
FPGA-Gym: An FPGA-Accelerated Reinforcement
Learning Environment Simulation Framework

Jiayi Li⋄, Hongxiao Zhao⋄, Wenshuo Yue⋄, Yihan Fu⋄, Daijing Shi⋄, Anjunyi Fan⋄,
Qinghao Wang⋄, Yaodong Yang⋄†, Bonan Yan⋄∗
⋄Peking University †Beijing Institute for General AI
∗Corresponding author: bonanyan@pku.edu.cn

Abstract

Reinforcement learning (RL) faces the key challenge of balancing exploration (gath-1

ering information about the environment through trials) and exploitation (exploiting2

current knowledge to maximize rewards), especially in the open world. To boost3

exploration efficiency, parallel environment execution is a widely used technique4

that instantiates multiple environments and executes them in parallel. However,5

this is computationally challenging using CPUs limited by the total thread numbers.6

In this work, we present FPGA-Gym, an FPGA-CPU joint acceleration framework7

for accelerating RL environment parallel executions. By offloading environment8

steps to FPGA hardware, FPGA-Gym achieves a 4.36 to 972.6× speedup over9

the existing fastest software-based framework for parallel environment execution.10

Moreover, FPGA-Gym is a general RL acceleration framework compatible with11

existing RL algorithms and frameworks. Its modular and parameterized features12

allow users to conveniently customize new environments without extensive FPGA13

knowledge. We demonstrate multiple representative RL benchmarks (e.g. Cartpole,14

CliffWalking, Seaquest etc.) with Deep Q-Network and proximal policy optimiza-15

tion algorithms. Additionally, we provide a standard environment library similar to16

Gymnasium based on FPGA-Gym framework. The framework and the library are17

available at https://github.com/Selinaee/FPGA_Gym.18

1 Introduction19

Reinforcement learning (RL) is highly effective in addressing sequential decision-making problems. It20

empowers artificial agents to make decisions within an environment to maximize cumulative rewards21

over time. RL faces the key challenge of balancing exploration (gathering information about the22

environment through trials) and exploitation (exploiting current knowledge to maximize rewards) [1,23

2], especially in the open world. To boost exploration efficiency, parallel environment execution is a24

widely used technique that instantiates multiple environments and executes them in parallel, allowing25

multiple agents to interact with the environment simultaneously, thereby rapidly accumulating26

experience (Fig. 1(a)). However, updating a large number of environments in parallel places a27

substantial demand on computational resources [3–5]. Fig. 1(b) reveals that parallel environment step28

computation inflicts long latency, highlighting the significant computational demands required for29

environment evolution.30

The key challenge in parallel RL environment execution lies in rapidly updating numerous parallel31

environments [3, 4, 6, 7]. On conventional hardware platforms, multithreading is the major tackle32

for parallelism. Central processing units (CPUs) can only manage a certain level of parallelism33

with limited thread numbers. Graphics processing units (GPUs) [8] and tensor processing units34

(TPUs) are also under intense investigation to parallelize environment execution for RL. However,35

RL environment execution presents unique challenges in sequential Markov decision process (MDP)36

https://github.com/Selinaee/FPGA_Gym

(a)

agent_1
agent_2

agent_n

env_1
env_2

env_i

Observations, Rewards, Terminates

... ...Actions

RL Rollout
Computation

Training Inference Environment Step

(b)

FPGA-Gym

Envpool

VectorEnv

0.0 1.0 2.0 3.0
Compute Latency/Step (s)

8.1×

3.1×

SW or HW
Thread 1

env
step

next state
reward

env_i
state

neural
nets action

SW or HW
Thread 2 : Agent j rollout

SW or HW
Thread m : Agent n rollout

...

Parallel Envrionment Execution Computation in RL

Traning and Inference Environment Step(c)

im
pl

em
en

ta
tio

n

-slow
-low $

-fast
-high $

-fast
-scalable
-flexible
-low $

CPU thread

CPU thread

CPU thread

CPU

GPU/TPU
threads

CPU or
GPU or
TPU

FPGA
parallel

env instances

CPU
+GPU

This work (FPGA_Gym Framework)

SW or HW
Thread 3 : Agent p rollout

SW or HW
Thread 4 : Agent q rollout

Figure 1: (a) Rollout computation of RL; (b) Compute latency breakdown in different RL acceleration
frameworks; (c) Illustration of typical realizations of parallel RL environment execution.

computation [9–12]. The agent-environment interactions are modeled as Markov chains, characterized37

by iterative dynamic state transitions, such as environment resets and reward functions [13–15]. These38

elements are difficult to parallelize and scale efficiently on GPUs or TPUs (Fig. 1c).39

To address the challenge, this work proposes to use field-programmable gate arrays (FPGAs) as the40

hardware acceleration foundation [16–21]. FPGAs are programmable semiconductor chips consisting41

of reconfigurable digital logic circuit blocks and interconnects. To the best of our knowledge, this42

work presents the first holistic FPGA-CPU joint acceleration framework, termed as FPGA-Gym,43

for massively instantiating and parallelizing RL environment computation. It offloads the44

execution of environment steps onto FPGAs via a high-bandwidth peripheral component interconnect45

express (PCIe) interface to the CPU. This work aims to overcome the limitations of CPUs and GPUs46

in handling logically complex and data-intensive RL tasks.47

FPGA-Gym is fast and scalable. We propose pipeline and time division multiplexing techniques for48

acceleration [22]. Compared to EnvPool, the fastest CPU-based environment parallelism library49

at present, FPGA-Gym achieves a 4.36 to 972.6× speedup. In a grid-world task like CliffWalking,50

FPGA-Gym can instantiate more than 8,000 parallel environments in one FPGA chip.51

FPGA-Gym is easy to customize. We implement FPGA-Gym in parameterized and modular manners. It52

provides a plug-in usage for users without FPGA knowledge. Customizing new environments on top53

of FPGA-Gym is convenient, only requiring revising the computing module of a single environment54

inside our provided template. Other parameterized parallel operations and interactions between FPGA55

and CPU are already defined in the framework backbone code.56

FPGA-Gym is general and compatible with the existing algorithms and libraries. We release an57

open-source FPGA-Gym library, including various types of RL environments. Moreover, FPGA-Gym58

focuses on the environment execution and is compatible to the existing learning algorithms, e.g. deep59

Q-network (DQN) [23, 24] and proximal policy optimization (PPO) [25, 26], without modifying the60

learning framework source code.61

2 Related Works62

CPU-based RL frameworks: Gymnasium [27], VectorEnv and Sample Factory [28] offer63

multithreading or multiprocessing to run each environment in an independent thread or process.64

However, running programs with tens or hundreds of threads is troublesome in that the users have to65

take care of thread synchronization, context-switching overhead, and memory bandwidth limitations.66

EnvPool [22] leverages C++ backend for optimized parallel computing and memory management,67

achieving a 2.8× speedup compared to its Python counterpart. Nonetheless, it requires the developer68

to manually translate the Python-written environment into C++. As the number of instantiated69

environments increases, the parallelization becomes increasingly constrained by the fixed number of70

CPU threads, thereby limiting its scalability.71

2

https://github.com/Selinaee/FPGA_Gym

GPU-/TPU- based RL frameworks: GPUs/TPUs demonstrate significant performance boosts in72

computing large-scale linear algebra. Naturally, researchers would like to apply this advantage to RL73

acceleration. Researchers have adapted the source code of several pure-compute RL environments,74

e.g. MuJoCo, etc. [8, 29–42], to be compatible with GPU/TPU using CUDA or JAX toolkits for75

parallelism. Complex real-world or intricate logical tasks can be challenging to simulate using76

GPUs or TPUs due to their inefficiency in parallelizing sequential logic operators [43]. Moreover,77

the process of deploying environments to these hardware accelerators involves significant software78

engineering efforts, including the need to work with different programming models and low-level79

libraries. These challenges and limitations can make it difficult to fully leverage the computational80

power of GPUs and TPUs for such purposes.81

3 FPGA-Gym Framework82

3.1 User workflow83

FPGA-Gym accommodates the needs of two user groups:84

Standard environment users, who would like to accelerate the RL rollouts and training, can85

simply ➀ plug the FPGA board into a computer motherboard via PCIe interface→➁ configure86

the parallel environment number parameter (“env_num”)→➂ load the Verilog program onto the87

FPGA→➃ import the Python environments→➄ run the program. FPGA-Gym provides a set of reliable88

implementations of state-of-the-art RL algorithms. The FPGA_Gym library has included off-the-89

shelf RL environment examples. CPUs only handle data packing and transmission since the parallel90

environment computation runs entirely on the FPGA. This setup requires minimal dependencies, only91

using the “os” and “NumPy” [44] packages, making it highly compatible with various parallel RL92

algorithm libraries. Fig. 2(a) shows the typical source code to work with Stable-Baseline3 [45], a93

popular training framework for RL in Python, with the help of FPGA-Gym.94

Custom environment users, who would like to customize new environments, need to ➀ implement95

the new environment step function in Verilog HDL [46] with the provided template (detailed in96

Section 3.3 and the supplementary materials) → ➁ update the basic environment computation module97

in the template and modify the parameters in the template (see the supplementary materials for98

step-by-step guidance).99

step 5. Writeback
Observations. etc*

step 7 Unpack
Observations. etc*

R
L

La
ye

r
H

ar
dw

ar
e

La
ye

r
Tr

an
s

La
ye

r

Observations. etc* = env.step (Actions)

TrainingInference

np.frombuffer

os.pread()

np.tobytes

step
Pack Actions

step 6 Transfer
Observations. etc*

step
Transfer Actions

step
Cache Actions

step 4. EnvStep

os.pwrite()

CPU+GPU

FPGA
DevBoard

PCIe

inference train

st

st+1

at

at

θ,Φ θ,Φ

st , at ,
Rt , At

environment Current State BRAM

Observations RegActions Reg

Current State Reg

Block RAM (BRAM)

3 5

62

4

T2

T3

T4

T6

T5

PE PE PE PE PE PE...

PCIe Interface

inside
FPGA

1

2

3

4

5

6

7

from stable_baselines3 import PPO
from CartPole import FPGAEnv
env = FPGAEnv(env_num)
model = PPO("MlpPolicy", \
 env, verbose, batch_size)
model.learn(total_timesteps)
env.fpga_close()

FPGA-Gym
Hardware
System

GPU

PC
Ie

 C
ab

le

FPGA

CPU
Workstation

(a)

(b) (c) (d)

Figure 2: (a) Typical source code to run FPGA-Gym; (b) Photo of the proposed FPGA-Gym hardware
system; (c) System architecture diagram of FPGA-Gym in a hierarchical manner. “Observations Reg”
stores the observations, rewards, and terminate signals in FPGA computing rollouts. “PE” is the
processing element synthesized in FPGA, which is a basic computing circuit module for a single
environment instance.

3.2 Implementing FPGA-Gym framework100

FPGA-Gym offloads the dominating environment step computation onto FPGA. The environment101

step in RL refers to the iterative process of obtaining the corresponding observation, reward, and102

termination based on the action generated by the agent. Each environment update is done in 7 steps103

in FPGA-Gym, as illustrated in Fig. 2(c): ➊Pack data: CPU packs environment initial states and104

agent actions into bytes. ➋Transfer actions: CPU transfers the packed data to FPGA block random105

3

https://github.com/Selinaee/FPGA_Gym

time

Pack Transfer
Actions

EnvStep

Unpack
Observations

Writeback
Observations

Cache
Actions

Transfer
Observations

class Env(Params):
 def encode():
 ^^.

 def decode():
 ^^.

 def step():
 ^^.

module step(Params);
^/env steps
endmodule

module EnvTemplate();
^/instantiate
encode u_encode();
decode u_decode();
step u_step();
endmodule

Verilog Env TemplatePython Env Definition

iteration for multiple env steps

self-termination
control signal

minimized length to Current States Reg

From Env_Instance 1

From Env_Instance n-save on-chip registers

-autonomous
timing control

PE

PE

PE

Current States Reg

time-division
multiplexing

states
data...

-increase throughput
pipeline execution

Pack Transfer
Actions

Unpack
Observations

Transfer
Observations

epoch 0 FP64
epoch 1 FP64
epoch 2 FP64
epoch 3 FP64

epoch p FP64

...

0.125 (4Byte)
0.110 (4Byte)
0.110 (4Byte)
-0.110 (4Byte)

-0.125 (4Byte)

∆rewards

arithmetic coding compression

00 (2bit)

01 (2bit)
01 (2bit)

10 (2bit)

11 (2bit)

-efficiently use PCIe bandwidth
PCIe Interface

FPGA side

-8~32× packet data size reduction

(a) Operating Flow Optimization

(b) FPGA Resource Utilization Optimization (d) Customize New Environments in FPGA-Gym

(c) Data Transfer Optization between FPGA and CPU

similar

our implementation

Figure 3: (a) The operating flow optimization; (b) FPGA resource utilization optimization; (c) data
transfer optimization; (d) a template to customize new environments in FPGA-Gym. The orange text
labels the proposed techniques.

access memory (BRAM) via PCIe. ➌Cache actions: reading initial states, current states, actions,106

and terminations from BRAM into registers for parallel computation. ➍Environment step: when the107

last step execution ends, the compute units use the initial states and actions as inputs. Otherwise,108

they use the current states and actions as inputs. The compute units then output the next states,109

observations, rewards, and termination flags. Then the current states are replaced by the next states.110

➎Writeback observations: storing observations, rewards, and terminates into BRAM. ➏Transfer111

observations: transferring observations, rewards, and terminates from BRAM to CPU via PCIe.112

➐Unpack: CPU unpacks observations, rewards, and terminates bytes into Python object/data types.113

➊, ➋, ➏, and ➐ is realized on the CPU side in Python. It seamlessly integrates with reinforcement114

learning algorithms within Python code. ➌, ➍, ➎ runs independently on FPGA and is implemented115

with Verilog HDL [46]. To boost the computational throughput, we propose the following techniques116

to achieve highly pipelined and compressed computation.117

3.2.1 Pipeline design118

To achieve acceleration, we first model and profile the aforementioned workflow latency step by step.119

T2, T3, T4, T5 and T6 represent time costs of step ➋ to ➏ depicted in Fig. 2(c), respectively:120

T2 =
k1 × env_num

vt
T3 =

k1 × env_num
vb

Twithout_pipeline
4 = c× env_num Twith_pipeline

4 = c

T5 =
k2 × env_num

vb
T6 =

k2 × env_num
vt

(1)

where env_num is the number of environments to update, c (unit: second) is the time to compute121

one environment step, k1 (unit: GByte) is the data size of action per environment, k2 (unit: GByte) is122

the data size of observation, reward, and termination per environment, vb (unit: GByte/second) is the123

transfer speed between BRAM and register, vt (unit: GByte/second) is transfer (PCIe) bandwidth124

between CPU and FPGA. For steps ➊ and ➐, we adopted efficient data packing and unpacking125

strategies that consider both software and hardware aspects. Thanks to the robust functionality of126

NumPy, these processes execute very quickly and occupy only a small fraction of the total runtime.127

The measured and estimated time T2∼6 will be given in Section 4 and the supplementary materials.128

We instantiate multiple environment compute units on FPGA so that they can execute the step of129

multiple environments in a few clock cycles (often around 3∼10 ns/cycle) at the same time. Instead130

of realizing the aforementioned 7 steps sequentially, we implement a pipeline design specifically131

between step ➍ and step ➎ so that the computing (➍) and access to BRAM (➎) inside FPGA occur132

simultaneously to improve the computing throughput. Because the computation overlaps with the133

data transfer in time, c (the time required to compute a single environment) and (pe_num · k2/vb)134

4

(the time required to transfer the computed data of a single environment to BRAM) should be equal135

to each other to avoid the case that one step waiting for the other to complete.136

3.2.2 Time-division multiplexing & self-termination reset137

Storing a large number of current states would consume FPGA on-chip registers as the parallelism is138

high. We carry out time-division reuse of this part of resources (Fig. 3(b)). Only when this part of139

data is used, will it write in current states register from BRAM. This technique leads to an efficient140

usage of FPGA on-chip computing and memory resources,i.e. the FPGA on-chip hardware resources141

do not grow dramatically as the number of environments (“env_num”) increases. Additionally, in142

a vectorized parallelism approach, managing individual environment resets upon the reception of143

a “done” signal can be challenging. To solve this difficulty, we employ the self-termination reset in144

the control flow. Each computation unit receives the action associated with a specific environment,145

accompanied by the current state and termination signal from the preceding step, as well as the initial146

state. If the termination signal is asserted, the environment automatically reverts to the initial state as147

the input for the subsequent step calculation. This method voids significant wait times or processing148

overhead.149

3.2.3 Local access & data compression150

The quantity of data transmitted has a direct impact on the values of the coefficients k1 and k2 in151

Equation 1. To optimize data transmission, we employ the following techniques in FPGA-Gym. Firstly,152

the state of the environment is preserved within the FPGA and updated automatically following each153

calculation, except the initial state, which is received only once at the beginning. In subsequent154

iterations, only the action sent from the CPU is accepted as an input. Secondly, for tasks where155

the reward value encompasses several types but varies significantly, our framework uses arithmetic156

coding to compress the reward values (illustrated in Fig. 3(c)). The reward values are replaced by157

a categorical code, followed by batch numerical processing upon returning to the CPU. Lastly, for158

tasks that allow for the concatenation of multiple values into a 32-bit number, we use bit-packing and159

unpacking techniques to compress data, thereby enhancing data utilization efficiency. Details can be160

found in the supplementary materials.161

3.3 Customizing new environments162

FPGA-Gym is a general RL acceleration framework that supports customized environments. We163

have capsulated the aforementioned workflow, pipeline, and compression into the backbone code164

of FPGA-Gym. We provide a template for the customized environment step function (an epitome is165

given in Fig. 3(d)). This source code template leaves all of the environment step functions empty and166

the user can directly use Verilog HDL language (very similar to Python when it comes to the flow167

control) to implement their environment or translate the environment Python code into Verilog HDL168

code. Once done, the next step is to set up the key parameters in the template and synthesize digital169

logic circuits on FPGA with the filled template.170

4 Experiments171

This section investigates the efficacy and compatibility of the FPGA-Gym framework for RL. In172

particular, we would like to quantitatively answer the following questions:➀ Q1: How effective173

is FPGA-Gym in accelerating different types of RL environments? ➁ Q2: How significant are the174

proposed design techniques (detailed in Section 3.2) on the parallel environment execution speedup?175

➂ Q3: How to work with FPGA-Gym together the existing RL training algorithms and frameworks?176

Benchmarks & Baselines: We select the typical environments CartPole, Pendulum, CliffWalking,177

and BlackJack in Gymnasium [27] as the representatives for benchmarking. These 4 environments178

cover discrete/continuous variable space, partially/globally observable simulation, and various cate-179

gories including classic control, grid world, and strategy games (Table 1). The acceleration framework180

baselines are EnvPool [22] and VectorEnv [27]. EnvPool is the latest and fastest (to the best of our181

5

Table 1: Typical Environments For Benchmarking

Environment
Name

Environment
Type

Action
Space Type

Observation
Space Type

Rewards
Type Observability

CartPole physical control discrete continuous discrete full
Pendulum physical control continuous continuous continuous full

MountainCar physical control discrete continuous discrete full
CliffWalking gird world discrete discrete discrete full
FrozenLake gird world discrete discrete discrete full

Taxi gird world discrete discrete discrete full
BlackJack strategy game discrete discrete discrete partial
Seaquest atari game discrete discrete discrete full

knowledge) before this work to implement the above 4 environments. VectorEnv is a widely-used182

vectorized environment native to Gymnasium libraries using multithreading.183

Hardware Environment Setup: The hardware platform we use has an off-the-shelf Xilinx VC707184

development board with 8-lane PCIe2.0 interfacing to a workstation with an Intel Core i9-10900K185

CPU and 128GB DDR4 memory. For the rollout length, 105 iterations are used to average the speed186

measurement experiments. All the training experiments set fixed 5 random seeds for reproducibility.187

For training, we employ DQN and PPO algorithms. PPO is implemented by directly calling the RL188

training programming framework Stable-Baseline3 [45, 47].189

4.1 Experiments on acceleration190

(a) (b) (c) (d)

4.36 × 6.47 × 9.30 × 13.02 ×

Figure 4: Measured throughputs of parallel environment steps (rollouts).

To answer Q1, we measure the throughputs at different parallelism of Pendulum, CartPole, BlackJack,191

and CliffWalking environments compared with EnvPool and VectorEnv frameworks, shown in192

Fig. 4. The x-axis is the number of instantiated parallel environments to compute. The y-axis is193

the total number of steps updated per second, which represents the computational throughput of194

executing environments in parallel (higher is better). Compared to EnvPool, FPGA-Gym improves195

the throughput by 4.36× for Pendulum, 6.47× for CartPole when executing 4000 instantiated196

environments in parallel, and 9.30× for BlackJack, 13.02× for CliffWalking with 8000 parallel197

environments. When running 2048 parallel Seaquest environments, FPGA-Gym achieves a 972.6×198

speedup compared to EnvPool. This validates the significant improvement of our approach to199

accelerate parallel RL environment execution. As the number of parallel environments increases,200

EnvPool reaches its maximum throughput earlier than FPGA-Gym, indicating a better scalability of201

FPGA-Gym. This confirms the original motivation of our proposed solution. The EnvPool’s curves in202

Fig. 4 reach saturation because of the limited number of computing threads; FPGA-Gym’s curves get203

lower slopes due to the BRAM bandwidth and PCIe transmission bandwidth.204

4.2 Experiments on pipeline-driven efficiency and hardware resource utilization205

To answer Q2, we test the execution latency breakdown before and after implementing pipeline206

optimization as well as the hardware resource utilization improvements. Fig. 5 shows the measured207

6

Each Stage Time and Steps Per Second vs Parameters (Before optimization and After optimization)

Steps Per Second (before optimization)
Steps Per Second (after optimization)

The Number of Parallel Environments

St
ep

s
Pe

r S
ec

on
d

64 160 320 480 640 800 960 1120

0.2

0.4

0.6

0.8

1.0
Ti

m
e

(n
s)

0.5

1

1.5

2

1e7

Pack Actions Time

Unpack Obs.etc*
Transfer Obs.etc*
Compute Time
Transfer Actions Time

before optimization
after optimization

1e5

0

 2
.3

 x

 2
.0

 x

save 70% time
by pipeline

save 66% time
by local storesave 18% time

by local store

Figure 5: Each Stage Time and Steps Per Second vs The Number of Parallel Environments (Before
and After Optimization) ∗: "Obs. etc" represents for the observations, rewards, and terminates.

computing latency of each stage in the workflow and steps per second before and after pipeline208

optimization. Here we take the CartPole task [27] as an example.209

The x-axis is the number of parallel environments. The left y-axis is the execution time (stacked210

bar chart, lower values are better). The right y-axis is the steps per second (curves, higher is better).211

In each group of the stacked bars, the left (right) stacked bars are the execution time before (after)212

optimization. As the number of parallel environments increases, the computing module dominates213

the entire execution time. For the task with 1,120 instantiated CartPole environments in parallel, the214

pipeline technique saves up to 70% of compute time. Moreover, storing environment states locally215

saves CPU to FPGA’s transmission time by 66.0% and data packing time by 33.1%. With everything216

considered, FPGA-Gym achieves a 2.3× speedup than before optimization.217

It is convenient in FPGA-Gym to scale out the number of parallel environments. By tuning the218

“env_num” parameter, the FPGA-Gym framework can automatically complete the instantiation with219

more FPGA resources. Table 2 shows FPGA resource utilization at different parallel environment220

numbers. “pe_num” is the number of compute modules that compute the step of one environment.221

“c” is the time that a single RL environment computes. Look-up tables (LUTs), flip-flops (FFs)222

are the components to implement combinational logic, and registers to store intermediate results,223

respectively. The numbers in the last 3 rows are the FPGA implementation results for how many224

of the corresponding components are used. As shown, the LUTs and FFs of parallel BlackJack225

increase only 8.49% and 19.07% as env_num increases from 96 to 8000 (84×), thanks to the proposed226

time-division multiplexing technique. Computing circuits (LUTs) and registers (FFs) can be shared227

among the environment instances.228

Table 2: FPGA resource utilization

Environment Cliffwalking Cartpole Pendulum BlackJack
env_num 64 8000 480 4000 192 4032 96 8064
pe_num / c (ns) 2/20 20/800 24/960 16/160

power(W) 4.118 4.258 8.388 8.898 9.87 10.38 4.471 4.644
LUTs 27364 43481 175725 196896 228021 260307 46832 50811
FFs 26829 42821 254842 258832 267556 390253 41937 49938

4.3 Experiments on end-to-end agent training229

To answer Q3, we evaluate the effects of FPGA-Gym on the existing RL algorithms and frameworks.230

We deploy the PPO algorithm from Stable-Baselines3 in 64 parallel CartPole environments with231

three frameworks–VectorEnv, EnvPool, and FPGA-Gym. The results are shown in Fig 6 (a) and232

(b). In Fig. 6, the x-axis of (a), (c), and (e) is the time of the entire RL training process, including233

7

VectorEnvEnvPoolFPGA-Gym

× 102

EpisodesTime(s) EpisodesTime(s)

 PPO + CartPole

Total StepsTime(s)
0 200 0 5M 10M

1

2

3

4

0 200 0 200

× 102× 102

-10

-7.5

-5

0 2000 250 500

1

2

3

0

Av
er

ag
e

R
et

ur
n

DQN + CartPole DQN + CliffWalking
(a) (b) (c) (d) (e) (f)

 7%

 18%
 61%

 12% 15%

 44%

Figure 6: End_to_End_Train.

training, inference, and environment steps, etc. The x-axis of (b) is the total steps executed in the RL234

training process. The x-axis of (d), and (f) is the number of episodes executed during RL training.235

The y-axis is the measured average rewards during training. Fig. 6(a)(b) indicates that the training236

performance of the three methods is similar for the same number of steps. However, FPGA-Gym237

consistently achieves this performance faster than EnvPool and VectorEnv. When the total steps238

reach 12,000,000, the training time of FPGA-Gym is reduced by 18% and 7% compared to VectorEnv239

and EnvPool, respectively. Fig. 6(c)(d) presents the training performance of the CartPole using240

the DQN algorithm with 64 parallel environments. When episode number reaches 300, the training241

time of FPGA-Gym is reduced by 61% and 12% compared to VectorEnv and EnvPool, respectively.242

Fig. 6(e)(f) illustrates the training performance of the Cliffwalking environment using the DQN243

algorithm with 160 parallel environments. FPGA-Gym, EnvPool and VectorEnv achieve similar244

average rewards at the same episodes. When the number of episodes reaches 300, the training time of245

FPGA-Gym is reduced by 44% and 15% versus VectorEnv and EnvPool, respectively. The above246

results validate the compatibility of FPGA-Gym with various RL algorithmic libraries and frameworks,247

as well as the acceleration of training.248

5 Limitation & Future Work249

The primary motivation behind FPGA-Gym is to create a comprehensive hardware-enabled RL accel-250

eration framework that maximizes the potential of heterogeneous computing platforms, including251

CPUs, GPUs, and FPGAs. In its current form, FPGA-Gym supports a basic combination of GPU252

for neural networks, CPU for flow control, and FPGA for rollout acceleration. Our plans include253

exploring efficient task distribution and delicate scheduling among CPUs, GPUs, and FPGAs to254

enhance performance in dynamic, unpredictable open-world scenarios. Furthermore, we aim to255

enhance the scalability of FPGA-Gym by integrating a network of multiple FPGAs in upcoming256

versions. In the future, we plan to improve the BRAM bandwidth for better speedup ratios using257

multiple PCIe controllers and faster PCIe interfaces. With these enhancements, FPGA-Gym is set to258

deliver increased speed and scalability.259

6 Conclusion260

This study presents FPGA-Gym, a novel acceleration framework that combines FPGA and CPU261

components to enhance the performance of RL environments’ parallel executions. By offloading262

environment steps to FPGA reconfigurable hardware, FPGA-Gym achieves a significant speedup of263

4.36 to 972.6× over the fastest existing software-based framework. We provide a modular design and264

parametric approach to simplify the deployment of environment updates for users without extensive265

FPGA expertise. A specialized FPGA-based parallel template is introduced for step operations in RL266

environments, similar to JAX’s functionality but focusing on individual environments as the smallest267

units of computation. This approach offers flexibility and customization. The FPGA-Gym framework268

is compatible with existing RL algorithms and frameworks, including DQN and PPO algorithms. A269

standard environment library, similar to Gym library, is provided based on the FPGA-Gym framework.270

The library is publicly available https://github.com/Selinaee/FPGA_Gym.271

8

https://github.com/Selinaee/FPGA_Gym

Acknowledgments and Disclosure of Funding272

This work was supported by National Natural Science Foundation of China (no. T2350006, 92264201,273

92364102); and the 111 Project under Grant B18001. This work is sponsored by Beijing Nova274

Program. The authors declare no competing interests.275

References276

[1] Zeyuan Ma, Hongshu Guo, Jiacheng Chen, Zhenrui Li, Guojun Peng, Yue-Jiao Gong, Yining277

Ma, and Zhiguang Cao. MetaBox: A Benchmark Platform for Meta-Black-Box Optimization278

with Reinforcement Learning. Conference on Neural Information Processing Systems (NeruIPS),279

2024.280

[2] Zhecheng Yuan, Sizhe Yang, Pu Hua, Can Chang, Kaizhe Hu, and Huazhe Xu. RL-ViGen:281

A Reinforcement Learning Benchmark for Visual Generalization. In Conference on Neural282

Information Processing Systems (NeurIPS), 2024.283

[3] Lasse Espeholt, Raphaël Marinier, Piotr Stanczyk, Ke Wang, and Marcin Michalski. SEED284

RL: Scalable and Efficient Deep-RL with Accelerated Central Inference. In International285

Conference on Learning Representations (ICLR), 2019.286

[4] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric Liang,287

Melih Elibol, Zongheng Yang, William Paul, Michael I Jordan, et al. Ray: A distributed288

framework for emerging {AI} applications. In Symposium on Operating Systems Design and289

Implementation (OSDI), 2018.290

[5] Jiaming Ji, Borong Zhang, Jiayi Zhou, Xuehai Pan, Weidong Huang, Ruiyang Sun, Yiran Geng,291

Yifan Zhong, Josef Dai, and Yaodong Yang. Safety gymnasium: A unified safe reinforcement292

learning benchmark. Conference on Neural Information Processing Systems (NeruIPS), 2023.293

[6] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam294

Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl295

with importance weighted actor-learner architectures. In International conference on machine296

learning (ICML), 2018.297

[7] Xuehai Pan, Mickel Liu, Fangwei Zhong, Yaodong Yang, Song-Chun Zhu, and Yizhou Wang.298

Mate: Benchmarking multi-agent reinforcement learning in distributed target coverage control.299

In Conference on Neural Information Processing Systems (NeurIPS), 2022.300

[8] Steven Dalton and Iuri Frosio. Accelerating Reinforcement Learning through GPU Atari301

Emulation. In Conference on Neural Information Processing Systems (NeurIPS), 2020.302

[9] Misha Laskin, Denis Yarats, Hao Liu, Kimin Lee, Albert Zhan, Kevin Lu, Catherine Cang,303

Lerrel Pinto, and Pieter Abbeel. URLB: Unsupervised Reinforcement Learning Benchmark. In304

Conference on Neural Information Processing Systems (NeurIPS), 2021.305

[10] Christopher Yeh, Victor Li, Rajeev Datta, Julio Arroyo, Nicolas Christianson, Chi Zhang, Yize306

Chen, Mohammad Mehdi Hosseini, Azarang Golmohammadi, Yuanyuan Shi, et al. SustainGym:307

Reinforcement Learning Environments for Sustainable Energy Systems. In Conference on308

Neural Information Processing Systems (NeurIPS), 2024.309

[11] Denis Tarasov, Alexander Nikulin, Dmitry Akimov, Vladislav Kurenkov, and Sergey Kolesnikov.310

Corl: Research-oriented deep offline reinforcement learning library. In Conference on Neural311

Information Processing Systems (NeurIPS), 2024.312

[12] Yun Qu, Boyuan Wang, Jianzhun Shao, Yuhang Jiang, Chen Chen, Zhenbin Ye, Liu Linc, Yang313

Feng, Lin Lai, Hongyang Qin, et al. Hokoff: Real Game Dataset from Honor of Kings and its314

Offline Reinforcement Learning Benchmarks. In Conference on Neural Information Processing315

Systems (NeurIPS), 2024.316

9

[13] Rong-Jun Qin, Xingyuan Zhang, Songyi Gao, Xiong-Hui Chen, Zewen Li, Weinan Zhang, and317

Yang Yu. Neorl: A near real-world benchmark for offline reinforcement learning. In Conference318

on Neural Information Processing Systems (NeurIPS), 2022.319

[14] Xiao-Yang Liu, Ziyi Xia, Jingyang Rui, Jiechao Gao, Hongyang Yang, Ming Zhu, Christina320

Wang, Zhaoran Wang, and Jian Guo. FinRL-Meta: Market environments and benchmarks for321

data-driven financial reinforcement learning. In Conference on Neural Information Processing322

Systems (NeurIPS), 2022.323

[15] Hua Wei, Jingxiao Chen, Xiyang Ji, Hongyang Qin, Minwen Deng, Siqin Li, Liang Wang,324

Weinan Zhang, Yong Yu, Liu Linc, et al. Honor of kings arena: an environment for generalization325

in competitive reinforcement learning. In Conference on Neural Information Processing Systems326

(NeurIPS), 2022.327

[16] Akhil Raj Baranwal, Salim Ullah, Siva Satyendra Sahoo, and Akash Kumar. ReLAccS : A328

multilevel approach to accelerator design for reinforcement learning on FPGA-based systems.329

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (IEEE TCAD),330

2021.331

[17] Yuan Meng, Sanmukh Kuppannagari, and Viktor Prasanna. Accelerating Proximal Policy332

Optimization on CPU-FPGA Heterogeneous Platforms. In International Symposium on Field-333

Programmable Custom Computing Machines (FCCM), 2020.334

[18] Hyungmin Cho, Pyeongseok Oh, Jiyoung Park, Wookeun Jung, and Jaejin Lee. FA3C: FPGA-335

Accelerated Deep Reinforcement Learning. In Conference on Architectural Support for Pro-336

gramming Languages and Operating Systems (ASPLOS), 2019.337

[19] Chan-Wei Hu, Jiang Hu, and Sunil P. Khatri. TD3lite: FPGA acceleration of reinforcement338

learning with structural and representation optimizations. In Conference on Field-Programmable339

Logic and Applications (FPL), 2022.340

[20] Yuan Meng, Chi Zhang, and Viktor Prasanna. FPGA acceleration of deep reinforcement learning341

using on-chip replay management. In Proceedings of the 19th ACM International Conference342

on Computing Frontiers (CF), 2022.343

[21] Samuel Wiggins, Yuan Meng, Rajgopal Kannan, and Viktor Prasanna. Accelerating multi-agent344

DDPG on CPU-FPGA heterogeneous platform. In IEEE High Performance Extreme Computing345

Conference (HPEC), 2023.346

[22] Jiayi Weng, Min Lin, Shengyi Huang, Bo Liu, Denys Makoviichuk, Viktor Makoviychuk,347

Zichen Liu, Yufan Song, Ting Luo, Yukun Jiang, Zhongwen Xu, and Shuicheng Yan. Envpool:348

A Highly Parallel Reinforcement Learning Environment Execution Engine. In Conference on349

Neural Information Processing Systems (NeurIPS), 2022.350

[23] Todd Hester, Matej Vecerík, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan Horgan,351

John Quan, Andrew Sendonaris, Ian Osband, Gabriel Dulac-Arnold, John P. Agapiou, Joel Z.352

Leibo, and Audrunas Gruslys. Deep Q-learning From Demonstrations. In AAAI Conference on353

Artificial Intelligence (AAAI), 2018.354

[24] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G355

Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.356

Human-level control through deep reinforcement learning. Nature, 2015.357

[25] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal358

policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.359

[26] Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu.360

The surprising effectiveness of ppo in cooperative multi-agent games. In Conference on Neural361

Information Processing Systems (NeurIPS), 2022.362

10

[27] Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan363

Deleu, Manuel Goulão, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-364

Vicente, Andrea Pierré, Sander Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G.365

Younis. Gymnasium. https://zenodo.org/record/8127025, 2023.366

[28] Aleksei Petrenko, Zhehui Huang, Tushar Kumar, Gaurav S. Sukhatme, and Vladlen Koltun.367

Sample Factory: Egocentric 3D Control from Pixels at 100000 FPS with asynchronous rein-368

forcement learning. In International conference on machine learning (ICML), 2020.369

[29] Robert Tjarko Lange. gymnax: A JAX-based reinforcement learning environment library.370

http://github.com/RobertTLange/gymnax, 2022.371

[30] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based372

control. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2012.373

[31] Matteo Hessel, Manuel Kroiss, Aidan Clark, Iurii Kemaev, John Quan, Thomas Keck, Fabio374

Viola, and Hado van Hasselt. Podracer architectures for scalable reinforcement learning. arXiv375

preprint arXiv:2104.06272, 2021.376

[32] Tian Lan, Sunil Srinivasa, Huan Wang, and Stephan Zheng. Warpdrive: Fast end-to-end deep377

multi-agent reinforcement learning on a GPU. Journal of Machine Learning Research (JMLR),378

2022.379

[33] Michael Matthews, Michael Beukman, Benjamin Ellis, Mikayel Samvelyan, Matthew Jackson,380

Samuel Coward, and Jakob Foerster. Craftax: A lightning-fast benchmark for open-ended381

reinforcement learning. arXiv preprint arXiv:2402.16801, 2024.382

[34] Sotetsu Koyamada, Shinri Okano, Soichiro Nishimori, Yu Murata, Keigo Habara, Haruka383

Kita, and Shin Ishii. Pgx: Hardware-Accelerated Parallel Game Simulators for Reinforcement384

Learning. In Conference on Neural Information Processing Systems (NeurIPS), 2023.385

[35] Clément Bonnet, Daniel Luo, Donal Byrne, Shikha Surana, Vincent Coyette, Paul Duckworth,386

Laurence I. Midgley, Tristan Kalloniatis, Sasha Abramowitz, Cemlyn N. Waters, Andries P. Smit,387

Nathan Grinsztajn, Ulrich A. Mbou Sob, Omayma Mahjoub, Elshadai Tegegn, Mohamed A.388

Mimouni, Raphaël Boige, Ruan de Kock, Daniel Furelos-Blanco, Victor Le, Arnu Pretorius, and389

Alexandre Laterre. Jumanji: a diverse suite of scalable reinforcement learning environments in390

JAX. In International Conference on Learning Representations (ICLR), 2023.391

[36] Alexander Rutherford, Benjamin Ellis, Matteo Gallici, Jonathan Cook, Andrei Lupu, Garðar392

Ingvarsson, Timon Willi, Akbir Khan, Christian Schröder de Witt, Alexandra Souly, Saptarashmi393

Bandyopadhyay, Mikayel Samvelyan, Minqi Jiang, Robert Tjarko Lange, Shimon Whiteson,394

Bruno Lacerda, Nick Hawes, Tim Rocktäschel, Chris Lu, and Jakob N. Foerster. Jaxmarl: Multi-395

agent RL environments and algorithms in JAX. In Proceedings of International Conference on396

Autonomous Agents and Multiagent Systems (AAMAS), 2024.397

[37] Mathias Lechner, Lianhao Yin, Tim Seyde, Tsun-Hsuan Johnson Wang, Wei Xiao, Ramin M.398

Hasani, Joshua Rountree, and Daniela Rus. Gigastep - One Billion Steps per Second Multi-agent399

Reinforcement Learning. In Conference on Neural Information Processing Systems (NeurIPS),400

2023.401

[38] Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles402

Macklin, David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, and Gavriel State. Isaac403

Gym: High Performance GPU Based Physics Simulation For Robot Learning. In Conference404

on Neural Information Processing Systems (NeurIPS), 2021.405

[39] C. Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier406

Bachem. Brax - A differentiable physics engine for large scale rigid body simulation. In407

Conference on Neural Information Processing Systems (NeurIPS), 2021.408

11

https://zenodo.org/record/8127025
http://github.com/RobertTLange/gymnax

[40] Alexander Nikulin, Vladislav Kurenkov, Ilya Zisman, Viacheslav Sinii, Artem Agarkov, and409

Sergey Kolesnikov. XLand-minigrid: Scalable meta-reinforcement learning environments in410

JAX. In Conference on Neural Information Processing Systems (NeurIPS), 2023.411

[41] Benjamin Ellis, Jonathan Cook, Skander Moalla, Mikayel Samvelyan, Mingfei Sun, Anuj Ma-412

hajan, Jakob Foerster, and Shimon Whiteson. Smacv2: An improved benchmark for cooperative413

multi-agent reinforcement learning. In Conference on Neural Information Processing Systems414

(NeurIPS), 2024.415

[42] Yiheng Zhu, Yang Zhan, Xuankun Huang, Yuwei Chen, Jiangwen Wei, Wei Feng, Yinzhi Zhou,416

Haoyuan Hu, Jieping Ye, et al. Ofcourse: A multi-agent reinforcement learning environment for417

order fulfillment. In Conference on Neural Information Processing Systems (NeurIPS), 2024.418

[43] Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo Perez-Vicente, Lucas Willems,419

Salem Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld:420

Modular & customizable reinforcement learning environments for goal-oriented tasks. In421

Conference on Neural Information Processing Systems (NeurIPS), 2024.422

[44] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen,423

David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern,424

Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime425

Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard,426

Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant.427

Array programming with NumPy. Nature, 2020.428

[45] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah429

Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of430

Machine Learning Research (JMLR), 2021.431

[46] IEEE. IEEE Standard for Verilog Hardware Description Language. IEEE Std 1364-2005432

(Revision of IEEE Std 1364-2001), 2006.433

[47] Antonin Raffin. RL Baselines3 Zoo. https://github.com/DLR-RM/rl-baselines3-zoo,434

2020.435

12

https://github.com/DLR-RM/rl-baselines3-zoo

	Introduction
	Related Works
	FPGA-Gym Framework
	User workflow
	Implementing FPGA-Gym framework
	Pipeline design
	Time-division multiplexing & self-termination reset
	Local access & data compression

	Customizing new environments

	Experiments
	Experiments on acceleration
	Experiments on pipeline-driven efficiency and hardware resource utilization
	Experiments on end-to-end agent training

	Limitation & Future Work
	Conclusion

