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Abstract

Extensive literature has drawn comparisons between recordings of biological neu-
rons in the brain and deep neural networks. This comparative analysis aims to
advance and interpret deep neural networks and enhance our understanding of
biological neural systems. However, previous work did not consider the time aspect
and how video and dynamics (e.g., motion) modelling in deep networks relate to
the biological neural systems within a large-scale comparison. Towards this end,
we propose the first large-scale study focused on comparing video understanding
models with respect to the visual cortex recordings using video stimuli. The study
encompasses around half a million regression fits, examining image vs. video
understanding, convolutional vs. transformer-based and fully vs. self-supervised
models. We show that video understanding are better than image understanding
models, convolutional models are better in the early-mid visual cortex regions than
transformer based ones except for multiscale transformers, and that two-stream
models are better than single stream. Furthermore, we propose a novel neural
encoding scheme that is built on top of the best performing video understanding
models, while incorporating inter-intra region connectivity across the visual cor-
tex. Our neural encoding leverages the dynamics modelling from video stimuli,
through utilizing two-stream networks and multiscale transformers, while taking
connectivity priors into consideration. Our results show that merging both intra
and inter-region connectivity priors increases the encoding performance over each
one of them standalone or no connectivity priors. It also shows the necessity for
encoding dynamics to fully benefit from such connectivity priors.

1 Introduction

There has been a recent increase in studies that compare how deep neural networks process input
stimuli to the processing that occurs in the brain|Zhou et al.| (2022); Conwell et al.| (2021)); [Schrimpf]
et al.| (2018); (Cichy et al.[(2019,2021). Recent benchmarks have been released to improve machine
learning for neural encoding [Schrimpf et al.|(2018)); (Cichy et al.| (2019} 2021)); |Gifford et al.| (2023).
One of the well-established benchmarks that studied how deep networks compare to biological neural
systems is The Algonauts 2021 dataset and challenge that focused on video stimuli |Cichy et al.
(2021); Lahner et al.|(2024)). Recent works investigated the ability of deep networks to regress on
the brain responses for video stimuli Zhou et al.|(2022) from the aforementioned dataset. However,
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they mainly worked with single-image deep neural networks. Inspired by this approach, we focus
on studying video understanding models to draw insights on how the brain understands actions
and models dynamics. While some works in neuroscience studied the time aspect [Zhuang et al.
(2021)); IN1shimoto et al.| (2011); Khosla et al.| (2021)); IN1shimoto| (2021)); [Lahner et al.| (2024);
Giiclii & Van Gerven| (2017); [Shi et al.| (2018)); Sinz et al.| (2018); [Huang et al.| (2023)), they did
not focus on large-scale comparison. Our work focuses on the first study of state-of-the-art deep
video understanding models from a neuroscience lens. Our study takes various properties into
consideration where we study image vs. video understanding, convolutional vs. transformer based,
single-stream vs two-stream, and fully supervised vs. self supervised ones. Our results show that
video understanding models are better than image understanding ones in predicting the human visual
cortex recordings. Specifically, two-stream convolutional models and multiscale transformers were
the best. Interestingly, we show that multiscale transformers exhibit similar behaviour to convolutional
models when encoding early-mid cortex regions unlike other transformer based models.

The brain is an interconnected system with local correlations within one region and global correlations
across regions |Geng et al.| (2016)); [Li et al.| (2022). Few recent works explored the potential of using
cortical connectivity in neural encoding models Mell et al.| (2021)); Xiao et al.|(2022). Nonetheless,
previous voxels-to-voxels models are not designed to take stimulus as input and define source voxels
in an ad hoc manner. Inspired by that direction, we propose a fully integrated model that learns a two-
stage architecture, stimulus-to-voxels and voxels-to-voxels. Our approach takes into consideration
voxels from all visual cortex regions and learns the weighting mechanism, instead of relying on ad
hoc non learnable mechanism to define source voxels. Finally, we show the interplay of dynamics
modelling and connectivity priors in improving the neural encoding of the visual cortex.

In summary, our contributions are two fold: (i) We showcase the first large-scale study of deep
video understanding models on responses from the human visual cortex where the models include
convolutional vs. transformer-based, single vs. two stream, and fully vs. self-supervised. (ii) We
propose a novel fully integrated encoding model with intra and inter-region connectivity priors with
features extracted from video understanding models that learned to encode dynamics.

2 Method

Environment design. In this study, we focus on the question of “How do deep video understanding
models families compare to biological neural systems?”. Towards this, we study the identification
across families of models when encoding the brain responses. Specifically, families are defined based
on: (i) the input, whether models learned from single images or videos encouraging them to learn
dynamics and motion, (ii) the supervision, whether they are trained fully-supervised or in a self-
supervised manner using unlabeled data, and (iii) the architecture, whether it uses local convolutions
or transformer-based global operations. While previous works Han et al.| (2023)) working on single
image architectures focused on the architecture aspect, we argue it is even more important to look into
whether the model is learning dynamics (e.g., motion) or simply using static information from a single
image. Moreover, it is important to understand the impact of the supervision signal used to train the
model. We use the public fMRI dataset from Mini-Algonauts |Cichy et al.[(2021). We perform cross-
validation over four folds throughout all our experiments. The dataset provides fMRI recordings of ten
subjects who watched 1000 short video clips of three seconds average duration. The videos clips were
sampled from the Memento10k dataset Newman et al.|(2020). The fMRI data were acquired with a 3
T Trio Siemens scanner and provided at TR one second and resolution of 2.5 x 2.5 x 2.5 mm Lahner
et al.| (2024). We use the brain responses from nine regions of interest of the visual cortex, these are
across two levels: (i) early and mid-level visual cortex (V1, V2, V3, and V4), and (ii) high-level
visual cortex (EBA, FFA, STS, LOC, and PPA). We run our experiments on more than 35 models
that are listed in Table [I] along with their model family and configurations. Video understanding
models include C2D [Li et al.| (2019), CSN [Tran et al.| (2019), I3D |Carreira & Zisserman| (2017)),
R(2+1)D|Tran et al.|(2018)), SlowFast, the Slow branch (3D ResNet-50) Feichtenhofer et al.| (2019),
X3D |[Feichtenhofer| (2020), MViT |Fan et al.|(2021)), and TimeSformer Bertasius et al. (2021). Self-
supervised video understanding models, sStMAE |[Feichtenhofer et al.| (2022) and OmniMAE |Girdhar
et al.|(2023) are used as well. Single image understanding models include ResNets|He et al.| (2016),
ViTs|Dosovitskiy et al.| (2021, DINO |Caron et al.|(2021)), and MAE He et al.| (2022]).

Neural encoding. Inspired by the recent work Zhou et al.|(2022), we use a layer-weighted region of
interest encoding that takes the hierarchical nature of deep networks into consideration. Initially, we



Table 1: List of the families of models, (their backbone/s, the training datasets, and the configuration
as clip length, sampling rate). IN: ImageNet Deng et al.| (2009), K: Kinetics-400 |Kay et al. (2017)),
Ch: Charades Kay et al.|(2017) and SSV2: Something-something v2 [Sigurdsson et al.| (2016).

Input | Sup. | Arch. Network (Backbone/s - Dataset/s - Config.)
C2D (R50-K-8, 8) |Li et al.|(2019)
CSN (R101-K-32, 2) |Tran et al.|(2019)
Vid 13D (R50-K-8, 8) |Carreira & Zisserman|(2017)
’ Conv. R(2+1)D (R50-K-16, 4) [Tran et al.|(2018)
Full SlowFast (R50,101-K,Ch,SSV2-8, 8/4, 16) [Feichtenhofer et al.[(2019)
3DResNet (R18,50-K,Ch,SSV2-8, 8/4, 16) |Feichtenhofer et al.|(2019)
X3D (XS,S,M,L-K-Matched Sampling) [Feichtenhofer| (2020)
Transf MVIT (B-K-16, 4/32, 3) |[Fan et al.|(2021)
" | TimeSformer (B-K,SSV2-8, 8) |Bertasius et al.|(2021])
OmniMAE finetuned (B-SSV2-8, 8) |Girdhar et al.| (2023
Self | Transf stMAE (L-K-8, 8) [Feichtenhofer et al.| (2022 B
" | OmniMAE (B,L-IN/SSV2-8, 8) |Girdhar et al.|(2023)
Full Conv. ResNet (R152,101,50,34,18-IN-8, 8) [He et al.[(2016)
Img Transf. | ViT (B16,32,1.16,32-IN-8, 8) Dosovitskiy et al.|(2021)
) Self | Transf DINO (B-IN-8, 8) |Caron et al.[(2021)
" | MAE (B-IN-8, 8) He et al.|(2022)

pre-process the input features from the different layers of a candidate model through averaging the
features on the temporal dimension. This is followed by performing sparse random projection Li et al.
(2006) for dimensionality reduction and computational efficiency reasons. Assume input features for
layer, [, after dimensionality reduction as, X; € RE*! with C features. We learn the weights of one
fully connected layer to provide the predictions of the voxels of one region of interest in the visual
cortex as, Y; = W, X;. Where W, € RVXC YV € RNX1 and N is the number of voxels in the region
of interest. We learn a weighted sum of the predictions of all layers and use the following loss,

L L
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=1 =1

where w; is a learnable scalar weight for layer, [, and, w, is the vector of weights. Each w;, controls the
contribution of layer, /, to the final regression, and /31, B2 are hyper-parameters of the regularization.
We use L1 regularization for the layer weights to enforce sparsity. This encoding avoids unnecessary
assumptions that there is a one-to-one alignment between layers and visual brain regions.

Inter-intra region connectivity priors. We present a novel encoding scheme on top of the best-
performing video understanding models by fully integrating the neural encoding with inter- and
intra-region voxel connectivity priors. The input video stimuli goes through the source video
understanding model to extract multiple layers features, followed by the connectivity module which
takes the concatenated voxels of the nine visual regions as input. This module consists of two fully-
connected layers with L2 regularization and dropout, outputting the predicted voxels of one region.
We train our model in a two-stage fashion, where we train the standard neural encoding scheme,
followed by training the connectivity module. In the training phase, the main target is to learn the
connectivity between the voxels of all the regions and the target region including intra-connectivity
between the voxels of the target region itself and the inter-connectivity between voxels of the target
region and the other visual regions. During training, the input to the connectivity is the groundtruth
voxel activations. During inference, the input to the connectivity is the predicted activations.

3 Experimental results

Implementation details. In the case of both video and image understanding, we sample a clip from
the input video to extract features for that clip. The input clips are constructed based on the sampling
rate used during the model training for video understanding models. As for image understanding
models, we use sampling rate eight. Before training the regressor, a hyperparameter tuning for
B1, B2 is conducted using two-fold cross-validation on the training set of the first subject, following
previous work [Zhou et al.| (2022). Moreover, an early-stopping strategy is employed. We report
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Figure 1: Experiments showing regression scores as Pearson’s correlation coefficient for model
families. (a) Comparison of image vs. video understanding models, (b) comparison of convolutional
vs. transformer-based models and (c) comparison of fully supervised vs. self-supervised models.
Statistical significance (using Welch’s t-test) is shown as ‘ns’ not significant, “x, %, * % %’ significant
with p-values < 0.05,0.01, 0.001, respectively.
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Figure 2: Fine-grained analysis showing the Pearson’s correlation coefficient as the regression scores.
(a) Single vs. two stream SlowFast. (b) OmniMAE pre-trained with self-supervision, TimeSformer,
and OmniMAE fine-tuned with full supervision. (c) Top-2 video understanding models w.r.t others.
Statistical significance (using paired t-test) is shown as ‘ns’ not significant, “x, xx, x x %’ significant
with p-values < 0.05,0.01, 0.001, respectively.

the average Pearson’s correlation coefficient across all voxels within a specific region in the brain.
All results are averaged over the subjects. We conduct experiments on four folds and report the
average and standard deviation. In each fold, the 1,000 videos are split into training and testing sets
as 90% and 10%, respectively. We ran statistical significance across families of models using Welch’s
t-test. We show statistical significance as ‘ns’ not significant, ‘x, xx, * * x’ significant with p-values
< 0.05,0.01,0.001, resp.

Neural encoding results. We compare families of video understanding models to the human visual
cortex. We conduct three comparisons; single image vs. video understanding families of models,
convolutional-based vs. transformer-based models, and fully-supervised vs. self-supervised models.
Figure [Ta] demonstrates that across most brain regions, video understanding models have better
capability to model the visual cortex responses than single image architectures. This is aligned
with the dynamic nature of visual processing in the brain given that humans process the world in
motion[Hegdé| (2008). Figure [Tb|shows the comparison between transformer-based and convolutional-
based models. It shows that convolutional models have higher regression scores across early-mid
regions in the visual cortex with relatively high statistical significance. This difference decrease
as we go to higher level regions until it becomes insignificant. This might be tied to recent works
showing transformers lacking the ability to capture high-frequency components [Bai et al.[ (2022),
while early layers in convolutional models are better in capturing such high-frequency components.
Interestingly, we notice transformers equipped with multiscale processing, MViTs, tend to behave
similar to convolutional ones in early-mid regions unlike other transformers. Figure|lc|also shows
that fully-supervised models are better able to predict most of the regions than self-supervised models.

Fine-grained analysis. We conduct a fine-grained analysis that goes beyond families of models.
We start with studying two stream vs. single stream architectures across three datasets. Figure [2a]
shows that the two stream architectures have better ability to model the visual cortex than single
stream ones in the low level regions and are either better or on-par in the high level regions. We
then discuss the self-supervised learning results that showed worse regression scores in comparison
to full supervision. Towards this end, we investigate OmniMAE variants (i.e., self supervised and
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Figure 3: (a) Comparison of base model accuracies of MViT-B-16x4 and SlowFast and their ac-
curacies after incorporating the intra-region and inter-region voxel connectivity. (b) Comparison
of performance enhancement by incorporating the intra-region and inter-region voxel connectivity
together or each of them separately. (c) Average weights per region contributing to the accuracy
enhancement of each target visual region. Statistical significance (using paired t-test) is shown as ‘ns’
not significant, “x, xx, * x %’ significant with p-values < 0.05,0.01, 0.001, respectively.

[l ResNet-50 Base [| ResNet-50 Connectivity ‘ [l ResNet-50 [ MViT ‘

-
§ 4
=2 g .
£ 0.3 eo BN g
o (=] 5 3 =
o
wn el ] E o
g — o
1 )
7y S = 2
$ 0.2 S . m
) AR ——
5 -
= g1
[l I
0.1 & o
V1l V2 V3 V4 LOC EBA FFA STS PPA é Vi V2 V3 V4 LOC EBA FFA STS PPA

Visual Cortex Regions Visual Cortex Regions

(@) (b)
Figure 4: (a) Comparison of ResNet-50 with and without connectivity. (b) Comparison of improve-
ment in the regression scores in ResNet-50 vs. MViT w/ Connectivity Priors. Difference in regression
scores is shown after multiplying by 100 for visualization. Statistical significance (using paired
t-test) is shown as ‘ns’ not significant, “x, k%, % * %’ significant with p-values < 0.05,0.01,0.001,
respectively.

finetuned) and TimeSformer. Figure [2b] confirms that fully supervised models give better scores
than the self-supervised ones across all regions. Furthermore, Figure [2c|shows that both SlowFast, a
two-stream architecture, and MViT, a multiscale vision transformer, are the best in neural encoding.

Inter-intra region connectivity. We show the results of our improved neural encoding that builds
upon the best video understanding models (MViT-B and SlowFast) while incorporating intra- and inter-
region connectivity. Figure[3a]shows the statistically significant enhancements in prediction accuracy
after incorporating our connectivity priors. As an ablation study, we examined the performance
enhancement in MViT-B in the case of intra- or inter-connectivity separately. Figure [3b|shows that
the full-connectivity (i.e., combining both) is either superior or on-par with intra- or inter-connectivity
standalone. To better understand the directional connectivity between the regions, we analyzed the
average learned weights of each region as shown in Fig. It shows: 1) the effect of one region
on another is not symmetric but directional, ii) early-mid regions are the highest contributors to the
accuracy enhancement of other early-mid regions, and the same for late-regions, iii) V4 is contributing
to both early-mid and late regions, and iv) the contributions of late regions on early regions (V1, V2)
are stronger than contribution of early on late ones which could be attributed to the top-down influence
of feedback-pathways|Gilbert & Li/ (2013). Additionally we confirm the benefit of connectivity priors
in single image understanding models in Fig.[4a] yet the gain from connectivity is higher in video
understanding models than single image ones as shown in Fig.[db] It confirms that connectivity priors
are maximally beneficial with dynamics based models.



4 Conclusion

This paper has provided a large-scale study of video understanding models from a neuroscience
perspective. We show that convolutional models predict better the early-mid regions than transformer
based ones except with multiscale transformers. Then we demonstrate a better neural encoding
scheme that utilizes both dynamics modelling and inter-intra region connectivity.
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