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Abstract

Large Reasoning Models (LRMs) have made
great progress in complex reasoning tasks by
being trained to generate step-by-step thinking
paths. However, the length of these models’
outputs also increases drastically with unneces-
sary reasoning chains—a phenomenon termed
“overthinking ”—especially when solving sim-
ple problems with clear solution paths. This
paper introduces three principles for efficient
reasoning: Simplicity (minimizing redundant
content), Sufficiency (ensuring critical reason-
ing steps are retained), and Accuracy (arriving
at correct answers). Motivated by them, we in-
troduce LC-R1, a reinforcement learning (RL)
algorithm introducing a novel collaboration of
length reward and a compress reward/penalty,
in addition to the accuracy reward. Hence, it
encourages compression that can preserve the
accuracy and completeness of the thinking pro-
cess. Extensive experiments across five math-
ematical reasoning benchmarks with Distill-
Qwen-1.5B/7B as base models demonstrate
that LC-R1 outperforms other RL-based and
SFT-based methods in both compression rate
and accuracy, significantly reducing output to-
kens with minimal accuracy loss. Our findings
provide valuable insights for developing more
efficient LRMs that balance computational re-
source usage with reasoning quality.

1 Introduction

Large Reasoning models (LRMs) have made sig-
nificant breakthroughs in complex reasoning tasks,
which greatly enhances the depth of problem solv-
ing by guiding models to generate step-by-step
thinking paths (Wei et al., 2023). Recently, Ope-
nAI’s Ol (Jaech et al., 2024) have introduced long-
thought reasoning models that mimic human-like
problem-solving processes. In addition to O1, re-
searchers have also developed models that infer-
ence with a similar long-thought reasoning pattern,
such as Deepseek-R1 (DeepSeek-Al et al., 2025),
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Figure 1: Comparing to other baselines, LC-R1 pro-
duces clear explicit responses with less redundant and
minimal necessary reasoning paths.

QwQ-32B (Team, 2025b) and Phi-4-Reasoning
(Abdin et al., 2025). Trained with Group Rel-
ative Policy Optimization (GRPO) using simple
rule-based reward, these models demonstrate un-
precedented potential by iteratively identifying and
correcting errors, simplifying intricate steps, and
exploring alternative strategies when initial ap-
proaches prove inadequate in fields such as math-
ematics (Sun et al., 2025) and programming (Gu
et al., 2024), marking an important step forward in
super-human planning and reasoning skills.
However, with the improvement of “deep think-
ing” ability, an increasingly prominent problem is
the consumption of computing resources during
the reasoning process (Chen et al., 2025; Aggarwal
and Welleck, 2025; Chen et al., 2025). Specifi-
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Figure 2: Comparison of different efficient reasoning methods. Our LC-R 1 makes the best token compression for
current Large Reasoning Models comparing to other Supervised and RL-based Fine-Tuning methods.

cally, existing models tend to generate lengthy and
even unnecessary chains of reasoning when solv-
ing problems with low complexity or clear solution
paths. This phenomenon, referred to by researchers
as “overthinking”, is manifested in the process
of the model consuming far more computing re-
sources than the problem itself requires in reaching
the correct conclusion (Chen et al., 2024a; Sui et al.,
2025; Cuadron et al., 2025). Therefore, one critical
problem arises:

What is the ideal efficient reasoning model?

To address this challenge, we need to estab-
lish what constitutes an optimal reasoning/accuracy
budget. Therefore, based on model performance
and efficiency considerations, we propose three key
principles for efficient reasoning:

 Simplicity: The proportion of redundant content
in thinking process should be minimal, and the
model’s total reasoning should be concise.

 Sufficiency: Model must engage in accurate
thinking rather than skipping reasoning steps.

* Accuracy: Model must arrive at correct answers
as the primary principle.

Based on these three principles, we define two
metrics—Valid Thinking (VT)—for quantifying
performance of efficient reasoning that favor re-
sponses exit thinking process after its first outputs
the correct answer and overally the complete an-
swer length. And—Compressed Ratio (CR)—
that measures the efficiency of current length com-
pression methods.

We evaluate current reasoning models and var-
ious efficient pruning methods using this metric
and discover they fall significantly short of our de-
fined optimal compression ratio, indicating substan-
tial room for improvement. Consequently, guided

by our three principles, we design LC-R1, an al-
gorithm based on GRPO design specifically for
LRM post-training to enhance reasoning efficiency.
We adjust GRPO’s loss function, which steers the
model to the concise reasoning process. We com-
bine the compressed reward and length reward with
GRPO'’s base reward, guiding the model to pruning
the reasoning process from compressing verbose
tokens and the rollout length.

We conduct experiments across five challenge
mathematical reasoning benchmarks and Distill-
Qwen-1.5/7B. Our LC-R1 outperform other RL-
based and SFT-based models in compression rate
with slight accuracy degradation. Specifically, with
only an 4.31% reduction in accuracy, we achieve
a 52.83% decrease in length, representing a % im-
provement over previous state-of-the-art methods.
We believe our approach can provide methodolog-
ical and experimental design insights for future
RL-based efficient reasoning models.

2 Preliminary: Compression and
Efficienct Reasoning Models

2.1 Motivation: Reduce Verbose Thinking

Typical reasoning models operate in a two-phase
approach: first “<think>" then perform inference.
During the thinking phase, models engage in exten-
sive deliberation to reach an answer, followed by
rapid reasoning during the inference phase. This
thorough thinking process enables models to cor-
rectly solve more challenging problems, achieving
higher accuracy rates. However, we’ve observed
that models often derive the correct final answer
quite early in their thinking process, yet continue
with multiple verification checks to ensure correct-
ness. These verification steps frequently constitute
a significant portion of the entire thinking process,



Table 1: Valid Thinking Rate of current state-of-the-art Large Reasoning Models. Even the latest Qwen3-32B

suffers from a verbosity thinking process.

Model ‘ Avg. ‘ AIME25 AMC GSM8K MATH500 OlympiadBench
Qwen-3-32B 57.5 73.8 58.8 53.8 46.6 51.5
QwQ-32B 59.2 70.8 58.2 54.1 53.1 59.6
DeepSeek-R1 65.3 66.5 71.8 64.2 59.8 64.0
Nemotron-Super-49B | 60.8 62.1 64.1 63.1 56.6 58.1

resulting in unnecessary verbosity.

Given this phenomenon, we propose a new met-
ric: Valid Thinking, defined as the portion of rea-
soning from the beginning of a model’s thinking
process until it first derives the correct answer. This
definition applies exclusively to CoT (Wei et al.,
2023) reasoning that yields correct answers.

LC-EXTRATOR. We develop a specialized
model LC-EXTRATOR based on Qwen2.5-3B-
Instruct to efficiently extract the position of the first
correct answer within the thinking process while
maintaining low computational requirements. We
construct a dataset consisting of 5,000 <Question,
Thinking Process, Answer> triplets and identify
the position of the first correct token using Gemini-
2.5-Flash (Google, 2025a), followed by rigorous
rule-based filtering. We then distill this knowledge
into a smaller model through training for 2 epochs
with these curated samples. LC-EXTRATOR’s ef-
fectiveness is validated on a 100-sample test set,
achieving 98% accuracy as confirmed by human
evaluation.

Based on LC-EXTRATOR, we evaluated
four state-of-the-art LRMs—QwQ-32b (Team,
2025b), Qwen3-32b (Team, 2025a), Deepseek-
R1 (DeepSeek-Al et al., 2025), and Llama-3.3-
nemotron-super-49b-v1 (Bercovich et al., 2025)—
across AIME25, MATH500, GSMS8K, AMC, and
OlympiadBench (Sun et al., 2025) benchmarks. Ex-
periment results are under a three time averaged
results for robustness.

Table 1 demonstrates that current LRMs (Lan-
guage Reasoning Models) indeed suffer from se-
vere thinking redundancy issues, presenting signif-
icant compression potential. While DeepSeek-R1
outperforms other reasoning models with an aver-
age efficiency of 65.3%, there remains substantial
room for improvement. Figure 1 reveals that cur-
rent inefficient reasoning models typically arrive at
correct answers during early stages of their think-
ing process, yet subsequently engage in excessive
verification steps and self-doubt that significantly

diminish computational efficiency.

2.2 Principles for Efficient Reasoning Model

By examining prior work and efficiency/accuracy
tradeoffs, we establish key guidelines for truly effi-
cient reasoning models:

* Simplicity: Minimal redundancy in thinking pro-
cesses with concise total reasoning length. This
addresses computational inefficiency of “over-
thinking,” where models generate excessive ex-
planations. We quantify this through compres-
sion metrics measuring essential-to-total reason-
ing ratios.

* Sufficiency: Accurate thinking without skipping
critical reasoning steps. Brevity must not com-
promise logical completeness. We evaluate by
tracking whether key logical steps remain intact
after compression.

* Accuracy: Correct answers as the primary con-
straint—efficiency gains must not compromise
solution correctness. Measured through standard
accuracy metrics across reasoning benchmarks.

These principles require models to maintain crit-
ical reasoning paths while eliminating redundant
verifications and circular thinking.

3 LC-R1: Length Compression with
Efficient Reasoning Principles

In this section, we introduce our LC-R1 method
whose pipeline is shown in 3.

3.1 Problem Formulation

Let M be the model and ¢ be the given query.
The output is 0 ~ M(q), where o = cat(R, A)
consists of a reasoning part R and an answer part
A. The function ¢(0) = R extracts the reasoning
part. For a reasoning part R, its effective prefix R’
includes the content from the beginning of R up
to the first occurrence of the correct answer. If R
does not contain the correct answer, then R’ = R.
The function f({R,A}) = {R/, A} extracts the
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Figure 3: An overview of our proposed LC-R1 method. LC-R1 consists of two key steps: (1) extraction. An
extraction model extracts the valid Thinking to generate compressed sequences. (2) Getting reward. Compressed
sequences are used to calculate Length reward and compress reward, getting the Advantages of sequences. (3)
LC-GRPO. GRPO loss is calculated by compressed sequences, steering models to get concise reasoning process.

concise reasoning part and concatenates it with the
answer. We denote o; as an original model output
and o, = f(o0;) as the refined, compressed output.

LC-R1 is a method based on GRPO to compress
the reasoning process efficiently. Within a group,
let C denote the set of indices for sequences o; that
are considered “correct” (e.g., leading to a correct
final answer and exhibiting sound reasoning), and
W be the set of indices for “wrong” or incorrect
sequences.The total number of sequences in a batch
isG=I[C|+ W|.

3.2 Reward and Objective Design

Our method can primarily be divided into two
aspects: the Length Reward, aimed at reducing
the overall output length, and the Compress Re-
ward, aimed at compressing redundant parts of the
model’s reasoning.

Length Reward. To compress the overall length
of the model output, we propose adding a length
penalty during the GRPO training process. We
hope that the correct sequences in a group are as
short as possible. For a given problem, we set a
threshold based on the problem’s difficulty. We
denote a bool value b = meanjcc|o;j| > threshold,

and we have:
1-— ‘07/‘/7 ifieC&b
max;ec [0} 1

0, ifieWw

Ti,length =

In the formula, we utilize the maximum length
within a group to adaptively adjust the length co-
efficient. Unlike Kimi (Team et al., 2025), we do
not use min-max normalization, thus avoiding the
amplification of subtle differences in length, which
ensures the focus remains on problems with signifi-
cant length disparities within a group. Additionally,
if the mean length of sequences in a group is less
than the threshold, no Length Reward is given to
prevent excessive compression by the model. Next,
based on the Length Reward and the original base
reward, we can obtain the combined reward:

T'i,base = Ti format T T%,accuracy ()
- T'i,base T & * T length, ificC
T = e (3
Ti base ifieWw
. e
r=7r; — mean({rj}jzl) 4

We only perform mean-subtraction normaliza-
tion on the combined reward, also to prevent the
model from being biased by difficulty due to stan-
dardization when the length differences are too
small.



Compress Reward. For the original GRPO
method, the loss calculation is based on the model’s
own sampling results. To compress redundant to-
kens in the model’s reasoning stage and learn to
stop reasoning upon first reaching the ground truth,
we modify the GRPO formula as follows:

J6reo(0) = By p(Q) {01}~y (Ola) ®)
G o]
! ZZ{mln Rt
die 1’0 i=1 t=1
clip(Rt(G), 1—e 14 6) LAy

- 5DKL(7"9("Q) | 7Tref("‘D) }]

Where o, = f(0;), that is we use the compressed
sequences to calculate loss, and we use another
model to fit the function. and R;(#) is defined as:

WQ(O;,tMa 0;,<t)

o1 (Og,t|q> O;',<t)

Rt(‘g) = 6)

We define the Advantages as follow:

Ai = (T - mean({fj}?zl)) + 74 compress (N
[t e
1 — 5ear ifi € C & ans € (o))
T'i,compress — § —1, if i € C & ans ¢ t(O;)
0, ifi e W

®)

In the Advantages, we add an additional reward
Ticompress On top of the original normalized re-
ward. The reason for this design is that the current
model’s loss calculation is based on the compressed
sequence 0. To enable the model to learn strate-
gies for compressing the reasoning part, o; needs to
have a generally positive advantage on early . We
utilize 1 — }iggg} to steer the model towards more
compressed sequences.

Based on the principle of Sufficiency, the model
should engage in sufficient reasoning during the
reasoning stage. Therefore, for cases where the
correct answer is not obtained during the reasoning
stage, we consider the reasoning to be insufficient
and impose a larger penalty, which lies a robustness
for training process.

What’s more,we drew inspiration from the work
of DAPO (Yu et al., 2025), modifying GRPO to
calculate the mean token reward across all tokens
in a group, instead of averaging the token rewards
within a single sequence. which eliminates the

original GRPO method’s preference for short se-
quences, facilitating the validation of our method’s
effectiveness.

4 Experiments

4.1 Experiment Setups

Backbone Models. We choose DeepSeek-R1-
Distill-Qwen-7B and DeepSeek-R1-Distill-Qwen-
1.5B to be the backbone models.

Dataset. We used a mixed-difficulty dataset,
combining past AIME competition problems with
the MATH dataset in a 1:3 ratio to create 1500
training samples. This approach enables the model
to learn length compression across problems of
varying difficulty.

Evaluation. We test our model’s performance on
multiple datasets, including AIME25, MATHS500,
GSMS8K, AMC, and OlympiadBench. We use av-
eraged Pass@1 as our primary metric. For each
test, we sample N times, setting top-p=0.95 and
temperature=0.7. For AIME25, we set N = 16,
while for the other test sets, we set N = 8. We set
the maximum length to 16384. Additionally, we
calculate their mean as a comprehensive evaluation
of the model.

4.2 Baselines

SFT. OVERTHINK (Chen et al., 2024a) proposes
using the first solution for SFT to significantly
reduce model length. We reconstructe an SFT
training set from the previously constructed label
dataset, with the think portion containing only label
data, using a total of 5000 samples for training.

DPO (Rafailov et al., 2023). We sample the
model multiple times on 5000 MATH benchmark
problems, taking the shortest and longest samples
as positive and negative samples, respectively, and
use 5000 samples for training.

O1 Pruner (Luo et al., 2025b). This work em-
ployed a PPO-like offline fine-tuning method to sig-
nificantly compress chain-of-thought (CoT) length
across multiple benchmarks while maintaining per-
formance. We similarly use 5000 samples from the
MATH dataset to train the model.

THINKPRUNE (Hou et al., 2025). This work uti-
lized a reinforcement learning approach, designing
a length-clip reward to compress CoT length in mul-
tiple stages. We use the open-source Length3000



Table 2: Accuracy (above) and length (below) of models and methods on different benchmarks. Avg represents
change compared to the large reasoning model (+ increase, — decrease).

Distill-Qwen-7B

Distill-Qwen-1.5B

Method AIME25 MATH500 GSMSK Olympiad AMC  Avg. (%) AIME25 MATH500 GSMS8K Olympiad AMC  Avg. (%)
Origin 40.2 93.0 92.6 61.2 81.9 - 2.8 83.7 83.4 442 61.2 -
g (11005)  (3880)  (1787)  (7388)  (6689) (12129)  (4869)  (2294)  (9258)  (8696)

SFT 36.6 90.2 91.9 56.0 787 —420% 205 81.4 81.3 427 597 —3.28%
(9457)  (2497)  (946)  (6329)  (5231) (-20.45%) (10639) (3045)  (1134)  (7637)  (6608) (-23.42%)

DPO 36.9 914 90.3 56.2 786  —420% 194 79.0 80.9 41.1 567 -6.16%
(9718)  (2277)  (980)  (6338)  (5122) (-20.53%) (10316) (2749)  (855)  (6544)  (5912) (-32.80%)

Ol-Pruner 35.0 91.5 91.1 59.6 771 396%  24.1 84.3 82.7 47.0 693  +4.10%
(8263)  (2268)  (1012)  (4712)  (4510) (=32.50%) (8687) (2913)  (1162)  (5960)  (5193) (~39.08%)

ThinkPrune 37.6 91.9 91.4 58.9 781  -2.98% 194 83.1 84.6 43.0 576 —2.68%
(8431)  (2631)  (1092)  (5732)  (4881) (=25.96%) (8851)  (3517)  (1533)  (6180)  (6070) (~29.89%)

SFT+OLPruner 353 91.0 89.7 56.0 766 -545% 175 80.2 81.5 40.0 587  —5.89%
(9466)  (2245)  (920)  (5807)  (5133) (=2336%) (9075)  (2769)  (919)  (6411)  (5553) (-35.71%)

LC.R1(Ours) 35 90.6 90.9 57.8 788  —4.12% 208 793 80.2 427 590  —4.50%
(6911)  (1843)  (675)  (4378)  (3799) (-44.56%) (5953) (1822)  (621)  (3780)  (3591) (~61.10%)

dataset from this work, test THINKPRUNE-3k, and
set parameters group=8 and epoch=2.0.

SFT + O1-Pruner (Luo et al., 2025b). To better
demonstrate the effectiveness of our method, we
also compare it with a strong two-stage training
approach combining SFT and O1-Pruner.

4.3 Experiment Results

LC-R1 outperform other baselines a large mar-
gin with less tokens and comparative perfor-
mance. From Table 2, our method achieve better
results on both two models. Based on the test re-
sults, most fine-tuning methods had a similar im-
pact on the model’s accuracy across various bench-
marks. Among these methods, LC-R1 achieved
the greatest length reduction, compressing the rea-
soning length by 44.56% and 61.10% on 7B and
1.5B, respectively. Additionally, compared to the
SFT+O1-Pruner method, it is evident that using
existing methods to first compress redundant to-
kens and then applying RL methods to shorten CoT
length does not effectively reduce the CoT length
of the reasoning model.

Combining length and compress reward brings
superior efficiency reasoning. Our ablation
study primarily focused on the Length Reward and
Compress Reward. To understand the individual
contributions of these two components to our pro-
posed method, we conduct ablation studies on both
models.

As shown in Table 1, training with either compo-
nent alone achieved good compression results. For
instance, on DeepSeek-R1-Distill-Qwen-7B, the
effects of both components were comparable to our

overall baseline performance, while on DeepSeek-
R1-Distill-Qwen-1.5B, both achieve better results
than the baseline. However, combining both com-
ponents for training resulted in a greater compres-
sion ratio with only a slight reduction in accuracy.
Therefore, both modules are relatively important to
our method.

S Discussion and Analysis of Compression

5.1 Compression Ratio

To investigate whether our method effectively com-
presses the redundant parts of the reasoning pro-
cess, we tested the results of different methods
trained on two models, as shown in Figure 2.

The results clearly demonstrate that our method
achieve excellent performance in compressing re-
dundant parts of the reasoning process, with a high
compression ratio for the overall chain-of-thought
(CoT) compared to the original model. The SFT
method also achieved a high compression ratio for
redundant reasoning parts, but its overall CoT com-
pression ratio was lower, because it is unable for
the sft model to produce outputs shorter than train-
ing dataset. Other non-SFT methods, such as O1-
Pruner and ThinkPrune, showed lower compression
ratios for redundant reasoning, indicating that these
methods still have room for further compression.

We count tokens associated with long CoT, with
our method outperforming others, as shown in Fig-
ure 6. The token list is in Table 4.

5.2 Impact of Compression on Performance

To investigate the compressing impact of test-time
scaling capability of reasoning models, we evalu-
ate on Pass@k metric on AIME25 benchmark for



Table 3: Accuracy (above) and length (below) of models and methods on different benchmarks. Avg represents
change compared to the large reasoning model (+ increase, — decrease).

Distill-Qwen-7B

Distill-Qwen-1.5B

Method AIME25 MATH500 GSMS8K Olympiad AMC  Avg. (%) AIME25 MATH500 GSM8K Olympiad AMC  Avg. (%)
LC-R1(Ours) 35.6 90.6 90.9 57.8 78.8 —4.12% 20.8 79.3 80.2 42.7 59.0 —4.50%
(6911) (1843) (675) (4378) (3799) (-44.56%) (5953) (1822) (621) (3780) (3591)  (-61.10%)
wo L-reward 39.1 91.3 90.6 59.4 79.0 —2.58% 213 81.2 83.3 434 63.1 —-1.02%
(9625) (2316) (696) (5779) (5021)  (-23.79%) (7061) (2270) (754) (5024) (4433)  (-50.21%)
wo C-reward 38.3 92.9 91.1 59.1 80.5 -1.90% 219 83.2 84.1 44.0 66.1 +1.35%
(8474) (2498) (1012) (5344) (4741)  (-28.24%) (7988) (2965) (1160) (5608) (5192) (—41.62%)
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Find a way,
to express the double series

S=3 {j=1}" Z_{k=1}"eo [1/(j + k)*]
in terms of p and q.

Ground Truth Answer: p - q.

Define p = 5_{k=1}"e (1/ k?)

and g = 5_{k=1}"e0 (1/ k*).

LC-R1 (Ours): 1324 Tokens

Valid Thinking : 875 Tokens

Okay, so I have this problem where I need to find the value of the
double sum S = sum from j = 1 to infinity sum from k = 1 to infinity
1/(j + k)"3 in terms of p and q, where p = sum from k = 1 to infinity
1/k”2 and q = sum from k = 1 to infinity 1/k"3. First, I recall that
sometimes when dealing with double sums, especially infinite ones, it
can be helpful to express them in terms of simpler sums or known
constants, and here p and q are well known as the Riemann zeta
function values at 2 and 3, so I need to relate the given double sum
to those. I notice that both j and k run from 1 fo infinity, so the sum
runs over all positive integer pairs (j, k). a useful trick is tosetn=j
+k, in which case for each n 2 2 there are n - 1 pairs (j, k) with j + k =
n, allowing us to rewrite the double sum as the single sum from n = 2
to infinity of (n - 1)/n"3. This single sum splits into sum from n = 2 to
infinity of 1/n"2 minus sum from n = 2 to infinity of 1/n"3, which
equal p - 1 and q - 1 respectively, so the resultis (p - 1) - (q-1) =

P-q

Final Response : 449 Tokens

To find the value of the double sum S = sum from j = 1 fo infinity
sum from k = 1 to infinity of 1/(j + k)"3 in terms of p = sum from k
=1 to infinity of 1/k"2 and q = sum from k = 1 to infinity of 1/k"3,
we change variables by letting n = j + k; for each n 2 2 there are n -
1 pairs (j, k) with j + k = n, so the double sum becomes sum from n =
2 fo infinity of (n - 1)/n"3, which splits into sum from n = 2 to
infinity of 1/n"2 minus sum from n = 2 to infinity of 1/n"3; since
these equal p - 1 and q - 1 respectively, subtracting gives (p - 1) -

@-D=p-4q

Thinking Length: 875 Tokens, Valid Ratio: 100%

\

Valid Thinking : 800 Tokens

Alright, so T have this problem where I need to express a
double sum in terms of two known series, p and q. The given
series are p = Y1 1/k?® and q = 1" 1/k*, and I need
to find a way to write S = ¥;1%e0 Fie1"e0 1/(j + k) in terms
of pand q. To do this, I let n= j+k, so for eachn 2 there
are (n - 1) pairs (§j, k) summing to n; hence S = ¥ ,-2"e (n -
1)/n® = ¥,2"e (1/n? - 1/n*). Splitting the sum gives (X -2"
1/n?) - (Z.-2"= 1/n*), which equals (p-1)-(q-1)=p = q.

Invalid Thinking : 902 Tokens

Wiait, is that right? Let me double-check my steps: T
changed variables to n = j + k, giving a single sum over n from
2; for each n the inner sum has n-1 terms of 1/n?, so it
becomes (n-1)/n>; splitting that gives 1/n*-1/n*; summing
from n=2 to e yields (Z,-2001/n?)-(T,-2001/n*), which is (p-1)-
(q-1)=p - Q. To verify, the terms for n=2,3,4,.. are 1/8,
2/27,3/64,.. so Sx1/8+2/27+3/64+.. If p=n*/6~1.6449 and
q~1.2021, then p-q~0.4428, and the partial sum to n=10 is
about 0.35 (converging slowly), consistent with S=p-q.

Therefore, the answer is p = q.

Final Response : 417 Tokens

To express the double sum ¥{j=1}"e ¥{k=1}"c 1/(j+k)"3 in terms
of p and q, we change variables by setting n = j + k, so for each n
> 2 there are (n-1) terms of 1/n?, giving the single sum ¥{n=2}"e
(n-1)/n* = ${n=2}"e (1/n* - 1/n*). Noting that 3{n=2}"e 1/n? =
p-1land ¥{n=2}"e 1/n* = q - 1, we substitute to get S= (p- 1) -
(q-1)=p - q, so the double sum equals

P-q

Thinking Length: 1702 Tokens, Valid Ratio: 47 7% /

Figure 4: A case study comparing LC-R1 (Ours) with O1-Pruner. We advice a ZOOM-IN for a closer look. When
answering the same question, LC-R1 achieves 100% valid ratio with 1324 tokens consumption (875 tokens for
valid thinking, 449 tokens for final response) while O1-Pruner consumes 2119 tokens (800 tokens for valid thinking,
902 tokens for invalid thinking and 417 tokens for final response).

models before and after CoT compression. We
select three models based on CoT length—short,
medium, and long—namely LC-R1, SFT, and Ori-
gin. We sample the models 128 times and calculate
the pass @k results for k ranging from 1 to 128.

Figure 5 shows that compressing the CoT length
does not affect the model’s potential. This further
indicates that our method has minimal impact on
the model’s performance and also confirms that
the redundant reasoning parts compressed by our

method indeed have trivial contributions to the
model’s ability to produce correct answers.

6 Related Work

Large Reasoning Model. Research on advanced
reasoning in LLMs (Team, 2024a) has focused on
scaling computation (Chen et al., 2024b; Snell
et al.,, 2024) and refining inference generation.
Techniques range from Chain-of-Thought (CoT)
prompting (Wei et al., 2023) to Process Re-



Distill-Qwen-7B

08} —4— LC-R1
SFT
07 Origin /‘_,,.—‘/‘

0.6

0.5

Pass @ K

0.3

L L L L L L
4 8 16 32 64 128

s

Number of Sample K

Distill-Qwen-1.5B

0.6

0.5

0.4

Pass @ K

0.3

0.2

. . . . . . . .
1 2 4 8 16 32 64 128
Number of Sample K

Figure 5: Comparison of different efficient reasoning methods. Our LC-R1 make the best token compression for
current Large Reasoning Models comparing to other Supervised and RL-based Fine-Tuning methods.
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Figure 6: Across all benchmark tests for Distill-Qwen-
7B/1.5B, LC-R1 uses the fewest tokens per thou-
sand—meaning it produces the least invalid reasoning.

ward Models and search-guided decoding (Brown
et al., 2024) for aggregating reasoning paths.
These advances produced powerful Large Reason-
ing Models (LRMs) like ChatGPT-O1 (OpenAl,
2024), Deepseek-R1 (DeepSeek-Al et al., 2025),
QwQ (Team, 2025b), and Gemini2.5 (Google,
2025b), which spontaneously generate extensive
CoT with thinking, backtracking, and verifica-
tion. Open-source models derive reasoning abilities
through reinforcement learning (RL) (DeepSeek-
Al et al., 2025; Ramesh et al., 2024; Muennighoff
et al., 2025) or distillation (DeepSeek-Al et al.,
2025; Yu et al., 2024) from RL-produced CoT data,
with recent work (Yue et al., 2025) analyzing dif-
ferences between these approaches.

Efficient Reasoning. While elaborate reasoning
enhances performance, its verbosity creates effi-
ciency challenges (Chen et al., 2024a), increasing
inference latency and computational costs. Re-
search on efficient reasoning seeks to reduce rea-
soning trace length without sacrificing accuracy.
Approaches include CoT optimization (Aggarwal
and Welleck, 2025; Luo et al., 2025b; Shen et al.,
2025) through RL with length-based rewards (Sun
et al., 2024; Liao et al., 2025; Luo et al., 2025b;

Aggarwal and Welleck, 2025; Luo et al., 2025a)
and fine-tuning with variable-length CoT data (Han
et al., 2024; Yu et al., 2024; Munkhbat et al., 2025).
Training-free strategies employ dynamic reasoning
during inference (Yang et al., 2025a; Zhang et al.,
2025; Wu et al., 2025; Lin et al., 2025) or prompt-
guided efficient reasoning (Cheng and Van Durme,
2024; Xu et al., 2025; Han et al., 2024; Ma et al.,
2025).

Overthinking. Recent studies examine gener-
ated thought processes, particularly Aha Mo-
ments (DeepSeek-Al et al., 2025; Liu et al., 2025)
marked by keywords like “wait” and “hmm”,
which indicate self-reflection (Chen et al., 2025)
allowing models to reassess reasoning paths. Re-
search (Yang et al., 2025b; Zhang et al., 2025)
has begun characterizing these moments and ex-
ploring mechanisms behind such spontaneous self-
reflection. However, frequent occurrences of these
keywords can lead to Overthinking (Chen et al.,
2024a; Sui et al., 2025), where models continue
reflecting after reaching correct conclusions.

7 Conclusion

We introduce LC-R1, an algorithm designed to
address the efficient reasoning problem by opti-
mizing length compression while maintaining rea-
soning accuracy. We establish three fundamental
principles for efficient reasoning—Simplicity, Suf-
ficiency, and Accuracy—and proposed two metrics,
Valid Thinking and Compressed Ratio, to quanti-
tatively evaluate reasoning efficiency. Our experi-
mental results across five mathematical reasoning
benchmarks demonstrate that LC-R1 significantly
outperforms existing pruning-based and SFT-based
methods, providing valuable insights for develop-
ing more resource-efficient Al systems.



Limitation

Our current experimental scope focused on 1.5B
and 7B models due to computational considera-
tions, with larger model scales representing promis-
ing avenues for future investigation. Addition-
ally, while our reward function design incorporates
several hyperparameters—particularly the balanc-
ing factors between length constraint rewards—we
maintained consistent settings across experiments
due to computational efficiency considerations. In
future work, we plan to further explore the opti-
mal balance between reasoning trace length and
accuracy, as well as investigate enhanced reward
formulations that could potentially yield more effi-
cient reasoning capabilities.
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A Details of LC-Extractor

We train Qwen-2.5-3B-Instruct (Team, 2024b) as
the LC-Extractor model. Our LC-Extractor model
is activate by the prompt in Figure 7. We also
design the annotation tool in Figure 8 to evaluate
the model. It achieves 98.0% accuracy.

B Detailed Experiment Setups

B.1 Model

We use DeepSeek-R1(DeepSeek-Al et al., 2025),
Qwen3-32B(Team, 2025a), QwQ-32B(Team,
2025b), Llama-3.3-Nemotrom-Super-49B-
V1(Bercovich et al., 2025), Distill-Qwen-7B,
Distill-Qwen-1.5B(Yu et al., 2024), and Qwen-2.5-
3B-Instruct(Team, 2024b) models in our paper.
We introduce their licenses and key characteristics
as follows:

* DeepSeek-R1. An open-source 671 B—37 B
MOoE reasoning model trained largely through
reinforcement learning, which elicits self-
verification, reflection and lengthy chain-of-
thought traces while supporting 128K-token con-
text; it matches proprietary ol on math / code
benchmarks using only public data.

* Qwen3-32B. The 32.8 B-parameter third-
generation Qwen model that toggles between
“thinking” and “non-thinking” modes, delivering
state-of-the-art reasoning, multilingual chat and
up to 131 K context in a single dense checkpoint.

* QwQ-32B. A medium-sized Qwen reasoning
variant refined with SFT + RL; provides explicit
<think> traces, 131 K context and DeepSeek-
R1-level accuracy on hard evaluations.

* Llama-3.3-Nemotrom-Super-49B-V1.
NVIDIA’s NAS-pruned 49 B derivative of
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Llama-3.3-70B, post-trained for reasoning,
RAG and tool calling; couples 128 K context
with single-H100 deployment efficiency for
cost-sensitive production.

* Distill-Qwen-7B. A 7 B dense checkpoint dis-
tilled from DeepSeek-R1 onto the Qwen2.5 back-
bone, pushing small-model MATH-500 pass1 be-
yond 92 % and surpassing ol-mini on several
reasoning suites while remaining laptop-friendly.

¢ Distill-Qwen-1.5B. An ultra-compact 1.5 B
model distilled from R1 that preserves chain-of-
thought and achieves 83.9 % passl on MATH-
500, bringing competitive analytical power to
edge and mobile deployments.

Qwen-2.5-3B-Instruct. A 3.09 B instruction-
tuned model with 128 K context, strengthened
coding/math skills and multilingual support, de-
signed as a lightweight yet controllable chat foun-
dation for downstream tasks.

B.2 Dataset

We benchmark on the AIME25, MATHS500,
GSMSK, Olympiad (Sun et al., 2025), and AMC
benchmarks in our paper. We introduce them as
follows:

* AIME25. A benchmark with 30 questions dis-
tilled from twenty-five years of American Invita-
tional Mathematics Examination papers. Each
item is a three-digit short-answer problem that
probes upper-secondary algebra, geometry, com-
binatorics.

e MATHS500. A 500-problem evaluation slice
covering the full subject breadth of the original
MATH competition corpus. Balanced across dif-
ficulty tiers and topics, it serves as a rigorous
yardstick for advanced high-school and early un-
dergraduate mathematical reasoning, without the
runtime burden of the complete 12k-question set.

* GSMS8K. The widely-adopted Grade-School
Math 8K benchmark of 1,319 everyday word-
problems. Requiring multi-step arithmetic and
commonsense, GSM8K remains the de-facto
standard for assessing chain-of-thought quality
on conversational math tasks.

* Olympiad. A curated collection of roughly 3 k
national and international mathematics-olympiad
problems. Predominantly proof-style or numeric-
answer challenges, this benchmark gauges cre-
ative, non-routine reasoning at the highest pre-
university level.
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Prompt to Extract Answer Prefix

é )

You are Qwen, created by Alibaba Cloud. You are a helpful assistant.

Instruction:

Extract Answer Prefix You’ll get a Problem, a Thinking Process, and its Ground Truth Answer.

Your Task:

1. Read the Thinking Process from the beginning carefully.

2. Find the first sentence that reveals the Ground Truth Answer.

3. Copy everything from the start of the Thinking Process up to and including that sentence.
4. Important: Do not include any text after that sentence.

Example:

* Problem: Whatis 1 +1?

* Thinking Process: Okay, I need to solve 1 + 1. That gives 2. Let me check again—yes, it’s 2.
* Ground Truth Answer: 2.

* Expected Output: Okay, I need to solve 1 + 1. That gives 2.

Input Provided:

* Problem: <Problem>

* Thinking Process: <Thinking Process>

* Ground Truth Answer: <Ground Truth Answer>

Your Output:

A prefix of "Thinking Process", with Ground Truth at the end.

Figure 7: Our prompt for extraction of answer prefix.

—— JSON Entry Review Interface

Entry 1

Question:
erized n('/) - ( ) ¢(4) Asecond lineis parameterzed by ('/) = (l;) u (i) 1£8 s the acute angle formed by the twolines, then find cos

Solution:

Reasoning Prefix:

Figure 8: The annotation tool to evaluate the LC-Extratcor.

* AMC. An aggregate of 83 from the American 2000-2024, it offers a longitudinal benchmark
Mathematics Competitions 10/12. Spanning on foundational secondary-school math.
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B.3 Reasoning Token list

Table 4: Keyword List for Suppressing.

Keyword List for Suppressing

“wait", “alternatively”, “hmm", “but",
“however", “alternative"”, “another”,
“check", “double-check", “oh",

n [13 n 13 n (13

“maybe", “verify", “other", “again",
“nOW"’ ﬂéahll’ Géanyll

C Case Study

We make some case studies to compare LC-R1
with other method. These case studies are shown
in Figure 9.



0 auesrion )

If f(x) = (3x - 2) / (x - 2), what is the value of f(-2) + f(-1) + f(0)?
Express your answer as a common fraction.

: 3771 Tokens ) \

Alright, so I have this function f(x) = (3x - 2)/(x - 2), and I need to find the value of f(-2) + f(-1) + f(0).
Hmm, okay, let's break this down step by step. I think the best way is to calculate each function value
N separately and then add them up. That seems straightforward enough. First, let me figure out f(-2).
Ground Truth Answer: 14/3. Plugging x = -2 into the function, T get: f(-2) = (3*(-2) - 2)/(-2 - 2) Calculating the numerator: 3%(-2) is -
~ 6, minus 2 is -8. Calculating the denominator: (-2) - 2 is -4. So f(-2) = (-8)/(-4). Hmm, a negative divided
by a negative is a positive, so that's 2. Okay, so f(-2) is 2. Not too bad. Next, let's compute f(-1).
Plugging x = -1 into f(x): f(-1) = (3*(-1) - 2)/(-1 - 2) Numerator: 3*(-1) is -3, minus 2 is -5. Denominator: (-
1) - 2is -3. So f(-1) = (-5)/(-3). Again, negative divided by negative is positive, so that simplifies to 5/3.

Valid Thinking : 1647 Tokens
Okay, so I need to find the value of f(-2) + f(-1) + f(0) where the function f(x) is

: - ! : ; Alright, so f(-1) is 5/3. Moving on o (0). Plugging = O into the function: (0) = (3*0 - 2)/(0 - 2)
phares (@5 T.Z)/ (T : 2)';{""“' (35 G2 f:"” bﬂy"dfe';sm"d'l"g Wh.“: ﬂ;.ehf”"”m" 'T“k.s Numerator: 3*0 is 0, minus 2 is -2. Denominator: 0 - 2 is -2. So £(0) = (-2)/(-2). That's a positive 1. So
e o] e el e g el || G i R T T N e

" t T correctly. Let me check each computation again to be thorough. First, f(-2): (3*(-2) - 2)/(-2 - 2) = (-6 -
functions, the domain excludes any x that makes the denominator zero, so x cannot 2)/(-4) = (-8)/(-4) = 2. Yes, that's correct. Next, f(-1): (3*(-1) - 2)/(-1 - 2) = (-3 - 2)/(-3) = (-5)/(-3) =

be 2 here. But since we're evaluating at x = -2, -1, and O, which are all fine because 2 5/3. That seems right. Lastly, f(0): (3*0 - 2)/(0 - 2) = (-2)/(-2) = 1. Perfect. Now, adding them: 2 + 5/3 +
isn't among them, I don't have to worry about division by zero in this case.Alright, so 1. Hmm, 2 + 1is 3, so 3 + 5/3. Converting 3 to thirds, it's 9/3,50 9/3 +5/3 = 14/3.

I need to compute f(-2), f(-1), and f(0) separately and then add them up. Let me
write down each step carefully.Starting with f(-2):f(-2) = (3*(-2) - 2) / (-2 - 2). Let's

compute the numerator first: 3*(-2) is -6, then subtract 2, which gives -8. The I""""‘?’ Thinki ',1,595 Tékens o .

T (D)~ 2, (HAh i 24 5o (D)= () Bl e M s el es @ So, 14/3 i the fotal. Wait, is that right? Let me check again. 2 is equal o 6/3, and 1 is equal o 3/3. So,
positive, so that's 2. Got that part.Next, f(-1):f(-1) = (3*(-1) - 2) / (-1 - 2). Calculating 6/3+5/3 +3/3. That would be (6 + 5+ 3)/3 = 14/3. Yes, that's correct. Alternatively, I could have
e S U00) 5 ), Gl it B e 48, BTt ()= 2 6 -8 Goteih)= (& converted each ferm to fractions with a commen denominator: f(-2)= 2 = 6/3, f(-) = 5/3, f(0) = 1= 3/3.
5)/(-3). Again, both negatives make it positive, so that's 5/3. Hmm, okay.Now, Adding them: 6/3+5/3 + 3/3 = (6+5 + 3)/3 = 14/3. So, 14/3 is indeed the sum. Wait, but just to
£(0):(0) = (30 - 2)/(0 - 2). Numerator: 30 is 0, subtract 2 is -2. Denominator: 0 - 2 is D R e et
-2. So f(0) = (-2)/(-2) = 1. That seems straightforward.So now I have f(-2) = 2, f(-1) = 5 /-3 = 5/3. Correct. f(0): 3*0 = 0,0 - 2 = -2, Denominator: - 2 = -2, -2 / -2 = 1. Correct. S0, adding
5/3, and £(0) = 1. I need to add these together: 2+ 5/3 + 1.To add these, it might them up: 2 (which is 6/3) + 5/3 + 1 (which is 3/3). 6/3 +5/3+3/3 = (6 + 5+ 3)/3 = 14/3. Yep, that's
help to convert them all to fractions with a common denominator. 2 is 6/3, 5/3 stays correct. So, I think that's the right answer. 14/3 as a common fraction. T don't think it can be

flhj /5;"\6, and 1is 3/3. So adding them together:6/3 +5/3 +3/3= (6 +5+3)/3 = simplified further because 14 and 3 share no common divisors other than 1. Alternatively, if I convert

14/3 to a mixed number, it's 4 and 2/3, but the question specifically asks for a common fraction, so
14/3 is the appropriate form. Just to make sure I didn't make any arithmetic errors, let me go through
the addition once more: 2 +5/3 +1. 2+ 1is 3, 3 is equal to 9/3,9/3 + 5/3 is 14/3. Alternatively, 2 is

Final Response : 600 Tokens 6/3,6/3 +5/3is 11/3,11/3 + 3/3 is 14/3. Both ways, I get 14/3. So, T think I've got it right. T don't

To find the value of ( £(-2) + f(-1) + £(0) ) where ( f(x) = (3x - 2)/(x - 2) ): First, we see any mistakes in my reasoning, so I'm confident that the answer is 14/3. Final Answer: The value of

evaluate ( £(-2) ): [ f(-2) = (3(-2) - 2)/(-2 - 2) = (-6 - 2)/(-4) = (-8)/(-4) = 2 ] Next, we f(-2)+ f(-1)+ f(0) is 14/3.

evaluate (£(-1) ): [ £(-1) = (3(-1) - 2)/(-1- 2) = (-3 - 2)/(-3) = (-5)/(-3) = 5/3 ] Then, we §

evaluate (£(0) ): [ £(0) = (3(0) - 2)/(0 - 2) = (-2)/(-2) = 1 ] Now, we add these values Final Response : 582 Tokens

together: [ f(-2) + f(-1) + f(0) = 2 + 5/3 + 1 ] Converting all terms to fractions with a Tol find the ‘;ul'ue ffcf(IfZ? ; f(;(l)z*) f;?)zf)or (13h(e Zf)um'é?)i/O(n 2f(x%): (?x‘; 22))//(?;)2) uée/ 3lcu2|a;e cea|Ch|ﬁrmc|:r(iox';
i i [2= 1= = =14 value separately: 1. Calculate f(-2): f(-2) = (3(-2) - -2-2)=(-6- -4) = - =2 2. Calculate f(-1):

;‘:‘r:;“ 01’:‘:?/:7;:?;?;([2) + ?(/31) + f(og;/)3is] [1(1(/35 TREHR=(O 0 =B (- = B(D) - 2)/(-1 - 2) = (-3 - 2)/(-3) = -5/-3 = 5/3 3. Calculate (0): £(0) = (3(0) - 2)/(0 - 2)= (0 -

2)/(-2) = -2/-2 = 1 Adding these values together: f(-2) + f(-1) + f(0) = 2 + 5/3 + 1 Convert each term to a
common fraction: 2 = 6/3 1= 3/3 Sum the fractions: 6/3 + 5/3 + 3/3 = (6 + 5 + 3)/3 = 14/3 Thus the
value of f(-2) + f(-1) + £(0) is 14/3

K Thinking Length: 2247 Tokens, Valid Ratio: 100% AN inking Length: 3189 Tokens, Valid Ratio: 50% /

Figure 9: More case studies.
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