To perform segmentation of any target image I given a
vocabulary C, we first extract image features using the
same visual encoder �v used for the prototypes. The vo-
cabulary is expanded with an additional background class
Ĉ = {cbg}[C, for which the positive (foreground) prototype
is the union of all background prototypes in the vocabulary:
P fg
cbg

=
S

ci2C Pbg
ci

. Then, a segmentation map can simply
be obtained by matching dense image features to prototypes
using cosine similarity. A class with the highest similarity in
its prototype set is chosen:

M = argmax
c2Ĉ

max
P2Pfg

c

s(�v(I), P ). (4)

Category pre-filtering. To limit the impact of spurious cor-
relations that might exist in the feature space of the visual
encoder, we introduce a pre-filtering process for the target vo-
cabulary given image I . Specifically, we leverage CLIP [46]
as a strong open-vocabulary classifier but propose to apply
it in a multi-label fashion to constrain the segmentation to
the subset of categories C0 ✓ C that appear in the target
image. First, we encode the target image and each category
using CLIP. Any categories that do not score higher than
1/|C| are removed from consideration, that is we keep the
subset {P g

c0 | c0 2 C0}, g 2 {fg, bg}. If more than ⌘ cat-
egories are present, then the top-⌘ are selected. We then
form “multi-label” prompts as “hcai and hcbi and ...”
where the categories are selected among the top scoring ones
taking into account all 2⌘ combinations. The best-scoring
multi-label prompt determines the final list of categories to
be used in Equation (4).

Table 1. Open-vocabulary segmentation. Comparison of our ap-
proach, OVDiff, to the state of the art (under the mIoU metric). Our
results are an average of 5 seeds ±�. ⇤results from [9].

Method Support Further VOC Context ObjectSet Training

ReCo⇤ [56] Real 7 25.1 19.9 15.7
ViL-Seg [35] 7 3 37.3 18.9 -
MaskCLIP⇤ [79] 7 7 38.8 23.6 20.6
TCL [9] 7 3 51.2 24.3 30.4
CLIPpy [48] 7 3 52.2 - 32.0
GroupViT [70] 7 3 52.3 22.4 -
ViewCo [49] 7 3 52.4 23.0 23.5
SegCLIP [37] 7 3 52.6 24.7 26.5
OVSegmentor [71] 7 3 53.8 20.4 25.1
CLIP-DIY [68] 7 7 59.9 – 31.0
OVDiff (-CutLER) Synth. 7 62.8 28.6 34.9
OVDiff Synth. 7 66.3 ± 0.2 29.7 ± 0.3 34.6 ± 0.3

TCL [9] (+PAMR) 7 3 55.0 30.4 31.6
OVDiff (+PAMR) Synth. 7 68.4 ± 0.2 31.2 ± 0.4 36.2 ± 0.4

Table 2. Segmentation performance of OVDiff based on different
feature extractors.

Feature MAE DINO CLIP CLIP SD SD + DINO
Extractor (token) (keys) + CLIP

VOC 54.9 59.1 51.4 61.8 64.4 66.4

“Stuff” filtering. Occasionally, ci might not describe a
countable object category but an identifiable region in the
image, e.g., sky, often referred to as a “stuff” class. “Stuff”
classes warrant additional consideration as they might appear
as background in images of other categories, e.g., boat im-
ages might often contain regions of water and sky. As a
result, the process outlined above might sample background
prototypes for one class that coincide with the foreground
prototypes of another. To mitigate this issue, we introduce
an additional filtering step to detect and reject such proto-
types, when the full vocabulary, i.e., the set of classes under
consideration, is known. First, we only consider foreground
prototypes for “stuff” classes. Additionally, any negative
prototypes of “thing” classes with high cosine similarity
with any of the “stuff” class prototypes are simply removed.
In our experiments, we use ChatGPT [45] to automatically
categorise a set of classes as “thing” or “stuff”.

4. Experiments
We evaluate OVDiff on the open-vocabulary semantic seg-
mentation task. First, we consider different feature extractors
and investigate how they can be grounded by leveraging our
approach. We then compare our method with prior work. We
ablate the components of OVDiff, visualize the prototypes,
and conclude with a qualitative comparison with prior works
on in-the-wild images.
Datasets and implementation details. As the approach
does not require further training of components, we only



Figure 3. Qualitative results. OVDiff in comparison to TCL (+ PAMR). OVDiff provides more accurate segmentations across a range objects
and stuff classes with well defined object boundaries that separate from the background well.

consider data for evaluation. Following prior work [70],
to assess the segmentation performance, we report mean
Intersection-over-Union (mIoU) on validation splits of PAS-
CAL VOC (VOC) [18], PASCAL Context (Context) [42] and
COCO-Object (Object) [7] datasets, with 20, 59, and 80 fore-
ground classes, respectively. These datasets include a back-
ground class to reflect a realistic setting of non-exhaustive
vocabularies. Context also contains both “things” and “stuff”
classes. We also evaluate without background on VOC, Con-
text, ADE20K [78], COCO-Stuff [7] and Cityscapes [14],
with 20, 59, 150, 171, and 19 classes, respectively, but do not
consider this a realistic setting as it relies on knowing which
pixels cannot be described by a set of categories. Thus we
leave such evaluation to Appendix A.3. Similar to [9, 70, 71],
we employ a sliding window approach. We use two scales to
aid with the limited resolution of off-the-shelf feature extrac-
tors with square window sizes of 448 and 336 and a stride
of 224 pixels. We set the size of the support set to N = 32.
For the diffusion model, we use Stable Diffusion v1.5; for
unsupervised segmenter �, we employ CutLER [64].

4.1. Grounding feature extractors
Our method can be combined with any pretrained visual
feature extractor for constructing prototypes and extracting
image features. To verify this quantitatively, we experiment
with various self-supervised ViT feature extractors (Tab. 2):
DINO [8], MAE [23], and CLIP [46]. We also use SD as a
feature extractor.

We find that SD performs the best, though CLIP and
DINO also show strong performance based on our experi-
ments on VOC. MAE shows the weakest performance, which
may be attributed to its lack of semanticity [23]; yet it is still
competitive with the majority of purposefully trained net-
works when employed as part of our approach. We find that
taking keys of the second to last layer in CLIP yields better

results than using patch tokens (CLIP token). As feature
extractors have different training objectives, we hypothesise
that their feature spaces might be complementary. Thus, we
also consider an ensemble approach. In this case, the cosine
distances formed between features of different extractors
and respective prototypes are averaged. The combination
of SD, DINO, and CLIP performs the best. We adopt this
formulation for the main set of experiments.

4.2. Comparison to existing methods
In Tab. 1, we compare our method with prior work that does
not rely on manual mask annotation on three datasets: VOC,
Context, Object. We include a brief overview of the meth-
ods in the supplement. We find that our method compares
favourably, outperforming other methods in all settings. In
particular, results on VOC show the largest margin, with
more than 5% improvement over prior work.

We also consider a version of our method, OVDiff (-
CutLER), that does not rely on an additional unsupervised
segmenter �. Instead, the attention masks are thresholded.
We observe that such a version of OVDiff has strong per-
formance, outperforming prior work as well. CutLER is
helpful, but not a critical component, and OVDiff performs
strongly without it.

In the same table, we also combine our method with
PAMR [1], the post-processing approach employed by TCL.
We find that it improves results for our method, though im-
provements are less drastic since our method already yields
better segmentation and boundaries.

Qualitative results are shown in Fig. 3. This figure high-
lights a key benefit of our approach: the ability to exploit
contextual priors through the use of background prototypes,
which in turn allows for the direct assignment of pixels to
a background class. This improves segmentation quality
because it makes it easier to differentiate objects from the



Figure 4. Analysis of the segmentation output by linking regions to samples in the support set. Left: our results for different classes. Middle:
select color-coded regions “activated” by different prototypes for the class. Right: regions in the support set images corresponding to these
(part-level) prototypes.

Table 3. Ablation of different components. Each component is
removed in isolation, measuring the drop (�) in mIoU on VOC
and Context datasets. Using SD features.

Configuration VOC � Context �

Full 64.4 29.4

w/o bg prototypes 53.2 -11.2 28.9 -0.5
w/o category filter 54.4 -10.0 25.2 -4.2
w/o “stuff” filter n/a 26.9 -2.5
w/o CutLER 60.4 -4.0 27.6 -1.8
w/o sliding window 62.2 -2.2 28.6 -0.8
only average P̄ 62.5 -1.9 28.4 -1.0

background and to delineate their boundaries. In comparison,
TCL predictions are very coarse and contain more noise.
Computation cost. We focus on a construction of a method
to show that existing foundational diffusion models can be
used for segmentation with great efficacy without further
training. OVDiff requires computing prototypes instead.
With our unoptimized implementation, we measure around
110 ± 10s to calculate prototypes using SD for a single
class, or around 1.14 TFLOP/s-hours of compute. While the
focus of this study is not computational efficiency, we can
compare prototype sampling to the cost of additional training
of other methods: TCL requires 2688, GroupViT 10752, and
OVSegmentor 624 TFLOP/s-hours.1 While training has an
upfront compute cost and requires special infrastructure (e.g.
OVSegmentor uses 16⇥A100s), OVDiff’s prototype set can
be grown progressively as needed, while showing better
performance.

1Estimated as training time ⇥ num. GPUs ⇥ theoretical peak TFLOP/s
for GPU type.

Figure 5. PascalVOC results with increasing support size N .

4.3. Ablations

Next, we ablate the components of OVDiff on VOC and Con-
text datasets. For these experiments, only SD is employed
as a feature extractor. We remove individual components
and measure the change in segmentation performance, sum-
marising the results in Tab. 3. Our first observation is that
background prototypes have a major impact on performance.
When removing them from consideration, we instead thresh-
old the similarity scores of the images with the foreground
prototypes (set to 0.72, determined via grid search); in this
case, the performance drops significantly, which again high-
lights the importance of leveraging contextual priors. On
Context, the impact is less significant, likely due to the
fact that the dataset contains “stuff” categories. Remov-
ing the instance- and part-level prototypes also negatively
affects performance. Additionally, removing the category
pre-filtering has a major impact. We hypothesize that this
introduces spurious correlations between prototypes of dif-
ferent classes. On Context, “stuff” filtering is also important.
We again consider the importance of using an unsupervised
segmenter, CutLER, for prototype mask extractions, using
thresholding instead. We find this slightly reduces perfor-
mance in this setting as well. Overall, background prototypes
and pre-filtering contribute the most.

Finally, we measure the effect of varying the size of the



Figure 6. Qualitative comparison on challenging in-the-wild images with TCL, which struggles with object boundaries, missing parts of
objects, or including surroundings. Our method has more appropriate boundaries and makes fever errors overall, but does produce a small
halo effect around objects due to the upscaling of feature extractors.

support set N in Fig. 5. We find that OVDiff already shows
strong performance even at a low number of samples for
each query. With increasing the number of samples, the
performance improves, saturating at around N = 32. which
we use in our main experiments.

4.4. Explaining segmentations
We inspect how our method segments certain regions by
considering which prototype from P fg

c
was used to assign

a class c to a pixel. Prototypes map to regions in the sup-
port set from where they were aggregated, e.g., instances
prototypes are associated with foreground masks M fg

n
and

part prototypes with centroids/clusters. By following these
mappings, a set of support image regions can be retrieved
for each segmentation decision, providing a degree of ex-
plainability. Fig. 4 illustrates this for examples of dog, cat,
and bird classes. For visualisation purposes, selected pro-
totypes and corresponding regions are shown. On the left,
we show the full segmentation result of each image. In the
middle, we select regions that correlate best with certain
class prototypes. On the right, we retrieve images from the
support set and highlight where each prototype emerged.
We find that meaningful part segmentation merges due to
clustering the support image features, and similar regions
are segmented by corresponding prototypes. However, some-
times region covered in the input image will not fully align
with the whole prototype (e.g. cat’s face around the eyes or
lower belly/tail of bird). Each segmentation is explained
by precise regions in a small support set.

4.5. In-the-wild
In Fig. 6, we investigate OVDiff on chal lenging in-the-wild
images with simple and complex backgrounds. We compare
with TCL+PAMR. In the first three images, both methods

correctly detect the objects identified by the queries. OVDiff
has small false positive "corgi" patches. TCL however misses
large parts of the objects, such as most of the person, and
parts of animal bodies. The distinction between the house
and the bridge in the second image is also better with OVD-
iff. We also note that our segmentations sometimes have
halos around objects. This is caused by upscaling the low-
resolution feature extractor (SD in this case). The last two
images contain challenging scenarios where both approaches
struggle. The fourth image only contains similar objects
of the same type. Both methods incorrectly identify plain
donuts as either of the specified queries. OVDiff however
correctly identifies chocolate donuts with varied sprinkles
and separates all donuts from the background. In the final
picture, the query “red car” is added, although no such object
is present. The extra query causes TCL to incorrectly iden-
tify parts of the red bus as a car. Both methods incorrectly
segment the gray car in the distance. However, overall, our
method is more robust and delineates objects better despite
the lack of specialized training or post-processing.

5. Conclusion
We introduce OVDiff, an open-vocabulary segmentation
method that operates in two stages. First, given queries,
support images are sampled and their features are extracted
to create class prototypes. These prototypes are then com-
pared to features from an inference image. This approach
offers multiple advantages: diverse prototypes accommodat-
ing various visual appearances and negative prototypes for
background localisation. OVDiff outperforms prior work
on benchmarks, exhibiting fewer errors, effectively separat-
ing objects from background, and providing explainability
through segmentation mapping to support set regions.
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