Under review as a conference paper at ICLR 2026

HOFAR: HIGH-ORDER AUGMENTATION OF FLOW
AUTOREGRESSIVE TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Flow Matching and Transformer architectures have demonstrated remarkable per-
formance in image generation tasks, with recent work FlowAR [Ren et al., 2024]
synergistically integrating both paradigms to advance synthesis fidelity. How-
ever, current FlowAR implementations remain constrained by first-order trajec-
tory modeling during the generation process. This paper introduces a novel frame-
work that systematically enhances flow autoregressive transformers through high-
order supervision. We provide theoretical analysis and empirical evaluation show-
ing that our High-Order FlowAR (HOFAR) demonstrates measurable improve-
ments in generation quality compared to baseline models. The proposed approach
advances the understanding of flow-based autoregressive modeling by introduc-
ing a systematic framework for analyzing trajectory dynamics through high-order
expansion.

1 INTRODUCTION

Recently, flow-matching [Lipman et al.| (2022) and diffusion models |[Ho et al.| (2020) have demon-
strated remarkable capabilities in the field of image generation Rombach et al.| (2022); |[Esser et al.
(2024). Several works have explored extending these models to generate images with an additional
dimension, such as incorporating a temporal dimension for video generation Singer et al.|(2022); [Li
et al.| (2023) or a 3D spatial dimension for 3D object generation | Xue et al.|(2024); Mol (2024). Even
4D generation [Zhang et al|(2025); [Liang et al.| (2024a)) has become feasible using diffusion mod-
els. Another prominent line of research focuses on auto-regressive models, where the Transformer
framework has achieved groundbreaking success in natural language processing. Models such as
GPT-4 |Achiam et al.| (2023)), Gemini 2 Deepmind| (2024), and DeepSeek |Guo et al.| (2025) have
significantly impacted millions of users worldwide.

Given the success of the auto-regressive generation paradigm and the Transformer framework, recent
works have explored integrating auto-regressive generation into image generation. A representative
example is the Visual Auto-Regressive (VAR) model|Tian et al.| (2025)), which introduces hierarchi-
cal image generation with different image patches. Other works, such as FlowAR |Ren et al.| (2024)
and ARFlow Hui et al.| (2023), integrate flow-matching with auto-regressive generation. However,
these existing approaches primarily focus on modeling the direct transition path between the prior
distribution and the target image distribution, paying less attention to high-order dynamics. High-
order dynamics play a crucial role in capturing complex dependencies between different modali-
ties, which is especially important for tasks like video generation that require long-term coherence.
Moreover, high-order supervision enhances a model’s generalization ability by encouraging it to
learn fundamental generative principles rather than relying on lower-order patterns.

Motivated by these insights, we propose High-Order FlowAR (HOFAR), an approach that builds
upon the strengths of auto-regressive models and flow-matching techniques while extending them
to model higher-order interactions. By explicitly incorporating high-order dynamics, HOFAR im-
proves realism, coherence, and generalization in generative tasks. We theoretically prove that HO-
FAR maintains computational efficiency compared to its base models while empirically demonstrat-
ing its superior performance.

In summary, our contributions are as follows:
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* We introduce HOFAR, a novel framework that integrates high-order dynamics into flow-
matching-based auto-regressive generation, enhancing the model’s ability to capture com-
plex dependencies.

* We provide a theoretical analysis showing that HOFAR maintains computational efficiency
while benefiting from high-order modeling.

* We conduct empirical evaluations demonstrating that HOFAR achieves improved genera-
tion quality, coherence, and generalization compared to existing auto-regressive generative
models.

2 PRELIMINARY

In this section, we introduce the formal mathematical definitions for the FlowAR model and our
High-Order FlowAR (HOFAR) model. These definitions provide the foundational framework for
understanding the preprocessing, downsampling, upsampling, and transformer-based components
of the proposed architecture. In Section we introduce the notations we used in this work. In
Section[2.2] we describe the preprocessing steps applied to input images before they are fed into the
model. In Section [2.3] we detail the autoregressive Transformer architecture, which generates the
conditional embeddings utilized by the flow-matching components in the FlowAR model.

2.1 NOTATIONS

Given a matrix X € R"Xd_ e denote its tensorized form as X € RM>*wxd, Additionally, we
define the set [n] to represent {1,2,--- ,n} for any positive integer n. We define the set of natural
numbers as N := {0,1,2,...}. Let X € R™*" be a matrix, where X ; refers to the element at the
i-th row and j-th column. When z; belongs to {0, 1}*, it signifies a binary number with arbitrary
length. In a general setting, x; represents a length p binary string, with each bit taking a value of
either 1 or 0. Given a matrix X € R"*%, we define || X || as the maximum norm of X. Specifically,
[ Xlloo = max; ; [ X5 ;1.

2.2 FLOWAR PREPROCESSING PROCESS

We begin by introducing the preprocessing procedure of the FlowAR model. The image is first
passed through a Variational Autoencoder (VAE) to obtain a latent image embedding before being
processed by the main body of the FlowAR model.

Let X € R"*wx¢ denote the image embedding generated by the VAE, where h, w, and c represent
the height, width, and number of channels, respectively. The next step involves downsampling
the image embedding X to multiple scales. To formalize this process, we first define the linear
downsampling function.

Definition 2.1 (Linear Downsampling Function). If the following conditions hold:

o Let X € R'"™X¢ denote the input tensor, where h,w, ¢ represent height, width, and the
number of channels, respectively.

* Let the positive integer r > 1 denote the scaling factor.

The linear downsampling function ¢qown (X, 1) computes an output tensor Y € R(/m)x(w/r)xe,

To be more specific, let Pqown € R/ rw/r)xhw gopote a linear transformation matrix. The down-
sampling transformation consists of three steps:

* Reshape X into the matrix X € R"*¢ by flattening its spatial dimensions.
» Apply the linear transformation matrix ® qouwn on X as

Y = ®g4oun X € R(h/r‘w/r)Xc’

* Reshaped back to Y € R/ ) x(w/r)xe,
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Next, we define the multi-scale downsampling tokenizer, which leverages the linear downsampling
function to generate a sequence of token maps at multiple scales.

Definition 2.2 (Multi-Scale Downsampling Tokenizer). If the following conditions hold:
o Let X € RMWX¢ denote the image embedding generated by VAE.
* Let K € N denote the number of scales.
* Let the positive integer a > 1 denote the base scaling factor.

s Fori € [K], we define scale-specific factors r; := a**

function Gaown (X, ;) from Definition[2.1}

We define the multi-scale downsampling tokenizer as TN(X) = {Y' ... YXY}, which outputs a
sequence of token maps {Y?,Y2, ... YE}, where the i-th token map is generated by

Yi = ¢down i(x,’f'i) S R(h/n)X(w/m)XCa

and use the linear downsampling

During inference, we need to upsample the embeddings after each processing step. To formalize
this operation, we define the bicubic upsampling function as follows.

Definition 2.3 (Upsampling Function). If the following conditions hold:

o Let X € R'"X™X¢ denote the input tensor, where h,w, c represent height, width, and the
number of channels, respectively.

 Let the A positive integer v > 1 denote the scaling factor.

o Let W : R — [0, 1] denote the bicubic kernel.

We define the bicubic upsampling function as ¢up (X, r), which computes Y € Rrxrwxe  Eor every
output position i € [rh],j € [rw],l € [d]:

2 2
Yiju= D 2 W) W(E) Xy 1)1

s=—1t=-1

2.3 AUTOREGRESSIVE TRANSFORMER ARCHITECTURE

The downsampled embeddings are then fed into the transformer architecture to generate the condi-
tion tensor for the flow matching model. The autoregressive transformer is a key component of the
FlowAR model. Below, we define its attention layer, feedforward layer, and the overall autoregres-
sive transformer.

Definition 2.4 (Attention Layer). If the following conditions hold:

o Let X € R'"X™X¢ denote the input tensor, where h,w, c represent height, width, and the
number of channels, respectively.

o Let W, Wi, Wy € R*€ denote the weight matrices, which will be used in query, key,
and value projection, respectively.

The attention layer Attn(X) is defined by computing the output tensor Y € R"W*< in the following
three steps:

* Reshape X into a matrix X € R"*¢ with spatial dimensions collapsed.

* Attention matrix computation. For i, j € [hw)], compute pairwise scores:

Ay = exp(X; WoWg X)), fori,j € [hw].

c Rhwxhw

* Normalization. Compute diagnal matrix D = diag(Al,) , where 1,, is the

all-ones vector. And compute:

Y := D7YAXWy, e Rhwxe,
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* Reshape Y toY € RPxwxe,

The feedforward layer is another critical component of the transformer architecture. We define it as
follows.

Definition 2.5 (Feed Forward Layer). If the following conditions hold:

o Let X € RP'"X™X¢ denote the input tensor, where h,w, ¢ represent height, width, and the
number of channels, respectively.

o Let Wi, Wy € R*? denote the weight matrices and b1, by € R1*¢ denote the bias vectors.
e Let 0 : R — R denote the RelLU activation function which is applied element-wise.

We defined the feedforward operation as Y := FFN(X).

To be more specific, it computes an output tensor Y € R"* x4 iy the following steps:

* Reshape X into a matrix X € RM0*¢ with spatial dimensions collapsed.

* Foreach j € [hw|, compute
Vi = Xju +0(Xj- Wi+ b1 ) Wo + by € RYXC
N~~~ ~ =~ =~ = =~
1xe 1xec ¢Xc 1xc cXce Ixc

where o acts element-wise on intermediate results. Then reshape Y € R"*¢into Y €
thch.

Using the attention and feedforward layers, we now define the autoregressive transformer.
Definition 2.6 (Autoregressive Transformer). If the following conditions hold:

o Let X € R'"™*¢ denote the input tensor, where h,w, c represent height, width, and the
number of channels, respectively.

* Let K € N denote the scale number, which is the number of total scales in FlowAR.

» Fori€[K], letY; € R/ri)x(w/ri)Xe depote the token maps generated by the Multi-Scale
downsampling tokenizer defined in Deﬁnition where r; = o % with base a € N,

o Fori € [K), let pup (-, a) : RV/rox(w/roxe oy Rlk/riv)x(w/rici)xe depote the upsam-
pling functions as defined in Definition

o Fori € [K), let Attn;(+) : REZ5=1 h/rsw/ri)xe _y RT5_ih/riw/mi)Xe donote the atten-
tion layer which acts on flattened sequences of dimension defined in Definition

o Fori € [K], let FFN () : ROZ5=i h/rsw/ri)xe _y ROZ5_yh/msw/T)Xe donote the feed
forward layer which acts on flattened sequences of dimension defined in Definition

o Let Ziniy € RBW/m)x(w/m)xe gonote the initial condition embedding which encodes class
information.

Then, the autoregressive processing is:
e Initialization: Let 7, := Z;,i.
* Iterative sequence construction: For i > 2.
Z; := Concat(Zinit, Pup.1 (Y1, a), ..., dupi1 (Y1 )
where Concat reshapes tokens into a unified spatial grid.
* Transformer block: For i € [K],
TF;(Z;) == FFN;(Attn;(Z;)) € R(Zi=i h/raw/ri)xe

* Output decomposition: Extract the last scale’s dimension from the reshaped TF;(Z;) to
generate Y; € R(UW/ra)x(w/ri)xe,
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3 MAIN RESULTS

In this section, we present our theoretical analysis of the computational efficiency of the HOFAR
model. We demonstrate that despite incorporating high-order dynamics supervision, the increase in
computational complexity for both training and inference remains marginal compared to the signif-
icant performance improvements achieved.

Theorem 3.1 (Computational Efficiency of HOFAR). In accordance with Definition 2.6} the auto-
regressive Transformer architecture incorporates m attention layers. The image input Tiyg €
R™XnX¢ s encoded with n? spatial units, ¢ channels, and a d-dimensional latent representation.
The HOFAR model demonstrates computational costs of O(kmn*d?) for both training and infer-
ence under the specified structural constraints.

Proof. The proof follows from Lemma[.3]and Lemma 4.4} O

Algorithm 1 High-Order FlowAR Training

1: procedure HOFARTRAINING(#, D)
2 /* 6 denotes the model parameters of TF, FMg,st, FMgecond */
3 /* D denotes the training dataset. */
4 while not converged do
5: /* Sample an image from dataset. */
6: Limg ™~ D
7 /* Init loss as 0. */
8: £+0
9: /* Train the model on K pyramid layers. */
10: fori=1— Kdo
11: /* Sample random noise. */
12: FO ~ N(0,1)
13: /* Sample a random timestep. */
14: t~[0,1]
15: /* Calculate noisy input. */
16: Fioisy — 4Timg + ﬂtF?
17: /* Calculate first-order ground-truth. */
18: Flist ¢ QiTimg + BiFY
19: /* Calculate second-order ground-truth. */
20: Féecond — o‘rl‘/,zimg + ﬂ;IF(Z)
21: /* Generate condition with Transformer. */
22: Y TF(l‘img)
23: /* Predict first-order with FM. */
24: Ff‘lrst < FMgist (Ffloisy7 Y)
25: /* Predict second-order with FM. */
26: Féecond — FMSBCOHd(F;oisyv Y)
27: /* Caculate loss. */ R
28: gc — HFlt'irst - Ff‘irst”% + ||F§.ccond - Féccond”%
29: L0+,
30: /* Downsample iy, for next iteration. */
31 Timg < (I)downximg
32: end for
33: /* Optimize parameter 6 with ¢. */
34: 0+ Vgl
35: end while
36: return 6

37: end procedure
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Algorithm 2 High-Order FlowAR Inference
1: procedure HOFARINFERENCE(Cinput)

2: I* cinput denotes the condition embedding used for generation. */
3: /* Init the Transformer input « with cinpyt. */
4. T 4= Cinput
5: /* Init the 3, with random noise. */
6: Timg (—N(O,I)
7: /* Inference through K pyramid scales. */
8: fori=1— K do
9: /* Pass through the Transformers TF. */
10: Y + TF(x)
11: /* Extract last ¢ * ¢ tokens from Y as the condition embedding. */
12: Zeond ¢ Y[y —i %1 ¢
13: /* Generate first-order with FMg ;. */
14: Ysirst < FMiirgt (xconda ximg)
15: /* Generate second-order with FMgecong. */
16: :Z/\Second <~ FMsecond (:Econd7 ximg)
17: /* Apply first and second-order terms. */
18: Timg <~ Timg + Z/J\ﬁrst - At +0.5- Z/J\second . (At)z
19: /* Upsample Tiy,g. */
20: Timg < (;bup (Jf'img)
21: /* Concatenate upsampled ;i to the Transformer input. */
22: x < Concat(z, Timg)
23: end for
24: /* Return the final image */
25: return g

26: end procedure

4 TECHNICAL OVERVIEW

In this section, we present the key lemmas used to prove the main theorem introduced in the previous
section. Specifically, we first analyze the computational complexity of each component in auto-
regressive Transformers and the Flow-Matching architecture. Then, we integrate these results to
derive the overall runtime for both the Transformer and Flow-Matching components.

We begin by analyzing the runtime of the auto-regressive Transformer module.

Lemma 4.1 (Running time for Auto-Regressive Transformer Forward). Let the auto-regressive
Transformer is defined as in Definition and that it contains m attention layers. Let Tiyng €
R™*"X¢ be the input image, where n denotes the resolution and c denotes the number of channels,
and let d denote the hidden dimension. Under these conditions, the running time for a single forward
pass of the auto-regressive Transformer is

O(mn'd).

Proof. We consider each attention block in the Transformers architecture.
For each attention block, it consists of the following three steps:
Step 1: Generate matrices ), K, V.

We need to generate a query vector ¢ € R?, a key vector k& € R? and a value vector v € R? for each
pixel in the original n x n image Timg. After this step, we will have three matrices Q, K,V € R x4,
This step takes O(n?d) time.

Step 2: Calculate the attention matrix.

As defined in Deﬁnition we need to calculate the attention matrix. It takes O(n*d) to calculate

QKT € R™*"*_ It takes O(n4) time to calculate exp(QK 7). It takes O(n?) time to calculate
D = exp(QK ")1,:. It takes O(n?) to calculate the D!, It takes O(n?) to multiply D~! to each
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row of exp(QK ). The overall running time is O(n*d). After this step, we will get the attention
matrix A € R *"*,

Step 3: Calculate the final output.

The final step is to calculate A - V. Since A € R"**"" and V € R™ *<. The running time of this
step is O(n*d). Therefore, according to the above analysis, the running time for a single attention
operation is O(n*d). Since there are total m attention layers in the auto-regressive Transformer, the
overall running time is O(mn*d). O

Another crucial component of the HOFAR model is the flow-matching architecture. Following a
similar approach, we analyze the computational complexity of the flow-matching model as follows:

Lemma 4.2 (Running time for Flow-Matching Forward). Let the auto-regressive Transformer TF
be defined as in Definition[2.6|and that the flow-matching architecture is defined as in Definition
Let ximg € R™*™%€ denote the image, where n denotes the resolution and ¢ denotes the number
of channels, and let d denote the hidden dimension. Under these conditions, we can show that the
running time for a single forward pass of the flow-matching architecture is

O(n*d?).

Proof. Since the input of the flow-matching is the output of the auto-regressive Transformer, which

is TF(zimg) € R xn?xd, According to the definition of flow-matching architecture (Defini-
tion [B.4), it consists of three operations: one MLP layer, one attention layer, and one MLP layer.
For the first layer, the MLP layer, the running complexity is O(n2d?). For the second layer, the
attention layer, according to the proof of Lemma the running time for this layer is O(n*d). For
the third layer, the MLP layer, the running complexity is O(n?d?). Therefore, the overall running
time for the flow-matching is O(n*d?). O

With the runtime analysis of both the Transformer and Flow-Matching modules completed, we now
proceed to analyze the training procedure of the HOFAR model. In the following proof, we break
down the training process step by step and derive the overall computational complexity at the end.

Lemma 4.3 (Running time for HOFAR training). Suppose that the auto-regressive Transformer is
defined as in Definition and contains m attention layers. Let the flow-matching architecture
be defined as in Definition and assume that the HOFAR training process is described in Algo-
rithm I\ Furthermore, suppose that HOFAR consists of k pyramid frames, let d denote the hidden
dimension, and let Timg € R™*"*¢ denote the image with resolution n and c channels. Then, the
running time of the training procedure of HOFAR is

O(kmn*d?).

Proof. We first consider the running time for each pyramid frame in the training loop (Line [11|to
[31]in Algorithm|[I). In each loop, we first consider time complexity for the preparation of essential
variables (Line[I5|to[20). Since the dimension of each variable in this process is nxn x d, the running
complexity for the preparation process is O(n2d). Then, we consider the process of generating
condition embeddings with Transformer (Line 22). According to Lemma [.1] the running time
for this process is O(mn*d). Next, according to Lemma the prediction process of the flow-
matching models takes O(n*d?) time. Finally, the loss calculation step (Line takes O(n?d)
time.

Therefore, according to all the analysis mentioned above, the running time for each iteration is
O(mn*d?). Since there are total k pyramid frames, the overall running time for the training process
is O(kmn*d?).

Following a similar procedure, we can have the running complexity analysis for the inference pro-
cedure as follows:

Lemma 4.4 (Running time for HOFAR inference). Let the auto-regressive Transformer be defined
as in Definition and contain m attention layers, that the flow-matching architecture is defined
as in Definition and that the HOFAR inference process is described in Algorithm [2} Also,
suppose there are k pyramid frames in HOFAR and let d denote the hidden dimension. Under these
conditions, the running time of the HOFAR inference procedure is O(kmn*d?).
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Proof. We begin with considering each loop in k-th inference (Line [9to Line 22). For each loop,
according to Lemma4.1| the Transformer forward pass (Line takes O(mn*d) time. Next, ac-
cording to Lemma [4.2] the flow-matching prediction process (Line [13] - [16)) takes O(n*d?) time.
Finally, the time for applying the predicted gradient on image (Line 18] takes O(n?d) time. There-
fore, the overall running time for each inference loop is O(mn*d?). Since there are total k inference
loops, the overall running time is O(kmn*d?). O

Combining all the analyses discussed above, we can directly arrive at our final theorem (Theo-
rem [3.1)).

5 EXPERIMENTS

Loss Curve of FlowAR_small Loss Curve of FlowAR _large Loss Curve of HOFAR
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Figure 1: Loss curve of FlowAR-small (Left), loss curve of FlowAR-large (Middle) and loss curve
of HOFAR (Right).

In Section [5.I] we introduce the setting we used in our experiments. In Section[5.2] we present
the loss curve of the various models. In Section we present visualization examples produced
by the FlowAR-small, FlowAR-large and HOFAR, highlighting differences in color accuracy and
generation quality on CIFAR-10 images.

5.1 EXPERIMENT SETUP

In FlowAR-small, we employ an embedding with three dimensions, and its Autoregressive compo-
nent is configured with a 1024-dimensional feature space across a depth of 2 layers. Additionally,
the flow-matching component is realized through a single hidden layer MLP operating with a step
increment of 25. By comparison, FlowAR-large distinguishes itself by utilizing an eight dimen-
sion embedding and extending the Autoregressive feature dimension to 1536, while retaining the
same configuration for the remaining components as in FlowAR-small. In the case of HOFAR, an
embedding of dimension three is similarly adopted, paired with a 1024 dimension Autoregressive
component structured over two layers, and a single-hidden-layer MLP is again employed for flow-
matching with 25 steps. All three models were evaluated on the CIFAR-10 dataset, with analysis
restricted to 8 classes due to computational constraints. All models above use AdamW optimizer
with 0.0001 learning rate. In all experiments, the models were optimized by minimizing the sum
of squared errors (SSE), and performance assessment during testing was based on the Euclidean
distance metric. Regarding the target transport trajectory, we integrated the VP ODE framework as
described in|Liu et al.[(2022), represented by z; = a;xg + [ix1. Here, a4 is defined as

1 1
Q= exp <—4a(1 —t)% — §b(1 - t)) ,
and f3; is determined by /1 — o, with the hyperparameters fixed at @ = 19.9 and b = 0.1. During

generation, the eight distinct training labels were provided as input, and a consistent cfg value of
4.3 was maintained for all three models.

5.2 Loss FUNCTION CURVE

Now, we present the testing loss curves of the various models during training, providing insights
into their convergence behavior and learning dynamics. Figure |1|illustrates the loss for FlowAR-
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Images generated by HOFAR.

Figure 2: Comparison of 32*%32 CIFAR-10 images generation by FlowAR-small (first four lines),
FlowAR-large (second four lines) and HOFAR (last four lines). For better looking, we put higher-
resolution version of Figure 3] Figure [ and Figure 5 here.

small, FlowAR-large, and our HOFAR, with the respective model parameter counts being 170.70M,
222.72M, and 212.44M.

5.3 VISUALIZATION COMPARISON

As Figure [2] shows, the visualization instances generated by the FlowAR-small, FlowAR-large and
HOFAR models are delineated in this study. Each model uses the same prompt at the corresponding
position.

6 CONCLUSION

In this work, we presented High-Order FlowAR (HOFAR), a novel framework that integrates high-
order dynamics into flow-matching-based auto-regressive generation. By modeling higher-order
interactions, HOFAR enhances the ability to capture complex dependencies, leading to improved
realism, coherence in generative tasks. Our theoretical analysis demonstrates that HOFAR maintains
computational efficiency while benefiting from high-order. Empirical evaluations further validate
the superiority of HOFAR over existing auto-regressive generative models. These contributions
highlight the potential of incorporating high-order dynamics into generative frameworks, paving the
way for more advanced generative models in the future.
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Appendix

Roadmap. In Section[A] we introduce related work. In Section[B] we provide a formal mathemat-
ical definition of flow modeling and present the implementation of the flow-matching architecture.
In Section|C] we analyze the strengths and limitations of the High-Order FlowAR (HOFAR) frame-
work. In Section D] we exhibit some result obtained from the experiments.

A RELATED WORK

A.1 FLOW-BASED AND DIFFUSION-BASED GENERATIVE MODELS

Flow-based and diffusion-based generative models have demonstrated significant potential in image
and video generation tasks |Ho et al.[(2020); Hoogeboom et al.| (2023); [Li et al.[(2024b)); |Gu et al.
(2024); Jain et al.|(2024); Xu et al.| (2024)); |Liu et al.|(2024). Among these, Latent Diffusion Models
(LDM) [Rombach et al.[ (2022) have emerged as a particularly powerful approach, especially in
the domain of text-to-image synthesis. Recent advancements, such as Stable Diffusion V3 [Esser
et al.| (2024)), have integrated flow-matching techniques as an alternative strategy to further improve
generation quality and enhance the photorealism of synthesized images. Moreover, a growing body
of research Jin et al.| (2024); Wang et al.| (2024bj; 2023} [2024a) has highlighted the potential of
combining the strengths of diffusion models and flow-matching models to achieve even greater
generation fidelity. In this context, we acknowledge several influential works in flow-matching and
diffusion-based generation |Hu et al| (2022); [Song et al.| (2025)); Dalva & Yanardag| (2024); Huang
et al.| (2024)); [Wu et al.| (2024); |Cao et al.| (2025a); [Liang et al.|(2025)); |[Shen et al.| (2024); [Li et al.
(20244a); Hu et al.|(2025)); |Cao et al.|(2025c); |[Ke et al.|(2025Db); (Cao et al.[(2025b); [Ke et al.| (2025a);
Liang et al.| (2024bfic)); Gong et al|(2025)), which have greatly inspired our research.

A.2 HIGH-ORDER DYNAMIC SUPERVISION

High-order dynamics are often overlooked in the research community, despite their critical role in
modeling target distributions—such as image or video distributions—with greater accuracy and ef-
fectiveness. Current research primarily explores high-order dynamics within gradient-based meth-
ods. For example, solvers [Djeumou et al.| (2022); Hong et al. (2024) and regularization frame-
works [Kelly et al.| (2020); [Finlay et al.| (2020) for neural ordinary differential equations (neural
ODE:s) (Chen et al| (2018); |Grathwohl et al| (2018) frequently leverage higher-order derivatives
to enhance performance Rout et al.| (2024); |Chen et al.| (2025bza). Beyond machine learning, the
study of higher-order temporal Taylor methods (TTMs) has been extensively applied to solving both
stiff Chang & Corliss|(1994) and non-stiff|Chang & Corliss|(1994);|Corliss & Chang|(1982)) systems,
demonstrating their broad utility in computational mathematics.

Roadmap. This paper is organized as follows: Section [2] introduces the fundamental notations
used throughout the paper and provides formal definitions for each module in the proposed model.
In Section[3] we present the training and inference algorithms for our HOFAR model, along with an
analysis of its computational efficiency. In Sectiond] we delve into the technical details and method-
ologies employed to prove our formal theorem. In Section[5] we conduct an empirical evaluation of
the HOFAR model, showcasing its effectiveness and robustness in image generation tasks. Finally,
in Section [6] we summarize the key contributions of this paper and provide concluding remarks.

B FLOW MATCHING ARCHITECTURE

We begin by outlining the concept of velocity flow in the flow-matching architecture. This section
introduces the foundational definitions and components necessary to understand the flow-matching
model.

Definition B.1 (Flow). If the following conditions hold:

o Let X € RI'"XWX¢ denote the input tensor, where h,w, c represent height, width, and the
number of channels, respectively.
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e Let K € N denote the scales number.

s Fori € [K], letF) € R/ r)x(w/ri)Xe denote the noise tensor with every entry sampled

from N'(0,1).

» Fori € [K], let Vl e RW/r)x(w/ri)xe denote the token maps generated by autoregressive
transformer as defined in Definition[2.6]

Then, we define the flow model supports the following two operations:
* Interpolation: For timestep t € [0, 1] and scale 1,
FEi=tY; + (1 - t)F?
which describes a linear trajectory between the noise Fi and target tokens \A(Z
* Velocity Field: The time derivative of the flow at scale i is given by
_dFt o

Vii= Vi .

This velocity field is constant across t due to the linear nature of the interpolation.

Before introducing the implementation of the flow-matching model, we first define two essential
components: the Multi-Layer Perceptron (MLP) layer and the Layer Normalization (LN) layer.
These components are critical for constructing the flow-matching architecture.

Definition B.2 (MLP Layer). If the following conditions hold:

o Let X € R'"X™X¢ denote the input tensor, where h,w, ¢ represent height, width, and the
number of channels, respectively.

o Let W € R*? denote the weight matrix and b € R**¢ denote the bias vector.

We define the MLP layer as Y := MLP(X, ¢, d), which outputs tensor Y € R'" X4 by using the
following operations:

* Reshape X into a matrix X € R"*¢ with spatial dimensions collapsed.

* Forall j € [hw], we apply affine transformation on each row as follows
Yi,=X;,- b
9, g W+ 0

1xe cxd 1xd

* Reshape Y € RM*into Y € RIxwxd,

Next, we define the Layer Normalization layer, which is a key component for stabilizing and nor-
malizing the inputs to the flow-matching architecture.

Definition B.3 (Layer Normalization Layer). If the following conditions hold:

o Let X € R'"X™X¢ denote the input tensor, where h,w, ¢ represent height, width, and the
number of channels, respectively.

We define the layer normalization as Y := LN(X), which computes Y through the following steps
* Reshape X into a matrix X € R"*¢ with spatial dimensions collapsed.
* Foreach j € [hw), we apply normalization on each row of the matrix,
Yiw = (Xju— pj)o;

where

C

pi=Y_ Xjnfe, a5 =0 (Xjn—p)°/c)/?
k=1

k=1
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* Reshape Y € RM*¢ jnto Y € RP>wxe,

With the MLP and Layer Normalization layers defined, we now introduce the flow-matching layer,
which is a core component of the FlowAR model.
Definition B.4 (Flow Matching Architecture). If the following conditions hold:

o Let X € R'"XWX¢ denote the input tensor, where h,w, c represent height, width, and the
number of channels, respectively.

* Let K € N denote the number of total scales in FlowAR.

o Forie€ K], let ?z e RW/r)x(w/ri)xe denote the token maps generated by autoregressive
transformer defined in Definition[2.6]

e Fori € [K], let Ft € RUW/mi)x(w/ri)xe depote interpolated input defined in Deﬁnition
» Fori € [K], lett; € [0, 1] denote timestep.

* Fori € [K), let Attn;(-) : RMrixw/rixe _ Rh/rixw/rixe denote the attention layer as

defined in Definition
s Fori € [K], let MLP;(-, ¢, d) : RM/rixw/rixe _y Rh/rixw/rixe depote the MLP layer as
defined in Definition

s Fori € [K], let LN;(-) : RM/rixw/rixe _y Rh/rixw/rixe depote the layer norm layer as

defined in Definition

Then we define the flow-matching architecture as Fg't" = Fl\/li(?i, FZ ,t;), which contains the fol-
lowing computation steps:

* Generate parameter conditioned on the timestep,

~

a1, a2, 1, B2,71,72 == MLP;(Y; + t;, ¢, 6¢)
* Apply attention mechanism,
Fi't := Attn;(y1 o LN(F5) + 81) 0 ay
with o denoting Hadamard (element-wise) product.
* Apply MLP and LN modules,
Fi% := MLP; (72 o LN(F") + 2, ¢, ¢) 0 vz

C DISCUSSION

The HOFAR framework introduces a novel approach to integrating high-order dynamics into flow-
matching-based auto-regressive generation, significantly improving the modeling of complex de-
pendencies and generation quality. However, certain limitations and future directions deserve at-
tention. One limitation is the potential computational overhead when scaling HOFAR to extremely
high-dimensional data, such as ultra-high-resolution images or long-duration videos. While HOFAR
maintains theoretical efficiency, practical implementation may require further optimization to handle
such scenarios. Future work could explore extending HOFAR to multi-modal generation tasks, such
as joint text-video or text-3D generation, where capturing long-term coherence across modalities is
critical. Furthermore, improving the interpretability of high-order dynamics through visualization
or disentanglement techniques would broaden HOFAR’s applicability.

D EMPIRICAL RESULT

In Section we compare visualizations generated by FlowAR and our HOFAR, this highlighting
differences in color accuracy and relative position on CIFAR-10 images.
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D.1 VISUALIZATION EXAMPLES

We present visualization examples produced by the FlowAR-small, FlowAR-large and proposed
HOFAR. Specifically, Figure [3] showcases visualizations generated by the FlowAR-small model,
Figure [] showcases visualizations generated by the FlowAR-large model, whereas Figure [5] high-
lights visualizations created by the HOFAR model.
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Figure 3: 64 32*32 images generated by FlowAR-small.

LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.
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Figure 5: 64 32*32 images generated by HOFAR.
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