
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HOFAR: HIGH-ORDER AUGMENTATION OF FLOW
AUTOREGRESSIVE TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Flow Matching and Transformer architectures have demonstrated remarkable per-
formance in image generation tasks, with recent work FlowAR [Ren et al., 2024]
synergistically integrating both paradigms to advance synthesis fidelity. How-
ever, current FlowAR implementations remain constrained by first-order trajec-
tory modeling during the generation process. This paper introduces a novel frame-
work that systematically enhances flow autoregressive transformers through high-
order supervision. We provide theoretical analysis and empirical evaluation show-
ing that our High-Order FlowAR (HOFAR) demonstrates measurable improve-
ments in generation quality compared to baseline models. The proposed approach
advances the understanding of flow-based autoregressive modeling by introduc-
ing a systematic framework for analyzing trajectory dynamics through high-order
expansion.

1 INTRODUCTION

Recently, flow-matching Lipman et al. (2022) and diffusion models Ho et al. (2020) have demon-
strated remarkable capabilities in the field of image generation Rombach et al. (2022); Esser et al.
(2024). Several works have explored extending these models to generate images with an additional
dimension, such as incorporating a temporal dimension for video generation Singer et al. (2022); Li
et al. (2023) or a 3D spatial dimension for 3D object generation Xue et al. (2024); Mo (2024). Even
4D generation Zhang et al. (2025); Liang et al. (2024a) has become feasible using diffusion mod-
els. Another prominent line of research focuses on auto-regressive models, where the Transformer
framework has achieved groundbreaking success in natural language processing. Models such as
GPT-4 Achiam et al. (2023), Gemini 2 Deepmind (2024), and DeepSeek Guo et al. (2025) have
significantly impacted millions of users worldwide.

Given the success of the auto-regressive generation paradigm and the Transformer framework, recent
works have explored integrating auto-regressive generation into image generation. A representative
example is the Visual Auto-Regressive (VAR) model Tian et al. (2025), which introduces hierarchi-
cal image generation with different image patches. Other works, such as FlowAR Ren et al. (2024)
and ARFlow Hui et al. (2025), integrate flow-matching with auto-regressive generation. However,
these existing approaches primarily focus on modeling the direct transition path between the prior
distribution and the target image distribution, paying less attention to high-order dynamics. High-
order dynamics play a crucial role in capturing complex dependencies between different modali-
ties, which is especially important for tasks like video generation that require long-term coherence.
Moreover, high-order supervision enhances a model’s generalization ability by encouraging it to
learn fundamental generative principles rather than relying on lower-order patterns.

Motivated by these insights, we propose High-Order FlowAR (HOFAR), an approach that builds
upon the strengths of auto-regressive models and flow-matching techniques while extending them
to model higher-order interactions. By explicitly incorporating high-order dynamics, HOFAR im-
proves realism, coherence, and generalization in generative tasks. We theoretically prove that HO-
FAR maintains computational efficiency compared to its base models while empirically demonstrat-
ing its superior performance.

In summary, our contributions are as follows:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

• We introduce HOFAR, a novel framework that integrates high-order dynamics into flow-
matching-based auto-regressive generation, enhancing the model’s ability to capture com-
plex dependencies.

• We provide a theoretical analysis showing that HOFAR maintains computational efficiency
while benefiting from high-order modeling.

• We conduct empirical evaluations demonstrating that HOFAR achieves improved genera-
tion quality, coherence, and generalization compared to existing auto-regressive generative
models.

2 PRELIMINARY

In this section, we introduce the formal mathematical definitions for the FlowAR model and our
High-Order FlowAR (HOFAR) model. These definitions provide the foundational framework for
understanding the preprocessing, downsampling, upsampling, and transformer-based components
of the proposed architecture. In Section 2.1, we introduce the notations we used in this work. In
Section 2.2, we describe the preprocessing steps applied to input images before they are fed into the
model. In Section 2.3, we detail the autoregressive Transformer architecture, which generates the
conditional embeddings utilized by the flow-matching components in the FlowAR model.

2.1 NOTATIONS

Given a matrix X ∈ Rhw×d, we denote its tensorized form as X ∈ Rh×w×d. Additionally, we
define the set [n] to represent {1, 2, · · · , n} for any positive integer n. We define the set of natural
numbers as N := {0, 1, 2, . . . }. Let X ∈ Rm×n be a matrix, where Xi,j refers to the element at the
i-th row and j-th column. When xi belongs to {0, 1}∗, it signifies a binary number with arbitrary
length. In a general setting, xi represents a length p binary string, with each bit taking a value of
either 1 or 0. Given a matrix X ∈ Rn×d, we define ∥X∥∞ as the maximum norm of X . Specifically,
∥X∥∞ = maxi,j |Xi,j |.

2.2 FLOWAR PREPROCESSING PROCESS

We begin by introducing the preprocessing procedure of the FlowAR model. The image is first
passed through a Variational Autoencoder (VAE) to obtain a latent image embedding before being
processed by the main body of the FlowAR model.

Let X ∈ Rh×w×c denote the image embedding generated by the VAE, where h, w, and c represent
the height, width, and number of channels, respectively. The next step involves downsampling
the image embedding X to multiple scales. To formalize this process, we first define the linear
downsampling function.

Definition 2.1 (Linear Downsampling Function). If the following conditions hold:

• Let X ∈ Rh×w×c denote the input tensor, where h,w, c represent height, width, and the
number of channels, respectively.

• Let the positive integer r ≥ 1 denote the scaling factor.

The linear downsampling function ϕdown(X, r) computes an output tensor Y ∈ R(h/r)×(w/r)×c.

To be more specific, let Φdown ∈ R(h/r·w/r)×hw denote a linear transformation matrix. The down-
sampling transformation consists of three steps:

• Reshape X into the matrix X ∈ Rhw×c by flattening its spatial dimensions.

• Apply the linear transformation matrix Φdown on X as

Y = ΦdownX ∈ R(h/r·w/r)×c,

• Reshaped back to Y ∈ R(h/r)×(w/r)×c.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Next, we define the multi-scale downsampling tokenizer, which leverages the linear downsampling
function to generate a sequence of token maps at multiple scales.
Definition 2.2 (Multi-Scale Downsampling Tokenizer). If the following conditions hold:

• Let X ∈ Rh×w×c denote the image embedding generated by VAE.

• Let K ∈ N denote the number of scales.

• Let the positive integer a ≥ 1 denote the base scaling factor.

• For i ∈ [K], we define scale-specific factors ri := aK−i and use the linear downsampling
function ϕdown(X, ri) from Definition 2.1.

We define the multi-scale downsampling tokenizer as TN(X) := {Y1, . . . ,YK}, which outputs a
sequence of token maps {Y2,Y2, . . . ,YK}, where the i-th token map is generated by

Yi := ϕdown,i(X, ri) ∈ R(h/ri)×(w/ri)×c,

During inference, we need to upsample the embeddings after each processing step. To formalize
this operation, we define the bicubic upsampling function as follows.
Definition 2.3 (Upsampling Function). If the following conditions hold:

• Let X ∈ Rh×w×c denote the input tensor, where h,w, c represent height, width, and the
number of channels, respectively.

• Let the A positive integer r ≥ 1 denote the scaling factor.

• Let W : R→ [0, 1] denote the bicubic kernel.

We define the bicubic upsampling function as ϕup(X, r), which computes Y ∈ Rrh×rw×c. For every
output position i ∈ [rh], j ∈ [rw], l ∈ [c]:

Yi,j,l =

2∑
s=−1

2∑
t=−1

W (s) ·W (t) · X⌊ i
r ⌋+s,⌊ j

r ⌋+t,l

2.3 AUTOREGRESSIVE TRANSFORMER ARCHITECTURE

The downsampled embeddings are then fed into the transformer architecture to generate the condi-
tion tensor for the flow matching model. The autoregressive transformer is a key component of the
FlowAR model. Below, we define its attention layer, feedforward layer, and the overall autoregres-
sive transformer.
Definition 2.4 (Attention Layer). If the following conditions hold:

• Let X ∈ Rh×w×c denote the input tensor, where h,w, c represent height, width, and the
number of channels, respectively.

• Let WQ,WK ,WV ∈ Rc×c denote the weight matrices, which will be used in query, key,
and value projection, respectively.

The attention layer Attn(X) is defined by computing the output tensor Y ∈ Rh×w×c in the following
three steps:

• Reshape X into a matrix X ∈ Rhw×c with spatial dimensions collapsed.

• Attention matrix computation. For i, j ∈ [hw], compute pairwise scores:

Ai,j := exp(Xi,∗WQW
⊤
KX⊤

j,∗), for i, j ∈ [hw].

• Normalization. Compute diagnal matrix D := diag(A1n) ∈ Rhw×hw, where 1n is the
all-ones vector. And compute:

Y := D−1AXWV ∈ Rhw×c.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

• Reshape Y to Y ∈ Rh×w×c.

The feedforward layer is another critical component of the transformer architecture. We define it as
follows.
Definition 2.5 (Feed Forward Layer). If the following conditions hold:

• Let X ∈ Rh×w×c denote the input tensor, where h,w, c represent height, width, and the
number of channels, respectively.

• Let W1,W2 ∈ Rc×d denote the weight matrices and b1, b2 ∈ R1×d denote the bias vectors.

• Let σ : R→ R denote the ReLU activation function which is applied element-wise.

We defined the feedforward operation as Y := FFN(X).

To be more specific, it computes an output tensor Y ∈ Rh×w×d in the following steps:

• Reshape X into a matrix X ∈ Rhw×c with spatial dimensions collapsed.

• For each j ∈ [hw], compute

Yj,∗ = Xj,∗︸︷︷︸
1×c

+σ(Xj,∗︸︷︷︸
1×c

· W1︸︷︷︸
c×c

+ b1︸︷︷︸
1×c

) · W2︸︷︷︸
c×c

+ b2︸︷︷︸
1×c

∈ R1×c

where σ acts element-wise on intermediate results. Then reshape Y ∈ Rhw×c into Y ∈
Rh×w×c.

Using the attention and feedforward layers, we now define the autoregressive transformer.
Definition 2.6 (Autoregressive Transformer). If the following conditions hold:

• Let X ∈ Rh×w×c denote the input tensor, where h,w, c represent height, width, and the
number of channels, respectively.

• Let K ∈ N denote the scale number, which is the number of total scales in FlowAR.

• For i ∈ [K], let Yi ∈ R(h/ri)×(w/ri)×c denote the token maps generated by the Multi-Scale
downsampling tokenizer defined in Definition 2.2 where ri = aK−i with base a ∈ N+.

• For i ∈ [K], let ϕup,i(·, a) : R(h/ri)×(w/ri)×c → R(h/ri+1)×(w/ri+1)×c denote the upsam-
pling functions as defined in Definition 2.3.

• For i ∈ [K], let Attni(·) : R(
∑i

j=1 h/rj ·w/rj)×c → R(
∑i

j=1 h/rj ·w/rj)×c denote the atten-
tion layer which acts on flattened sequences of dimension defined in Definition 2.4.

• For i ∈ [K], let FFNi(·) : R(
∑i

j=1 h/rj ·w/rj)×c → R(
∑i

j=1 h/rj ·w/rj)×c denote the feed
forward layer which acts on flattened sequences of dimension defined in Definition 2.5.

• Let Zinit ∈ R(h/r1)×(w/r1)×c denote the initial condition embedding which encodes class
information.

Then, the autoregressive processing is:

• Initialization: Let Z1 := Zinit.

• Iterative sequence construction: For i ≥ 2.
Zi := Concat(Zinit, ϕup,1(Y

1, a), . . . , ϕup,i−1(Y
i−1, a))

where Concat reshapes tokens into a unified spatial grid.

• Transformer block: For i ∈ [K],

TFi(Zi) := FFNi(Attni(Zi)) ∈ R(
∑i

j=1 h/rj ·w/rj)×c

• Output decomposition: Extract the last scale’s dimension from the reshaped TFi(Zi) to
generate Ŷi ∈ R(h/ri)×(w/ri)×c.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3 MAIN RESULTS

In this section, we present our theoretical analysis of the computational efficiency of the HOFAR
model. We demonstrate that despite incorporating high-order dynamics supervision, the increase in
computational complexity for both training and inference remains marginal compared to the signif-
icant performance improvements achieved.

Theorem 3.1 (Computational Efficiency of HOFAR). In accordance with Definition 2.6, the auto-
regressive Transformer architecture incorporates m attention layers. The image input ximg ∈
Rn×n×c is encoded with n2 spatial units, c channels, and a d-dimensional latent representation.
The HOFAR model demonstrates computational costs of O(kmn4d2) for both training and infer-
ence under the specified structural constraints.

Proof. The proof follows from Lemma 4.3 and Lemma 4.4.

Algorithm 1 High-Order FlowAR Training

1: procedure HOFARTRAINING(θ,D)
2: /* θ denotes the model parameters of TF,FMfirst,FMsecond */
3: /* D denotes the training dataset. */
4: while not converged do
5: /* Sample an image from dataset. */
6: ximg ∼ D
7: /* Init loss as 0. */
8: ℓ← 0
9: /* Train the model on K pyramid layers. */

10: for i = 1→ K do
11: /* Sample random noise. */
12: F0 ∼ N (0, I)
13: /* Sample a random timestep. */
14: t ∼ [0, 1]
15: /* Calculate noisy input. */
16: Ft

noisy ← αtximg + βtF
0
i

17: /* Calculate first-order ground-truth. */
18: Ft

first ← α′
tximg + β′

tF
0
i

19: /* Calculate second-order ground-truth. */
20: Ft

second ← α′′
t ximg + β′′

t F
0
i

21: /* Generate condition with Transformer. */
22: Ŷ ← TF(ximg)
23: /* Predict first-order with FM. */
24: F̂t

first ← FMfirst(F
t
noisy, Ŷ)

25: /* Predict second-order with FM. */
26: F̂t

second ← FMsecond(F
t
noisy, Ŷ)

27: /* Caculate loss. */
28: ℓc ← ∥F̂t

first − Ft
first∥22 + ∥F̂t

second − Ft
second∥22

29: ℓ← ℓ+ ℓc
30: /* Downsample ximg for next iteration. */
31: ximg ← Φdownximg

32: end for
33: /* Optimize parameter θ with ℓ. */
34: θ ← ∇θ ℓ
35: end while
36: return θ
37: end procedure

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 2 High-Order FlowAR Inference

1: procedure HOFARINFERENCE(cinput)
2: /* cinput denotes the condition embedding used for generation. */
3: /* Init the Transformer input x with cinput. */
4: x← cinput
5: /* Init the ximg with random noise. */
6: ximg ← N (0, I)
7: /* Inference through K pyramid scales. */
8: for i = 1→ K do
9: /* Pass through the Transformers TF. */

10: Ŷ ← TF(x)
11: /* Extract last i ∗ i tokens from Y as the condition embedding. */
12: xcond ← Y[...,−i ∗ i :]
13: /* Generate first-order with FMfirst. */
14: ŷfirst ← FMfirst(xcond, ximg)
15: /* Generate second-order with FMsecond. */
16: ŷsecond ← FMsecond(xcond, ximg)
17: /* Apply first and second-order terms. */
18: ximg ← ximg + ŷfirst ·∆t+ 0.5 · ŷsecond · (∆t)2

19: /* Upsample ximg. */
20: ximg ← ϕup(ximg)
21: /* Concatenate upsampled ximg to the Transformer input. */
22: x← Concat(x, ximg)
23: end for
24: /* Return the final image */
25: return ximg

26: end procedure

4 TECHNICAL OVERVIEW

In this section, we present the key lemmas used to prove the main theorem introduced in the previous
section. Specifically, we first analyze the computational complexity of each component in auto-
regressive Transformers and the Flow-Matching architecture. Then, we integrate these results to
derive the overall runtime for both the Transformer and Flow-Matching components.

We begin by analyzing the runtime of the auto-regressive Transformer module.

Lemma 4.1 (Running time for Auto-Regressive Transformer Forward). Let the auto-regressive
Transformer is defined as in Definition 2.6 and that it contains m attention layers. Let ximg ∈
Rn×n×c be the input image, where n denotes the resolution and c denotes the number of channels,
and let d denote the hidden dimension. Under these conditions, the running time for a single forward
pass of the auto-regressive Transformer is

O(mn4d).

Proof. We consider each attention block in the Transformers architecture.

For each attention block, it consists of the following three steps:

Step 1: Generate matrices Q,K, V .

We need to generate a query vector q ∈ Rd, a key vector k ∈ Rd and a value vector v ∈ Rd for each
pixel in the original n×n image ximg. After this step, we will have three matrices Q,K, V ∈ Rn2×d.
This step takes O(n2d) time.

Step 2: Calculate the attention matrix.

As defined in Definition 2.4, we need to calculate the attention matrix. It takes O(n4d) to calculate
QK⊤ ∈ Rn2×n2

. It takes O(n4) time to calculate exp(QK⊤). It takes O(n2) time to calculate
D = exp(QK⊤)1n2 . It takes O(n2) to calculate the D−1. It takes O(n4) to multiply D−1 to each

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

row of exp(QK⊤). The overall running time is O(n4d). After this step, we will get the attention
matrix A ∈ Rn2×n2

.

Step 3: Calculate the final output.

The final step is to calculate A · V . Since A ∈ Rn2×n2

and V ∈ Rn2×d. The running time of this
step is O(n4d). Therefore, according to the above analysis, the running time for a single attention
operation is O(n4d). Since there are total m attention layers in the auto-regressive Transformer, the
overall running time is O(mn4d).

Another crucial component of the HOFAR model is the flow-matching architecture. Following a
similar approach, we analyze the computational complexity of the flow-matching model as follows:
Lemma 4.2 (Running time for Flow-Matching Forward). Let the auto-regressive Transformer TF
be defined as in Definition 2.6 and that the flow-matching architecture is defined as in Definition B.4.
Let ximg ∈ Rn×n×c denote the image, where n denotes the resolution and c denotes the number
of channels, and let d denote the hidden dimension. Under these conditions, we can show that the
running time for a single forward pass of the flow-matching architecture is

O(n4d2).

Proof. Since the input of the flow-matching is the output of the auto-regressive Transformer, which
is TF(ximg) ∈ Rn2×n2×d. According to the definition of flow-matching architecture (Defini-
tion B.4), it consists of three operations: one MLP layer, one attention layer, and one MLP layer.
For the first layer, the MLP layer, the running complexity is O(n2d2). For the second layer, the
attention layer, according to the proof of Lemma 4.1, the running time for this layer is O(n4d). For
the third layer, the MLP layer, the running complexity is O(n2d2). Therefore, the overall running
time for the flow-matching is O(n4d2).

With the runtime analysis of both the Transformer and Flow-Matching modules completed, we now
proceed to analyze the training procedure of the HOFAR model. In the following proof, we break
down the training process step by step and derive the overall computational complexity at the end.
Lemma 4.3 (Running time for HOFAR training). Suppose that the auto-regressive Transformer is
defined as in Definition 2.6 and contains m attention layers. Let the flow-matching architecture
be defined as in Definition B.4, and assume that the HOFAR training process is described in Algo-
rithm 1. Furthermore, suppose that HOFAR consists of k pyramid frames, let d denote the hidden
dimension, and let ximg ∈ Rn×n×c denote the image with resolution n and c channels. Then, the
running time of the training procedure of HOFAR is

O(kmn4d2).

Proof. We first consider the running time for each pyramid frame in the training loop (Line 11 to
31 in Algorithm 1). In each loop, we first consider time complexity for the preparation of essential
variables (Line 15 to 20). Since the dimension of each variable in this process is n×n×d, the running
complexity for the preparation process is O(n2d). Then, we consider the process of generating
condition embeddings with Transformer (Line 22). According to Lemma 4.1, the running time
for this process is O(mn4d). Next, according to Lemma 4.2, the prediction process of the flow-
matching models takes O(n4d2) time. Finally, the loss calculation step (Line 28) takes O(n2d)
time.

Therefore, according to all the analysis mentioned above, the running time for each iteration is
O(mn4d2). Since there are total k pyramid frames, the overall running time for the training process
is O(kmn4d2).

Following a similar procedure, we can have the running complexity analysis for the inference pro-
cedure as follows:
Lemma 4.4 (Running time for HOFAR inference). Let the auto-regressive Transformer be defined
as in Definition 2.6 and contain m attention layers, that the flow-matching architecture is defined
as in Definition B.4, and that the HOFAR inference process is described in Algorithm 2. Also,
suppose there are k pyramid frames in HOFAR and let d denote the hidden dimension. Under these
conditions, the running time of the HOFAR inference procedure is O(kmn4d2).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Proof. We begin with considering each loop in k-th inference (Line 9 to Line 22). For each loop,
according to Lemma 4.1, the Transformer forward pass (Line 10) takes O(mn4d) time. Next, ac-
cording to Lemma 4.2, the flow-matching prediction process (Line 13 - 16) takes O(n4d2) time.
Finally, the time for applying the predicted gradient on image (Line 18) takes O(n2d) time. There-
fore, the overall running time for each inference loop is O(mn4d2). Since there are total k inference
loops, the overall running time is O(kmn4d2).

Combining all the analyses discussed above, we can directly arrive at our final theorem (Theo-
rem 3.1).

5 EXPERIMENTS

0 20 40 60 80 100 120 140 160

3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5

Loss Curve of FlowAR_small

0 20 40 60 80 100 120 140 160

2

3

4

5

6

Loss Curve of FlowAR_large

0 20 40 60 80 100 120 140 160
1
0
1
2
3
4
5
6
7

Loss Curve of HOFAR

Figure 1: Loss curve of FlowAR-small (Left), loss curve of FlowAR-large (Middle) and loss curve
of HOFAR (Right).

In Section 5.1, we introduce the setting we used in our experiments. In Section 5.2, we present
the loss curve of the various models. In Section 5.3, we present visualization examples produced
by the FlowAR-small, FlowAR-large and HOFAR, highlighting differences in color accuracy and
generation quality on CIFAR-10 images.

5.1 EXPERIMENT SETUP

In FlowAR-small, we employ an embedding with three dimensions, and its Autoregressive compo-
nent is configured with a 1024-dimensional feature space across a depth of 2 layers. Additionally,
the flow-matching component is realized through a single hidden layer MLP operating with a step
increment of 25. By comparison, FlowAR-large distinguishes itself by utilizing an eight dimen-
sion embedding and extending the Autoregressive feature dimension to 1536, while retaining the
same configuration for the remaining components as in FlowAR-small. In the case of HOFAR, an
embedding of dimension three is similarly adopted, paired with a 1024 dimension Autoregressive
component structured over two layers, and a single-hidden-layer MLP is again employed for flow-
matching with 25 steps. All three models were evaluated on the CIFAR-10 dataset, with analysis
restricted to 8 classes due to computational constraints. All models above use AdamW optimizer
with 0.0001 learning rate. In all experiments, the models were optimized by minimizing the sum
of squared errors (SSE), and performance assessment during testing was based on the Euclidean
distance metric. Regarding the target transport trajectory, we integrated the VP ODE framework as
described in Liu et al. (2022), represented by xt = αtx0 + βtx1. Here, αt is defined as

αt := exp

(
−1

4
a(1− t)2 − 1

2
b(1− t)

)
,

and βt is determined by
√

1− α2
t , with the hyperparameters fixed at a = 19.9 and b = 0.1. During

generation, the eight distinct training labels were provided as input, and a consistent cfg value of
4.3 was maintained for all three models.

5.2 LOSS FUNCTION CURVE

Now, we present the testing loss curves of the various models during training, providing insights
into their convergence behavior and learning dynamics. Figure 1 illustrates the loss for FlowAR-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) Images generated by FlowAR-small.

(b) Images generated by FlowAR-large.

(c) Images generated by HOFAR.

Figure 2: Comparison of 32*32 CIFAR-10 images generation by FlowAR-small (first four lines),
FlowAR-large (second four lines) and HOFAR (last four lines). For better looking, we put higher-
resolution version of Figure 3, Figure 4 and Figure 5 here.

small, FlowAR-large, and our HOFAR, with the respective model parameter counts being 170.70M,
222.72M, and 212.44M.

5.3 VISUALIZATION COMPARISON

As Figure 2 shows, the visualization instances generated by the FlowAR-small, FlowAR-large and
HOFAR models are delineated in this study. Each model uses the same prompt at the corresponding
position.

6 CONCLUSION

In this work, we presented High-Order FlowAR (HOFAR), a novel framework that integrates high-
order dynamics into flow-matching-based auto-regressive generation. By modeling higher-order
interactions, HOFAR enhances the ability to capture complex dependencies, leading to improved
realism, coherence in generative tasks. Our theoretical analysis demonstrates that HOFAR maintains
computational efficiency while benefiting from high-order. Empirical evaluations further validate
the superiority of HOFAR over existing auto-regressive generative models. These contributions
highlight the potential of incorporating high-order dynamics into generative frameworks, paving the
way for more advanced generative models in the future.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHIC STATEMENT

This paper does not involve human subjects, personally identifiable data, or sensitive applications.
We do not foresee direct ethical risks. We follow the ICLR Code of Ethics and affirm that all aspects
of this research comply with the principles of fairness, transparency, and integrity.

REPRODUCIBILITY STATEMENT

We ensure reproducibility on both theoretical and empirical fronts. For theory, we include all formal
assumptions, definitions, and complete proofs in the appendix. For experiments, we describe model
architectures, datasets, preprocessing steps, hyperparameters, and training details in the main text
and appendix.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Yang Cao, Bo Chen, Xiaoyu Li, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song, and Mingda
Wan. Force matching with relativistic constraints: A physics-inspired approach to stable and
efficient generative modeling. arXiv preprint arXiv:2502.08150, 2025a.

Yuefan Cao, Chengyue Gong, Xiaoyu Li, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao Song.
Richspace: Enriching text-to-video prompt space via text embedding interpolation. arXiv preprint
arXiv:2501.09982, 2025b.

Yuefan Cao, Xiaoyu Li, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song, and Jiahao Zhang.
Dissecting submission limit in desk-rejections: A mathematical analysis of fairness in ai confer-
ence policies. arXiv preprint arXiv:2502.00690, 2025c.

YF Chang and George Corliss. Atomft: solving odes and daes using taylor series. Computers &
Mathematics with Applications, 28(10-12):209–233, 1994.

Bo Chen, Chengyue Gong, Xiaoyu Li, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song, Wan
Mingda, and Xugang Ye. Nrflow: Towards noise-robust generative modeling via high-order
mechanism. Manuscript, 2025a.

Bo Chen, Chengyue Gong, Xiaoyu Li, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song,
and Mingda Wan. High-order matching for one-step shortcut diffusion models. arXiv preprint
arXiv:2502.00688, 2025b.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

George Corliss and YF Chang. Solving ordinary differential equations using taylor series. ACM
Transactions on Mathematical Software (TOMS), 8(2):114–144, 1982.

Yusuf Dalva and Pinar Yanardag. Noiseclr: A contrastive learning approach for unsupervised discov-
ery of interpretable directions in diffusion models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 24209–24218, 2024.

Google Deepmind. Gemini2, 2024. URL https://deepmind.google/technologies/
gemini/flash-thinking/.

Franck Djeumou, Cyrus Neary, Eric Goubault, Sylvie Putot, and Ufuk Topcu. Taylor-lagrange
neural ordinary differential equations: Toward fast training and evaluation of neural odes.
arXiv:2201.05715, 2022.

10

https://deepmind.google/technologies/gemini/flash-thinking/
https://deepmind.google/technologies/gemini/flash-thinking/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
for high-resolution image synthesis. In Forty-first international conference on machine learning,
2024.

Chris Finlay, Jörn-Henrik Jacobsen, Levon Nurbekyan, and Adam Oberman. How to train your
neural ode: the world of jacobian and kinetic regularization. In International conference on
machine learning, pp. 3154–3164. PMLR, 2020.

Chengyue Gong, Yekun Ke, Xiaoyu Li, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao
Song. On computational limits of flowar models: Expressivity and efficiency. arXiv preprint
arXiv:2502.16490, 2025.

Will Grathwohl, Ricky TQ Chen, Jesse Bettencourt, Ilya Sutskever, and David Duvenaud. Ffjord:
Free-form continuous dynamics for scalable reversible generative models. arXiv preprint
arXiv:1810.01367, 2018.

Yuming Gu, Hongyi Xu, You Xie, Guoxian Song, Yichun Shi, Di Chang, Jing Yang, and Linjie Luo.
Diffportrait3d: Controllable diffusion for zero-shot portrait view synthesis. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10456–10465, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Seongmin Hong, Kyeonghyun Lee, Suh Yoon Jeon, Hyewon Bae, and Se Young Chun. On exact
inversion of dpm-solvers. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 7069–7078, 2024.

Emiel Hoogeboom, Jonathan Heek, and Tim Salimans. simple diffusion: End-to-end diffusion for
high resolution images. In International Conference on Machine Learning, pp. 13213–13232.
PMLR, 2023.

Hang Hu, Zhao Song, Runzhou Tao, Zhaozhuo Xu, Junze Yin, and Danyang Zhuo. Sublinear time
algorithm for online weighted bipartite matching. arXiv preprint arXiv:2208.03367, 2022.

Jerry Yao-Chieh Hu, Weimin Wu, Yi-Chen Lee, Yu-Chao Huang, Minshuo Chen, and Han Liu. On
statistical rates of conditional diffusion transformers: Approximation, estimation and minimax
optimality. In The Thirteenth International Conference on Learning Representations, 2025.

Xin Huang, Ruizhi Shao, Qi Zhang, Hongwen Zhang, Ying Feng, Yebin Liu, and Qing Wang. Hu-
mannorm: Learning normal diffusion model for high-quality and realistic 3d human generation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
4568–4577, 2024.

Mude Hui, Rui-Jie Zhu, Songlin Yang, Yu Zhang, Zirui Wang, Yuyin Zhou, Jason Eshraghian,
and Cihang Xie. Arflow: Autogressive flow with hybrid linear attention. arXiv preprint
arXiv:2501.16085, 2025.

Siddhant Jain, Daniel Watson, Eric Tabellion, Ben Poole, Janne Kontkanen, et al. Video interpola-
tion with diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 7341–7351, 2024.

Yang Jin, Zhicheng Sun, Ningyuan Li, Kun Xu, Hao Jiang, Nan Zhuang, Quzhe Huang, Yang Song,
Yadong Mu, and Zhouchen Lin. Pyramidal flow matching for efficient video generative modeling.
arXiv preprint arXiv:2410.05954, 2024.

Yekun Ke, Xiaoyu Li, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao Song. On computational
limits and provably efficient criteria of visual autoregressive models: A fine-grained complexity
analysis. arXiv preprint arXiv:2501.04377, 2025a.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yekun Ke, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao Song. Dpbloomfilter: Securing
bloom filters with differential privacy. arXiv preprint arXiv:2502.00693, 2025b.

Jacob Kelly, Jesse Bettencourt, Matthew J Johnson, and David K Duvenaud. Learning differential
equations that are easy to solve. Advances in Neural Information Processing Systems, 33:4370–
4380, 2020.

Chenyang Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. Exploring the frontiers of softmax: Prov-
able optimization, applications in diffusion model, and beyond. arXiv preprint arXiv:2405.03251,
2024a.

Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and Kaiming He. Autoregressive image
generation without vector quantization. arXiv preprint arXiv:2406.11838, 2024b.

Xin Li, Wenqing Chu, Ye Wu, Weihang Yuan, Fanglong Liu, Qi Zhang, Fu Li, Haocheng Feng,
Errui Ding, and Jingdong Wang. Videogen: A reference-guided latent diffusion approach for
high definition text-to-video generation. arXiv preprint arXiv:2309.00398, 2023.

Hanwen Liang, Yuyang Yin, Dejia Xu, Hanxue Liang, Zhangyang Wang, Konstantinos N Platanio-
tis, Yao Zhao, and Yunchao Wei. Diffusion4d: Fast spatial-temporal consistent 4d generation via
video diffusion models. arXiv preprint arXiv:2405.16645, 2024a.

Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao Song. Differential privacy mechanisms in
neural tangent kernel regression. arXiv preprint arXiv:2407.13621, 2024b.

Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song, and Yufa Zhou. Multi-layer transformers
gradient can be approximated in almost linear time. arXiv preprint arXiv:2408.13233, 2024c.

Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song, Wan Mingda, and Yufa Zhou. Unraveling the
smoothness properties of diffusion models: A gaussian mixture perspective. Manuscript, 2025.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Chengyi Liu, Jiahao Zhang, Shijie Wang, Wenqi Fan, and Qing Li. Score-based generative diffusion
models for social recommendations. arXiv preprint arXiv:2412.15579, 2024.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

Shentong Mo. Efficient 3d shape generation via diffusion mamba with bidirectional ssms. arXiv
preprint arXiv:2406.05038, 2024.

Sucheng Ren, Qihang Yu, Ju He, Xiaohui Shen, Alan Yuille, and Liang-Chieh Chen. Flowar: Scale-
wise autoregressive image generation meets flow matching. arXiv preprint arXiv:2412.15205,
2024.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Litu Rout, Yujia Chen, Abhishek Kumar, Constantine Caramanis, Sanjay Shakkottai, and Wen-
Sheng Chu. Beyond first-order tweedie: Solving inverse problems using latent diffusion. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9472–
9481, 2024.

Xuan Shen, Zhao Song, Yufa Zhou, Bo Chen, Yanyu Li, Yifan Gong, Kai Zhang, Hao Tan, Jason
Kuen, Henghui Ding, et al. Lazydit: Lazy learning for the acceleration of diffusion transformers.
arXiv preprint arXiv:2412.12444, 2024.

Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An, Songyang Zhang, Qiyuan Hu, Harry
Yang, Oron Ashual, Oran Gafni, et al. Make-a-video: Text-to-video generation without text-video
data. arXiv preprint arXiv:2209.14792, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zhao Song, Weixin Wang, Chenbo Yin, and Junze Yin. Fast and efficient matching algorithm with
deadline instances. In The Second Conference on Parsimony and Learning (Proceedings Track),
2025. URL https://openreview.net/forum?id=TIneXGrWZt.

Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:
Scalable image generation via next-scale prediction. Advances in neural information processing
systems, 37:84839–84865, 2025.

Yilin Wang, Zeyuan Chen, Liangjun Zhong, Zheng Ding, Zhizhou Sha, and Zhuowen Tu. Dolfin:
Diffusion layout transformers without autoencoder. arXiv preprint arXiv:2310.16305, 2023.

Yilin Wang, Haiyang Xu, Xiang Zhang, Zeyuan Chen, Zhizhou Sha, Zirui Wang, and Zhuowen Tu.
Omnicontrolnet: Dual-stage integration for conditional image generation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7436–7448, 2024a.

Zirui Wang, Zhizhou Sha, Zheng Ding, Yilin Wang, and Zhuowen Tu. Tokencompose: Text-to-
image diffusion with token-level supervision. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 8553–8564, 2024b.

Wei Wu, Qingnan Fan, Shuai Qin, Hong Gu, Ruoyu Zhao, and Antoni B Chan. Freediff: Progres-
sive frequency truncation for image editing with diffusion models. In European Conference on
Computer Vision, pp. 194–209. Springer, 2024.

Zhongcong Xu, Jianfeng Zhang, Jun Hao Liew, Hanshu Yan, Jia-Wei Liu, Chenxu Zhang, Jiashi
Feng, and Mike Zheng Shou. Magicanimate: Temporally consistent human image animation
using diffusion model. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 1481–1490, 2024.

Yuxuan Xue, Xianghui Xie, Riccardo Marin, and Gerard Pons-Moll. Gen-3diffusion: Realistic
image-to-3d generation via 2d & 3d diffusion synergy. arXiv preprint arXiv:2412.06698, 2024.

Haiyu Zhang, Xinyuan Chen, Yaohui Wang, Xihui Liu, Yunhong Wang, and Yu Qiao. 4diffusion:
Multi-view video diffusion model for 4d generation. Advances in Neural Information Processing
Systems, 37:15272–15295, 2025.

13

https://openreview.net/forum?id=TIneXGrWZt

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Appendix
Roadmap. In Section A, we introduce related work. In Section B, we provide a formal mathemat-
ical definition of flow modeling and present the implementation of the flow-matching architecture.
In Section C, we analyze the strengths and limitations of the High-Order FlowAR (HOFAR) frame-
work. In Section D, we exhibit some result obtained from the experiments.

A RELATED WORK

A.1 FLOW-BASED AND DIFFUSION-BASED GENERATIVE MODELS

Flow-based and diffusion-based generative models have demonstrated significant potential in image
and video generation tasks Ho et al. (2020); Hoogeboom et al. (2023); Li et al. (2024b); Gu et al.
(2024); Jain et al. (2024); Xu et al. (2024); Liu et al. (2024). Among these, Latent Diffusion Models
(LDM) Rombach et al. (2022) have emerged as a particularly powerful approach, especially in
the domain of text-to-image synthesis. Recent advancements, such as Stable Diffusion V3 Esser
et al. (2024), have integrated flow-matching techniques as an alternative strategy to further improve
generation quality and enhance the photorealism of synthesized images. Moreover, a growing body
of research Jin et al. (2024); Wang et al. (2024b; 2023; 2024a) has highlighted the potential of
combining the strengths of diffusion models and flow-matching models to achieve even greater
generation fidelity. In this context, we acknowledge several influential works in flow-matching and
diffusion-based generation Hu et al. (2022); Song et al. (2025); Dalva & Yanardag (2024); Huang
et al. (2024); Wu et al. (2024); Cao et al. (2025a); Liang et al. (2025); Shen et al. (2024); Li et al.
(2024a); Hu et al. (2025); Cao et al. (2025c); Ke et al. (2025b); Cao et al. (2025b); Ke et al. (2025a);
Liang et al. (2024b;c); Gong et al. (2025), which have greatly inspired our research.

A.2 HIGH-ORDER DYNAMIC SUPERVISION

High-order dynamics are often overlooked in the research community, despite their critical role in
modeling target distributions—such as image or video distributions—with greater accuracy and ef-
fectiveness. Current research primarily explores high-order dynamics within gradient-based meth-
ods. For example, solvers Djeumou et al. (2022); Hong et al. (2024) and regularization frame-
works Kelly et al. (2020); Finlay et al. (2020) for neural ordinary differential equations (neural
ODEs) Chen et al. (2018); Grathwohl et al. (2018) frequently leverage higher-order derivatives
to enhance performance Rout et al. (2024); Chen et al. (2025b;a). Beyond machine learning, the
study of higher-order temporal Taylor methods (TTMs) has been extensively applied to solving both
stiff Chang & Corliss (1994) and non-stiff Chang & Corliss (1994); Corliss & Chang (1982) systems,
demonstrating their broad utility in computational mathematics.

Roadmap. This paper is organized as follows: Section 2 introduces the fundamental notations
used throughout the paper and provides formal definitions for each module in the proposed model.
In Section 3, we present the training and inference algorithms for our HOFAR model, along with an
analysis of its computational efficiency. In Section 4, we delve into the technical details and method-
ologies employed to prove our formal theorem. In Section 5, we conduct an empirical evaluation of
the HOFAR model, showcasing its effectiveness and robustness in image generation tasks. Finally,
in Section 6, we summarize the key contributions of this paper and provide concluding remarks.

B FLOW MATCHING ARCHITECTURE

We begin by outlining the concept of velocity flow in the flow-matching architecture. This section
introduces the foundational definitions and components necessary to understand the flow-matching
model.

Definition B.1 (Flow). If the following conditions hold:

• Let X ∈ Rh×w×c denote the input tensor, where h,w, c represent height, width, and the
number of channels, respectively.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

• Let K ∈ N denote the scales number.

• For i ∈ [K], let F0
i ∈ R(h/ri)×(w/ri)×c denote the noise tensor with every entry sampled

from N (0, 1).

• For i ∈ [K], let Ŷi ∈ R(h/ri)×(w/ri)×c denote the token maps generated by autoregressive
transformer as defined in Definition 2.6.

Then, we define the flow model supports the following two operations:

• Interpolation: For timestep t ∈ [0, 1] and scale i,

Ft
i := tŶi + (1− t)F0

i

which describes a linear trajectory between the noise Fi
0 and target tokens Ŷi.

• Velocity Field: The time derivative of the flow at scale i is given by

Vt
i :=

dFt
i

dt
= Ŷi − F0

i .

This velocity field is constant across t due to the linear nature of the interpolation.

Before introducing the implementation of the flow-matching model, we first define two essential
components: the Multi-Layer Perceptron (MLP) layer and the Layer Normalization (LN) layer.
These components are critical for constructing the flow-matching architecture.
Definition B.2 (MLP Layer). If the following conditions hold:

• Let X ∈ Rh×w×c denote the input tensor, where h,w, c represent height, width, and the
number of channels, respectively.

• Let W ∈ Rc×d denote the weight matrix and b ∈ R1×d denote the bias vector.

We define the MLP layer as Y := MLP(X, c, d), which outputs tensor Y ∈ Rh×w×d by using the
following operations:

• Reshape X into a matrix X ∈ Rhw×c with spatial dimensions collapsed.

• For all j ∈ [hw], we apply affine transformation on each row as follows

Yj,∗ = Xj,∗︸︷︷︸
1×c

· W︸︷︷︸
c×d

+ b︸︷︷︸
1×d

• Reshape Y ∈ Rhw×d into Y ∈ Rh×w×d.

Next, we define the Layer Normalization layer, which is a key component for stabilizing and nor-
malizing the inputs to the flow-matching architecture.
Definition B.3 (Layer Normalization Layer). If the following conditions hold:

• Let X ∈ Rh×w×c denote the input tensor, where h,w, c represent height, width, and the
number of channels, respectively.

We define the layer normalization as Y := LN(X), which computes Y through the following steps

• Reshape X into a matrix X ∈ Rhw×c with spatial dimensions collapsed.

• For each j ∈ [hw], we apply normalization on each row of the matrix,

Yj,∗ = (Xj,∗ − µj)σ
−1
j

where

µj :=

c∑
k=1

Xj,k/c, σj = (

c∑
k=1

(Xj,k − µj)
2/c)1/2

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

• Reshape Y ∈ Rhw×c into Y ∈ Rh×w×c.

With the MLP and Layer Normalization layers defined, we now introduce the flow-matching layer,
which is a core component of the FlowAR model.
Definition B.4 (Flow Matching Architecture). If the following conditions hold:

• Let X ∈ Rh×w×c denote the input tensor, where h,w, c represent height, width, and the
number of channels, respectively.

• Let K ∈ N denote the number of total scales in FlowAR.

• For i ∈ [K], let Ŷi ∈ R(h/ri)×(w/ri)×c denote the token maps generated by autoregressive
transformer defined in Definition 2.6.

• For i ∈ [K], let Ft
i ∈ R(h/ri)×(w/ri)×c denote interpolated input defined in Definition B.1.

• For i ∈ [K], let ti ∈ [0, 1] denote timestep.

• For i ∈ [K], let Attni(·) : Rh/ri×w/ri×c → Rh/ri×w/ri×c denote the attention layer as
defined in Definition 2.4.

• For i ∈ [K], let MLPi(·, c, d) : Rh/ri×w/ri×c → Rh/ri×w/ri×c denote the MLP layer as
defined in Definition B.2.

• For i ∈ [K], let LNi(·) : Rh/ri×w/ri×c → Rh/ri×w/ri×c denote the layer norm layer as
defined in Definition B.3.

Then we define the flow-matching architecture as F′′ti
i := FMi(Ŷi,F

ti
i , ti), which contains the fol-

lowing computation steps:

• Generate parameter conditioned on the timestep,

α1, α2, β1, β2, γ1, γ2 := MLPi(Ŷi + ti, c, 6c)

• Apply attention mechanism,

F′ti
i := Attni(γ1 ◦ LN(Fti

i) + β1) ◦ α1

with ◦ denoting Hadamard (element-wise) product.

• Apply MLP and LN modules,

F′′ti
i := MLPi(γ2 ◦ LN(F′ti

i) + β2, c, c) ◦ α2

C DISCUSSION

The HOFAR framework introduces a novel approach to integrating high-order dynamics into flow-
matching-based auto-regressive generation, significantly improving the modeling of complex de-
pendencies and generation quality. However, certain limitations and future directions deserve at-
tention. One limitation is the potential computational overhead when scaling HOFAR to extremely
high-dimensional data, such as ultra-high-resolution images or long-duration videos. While HOFAR
maintains theoretical efficiency, practical implementation may require further optimization to handle
such scenarios. Future work could explore extending HOFAR to multi-modal generation tasks, such
as joint text-video or text-3D generation, where capturing long-term coherence across modalities is
critical. Furthermore, improving the interpretability of high-order dynamics through visualization
or disentanglement techniques would broaden HOFAR’s applicability.

D EMPIRICAL RESULT

In Section D.1, we compare visualizations generated by FlowAR and our HOFAR, this highlighting
differences in color accuracy and relative position on CIFAR-10 images.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D.1 VISUALIZATION EXAMPLES

We present visualization examples produced by the FlowAR-small, FlowAR-large and proposed
HOFAR. Specifically, Figure 3 showcases visualizations generated by the FlowAR-small model,
Figure 4 showcases visualizations generated by the FlowAR-large model, whereas Figure 5 high-
lights visualizations created by the HOFAR model.

Figure 3: 64 32*32 images generated by FlowAR-small.

LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 4: 64 32*32 images generated by FlowAR-large.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 5: 64 32*32 images generated by HOFAR.

19

	Introduction
	Preliminary
	Notations
	FlowAR Preprocessing Process
	Autoregressive Transformer Architecture

	Main Results
	Technical Overview
	Experiments
	Experiment Setup
	Loss Function Curve
	Visualization Comparison

	Conclusion
	Related Work
	Flow-based and Diffusion-based Generative Models
	High-Order Dynamic Supervision

	Flow Matching Architecture
	Discussion
	Empirical Result
	Visualization Examples

