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Abstract
Kernel-based statistical learning on distributional
inputs appears in many relevant applications, from
medical diagnostics to causal inference, and poses
intriguing theoretical questions. While this learn-
ing scenario received considerable attention from
the machine learning community recently, many
gaps in the theory remain. In particular, most
works consider only the distributional regression
setting, and focus on the regularized least-squares
algorithm for this problem. In this work, we start
to fill these gaps. We prove two oracle inequalities
for kernel machines in general distributional learn-
ing scenarios, as well as a generalization result
based on algorithmic stability. Our main results
are formulated in great generality, utilizing gen-
eral Hilbertian embeddings, which makes them
applicable to a wide array of approaches to distri-
butional learning. Additionally, we specialize our
results to the cases of kernel mean embeddings
and of the recently introduced Hilbertian embed-
dings based on sliced Wasserstein distances, pro-
viding concrete instances of the general setup.
Our results considerably enlarge the scope of the-
oretically grounded distributional learning, and
provide many interesting avenues for future work.

1. Introduction
Supervised statistical learning with distributional inputs has
received significant attention lately, cf. (Szabó et al., 2016;
Fang et al., 2020; Meunier et al., 2022), both from practical
and theoretical perspectives. The goal is to learn a relation
between inputs and outputs from data, where the inputs are
probability distributions on some measurable space. Further-
more, the inputs (probability distributions) are not directly
accessible, but the data contains only samples thereof. A
classic example is the prediction of some health indicator of
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a patient from several clinical measurements (Szabó et al.,
2015), which we recall now. Let S be the set of outcomes
of some diagnosis tools (e.g., electrocardiogram characteris-
tics, or the blood serum concentration of some substance).
Since these measurements will vary even when coming
from the same patient, it is reasonable to assume that an
individual patient with a specific health status has a certain
distribution Q on S that generates the measurements and
that can be a predictor for some health indicator y ∈ Y (e.g.,
healthy or not). However, during training, Q is not directly
accessible, but rather through independent and identically
distributed (i.i.d.) samples S1, . . . , SM

i.i.d.∼ Q. For exam-
ple, this could correspond to daily blood measurements of a
patient during a week-long hospital stay, assuming the pa-
tient’s distribution Q has not changed during the week (e.g.,
when the health status has not changed). The training data
consists of such data from N different patients, so the data
set is not of the form D̄ = ((Qn, yn))n=1,...,N , but rather

D = ((S(n), yn))n=1,...,N , where S(n)
1 , . . . , S

(n)
Mn

i.i.d.∼ Qn.
The goal is to learn a map fD from distributions Q over
S to outcomes Y (e.g., from distributions over diagnostic
measurements to health status).

Among such learning problems, the focus of previous theo-
retical investigations has been on distributional regression.
In this setting, one is interested in predicting a real-valued
quantity from a distributional input, so Y = R. While
the early work (Póczos et al., 2013) relied on density es-
timation, starting with Szabó et al. (2015), kernel mean
embeddings (KMEs) together with kernel ridge regression
(KRR) have been used. For concreteness, let us review this
latter approach. Consider a data set D as introduced above.
A single input item S(n) is first interpreted as an empiri-
cal measure µ̂[S(n)] = 1

Mn

∑Mn

m=1 δS(n)
m

, where δs is the
Dirac measure with atom on s, which is then embedded into
a reproducing kernel Hilbert space (RKHS) Hκ using the
KME, µ̂[S(n)] 7→ Πκµ̂[S

(n)]. Assuming access to a (sec-
ond) kernel k on the RKHS Hκ, one then performs KRR on
the transformed data set DΠ̂κ

= ((Πκµ̂[S
(n)], yn))n=1,...,N .

The resulting learned function fDΠ̂κ
can then be used for

prediction by composing it with the KME map. A distribu-
tion Q on S would therefore lead to prediction fDΠ̂κ

(ΠκQ).
This approach has been thoroughly analyzed (Szabó et al.,
2015; 2016; Fang et al., 2020). All of these investigations
rely on the seminal analysis (Caponnetto & De Vito, 2007)
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of the regularized least-squares algorithm for regression.

Recently, (Meunier et al., 2022) developed a much more
general perspective on this problem. Instead of KMEs, they
consider suitable embeddings Π of probability distributions
into some Hilbert space H, and then utilize distance sub-
stitution kernels (Haasdonk & Bahlmann, 2004) with the
induced Hilbertian (semi)metric (P,Q) 7→ ∥ΠP −ΠQ∥H
on probability distributions. In particular, they apply this
construction to sliced Wasserstein (SW) distances (Bonneel
et al., 2015) and construct corresponding SW kernels. The
resulting method has been theoretically analyzed, building
again on (Caponnetto & De Vito, 2007).

Despite this multitude of activity, many interesting and prac-
tically relevant problems in this area are still open. In this
work, we focus on two theoretical aspects. First, most the-
oretically grounded works in the context of distributional
learning methods have focused almost exclusively on the dis-
tributional regression problem. However, other learning sce-
narios are also highly relevant, in particular, distributional
classification. For example, in the medical example outlined
above, a natural task is to predict a binary health status of a
patient (e.g., having a certain disease or not), corresponding
to (distributional) binary classification. As another example,
in Lopez-Paz et al. (2015), distributional classification is
applied to the problem of predicting causal directions and
causal graphs from data. KMEs are also used there, though
empirical risk minization (ERM) is then applied on the trans-
formed data set. To the best of our knowledge, this reference
is also the only one investigating distributional classification
with KMEs from a theoretical perspective. While they es-
tablish some generalization bounds based on margin theory,
no consistency results or oracle inequalities in the sense
of (Steinwart & Christmann, 2008) are provided. Recall
that an oracle inequality in this context is a high probabil-
ity bound on the excess risk of the learned hypothesis over
what an oracle, that has access to the true data-generating
distribution, can achieve. In turn, these inequalities allow
derivation of consistency results, and under suitable distri-
butional assumptions also of learning rates, and it is hence
highly desirable that such inequalities are also available in
the distributional learning setting. Second, the theoretical
analyses of distributional learning have been restricted to
rather specific settings. Even in the context of distributional
regression, the learning setups considered have been fairly
specific. In particular, in the context of KME-based distri-
butional regression, to the best of our knowledge only KRR
has been considered so far, and analyzed exclusively using
(Caponnetto & De Vito, 2007). This technique is inherently
limited to KRR, and hence cannot be used to analyze inter
alia support vector regression (SVR) with the ϵ-insensitive
loss. It is furthermore also not suitable to analyze classi-
fication using support vector machines (SVMs), or more
general regularized empirical risk approaches.

Contributions In this work, we tackle these open issues.
First, for the distributional learning setting outlined above,
we provide two oracle inequalities for the risk of SVMs
(in the sense of regularized risk minimization over RKHSs)
that cover a multitude of learning scenarios. To the best of
our knowledge, both of these results are completely new in
the context of learning on distributional inputs. Second, we
establish a generalization bound for distributional learning
based on algorithmic stability, and apply it to SVMs. Third,
inspired by (Meunier et al., 2022), we formulate all of this
for kernel-based methods that rely on a general Hilbertian
embedding of probability distributions. In this manner, our
results apply to the case of KMEs and SW kernels, and any
future method that provides Hilbertian embeddings. Fourth,
we specialize our results to KMEs and SW distances for the
Hilbertian embedding.

Outline In Section 2, we collect necessary background,
in particular, on statistical learning theory and the theory
of RKHSs. Furthermore, we formalize the distributional
learning setup, and provide details on kernel-based methods
using Hilbertian embeddings. In Section 3, we present our
two oracle inequalities, and specialize them to the case of
KMEs. In Section 4, we present a generalization result for
distributional learning based on algorithmic stability. We
use this to prove a corresponding generalization result for
SVMs in the distributional setting, and specialize the latter
to the case of KMEs again. Section 5 closes with a summary
and an outlook. In the appendix we collect some technical
background, and proofs of the oracle inequalities and the
main generalization result. Furthermore, in the appendix
we also provide specializations of our results to the case of
using the sliced 2-Wasserstein distance for the Hilbertian
embedding.

2. Distributional Learning Setup
In this section, we introduce necessary technical back-
ground, and formalize the learning setup that we consider
in the following.

Preliminaries For a measurable space (Z,AZ), we denote
the set of all probability distributions on it by M1(Z), sup-
pressing the σ-algebra if no confusion can arise, and the set
of measurable real-valued functions is denoted by L0(Z).
If (X ,AX ), (Y,AY) are measurable spaces, f : X → Y
is a measurable map, and µ ∈ M1(X ) is a probability
measure, then the pushforward of µ along f is defined as
f♯µ(A′) = µ(f−1(A′)) for all A′ ∈ AY . For a topological
space (X , τX ), we denote the associated Borel σ-algebra by
B(τX ). Given µn, µ ∈ M1(X ), n ∈ N+, we say that (µn)n
converges weakly1 to µ, if for all bounded and continuous
f : X → R, we have

∫
X f(x)dµn(x) →

∫
X f(x)dµ(x).

1In the sense of probability theory, not functional analysis.
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This induces a topology τw on M1(X ), called the topology
of weak convergence. If (X , ∥ · ∥X ) is a normed space, we
define B(X ) as the Borel σ-algebra generated by the open
sets w.r.t. to the topology induced by the norm.

We briefly review some basics of kernels, and refer to
(Steinwart & Christmann, 2008) for more background and
pointers to the vast literature. Let X ≠ ∅ be a set and
k : X × X → R some function. We call k a kernel on
X , if for all x1, . . . , xN ∈ X and N ∈ N+, the matrices
(k(xi, xj))i,j are (symmetric) positive semidefinite. Let
(H, ⟨·, ·⟩H) be a Hilbert space of real-valued functions on
X . We call k a reproducing kernel of H , if k(·, x) ∈ H
for all x ∈ X , and f(x) = ⟨f, k(·, x)⟩H for all f ∈ H
and x ∈ X . If H has a reproducing kernel, the latter is
unique, and we call H a reproducing kernel Hilbert space
(RKHS). For every kernel k, there is a unique RKHS for
which k is the reproducing kernel, and we denote this RKHS
by (Hk, ⟨·, ·⟩k), and the induced norm by ∥ · ∥k. We also
define ∥k∥∞ = supx∈X

√
k(x, x), and call k bounded if it

is bounded as a map on X ×X , which is the case if and only
if ∥k∥∞ <∞. Furthermore, the canonical feature map of
the kernel k is given by Φk : X → Hk, Φk(x) = k(·, x).
Finally, a kernel k on a compact metric space X is called
universal if Hk is dense (w.r.t. the supremum norm) in the
set of continuous functions on X .

Furthermore, in order to balance generality and simplicity
of notation, we use comparison functions, a very successful
formalism in control theory (Kellett, 2014). Define K as
the set of continuous functions α : R≥0 → R≥0 such
that α(0) = 0 and α is strictly increasing. Operations and
relations are declared pointwise on K, so for α1, α2 ∈ K,
α1 ≤ α2 means that α1(s) ≤ α2(s) for all s ∈ R≥0. Note
that K is closed under addition and scalar multiplication
with positive real numbers. Finally, we call (αB)B∈R>0

⊆
K a nondecreasing family, if αa ≤ αb for all 0 < a ≤ b <
∞.

Statistical learning theory We now introduce the statistical
learning theory setup, closely following Chapters 2 and 5
in (Steinwart & Christmann, 2008). Let X be a measurable
space, and let ∅ ̸= Y ⊆ R be closed. A loss function
ℓ : X × Y × R → R≥0 is a measurable function. We call
ℓ convex, differentiable, etc., if for all x ∈ X , y ∈ Y the
function ℓ(x, y, ·) has the corresponding property. If ℓ is
locally Lipschitz continuous, we define for all B ∈ R>0

|ℓ|1,B = sup
t1,t2∈[−B,B]

t1 ̸=t2
x∈X ,y∈Y

|ℓ(x, y, t1)− ℓ(x, y, t2)|
|t1 − t2|

. (1)

Given P ∈ M1(X × Y) and f : X → R measurable, we
define the risk Rℓ,P (f) =

∫
ℓ(x, y, f(x))dP (x, y) and the

Bayes risk R∗
ℓ,P = inff∈L0(X ) Rℓ,P (f). Let k be a kernel

on X such that all functions in Hk are measurable. For

f ∈ Hk and a regularization parameter λ ∈ R>0, we de-
fine the regularized risk Rℓ,P,λ(f) = Rℓ,P (f) + λ∥f∥2k,
as well as RHk∗

ℓ,P,λ = inff∈Hk Rℓ,P,λ(f) and RHk∗
ℓ,P =

inff∈Hk Rℓ,P (f). Additionally, if RHk∗
ℓ,P < ∞, define the

approximation error function A(2)
ℓ,P : R≥0 → R by

A
(2)
ℓ,P (λ) = RHk∗

ℓ,P,λ −RHk∗
ℓ,P . (2)

Furthermore, define the empirical risk of a function f ∈
Hk w.r.t. data D = ((xn, yn))n=1,...,N ∈ (X × Y)N by
Rℓ,D(f) =

1
N

∑N
n=1 ℓ(xn, yn, f(xn)), and the regularized

empirical risk Rℓ,D,λ(f) = Rℓ,D(f) + λ∥f∥2k. If it exists,
a solution to the optimization problem

min
f∈Hk

Rℓ,D,λ(f) (3)

is called an (empirical) SVM solution and we denote it by
fD,λ. Similarly, if a solution to the optimization problem

min
f∈Hk

Rℓ,P,λ(f) (4)

exists, we called it an infinite-sample SVM solution or just
SVM solution, and denote it by fP,λ.

Two-stage sampling setup We now introduce the concrete
distributional learning setup that we consider, roughly fol-
lowing (Szabó et al., 2015) and (Meunier et al., 2022). Un-
less noted otherwise, this will be the setup that we use in
the remainder of this work. Let (S, τS) be a topological
space and consider the set of Borel probability measures
M1(S) on S . Let τw be the topology induced by weak
convergence in M1(S), and consider the measurable space
(M1(S),B(τw)).

Let H be a Hilbert space, which we endow with the Borel
σ-algebra B(H), let Π : M1(S) → H be some map, and
define the Hilbertian semimetric dH(P,Q) = ∥Π(P ) −
Π(Q)∥H, and the set X = Π(M1(S)). Additionally, we
assume access to a family of maps (Π̂M )M∈N+

with Π̂M :

SM → X , and we define S∗ =
⋃
M∈N+

SM and Π̂ : S∗ →
X by Π̂(S) = Π̂M (S) for all S ∈ SM and M ∈ N+. The
usual example is Π̂(S) = Π

(
1
M

∑M
m=1 δSm

)
for S ∈ SM

and all M ∈ N+. However, our setup allows also different
choices. For the analysis of this setting, measurability of
various components needs to be ensured, for which the
following assumption can be invoked.

Assumption 2.1. H is separable, Π is B(τw)-B(H)-
measurable, and X ∈ B(H). Furthermore, for all M ∈ N+,
Π̂M is B(τS)⊗M -B(X )-measurable.

The following technical result now ensures that we can apply
the usual statistical learning theory setup.

Lemma 2.2. Under Assumption 2.1, the map Π is B(τw)-
B(τH|X )-measurable, where τH|X is the subspace topology
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on X induced by the topology on H. Furthermore, every
P ∈ M1(M1(S)×Y) induces a distribution PΠ on X × Y
as the pushforward of P along (Q, y) 7→ (ΠQ, y).

A proof of this result is provided in Section A.1.1 in (Szabó
et al., 2015) and the supplementary to (Lopez-Paz et al.,
2015). For the remainder of this subsection, we work un-
der Assumption 2.1. Let P be a probability distribution on
M1(S) × Y (often called meta-distribution), and to ease
the notational load, in the following we will use P also
for the pushforward2 PΠ, if no confusion can arise. Fur-
thermore, we assume the following data-generating model.
We sample (Q1, y1), . . . , (QN , yN ) i.i.d. from P , and for
each n = 1, . . . , N , we assume that S(n) ∼ Q⊗Mn

n for
some Mn ∈ N+, and that S(1), . . . , S(N) are also indepen-
dent. The data sets used for training are then of the form
D = ((S(n), yn))n=1,...,N ∈ (S∗ × Y)

N . Furthermore, we
define

DΠ̂ = ((Π̂(S(n)), yn))n=1,...,N

and for D̄ = ((Qn, yn))n=1,...,N ∈ (M1(S)×Y)N , define

D̄ = ((Qn, yn))n=1,...,N ∈ (M1(S)× Y)N

D̄Π = ((ΠQn, yn))n=1,...,N ∈ (X × Y)N .

To summarize, we have to deal with two sampling stages.
First, sampling input-output pairs (Q, y) ∼ P , and then
sampling from the distributions Q. Let now ℓ : X × Y ×
R → R≥0 be a loss function and k a kernel on X . Given a
data set D as above, consider the regularized empirical risk
minimization problem

min
f∈Hk

Rℓ,DΠ̂,λ
(f) (5)

where λ ∈ R>0 is the regularization parameter. If a solution
fDΠ̂,λ

to (5) exists, it can be used for a prediction task with
distributional inputs by composing it with the map Π, so
given input Q ∈ M1(S), it leads to prediction fDΠ̂,λ

(ΠQ).
Using Assumption 2.1 and Lemma 2.2, we can now consider
various risks3 like Rℓ,P,λ(fDΠ̂,λ

).
Remark 2.3. Note that X is a subset of a Hilbert space
H, so in order to implement the approach just described,
we need kernels k on (subsets of) Hilbert spaces. On the
one hand, any such kernel can in principle be used for this
task, cf. (Christmann & Steinwart, 2010) for some exam-
ples. On the other hand, constructing kernels on (potentially
infinite-dimensional) Hilbert spaces can be challenging. To

2Formally, PΠ = g♯P , where the measurable map g :
M1(S)× Y → X × Y is defined by g(Q, y) = (ΠQ, y).

3Note that we tacitly assume that the learning methods induced
by the regularized (empirical) risk minimization problems are
measurable learning methods. In the setting we consider, this does
not pose a problem, cf. the thorough discussion in Chapter 6 in
(Steinwart & Christmann, 2008).

tackle this, (Meunier et al., 2022) suggested a general frame-
work based on distance substitution kernels (Haasdonk &
Bahlmann, 2004). The Hilbertian embedding (H,Π) is used
to construct a kernel on probability distributions by defin-
ing k(P,Q) = ϕ(∥ΠP − ΠQ∥H), where ϕ is a function
that induces a radial kernel. Note that all of our general
results immediately apply to this framework, covering for
example sliced 1- and 2-Wasserstein distances and the in-
duced distance substitution kernels. For details and concrete
examples, we refer to (Meunier et al., 2022).

Special case: Kernel mean embeddings The first works on
distributional learning using Hilbertian embeddings relied
on kernel mean embeddings (KMEs). We summarize the
necessary background in the following result.

Proposition 2.4. Let (S,AS) be a measurable space, and
κ a measurable and bounded kernel on S.

1. The map

Πκ : M1(S) → Hκ, ΠκQ =

∫
κ(·, s)dQ(s) (6)

is well-defined, and we call ΠκQ the kernel mean em-
bedding (KME) of Q ∈ M1(S) w.r.t. κ.

2. Define Π̂κ : S∗ → Hκ by

Π̂κ((s1, . . . , sM )) =
1

M

M∑
m=1

κ(·, sm). (7)

For all Q ∈ M1(S) and S ∼ Q⊗M , M ∈ N+, and
δ ∈ (0, 1), we have that

∥Π̂κS −ΠκQ∥κ ≤ 2

√
∥κ∥2∞
M

+

√
2∥κ∥∞ ln(1/δ)

M
(8)

holds with probability at least 1− δ.

3. Let (S, τS) be a separable topological space, choose
AS = B(τS), and assume that κ is continu-
ous. Then Πκ is (M1(S),B(τw))-(Hκ,B(Hκ))-
measurable, where τw is the topology induced by weak
convergence in M1(S).

A proof can be found in Appendix A. This result allows to
use KMEs as the Hilbertian embedding, i.e., setting H =
Hκ, Π = Πκ and Π̂ = Π̂κ.
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3. Oracle Inequalities
Oracle inequalities are important tools in modern statistical
learning theory (Steinwart & Christmann, 2008). Roughly
speaking, they are concentration inequalities for the excess
risk of the learning outcome over the risk that is achieved by
an oracle which has access to the true underlying distribu-
tion. In particular, oracle inequalities provide finite-sample
guarantees, and can be used to derive consistency of a learn-
ing method, as well as (under additional assumptions on the
data-generating distribution) learning rates. We now present
our two oracle inequalities for the risk of SVMs in the dis-
tributional learning setting. The first one is based on a form
of Lipschitz-continuity of SVMs, and can be interpreted as
a distributional analogon of Theorem 6.24 in (Steinwart &
Christmann, 2008).

Theorem 3.1. Let Assumption 2.1 hold. Assume that ℓ is
convex, differentiable, and that there exists Bℓ ∈ R≥0 such
that ℓ(x, y, 0) ≤ Bℓ. Furthermore, assume that there exists
B′
ℓ ∈ R≥0 such that |ℓ′(x, y, 0)| ≤ B′

ℓ for all x ∈ X , y ∈
Y , and that there exist γ1 ∈ K and a nondecreasing family
(γ3,B)B∈R>0

⊆ K such that |ℓ′(x1, y, t1)− ℓ′(x2, y, t2)| ≤
γ1(∥x1−x2∥)+ γ3,B(|t1− t2|) for all B ∈ R>0, x1, x2 ∈
X , y ∈ Y and t1, t2 ∈ R with |t1|, |t2| ≤ B. Let k be a
kernel on H that is measurable, bounded, has a separable
RKHS Hk, and assume that there exists4 αk ∈ K such that
∥Φk(x1)− Φk(x2)∥k ≤ αk(∥x1 − x2∥H) for all x1, x2 ∈
X . Finally, assume that for all n = 1, . . . , N , there exists
Bn : (0, 1) → R≥0 such that P[∥Π̂(S(n)) − Π(Qn)∥H >
Bn(δ)] < δ for all δ ∈ (0, 1). We then have for all λ ∈ R>0

and δ ∈ (0, 1) that with probability at least 1− δ

Rℓ,P,λ(fDΠ̂,λ
)−RHk∗

ℓ,P ≤ A
(2)
ℓ,P (λ)

+
2
√
Bℓ/λ+ |ℓ|1,Bf ∥k∥∞/λ

N

N∑
n=1

αλ(Bn(δ/(2N)))

+ 2
|ℓ|1,Bf ∥k∥2∞

λ

(
B′
ℓ + γ3,Bf

(
∥k∥∞

√
Bℓ/λ

))
×

(√
2 ln(2/δ) + 1

N
+

4 ln(2/δ)

3N

)
,

where we defined Bf = ∥k∥∞
√
Bℓ/λ and αλ =

∥k∥∞(γ1+γ3,Bf ◦
(√

Bℓ/λαk

)
)+
(
B′
ℓ + γ3,Bf (Bf )

)
αk.

The functions Bn in the statement of the result are used to
provide estimation bounds of the Hilbertian embeddings of
the input distributions, i.e., how close Π̂S(n) (which can be
computed from data) is to ΠQn (which cannot be computed
from data). In particular, the functions Bn depend on Mn,

4The latter condition implies that Φk is continuous, which
implies that k is continuous, which in turn implies that k is mea-
surable and has a separable RKHS. However, we kept these two
conditions for emphasis.

but we suppressed this dependency to ease the notation.
Similarly, αλ ∈ K describes (up to a multiplicative factor)
how the estimation error of the Hilbertian embedding that
arises from a single data set item, influences the risk. Using
this abstraction allows us to formulate our results for any
Hilbertian embedding approach. Specializing to a concrete
embedding approach then boils down to checking the well-
posedness assumptions (cf. Assumption 2.1), and replacing
the Bn by concrete estimation bounds. While this approach
makes Theorem 3.1 (and similarly Theorem 3.4 presented
below) broadly applicable to various Hilbertian embedding
methods, as a result the bounds do not directly help in
choosing an appropriate embedding.

Proof sketch for Theorem 3.1. The basic idea is to apply the
proof strategy of Theorem 6.24 in (Steinwart & Christmann,
2008) to the ideal, but inaccessible data set D̄Π, and then use
estimation error bounds for the Hilbertian embeddings (en-
coded by the functions Bn) to translate this to the accessible
data set DΠ̂. To do so, we use a known generalized Repre-
senter Theorem (recalled as Proposition B.4 in the appendix)
together with the continuity property of the canonical fea-
ture map and the regularity and boundedness properties of
the loss function, which allows us to propagate the estima-
tion error through the bounds. A detailed proof is provided
in Section B.2 in the appendix.

Example 3.2. Let us provide some concrete examples for
the ingredients of the preceding result. For instance, con-
sider loss functions of the form ℓ(x, y, t) = ψ(y− t) (which
are called distance-based supervised losses in (Steinwart
& Christmann, 2008)), and assume that ψ is continuously
differentiable and that Y ⊆ [−M,M ] for some M ∈ R>0.
In this case, suitable constants Bℓ and B′

ℓ exist, and we can
choose an arbitrary γ1 ∈ K (since ℓ does not depend on the
first argument) and γ3,B(s) = CBs for suitable constants
CB ∈ R>0. An example of the condition on Φk is given by
Hölder-continuity of the canonical feature map Φk, which
has been used in previous works like (Szabó et al., 2015).
This means that there exist Ck ∈ R>0, α ∈ (0, 1], such that
∥Φk(x1)−Φk(x2)∥H ≤ Ck∥x1−x2∥α for all x1, x2 ∈ X ,
and we can set αk(s) = Cks

α.

When using KMEs for the Hilbertian embedding, we get
the following oracle inequality as a special case.

Corollary 3.3. Let S be a compact metric space, κ be a
measurable, bounded, continuous and universal kernel on S ,
and set H = Hκ, Π = Πκ, and Π̂ = Π̂κ. Assume that ℓ is
convex, differentiable, ℓ′ is locally Lipschitz continuous, and
that there exists Bℓ, B′

ℓ ∈ R≥0 such that ℓ(x, y, 0) ≤ Bℓ
and |ℓ′(x, y, 0)| ≤ B′

ℓ for all x ∈ X , y ∈ Y . Let k be a
universal kernel on H that is measurable and bounded, and
that there exists αk ∈ K such that ∥Φk(x1)− Φk(x2)∥k ≤
αk(∥x1 − x2∥H) for all x1, x2 ∈ X . We then have for all

5
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λ ∈ R>0 and δ ∈ (0, 1) that with probability at least 1− δ

Rℓ,P,λ(fDΠ̂,λ
)−R∗

ℓ,P ≤ A
(2)
ℓ,P (λ)

+
2
√
λBℓ + |ℓ|1,Bf ∥k∥∞

N

×
N∑
n=1

αλ

2

√
∥κ∥2∞
Mn

+

√
2∥κ∥∞ ln(2N/δ)

Mn


+ 2|ℓ|1,Bf ∥k∥∞

(
B′
ℓ + γ3,Bf (Bf )

)
×

(√
2 ln(2N/δ)

N
+
√
1/N +

4 ln(2N/δ)

3N

)
,

with Bf and αλ as in Theorem 3.1.

Theorem 3.1 puts strong regularity requirements on the loss
function, but needs only mild assumptions for the kernel
used in the empirical risk minimization. The following
oracle inequality, a distributional analogon of Theorem 6.25
from (Steinwart & Christmann, 2008), is complementary,
putting only mild requirements on the loss function, but
strong structural results on the RKHS are used.
Theorem 3.4. Assume that ℓ is convex, that there exist
γ1 ∈ K and a nondecreasing family (γ3,B)B∈R>0

⊆ K
such that for all x1, x2 ∈ X , y ∈ Y , and all B ∈ R>0 and
t1, t2 ∈ R with |t1|, |t2| ≤ B, it holds that |ℓ(x1, y, t1) −
ℓ(x2, y, t2)| ≤ γ1(∥x1 − x2∥H) + γ3,B(|t1 − t2|), and that
there exists Bℓ ∈ R≥0 such that ℓ(x, y, 0) ≤ Bℓ for all
x ∈ X , y ∈ Y . Let k be a kernel on X that is measurable,
bounded, and has a separable RKHS Hk. Assume that there
exists an nondecreasing family (αf,B)B∈R>0

⊆ K such
that for B ∈ R>0 and f ∈ Hk with ∥f∥k ≤ B, we have
|f(x1)− f(x2)| ≤ αf,B(∥x1 − x2∥H) for all x1, x2 ∈ X .
Furthermore, let ϵ, λ ∈ R>0, and let F ⊆ Hk be a finite set
such that for all f ∈ Hk with ∥f∥k ≤

√
Bℓ/λ there exists

f̃ ∈ F with ∥f − f̃∥∞ ≤ ϵ. Finally, assume that for all
n = 1, . . . , N , there exists Bn : (0, 1) → R≥0 such that
P[∥Π̂(S(n)) − Π(Qn)∥H > Bn(δ)] < δ for all δ ∈ (0, 1).
We then have for all δ ∈ (0, 1) that with probability at least
1− δ it holds that

Rℓ,P,λ(fD,λ)−RHk∗
ℓ,P ≤ A

(2)
ℓ,P (λ) + 4γ3,B̃f (ϵ)

+
2

N

N∑
n=1

αλ

(
Bn

(
δ

N + |F|

))

+ 2
(
Bℓ + γ3,B̃f (B̃f )

)√2 ln((N + |F|)/δ)
N

,

where we defined B̃f = ∥k∥∞
√

Bℓ
λ + ϵ and αλ = γ1 +

γ
3,∥k∥∞

√
Bℓ
λ

◦ α
f,

√
Bℓ
λ

.

The central assumption of Theorem 3.4 is the existence
of a suitable discretization F of B̄Hk√

Bℓ/λ
, the closed cen-

tered ball with radius
√
Bℓ/λ in the RKHS Hk. Under

suitable assumptions, a finite F exists, and one can set
|F| = N (B̄Hk√

Bℓ/λ
, ∥ · ∥∞, ϵ), where N (T, d, ϵ) is the ϵ-

covering number of a metric space (T, d). For more details
and pointers to the literature, we refer to Chapters 6, 7 in
(Steinwart & Christmann, 2008).

Proof sketch for Theorem 3.4. Similarly to the proof of
Theorem 3.1, we apply the proof strategy of Theorem 6.25
in (Steinwart & Christmann, 2008) to the ideal, but inacces-
sible data set D̄Π, and translate the result to the accessible
data set DΠ̂ by the estimation bounds described by the func-
tions Bn, using the continuity and boundedness properties
of the loss function (which can be milder now, since we do
not use Proposition B.4 anymore) and the canonical feature
map. A detailed proof is provided in Section B.2 in the
appendix.

Example 3.5. A sufficient condition for the existence of
the nondecreasing family (γ3,B)B∈R>0

⊆ K is Hölder-
continuity. If dH(µ, ν) = ∥(Φk ◦Π)(µ)− (Φk ◦Π)(ν)∥k,
then it is well-known that one can choose αf,B(s) = Bs. If
there existsCk, αk ∈ R>0 such that |k(x1, x)−k(x2, x)| ≤
Ck∥x1 − x2∥αkH for all x1, x2 ∈ X , then one can choose
αf,B(s) =

√
2Cks

αk/2. For proofs of these facts and more
general conditions, we refer to (Fiedler, 2023).

We can immediately specialize Theorem 3.4 to the case of
KMEs for the Hilbertian embedding.

Corollary 3.6. Consider the situation of Theorem 3.4. Ad-
ditionally, let S be a compact metric space, κ be a measur-
able, bounded, continuous and universal kernel on S, and
set H = Hκ, Π = Πκ, and Π̂ = Π̂κ. We then have for all
δ ∈ (0, 1), that

Rℓ,P,λ(fD,λ)−RHk∗
ℓ,P ≤ A

(2)
ℓ,P (λ) + 4γ3,B̃f (ϵ)

+ 2
(
Bℓ + γ3,B̃f (B̃f )

)√2 ln((N + |F|)/δ)
N

+
2

N

N∑
n=1

αλ

2

√
∥k∥2∞
M

+

√
2∥κ∥∞ ln(N+|F|

δ )

M

 ,

holds with probability at least 1− δ, with B̃f and αλ as in
Theorem 3.4.

The proof is completely analogous to the one of Corol-
lary 3.3.

4. Stability-based Generalization Bound
The oracle inequalities from the previous section allow us
to compare the risk of the learned hypothesis (i.e., of the
empirical SVM solution) to the minimum risk that could be
achieved by an oracle (having access to the true underlying

6
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meta-distribution). We now consider a slightly different
question: How accurate is the empirical risk of the learned
hypothesis (which can be computed from data) as an esti-
mate of the true risk of the learned hypothesis (which cannot
be computed, since we do not know the true underlying data-
generating distribution)? In other words, how well does the
learned hypothesis generalize from the training data to the
population, as measured by its risk?

We investigate this using a variation of our basic setup. Let
(Q, y) ∼ P as before, but now assume that the number
of samples from Q (collected in S) is also random. De-
note the joint distribution of (Q,S, y) by P̄ , the marginal
distribution of (S, y) by P̃ , and the number of samples in
S by M , an N+-valued random variables. A special case
covered by this setup is a constant M , a setting which is
often considered in related works like (Szabó et al., 2015)
or (Meunier et al., 2022). The data set D is therefore now
generated by sampling (Q1, S

(1), y), . . . , (QN , S
(N), yN )

i.i.d. from P̄ , and then setting D = ((S(n), yn))n=1,...,N ,
hence D ∼ P̃⊗N .

The generalization bounds that follow are based on the con-
cept of algorithmic stability (Bousquet & Elisseeff, 2002),
which applies to very general learning methods. A learning
method is a map5 ⋃

N∈N+
(X × Y)N ∋ D 7→ LD, where

LD : X → R is measurable. We call L β-stable (w.r.t. the
loss function ℓ) if there exists (βN )N∈N+

, βN ∈ R≥0, such
that for all N ∈ N+, x ∈ X , y ∈ Y we have

|ℓ(x, y,LD(x))− ℓ(x, y,LD̃(x))| ≤ βN , (9)

for all D, D̃ ∈ (X × Y)N such that there exists 1 ≤ i ≤ N
with Dn = D̃n, n ∈ {1, . . . , N} \ {i}. In other words, a
learning method is β-stable, if changing just one sample in
a data set of size N ∈ N+, changes the loss of the resulting
hypothesis by at most βN . We are now ready to present the
announced generalization result. It is a distributional-input
analogon of Theorem 14.2 in (Mohri et al., 2018).
Theorem 4.1. Consider a β-stable learning method L. As-
sume that there exists a concave α ∈ K such that for all
x1, x2 ∈ X , y ∈ Y and all D ∈ (S∗ × Y)N we have
|ℓ(x1, y,LD(x1)) − ℓ(x2, y,LD(x2))| ≤ α(∥x1 − x2∥H).
We then have for all δ ∈ (0, 1) that with probability at least
1− δ, the bound

Rℓ,P (LDΠ̂
) ≤ Rℓ,DΠ

(LDΠ̂
) + (2NβN +B)

√
ln(1/δ)

2N

+ α
(
E(Q,S,y)∼P̄

[
∥ΠQ− Π̂S∥H

])
+ βN

holds.

The proof of this result can be found in Appendix C.2. We
now present and prove a generalization bound for SVMs in

5In the present setting, it is safe to ignore measurability issues,
cf. the discussion in Chapter 6 in (Steinwart & Christmann, 2008).

the two-stage sampling setup, which is based on Theorem
4.1.

Theorem 4.2. Let ℓ be convex, locally Lipschitz contin-
uous, and assume that there exists γ1 ∈ K such that
|ℓ(x1, y, t)−ℓ(x2, y, t)| ≤ γ1(∥x1−x2∥H) for all x1, x2 ∈
X , y ∈ Y and t ∈ R. Furthermore, assume that there exists
Bℓ ∈ R>0 such that ℓ(x, y, 0) ≤ Bℓ for all x ∈ X , y ∈ Y .
Let k be measurable and bounded, and assume that there
exists a nondecreasing family (αf,B)B∈R>0 ⊆ K such that
for all x1, x2 ∈ X , B ∈ R>0, and all f ∈ Hk with
∥f∥k ≤ B we have |f(x1)− f(x2)| ≤ αf,B(∥x1 − x2∥H).
Assume that for λ ∈ R>0, there exists a concave αλ ∈ K
with γ1 + |ℓ|1,Bfαf,√Bℓ/λ

≤ αλ, where we defined Bf =

∥k∥∞
√
Bℓ/λ. We then have for all δ ∈ (0, 1), with proba-

bility at least 1− δ, that

Rℓ,P (fDΠ̂,λ
) ≤ Rℓ,DΠ̂

(fDΠ̂,λ
) +

|ℓ|21,Bf ∥k∥
2
∞

λN

+ α
(
E(Q,S,y)∼P̄

[
∥ΠQ− Π̂S∥H

])
+

(
2|ℓ|21,Bf ∥k∥

2
∞

λ
+Bℓ + |ℓ|1,BfBf

)√
ln(1/δ)

2N
.

Before turning to the proof of Theorem 4.2, we describe
two example classes of suitable ℓ and αλ.

Example 4.3. Assume that there exist (Cf,B)B∈R>0 ⊆
R>0, (αf,B)B∈R>0

⊆ (0, 1] such that |f(x1) − f(x2)| ≤
Cf,B∥x1 − x2∥

αf,B
Π for all B ∈ R>0, x1, x2 ∈ X , and

f ∈ Hk with ∥f∥k ≤ B. Let us call a function ϕ : R → R
locally Hölder-continuous, if there exist (Cϕ,B)B∈R>0

⊆
R>0, (αϕ,B)B∈R>0 ⊆ (0, 1], such that for all B ∈ R>0,
|ϕ(s1) − ϕ(s2)| ≤ Cϕ,B |s1 − s2|αϕ,B for all s1, s2 ∈
[−B,B]. We refer to (Fiedler, 2023) for a discussion of
these properties, including characterizations of suitable k. (i)
Assume that ℓ(x, y, t) = ψ(y−t), where ψ is a nonnegative,
locally Hölder-continuous function. Given λ ∈ R>0, we
can then choose αλ(s) = C

ψ,∥k∥∞
√
Bℓ/λ

C
αψ

f,
√
Bℓ/λ

sαψαf

with αψ = α
ψ,∥k∥∞

√
Bℓ/λ

and αf = α
f,
√
Bℓ/λ

. (ii)

Assume that ℓ(x, y, t) = φ(yt) (called a margin-based
loss function in (Steinwart & Christmann, 2008)) for a
nonnegative, locally Hölder-continuous function, and that
Y ⊆ [−M,M ] for some M ∈ R>0. Given λ ∈ R>0, we
can then choose αλ(s) = CφM

αφC
αφ

f,
√
φ(0)/λ

sαφαf with

Cφ = C
φ,M∥k∥∞

√
φ(0)/λ

, αφ = α
φ,M∥k∥∞

√
φ(0)/λ

, and
αf = α

f,
√
φ(0)/λ

.

Proof of Theorem 4.2. LetQ be a distribution on M1(S)×
Y . From Lemma A.4 we have |fQ,λ(x)| ≤

7
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∥k∥∞∥fQ,λ∥k ≤ ∥k∥∞
√

Bℓ
λ = Bf , so

|ℓ(x1, y, fQ,λ(x1))− ℓ(x2, y, fQ,λ(x2))|
≤ γ1(∥x1 − x2∥H) + |ℓ|1,Bf |fQ,λ(x1)− fQ,λ(x2)|

≤
(
γ1 + |ℓ|1,Bfα

f,

√
Bℓ
λ

)
(∥x1 − x2∥H)

≤ αλ(∥x1 − x2∥H),

hence αλ fulfills the requirements of Theorem 4.1. Fur-
thermore, as before we have ℓ(x, y, fQ,λ(x)) ≤ Bℓ +
|ℓ|1,BfBf = B.

Next6, for all f, g ∈ Hk with ∥f∥k, ∥g∥k ≤
√

Bℓ
λ and all

x ∈ X , y ∈ Y , we have |ℓ(x, y, f(x)) − ℓ(x, y, g(x))| ≤
|ℓ|1,Bf |f(x)− g(x)|. An inspection of the proof of Propo-
sition 14.4 in (Mohri et al., 2018) then shows that the
learning method (X × Y)N ∋ D 7→ fℓ,Dλ ∈ Hk is

βN =
|ℓ|21,Bf ∥k∥

2
∞

λN stable.

The result now follows from Theorem 4.1.

Remark 4.4. An inspection of the proof of Theorem 4.2 and
how Proposition 14.4 in (Mohri et al., 2018) is used there,
reveals that instead of local Lipschitz continuity of ℓ the
following continuity property is sufficient: There exists a
family (CB , pB)B∈R>0

with CB ∈ R>0, 0 < pB < 2 for
all B ∈ R>0, such that for all x ∈ X , y ∈ Y , B ∈ R>0 and
all t1, t2 ∈ R with |t1|, |t2| ≤ B we have that

|ℓ(x, y, t1)− ℓ(x, y, t2)| ≤ CB |t1 − t2|pB .

Furthermore, we now need a concave αλ ∈ K such that

γ1 + CBα
f,

√
Bℓ
λ

(·)pB ≤ αλ with B = ∥k∥∞
√

Bℓ
λ . In this

case, we have

βN = C
1+ 1

2−pB
B ∥k∥

pB+
pB

2−pB∞

(
1

Nλ

) 1
2−pB

.

Once again, we can immediately specialize to the case of
using KMEs for the Hilbertian embedding.

Corollary 4.5. Consider the situation of Theorem 4.2. Ad-
ditionally, let S be a compact metric space, κ be a measur-
able, bounded, continuous and universal kernel on S, and
set H = Hκ, Π = Πκ, and Π̂ = Π̂κ. We then have for all

6The following is a generalization of the property from Defini-
tion 14.3 in (Mohri et al., 2018).

δ ∈ (0, 1), with probability at least 1− δ, that

Rℓ,P (fℓ,DΠ̂
λ) ≤ Rℓ,DΠ̂

(fℓ,DΠ̂
λ) + αλ

(√
2∥κ∥∞

E[
√
M ]

)

+

(
2|ℓ|21,Bf ∥k∥

2
∞

λ
+Bℓ + |ℓ|1,BfBf

)√
ln(1/δ)

2N

+
|ℓ|21,Bf ∥k∥

2
∞

λN
,

where we defined Bf = ∥k∥∞
√

Bℓ
λ .

Proof. First, as in the proof of Corollary 3.3, the KME
setup fulfills Assumption 2.1. Let Q ∈ M1(S), M ∈ N+,
and S ∼ Q⊗M . According to Lemma 4 in (Gretton et al.,
2012), ∥ΠκQ− Π̂κS∥κ is the maximum mean discrepancy
between Q and the empirical measure 1

M

∑M
m=1 δSm , so

we get from Equation (19) in the same reference that

ES∼Q⊗M

[
∥ΠκQ− Π̂κS∥κ

]
≤
√

2∥κ∥∞
M

,

which implies that

E(Q,S,y)∼P̄

[
∥ΠQ− Π̂S∥H

]
≤ E

[√
2∥κ∥∞
M

]

=

√
2∥κ∥∞

E[
√
M ]

.

Combining this with Theorem 4.2 and using that αλ is
increasing, establishes the result.

5. Conclusion
In this work, we continued the investigation of kernel-based
statistical learning with distributional inputs from the per-
spective of modern statistical learning theory. To the best
of our knowledge, we provided the first general oracle in-
equalities in this setting, complementing the existing excess
risk bounds for distributional regression using kernel ridge
regression. In particular, our analysis covers rather general
loss functions encoding a multitude of learning scenarios.
Additionally, we provided generalization bounds based on
algorithmic stability, a result and setting which has not been
analyzed at all in the distributional learning literature. We
formulated all of this in a very general setup based on Hilber-
tian embeddings of probability distributions. On the one
hand, in this manner the kernel construction approach from
(Meunier et al., 2022) is applicable, and on the other hand,
our main results apply directly to any existing and future em-
bedding approach. For example, if appropriate estimation
tools become available, our results will be directly applica-
ble to the recently introduced kernel cumulant embeddings

8



On Statistical Learning Theory for Distributional Inputs

(Bonnier et al., 2023). Finally, we provided specializations
of our results to the important cases of KMEs as well as the
recent sliced 2-Wasserstein distances.

Many relevant questions are still open, and our results form
the starting point for a multitude of future investigations.
First, while oracle inequalities can be used to derive consis-
tency results, in order to guarantee learning rates, one needs
suitable assumptions to derive bounds on the approxima-
tion error function. Finding such conditions in the present
setting is an important open problem. Second, while the
setting of our main results is rather general, we need various
boundedness assumptions on the loss functions. Remov-
ing these assumptions, or replacing them by clippability
(cf. Chapters 2 and 9 in (Steinwart & Christmann, 2008)),
is another interesting problem. Third, both of our oracle
inequalities are based on classic arguments, and it is known,
cf. Chapter 7 in (Steinwart & Christmann, 2008), that using
more advanced tools from empirical process theory, one
can derive sharper oracle inequalities, which eventually can
lead to better learning rates. We expect that this applies also
in the distributional setting, and that the resulting analysis
approach for kernel ridge regression from (Steinwart et al.,
2009) then provides an alternative to the integral operator
technique from (Caponnetto & De Vito, 2007), which so far
was the main focus in the distributional regression literature.
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A. Additional Technical Background
Comparison functions In addition to K, we define

L = {ρ : R≥0 → R≥0 | ρ continuous, strictly decreasing, lim
s→∞

ρ(s) = 0}.

Observe that if ρ ∈ L, then ρ(s) > 0 for all s ∈ R≥0, and its inverse is defined on its range, i.e., ρ−1 : (0, ρ(0)] → R≥0. We
define addition and scalar multiplication in K and L pointwise, i.e., if α1, α2 ∈ K (respectively, L), then α1 + α2 is defined
by (α1 + α2)(s) = α1(s) + α2(s) for all s ∈ R≥0, and if c1 ∈ R>0, then c1α1 is defined by (c1α1)(s) = c1α1(s). Note
that c1α1 + α2 ∈ K (respectively, in L), so K and L form a cone. Furthermore, α1 ◦ α2 ∈ K. We also define comparison
relations pointwise, e.g., if α1, α1 ∈ K, then α1 ≤ α2 means that α1(s) ≤ α2(s) for all s ∈ R≥0. For more background on
comparison functions, including historical remarks and application examples, we refer to (Kellett, 2014).

More on loss functions For technical reasons, we need some additional concepts from (Steinwart & Christmann, 2008). A
loss function ℓ : X × Y × R → R≥0 is called a Nemitskii loss, if there exists a measurable function b : X × Y → R≥0 and
an increasing function h : R≥0 → R≥0 such that for all x ∈ X , y ∈ Y and all t ∈ R we have

ℓ(x, y, t) ≤ b(x, y) + h(|t|).

Let P be a probability distribution on X × Y . We call ℓ a P -integrable Nemitskii loss, if it is a Nemitskii loss, and the
function b from the definition of this concept is P -integrable.

Boundedness in RKHSs For convenience, we summarize some well-known results on boundedness of kernels and RKHS
functions.

Lemma A.1 (Boundedness in RKHSs). Let X be an arbitrary nonempty set and k a kernel on it, and define

∥k∥∞ = sup
x∈X

√
k(x, x). (10)

1. k is bounded if and only if ∥k∥∞ <∞.

2. All f ∈ Hk are bounded if and only if k is bounded.

3. For all f ∈ Hk and x ∈ X , |f(x)| ≤ ∥f∥k∥k∥∞.

Proof. For the first item, assume that k is bounded, then obviously ∥k∥∞ <∞. Conversely, if ∥k∥∞ <∞, then we have
for all x, x′ ∈ X

|k(x, x′)| = |⟨k(·, x′), k(·, x)⟩k| ≤ ∥k(·, x′)∥k∥k(·, x)∥k =
√
k(x′, x′)

√
k(x, x) ≤ ∥k∥2∞ <∞

so k is indeed bounded.

The second statement is given by Lemma 4.23 in (Steinwart & Christmann, 2008).

For the last statement, let f ∈ Hk and x ∈ X be arbitrary, then

|f(x)| = |⟨f, k(·, x)⟩k| ≤ ∥f∥∥k(·, x)∥k = ∥f∥k
√
k(x, x ≤ ∥f∥k∥k∥∞.

Properties of loss functions and their risks Next, we present two technical results on loss functions and their associated
risks. These results are essentially known (cf. Chapter 2 in (Steinwart & Christmann, 2008)), however, we formulate them
in greater generality using comparison functions.

Lemma A.2 (Condition for P -integrable Nemitskii loss). Let ℓ : X × Y × R → R≥0 be a loss function such that
there exists Bℓ ∈ R≥0 with ℓ(x, y, 0) ≤ Bℓ for all x ∈ X , y ∈ Y , and a nondecreasing family (αℓ,B)B∈R>0

⊆ K with
|ℓ(x, y, t1)− ℓ(x, y, t2)| ≤ αℓ,B(|t1 − t2|) for all x ∈ X , y ∈ Y and t1, t2 ∈ R with |t1|, |t2| ≤ B, then ℓ is a P -integrable
Nemitskii loss for all distributions P on X × Y .

In particular, this result applies to locally Lipschitz continuous functions, where αℓ,B(t) = |ℓ|1,|t||t|.

11
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Proof. Let x ∈ X , y ∈ Y, t ∈ R be arbitrary, then we have

ℓ(x, y, t) ≤ ℓ(x, y, 0) + |ℓ(x, y, t)− ℓ(x, y, 0)|
≤ Bℓ + αℓ,|t|(|t|)

Since
∫
BℓdP = Bℓ <∞ and t 7→ αℓ,|t|(|t|) is nondecreasing, the statement follows.

Lemma A.3 (Continuity of risk from continuity of loss function). Let ℓ : X × Y × R → R≥0 be a loss function such that
there exists a nondecreasing family (αℓ,B)B∈R>0

⊆ K with |ℓ(x, y, t1)− ℓ(x, y, t2)| ≤ αℓ,B(|t1− t2|) for all x ∈ X , y ∈ Y
and t1, t2 ∈ R with |t1|, |t2| ≤ B. Let P be a distribution such that ℓ is a P -integrable Nemitskii loss.

1. For all B ∈ R>0 and all measurable and bounded7 f, g with ∥f∥∞, ∥g∥∞ ≤ B, we have

|Rℓ,P (f)−Rℓ,P (g)| ≤ αℓ,B(∥f − g∥∞). (11)

2. Let k be a measurable and bounded kernel on X . For all B ∈ R>0 and f, g ∈ Hk with ∥f∥k, ∥g∥k ≤ B, we have

|Rℓ,P (f)−Rℓ,P (g)| ≤ αℓ,∥k∥∞·B(∥f − g∥k∥k∥∞). (12)

Proof. For the first claim, let B ∈ R>0 and f, g be measurable functions with ∥f∥∞, ∥g∥∞ ≤ B. We then have

|Rℓ,P (f)−Rℓ,P (g)| ≤
∫

|ℓ(x, y, f(x))− ℓ(x, y, g(x))|dP (x, y)

≤
∫
αℓ,B(|f(x)− g(x)|)dP (x, y)

≤
∫
αℓ,B(∥f − g∥∞)dP (x, y)

= αℓ,B(∥f − g∥∞),

where we used the triangle inequality in the first step, the existence of (αℓ,B)B in the second step, the fact that αℓ,B is
increasing in the third step, and finally that P is a probability distribution.

For the second claim, let B ∈ R>0 and f, g ∈ Hk with ∥f∥k, ∥g∥k ≤ B. Since k is measurable and bounded, also f, g
are measurable and bounded. From Lemma A.1 we get ∥f∥∞ ≤ ∥f∥k∥k∥∞ ≤ B∥k∥∞, and similarly for g, as well as
∥f − g∥∞ ≤ ∥f − g∥k∥k∥∞. The result now follows from the first claim.

Bound on norm of regularized risks minimizers Finally, we recall a well-known result providing a bound on the norm of
minimizers of regularized risks minimization problems, cf. the beginning of Section 5.1 in (Steinwart & Christmann, 2008).
Lemma A.4 (Regularized risk minimization over RKHSs). Let ℓ : X × Y × R → R≥0 be a convex, locally Lipschitz
continuous loss function, such that there exists Bℓ ∈ R≥0 with ℓ(x, y, 0) ≤ Bℓ for all x ∈ X , y ∈ Y . Let k be a kernel on
X that is measurable, bounded, and with separable Hk. For all distributions P on X × Y and all λ ∈ R>0, there exists a
unique solution fP,λ of

min
f∈Hk

Rℓ,P (f) + λ∥f∥2k,

and ∥fP,λ∥k ≤
√

Bℓ
λ .

Proof. Lemma A.2 ensures that ℓ is a P -integrable Nemitskii loss, so Lemma 5.1 and Theorem 5.2 from (Steinwart &
Christmann, 2008) are applicable and ensure that a unique solution fP,λ exists.

Additionally, we have

λ∥fP,λ∥2k ≤ Rℓ,P (fP,λ) + λ∥fP,λ∥2k = Rℓ,P,λ(fP,λ)

≤ Rℓ,P,λ(0) = Rℓ,P (0) + λ∥0∥2k

=

∫
ℓ(x, y, 0)dP (x, y)

≤ Bℓ,

7Measurably essentially bounded would be enough.

12
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where we first used the nonnegativity of ℓ (and monotonicity of the integral) in the first step, followed by the definition of

fP,λ, and finally the boundedness assumption of ℓ in zero. Rearranging shows that indeed ∥fP,λ∥k ≤
√

Bℓ
λ .

Kernel mean embeddings

Proof of Proposition 2.4. The first statement is contained in Theorem 2 and Proposition 2 in (Sriperumbudur et al., 2010),
and the discussion following it.

The second statement follows from Theorem 1 in (Lopez-Paz et al., 2015), by two minor modifications. First, applying
Lemma A.1 to f ∈ Hκ with ∥f∥κ ≤ 1 leads to |f(s)| ≤ ∥f∥κ∥κ∥∞ ≤ ∥κ∥∞ for all s ∈ S , which shows that the constant
of the bounded difference property in the proof of Theorem 1 in (Lopez-Paz et al., 2015) needs to be set to 2∥κ∥∞/M .
Second, we use

∫
κ(s, s)dQ(s) ≤

∫
∥κ∥2∞dQ(s) ≤ ∥κ∥2∞ for all Q ∈ M1(S).

The third statement is shown in Section A.1.1 in (Szabó et al., 2015).

Sliced Wasserstein distances Let S = Rd and denote by W2(µ, ν) the sliced 2-Wasserstein distance, cf. equation (13)
in (Meunier et al., 2022). It has been shown in Proposition 5 in the same reference that there exists a Hilbert space H2

and a map Π2 : M1(S) → H2 such that W2(µ, ν) = ∥Π2µ − Π2ν∥H2 . Setting Π̂2S = Π2µ̂[S] for all S ∈ SM and
M ∈ N+, where µ̂[S] = 1

M

∑M
m=1 δSm is the empirical measure having the components of S as atoms, and assuming that

Assumption 2.1 is fulfilled, our main results Theorems 3.1, 3.4 and 4.2 apply to the case of sliced 2-Wasserstein-based
Hilbertian embeddings. For more details, as well as the case of sliced 1-Wasserstein-based Hilbertian embeddings, and
concrete constructions of suitable kernels k on H2, we refer to (Meunier et al., 2022).

B. Oracle Inequalities
In this section, we present the proofs of our oracle inequalities Theorem 3.1 and Theorem 3.4. Furthermore, we state and
prove specializations to the case of sliced 2-Wasserstein embeddings, analogous to the results for KMEs, cf. Corollary 3.3
and Corollary 3.6.

B.1. Sliced Wasserstein Distances

Our specialization of the oracle inequalities to sliced 2-Wasserstein embeddings are based on the following error bound,
which might be of independent interest.

Proposition B.1. Let P be a distribution on M1(Rd) × Y and (Q, y) ∼ P . Assume that P -a.s. Q is a log-concave
distribution, and denote its (P -a.s. defined) covariance matrix by ΣQ. Furthermore, assume that there exists ρΣ ∈ L
such that for all t ∈ R≥0, P[∥ΣQ∥ ≥ t] ≤ ρΣ(t) P -a.s. Let M ∈ N+ and S ∼ Q⊗M , then for all 0 < δ <

min{1/4, 2ρΣ(1/C̃d)}, we have

P
[
W2(Q, µ̂[S]) ≥

ρ−1
Σ (δ/2)√
M

(
Cd
√

ln(M) + C̃d ln(4/δ)
)]

≤ δ,

where Cd and C̃d are universal constants that only depend on d.

To simplify the notation in the following proof, we define a ∧ b = min{a, b} for a, b ∈ R.

Proof. As shown in the proof of Proposition 7 in (Nietert et al., 2022), there exists a universal constant cd ∈ R>0, depending
only on d ∈ N+, such that 1

Pµ
≥ 1

cd∥Σµ∥ for all log-concave distributions µ on Rd, where Pµ is the Poincare constant of
µ. Furthermore, according to Theorem 1 (choosing p = 2 there) in the same reference, there exists a universal constant
Cd ∈ R>0, depending only on d, such that

E[W2(µ, µ̂[X])] ≤
√

∥Σµ∥ ln(M)

M
(13)

for all log-concave distributions µ on Rd and X ∼ µ⊗M .
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Let 0 < δ < min{1/4, 2ρΣ(1/C̃d)} be arbitrary, and x, t ∈ R>0 two constants to be chosen later. We start with

P

[
W2(Q, µ̂[S]) ≥ (x ∧

√
x)Cd

√
ln(M)

M
+ t

]

= P

[
W2(Q, µ̂[S]) ≥ (x ∧

√
x)Cd

√
ln(M)

M
+ t, ∥ΣQ∥ ≤ x ∧

√
x

]

+ P

[
W2(Q, µ̂[S]) ≥ (x ∧

√
x)Cd

√
ln(M)

M
+ t, ∥ΣQ∥ > x ∧

√
x

]

≤ P

[
W2(Q, µ̂[S]) ≥ (x ∧

√
x)Cd

√
ln(M)

M
+ t | ∥ΣQ∥ ≤ x ∧

√
x

]
P[∥ΣQ∥ ≤ x ∧

√
x]

+ P[∥ΣQ∥ > x ∧
√
x]

≤ P

[
W2(Q, µ̂[S]) ≥ (x ∧

√
x)Cd

√
ln(M)

M
+ t | ∥ΣQ∥ ≤ x ∧

√
x

]
+ ρΣ(x ∧

√
x),

where we used in the last step that probabilities are always from [0, 1], and the assumption on ∥ΣQ∥.

We continue with the first term,

P

[
W2(Q, µ̂[S]) ≥ (x ∧

√
x)Cd

√
ln(M)

M
+ t

∣∣∣∣∣ ∥ΣQ∥ ≤ x ∧
√
x

]

≤ P

[
W2(Q, µ̂[S]) ≥ Cd

√
x ln(M)

M
+ t

∣∣∣∣∣ ∥ΣQ∥ ≤ x ∧
√
x

]

≤ P

[
W2(Q, µ̂[S]) ≥ Cd

√
∥ΣQ∥ ln(M)

M
+ t

∣∣∣∣∣ ∥ΣQ∥ ≤ x ∧
√
x

]
≤ P

[
W2(Q, µ̂[S]) ≥ E[W2(Q, µ̂[S])] + t

∣∣ ∥ΣQ∥ ≤ x ∧
√
x
]

≤ P
[
|W2(Q, µ̂[S])− E[W2(Q, µ̂[S])]| ≥ t

∣∣ ∥ΣQ∥ ≤ x ∧
√
x
]

≤ E

[
2 exp

(
−

√
Mt ∧Mt2

min{2
√
PQ, 6e5PQ}

) ∣∣∣∣∣ ∥ΣQ∥ ≤ x ∧
√
x

]
,

where we used Theorem 3.8 from (Lin et al., 2021), as used in the proof of Proposition 7 in (Nietert et al., 2022), and the
last equality holds almost surely.
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Conditional on ∥ΣQ∥ ≤ x ∧
√
x, we get that

1

min{2
√
PQ, 6e5PQ}

= max

{
1

2
√
PQ

,
1

6e5PQ

}

≥ 1

6e5
max

{
1√
PQ

,
1

PQ

}

≥ 1

6e5
max

{
1√

cd∥ΣQ∥
,

1

cd∥ΣQ∥

}

≥ 1

6e5 max{√cd, cd}
max

{
1√
∥ΣQ∥

,
1

∥ΣQ∥

}

=
1

6e5 max{√cd, cd}
1

min{
√

∥ΣQ∥, ∥ΣQ∥}

≤ 1

6e5 max{√cd, cd}
1

x ∧
√
x

=
1

C̃d(x ∧
√
x)
.

In the last inequality we used that

min{
√
∥ΣQ∥, ∥ΣQ∥} ≤ min{

√
x ∧

√
x, x ∧

√
x} ≤ x ∧

√
x,

and in the last step we defined C̃d = 6e5 max{√cd, cd}.

We therefore get (again almost surely) that

P

[
W2(Q, µ̂[S]) ≥ (x ∧

√
x)Cd

√
ln(M)

M
+ t

∣∣∣∣∣ ∥ΣQ∥ ≤ x ∧
√
x

]

≤ E

[
2 exp

(
−

√
Mt ∧Mt2

min{2
√
PQ, 6e5PQ}

) ∣∣∣∣∣ ∥ΣQ∥ ≤ x ∧
√
x

]

≤ E

[
2 exp

(
−
√
Mt ∧Mt2

C̃d(x ∧
√
x)

) ∣∣∣∣∣ ∥ΣQ∥ ≤ x ∧
√
x

]

= 2 exp

(
−
√
Mt ∧Mt2

C̃d(x ∧
√
x)

)
.

Observe now that

2 exp

(
−
√
Mt2 ∧Mt2

C̃d(x ∧
√
x)

)
=
δ

2
⇔ x ∧

√
x =

√
Mt ∧Mt2

C̃d ln(4/δ)

and since
√
Mt∧Mt2

C̃d ln(4/δ)
> 0 (recall that we restricted δ to (0, 1/4)), we can choose x ∈ R>0 such that the last display holds.
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With this choice of x, we are now at

P

[
W2(Q, µ̂[S]) ≥

√
Mt ∧Mt2

C̃d ln(4/δ)
Cd

√
ln(M)

M
+ t

]

= P

[
W2(Q, µ̂[S]) ≥ (x ∧

√
x)Cd

√
ln(M)

M
+ t

]

≤ 2 exp

(
−
√
Mt ∧Mt2

C̃d(x ∧
√
x)

)
+ ρΣ

(
x ∧

√
x
)

≤ δ

2
+ ρΣ

(√
Mt ∧Mt2

C̃d ln(4/δ)

)
.

Note that this holds since the above computation works for any version of the conditional expectation.

Next, let s > 1 and set t = ln(4/δ)√
M

s, then

P

[
W2(Q, µ̂[S]) ≥ s

Cd

C̃d

√
ln(M)

M
+

ln(4/δ)√
M

s

]

= P

[
W2(Q, µ̂[S]) ≥

ln(4/δ)s ∧ ln(4/δ)2s2

C̃d ln(4/δ)
Cd

√
ln(M)

M
+

ln(4/δ)√
M

s

]

= P

[
W2(Q, µ̂[S]) ≥

√
Mt ∧Mt2

C̃d ln(4/δ)
Cd

√
ln(M)

M
+ t

]

≤ δ

2
+ ρΣ

(√
Mt ∧Mt2

C̃d ln(4/δ)

)

=
δ

2
+ ρΣ

(
s

C̃d

)
,

where we used that ln(4/δ)s ∧ ln(4/δ)2s2 = ln(4/δ)s since ln(4/δ), s > 1.

The condition P[∥ΣQ∥ ≥ x] ≤ ρΣ(x) for all x ∈ R≥0 implies that ρΣ([0,∞)) = (0, 1], so we have

ρΣ

(
s

C̃d

)
=
δ

2
⇔ s = C̃dρ

−1
Σ (δ/2)

and since
s > 1 ⇔ C̃dρ

−1
Σ (δ/2) > 1 ⇔ δ < 2ρΣ(1/C̃d),

our requirements on δ ensures that we can set s = C̃dρ
−1
Σ (δ/2).

Altogether, we arrived at

P

[
W2(Q, µ̂[S]) ≥ C̃dρ

−1
Σ (δ/2)

Cd

C̃d

√
ln(M)

M
+

ln(4/δ)√
M

C̃dρ
−1
Σ (δ/2)

]

= P

[
W2(Q, µ̂[S]) ≥ s

Cd

C̃d

√
ln(M)

M
+

ln(4/δ)√
M

s

]

≤ δ

2
+ ρΣ

(
s

C̃d

)
= δ
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We can now formulate and prove the announced specializations of the oracle inequalities.

Corollary B.2. Consider the situation of Theorem 3.1. Let S = Rd, set H = H2, Π = Π2, and Π̂ = Π̂2, and assume that
Assumption 2.1 holds in this case. Furthermore, for (Q, y) ∼ P , assume that P -a.s. Q is a log-concave distribution, and
denote its (P -a.s. defined) covariance matrix by ΣQ. Assume that ℓ is convex, differentiable, ℓ′ is locally Lipschitz continuous,
and that there exists Bℓ, B′

ℓ ∈ R≥0 such that ℓ(x, y, 0) ≤ Bℓ and |ℓ′(x, y, 0)| ≤ B′
ℓ for all x ∈ X , y ∈ Y . Let k be a kernel

on H that is measurable and bounded, and that there exists αk ∈ K such that ∥Φk(x1)− Φk(x2)∥k ≤ αk(∥x1 − x2∥). We
then have for all λ ∈ R>0 and δ ∈ (0, 1) that with probability at least 1− δ

Rℓ,P,λ(fDΠ̂,λ
)−R∗

ℓ,P ≤ A
(2)
ℓ,P (λ)

+
2
√
λBℓ + |ℓ|1,Bf ∥k∥∞

N

N∑
n=1

αλ

ρ−1
Σ

(
δ

2(N+|F|)

)
√
M

(
Cd
√
ln(M) + C̃d ln

(
4(N + |F|)

δ

))
+ 2|ℓ|1,Bf ∥k∥∞

(
B′
ℓ + γ3,Bf (Bf )

)(√2 ln(2N/δ)

N
+
√
1/N +

4 ln(2N/δ)

3N

)
,

with Bf and αλ as in Theorem 3.1, and Cd and C̃d are universal constants that only depend on d.

Proof. The result follows immediately by combining Theorem 3.1 with Proposition B.1.

Corollary B.3. Consider the situation of Theorem 3.1. Let S = Rd, set H = H2, Π = Π2, and Π̂ = Π̂2, and assume that
Assumption 2.1 holds in this case. Furthermore, for (Q, y) ∼ P , assume that P -a.s. Q is a log-concave distribution, and
denote its (P -a.s. defined) covariance matrix by ΣQ. Finally, assume that there exists ρΣ ∈ L such that for all t ∈ R≥0,
P[∥ΣQ∥ ≥ t] ≤ ρΣ(t) P -a.s. We then have for all 0 < δ < min{1/4, 2ρΣ(1/C̃d)} that with probability at least 1− δ it
holds that

Rℓ,P,λ(fD,λ)−RHk∗
ℓ,P ≤ A

(2)
ℓ,P (λ) + 2

(
Bℓ + γ3,B̃f (B̃f )

)√2 ln((N + |F|)/δ)
N

+ 4γ3,B̃f (ϵ)

+
2

N

N∑
n=1

αλ

ρ−1
Σ

(
δ

2(N+|F|)

)
√
M

(
Cd
√
ln(M) + C̃d ln

(
4(N + |F|)

δ

)) ,

where we defined B̃f = ∥k∥∞
√

Bℓ
λ + ϵ, αλ = γ1 + γ

3,∥k∥∞

√
Bℓ
λ

◦ α
f,

√
Bℓ
λ

, and Cd and C̃d are universal constants that

only depend on d.

Proof. The result follows immediately by combining Theorem 3.4 with Proposition B.1.

B.2. Proof of the Oracle Inequalities

We will need the following result, which is derived at the beginning of Section 5.2 in (Steinwart & Christmann, 2008), but
not stated as a theorem there. For convenience, we repeat it here.

Proposition B.4. Let X and Y be measurable spaces, ℓ : X × Y × R → R≥0 a loss function that is convex, differentiable,
and define ℓ′ = d

dtℓ. Let k be a kernel on X that is measurable, bounded, and has a separable RKHS Hk. For all
P ∈ M1(X × Y) such that ℓ and |ℓ′| are P -integrable Nemitskii losses, and for all λ ∈ R>0, there exists a unique solution
fP,λ of

min
f∈Hk

Rℓ,P (f) + λ∥f∥2k, (14)

and this solution fulfills the equation

fP,λ = − 1

2λ

∫
X×Y

ℓ′(x, y, fP,λ(x))Φk(x)dP (x, y). (15)

Note that in (15) a Bochner integral appears.
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Proof of Theorem 3.1. Let λ ∈ R>0 be arbitrary and define D̄ = ((Qn, yn))n∈[N ]. We then have

Rℓ,P,λ(fDΠ̂,λ
)−RHk∗

ℓ,P,λ = Rℓ,P,λ(fDΠ̂,λ
)−Rℓ,P,λ(fP,λ)

= Rℓ,P (fDΠ̂,λ
) + λ∥fDΠ̂,λ

∥2k +Rℓ,P (fD̄Π,λ)−Rℓ,P (fD̄Π,λ)

+Rℓ,D̄Π
(fD̄Π,λ)−Rℓ,D̄Π

(fD̄Π,λ) +Rℓ,D̄Π
(fP,λ)−Rℓ,D̄Π

(fP,λ)

−Rℓ,P (fP,λ)− λ∥fP,λ∥2k + λ∥fD̄Π,λ∥
2
k − λ∥fD̄Π,λ∥

2
k

= Rℓ,P (fDΠ̂,λ
)−Rℓ,P (fD̄Π,λ)︸ ︷︷ ︸
I

+Rℓ,P (fD̄Π,λ)−Rℓ,P (fP,λ)︸ ︷︷ ︸
II

+Rℓ,D̄Π
(fD̄Π,λ) + λ∥fD̄Π,λ∥

2
k − (Rℓ,D̄Π

(fP,λ) + λ∥fP,λ∥2k)︸ ︷︷ ︸
=III

+Rℓ,D̄Π
(fP,λ)−Rℓ,D̄Π

(fD̄Π,λ)︸ ︷︷ ︸
=IV

+λ∥fDΠ̂,λ
∥2k − λ∥fD̄Π,λ∥

2
k︸ ︷︷ ︸

=V

We now upper bound terms I to V. First, by definition of fD̄Π,λ, term III is nonpositive, and hence can be discarded.

In order to bound the remaining terms, we need some preparations. Lemma A.2 ensures that for all distributions Q on
X × Y , ℓ is a Q-integrable Nemitskii loss. Furthermore, repeating the proof of Lemma A.2 on ℓ′ shows that also |ℓ′| is a
Q-integrable Nemitskii loss. Altogether, we can apply Proposition B.4 to ℓ for any distribution Q on X × Y . An inspection
of the proof of Theorem 5.9 in (Steinwart & Christmann, 2008) reveals that (5.14) in this reference applies to the present
situation, so for all distributions Q, Q̃ on X × Y , unique SVM solutions fQ,λ and fQ̃,λ exist, and we have

∥fQ,λ − fQ̃,λ∥k ≤ 1

λ

∥∥∥∥∫ hQ(x, y)Φk(x)dQ(x, y)−
∫
hQ(x, y)Φk(x)dQ̃(x, y)

∥∥∥∥
k

, (16)

where we defined hQ(x, y) = ℓ′(x, y, fQ,λ(x)).

Bounding I Using Lemma A.4, we have ∥fDΠ̂,λ
∥k, ∥fD̄Π,λ∥k ≤

√
Bℓ
λ , hence we get from Lemma A.1 that

|fDΠ̂,λ
(x)|, |fD̄Π,λ(x)| ≤ ∥k∥∞

√
Bℓ
λ =: Bf . Define now for brevity Lℓ := |ℓ|1,Bf , then we get∣∣Rℓ,P (fDΠ̂,λ

)−Rℓ,P (fD̄Π,λ)
∣∣ ≤ Lℓ∥k∥∞∥fDΠ̂,λ

− fD̄Π,λ∥k

≤ Lℓ∥k∥∞
λ

∥∥∥∥∥ 1

N

N∑
n=1

hDΠ̂
(Π̂S(n), yn)Φk(Π̂S

(n))− 1

N

N∑
n=1

hDΠ̂
(ΠQn, yn)Φk(ΠQn)

∥∥∥∥∥
k

≤ Lℓ∥k∥∞
λ

1

N

N∑
n=1

∥∥∥hDΠ̂
(Π̂S(n), yn)Φk(Π̂S

(n))− hDΠ̂
(ΠQn, yn)Φk(ΠQn)

∥∥∥
k

≤ Lℓ∥k∥∞
λ

1

N

N∑
n=1

|hDΠ̂
(Π̂S(n), yn)− hDΠ̂

(ΠQn, yn)|∥Φk(Π̂S(n))∥k

+ |hDΠ̂
(ΠQn, yn)|∥Φk(Π̂S(n))− Φk(ΠQn)∥k

where we used Lemma A.3 in the first inequality, in the second step the bound (16), followed by using the triangle inequality
twice. For each n = 1, . . . , N , we have

|hDΠ̂
(Π̂S(n), yn)− hDΠ̂

(ΠQn, yn)| = |ℓ′(Π̂S(n), yn, fDΠ̂,λ
(Π̂S(n)))− ℓ′(ΠQn, yn, fDΠ̂,λ

(ΠQn))|

≤ γ1(∥Π̂S(n) −ΠQn∥H) + γ3,Bf (|fDΠ̂,λ
(Π̂S(n))− fDΠ̂,λ

(ΠQn)|)

≤
(
γ1 + γ3,Bf ◦

(√
Bℓ/λ · αk

))
(∥Π̂S(n) −ΠQn∥H),

where we used the definition of hDΠ̂
in the first step, and in the following inequality we used the assumed continuity property

of ℓ′ (together with the previously derived bound Bf on the values of fDΠ̂,λ
and fDΠ̂,λ

). In the last inequality we used that
for all f ∈ Hk and x1, x2 ∈ X ,

|f(x1)− f(x2)| = |⟨f,Φk(x1)− Φk(x2)⟩k| ≤ ∥f∥k∥Φk(x1)− Φk(x2)∥k ≤ ∥f∥kαk(∥x1 − x2∥H).
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Furthermore, we also have ∥Φk(Π̂S(n))− Φk(ΠQn)∥k ≤ αk(∥Π̂S(n) −ΠQn∥H) and ∥Φk(Π̂S(n))∥k ≤ ∥k∥∞.

Finally,

|hDΠ̂
(ΠQn, yn)| = |ℓ′(ΠQn, yn, fDΠ̂,λ

(ΠQn))|
≤ |ℓ′(ΠQn, yn, 0)|+ |ℓ′(ΠQn, yn, fDΠ̂,λ

(ΠQn))− ℓ′(ΠQn, yn, 0)|
≤ B′

ℓ + γ3,Bf (|fDΠ̂,λ
(ΠQn)|)

≤ B′
ℓ + γ3,Bf (Bf ).

Altogether, we can continue with∣∣Rℓ,P (fDΠ̂,λ
)−Rℓ,P (fD̄Π,λ)

∣∣
≤ Lℓ∥k∥∞

λ

1

N

N∑
n=1

|hDΠ̂
(Π̂S(n), yn)− hDΠ̂

(ΠQn, yn)|∥Φk(Π̂S(n))∥k

+ |hDΠ̂
(ΠQn, yn)|∥Φk(Π̂S(n))− Φk(ΠQn)∥k

≤ Lℓ∥k∥∞
λ

1

N

N∑
n=1

∥k∥∞
(
γ1 + γ3,Bf ◦

(√
Bℓ/λ · αk

))
(∥Π̂S(n) −ΠQn∥H)

+
(
B′
ℓ + γ3,Bf (Bf )

)
αk(∥Π̂S(n) −ΠQn)∥H)

≤ Lℓ∥k∥∞
λ

1

N

N∑
n=1

(
∥k∥∞

(
γ1 + γ3,Bf ◦

(√
Bℓ/λ · αk

))
+
(
B′
ℓ + γ3,Bf (Bf )

)
αk

)
(∥Π̂S(n) −ΠQn∥H)

Defining αλ = ∥k∥∞(γ1 + γ3,Bf ◦
(√

Bℓ/λαk

)
) +

(
B′
ℓ + γ3,Bf (Bf )

)
αk and using a union bound, we finally get with

probability at least 1− δ/2 that

∣∣Rℓ,P (fDΠ̂,λ
)−Rℓ,P (fD̄Π,λ)

∣∣ ≤ Lℓ∥k∥∞
λ

1

N

N∑
n=1

αλ(Bn(δ/(2N))).

Bounding II and IV Let Q = P or D̄Π. We have

Rℓ,Q(fD̄Π,λ)−Rℓ,Q(fP,λ) ≤ Lℓ∥k∥∞∥fD̄Π,λ − fP,λ∥k

≤ Lℓ∥k∥∞
λ

∥∥∥∥∥ 1

N

N∑
n=1

hD̄Π
(ΠQn, yn)Φk(ΠQn)−

∫
hD̄Π

(x, y)Φk(x)dP (x, y)

∥∥∥∥∥
k

=
Lℓ∥k∥∞

λ

∥∥∥∥∥ 1

N

N∑
n=1

ξn − E[ξn]

∥∥∥∥∥
k

where the first two steps are similar as in bounding I, and in the last step we defined ξn = hD̄Π
(ΠQn, yn)Φk(ΠQn). Since

(Q1, y1) . . . , (QN , yN )
i.i.d.∼ P , also ξ1, . . . , ξN are i.i.d. Furthermore,

∥ξn∥k = ∥hDΠ̂
(ΠQn, yn)Φk(ΠQn)∥k

= |hDΠ̂
(ΠQn, yn)|∥Φk(ΠQn)∥k

≤ |ℓ′(ΠQn, yn, fD̄Π,λ(ΠQn))|∥k∥∞
≤
(
B′
ℓ + γ3,Bf (Bf )

)
∥k∥∞,

so ξ1, . . . , ξN are Hk-valued i.i.d. random variables bounded by Bξ :=
(
B′
ℓ + γ3,Bf (Bf )

)
∥k∥∞. Hoeffding’s inequality

for random variables in a separable Hilbert space, cf. Corollary 6.15 in (Steinwart & Christmann, 2008), now ensures that
with probability at least 1− δ/2∥∥∥∥∥ 1

N

N∑
n=1

ξn − E[ξn]

∥∥∥∥∥
k

≤ Bξ

(√
2 ln(2/δ)

N
+
√
1/N +

4 ln(2/δ)

3N

)
.
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This implies that with probability at least 1− δ/2

Rℓ,Q(fD̄Π,λ)−Rℓ,Q(fP,λ) ≤
Lℓ∥k∥∞

λ
Bξ

(√
2 ln(2/δ)

N
+
√
1/N +

4 ln(2/δ)

3N

)
,

so with same probability the bound

II + IV ≤ 2
Lℓ∥k∥∞

λ
Bξ

(√
2 ln(2/δ)

N
+
√

1/N +
4 ln(2/δ)

3N

)
holds.

Bounding V Using elementary computations, we get

λ∥fDΠ̂,λ
∥2k − λ∥fD̄Π,λ∥

2
k = λ

(
∥fDΠ̂,λ

∥2k − ∥fD̄Π,λ∥
2
k

)
= λ

(
∥fDΠ̂,λ

∥k + ∥fD̄Π,λ∥k
) (

∥fDΠ̂,λ
∥k − ∥fD̄Π,λ∥k

)
≤ λ

(
∥fDΠ̂,λ

∥k + ∥fD̄Π,λ∥k
)
∥fDΠ̂,λ

− fD̄Π,λ∥k

≤ 2λ

√
Bℓ
λ
∥fDΠ̂,λ

− fD̄Π,λ∥k

≤ 2

√
Bℓ
λ

1

N

N∑
n=1

αλ(∥Π̂S(n) −ΠQn∥H),

where we used Lemma A.4 in the second to last step, and the bound on ∥fDΠ̂,λ
− fD̄Π,λ∥k from bounding I. In particular,

with probability at least 1− δ/2 we get that

λ∥fDΠ̂,λ
∥2k − λ∥fD̄Π,λ∥

2
k ≤ 2

√
Bℓ
λ

1

N

N∑
n=1

αλ(Bn(δ/(2N))).

Finishing Using again a union bound, we finally get that with probability at least 1− δ we have

Rℓ,P,λ(fDΠ̂,λ
)−RHk∗

ℓ,P,λ ≤ Lℓ∥k∥∞
λ

1

N

N∑
n=1

αλ(Bn(δ/(2N)))︸ ︷︷ ︸
from I

+ 2
Lℓ∥k∥∞

λ
Bξ

(√
2 ln(2/δ)

N
+
√
1/N +

4 ln(2/δ)

3N

)
︸ ︷︷ ︸

from II and IV

+ 2

√
Bℓ
λ

1

N

N∑
n=1

αλ(Bn(δ/(2N)))︸ ︷︷ ︸
from V

=

(
2

√
Bℓ
λ

+
Lℓ∥k∥∞

λ

)
1

N

N∑
n=1

αλ(Bn(δ/(2N)))

+ 2
Lℓ∥k∥∞

λ
Bξ

(√
2 ln(2/δ)

N
+
√
1/N +

4 ln(2/δ)

3N

)

The result now follows from the definition of A(2)
ℓ,P (λ).

Proof of Corollary 3.3. Since S is compact, it is in particular separable, so Proposition 2.4 ensures that Πκ is
(M1(S),B(τw))-(Hκ,B(Hκ))-measurable. Furthermore, since S is a compact metric space, M1(S) with the topol-
ogy of weak convergence is compact. Since κ is universal, Πκ is continuous, and hence X = Πκ(M1(S)) is a compact
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metric space. In particular, it is closed, and hence X ∈ B(Hκ), and it is also separable. By definition, for all M ∈ N+ and
S ∈ SM , Π̂M (S) = Π̂κ(S) =

1
M

∑M
m=1 k(·, Sm), and hence measurable. Altogether, Assumption 2.1 is fulfilled.

Next, for all x1, x2 ∈ X we have ∥Φk(x1) − Φk(x2)∥k ≤ αk(∥x1 − x2∥H), which shows that Φk is continuous, so
according to Lemma 4.29 in (Steinwart & Christmann, 2008) also k is continuous. Since X is separable, this shows that also
Hk is separable.

Using the KME estimation bound from Proposition 2.4 to find appropriate Bn, all assumptions of Theorem 3.1 are fulfilled,
and we get

Rℓ,P,λ(fDΠ̂,λ
)−RHk∗

ℓ,P,λ

≤ (2
√
λBℓ + Lℓ∥k∥∞)

1

N

N∑
n=1

αλ

2

√
∥k∥2∞
Mn

+

√
2∥κ∥∞ ln(2N/δ)

Mn


+ 2Lℓ∥k∥∞

(
B′
ℓ + L′

ℓ∥k∥∞

√
Bℓ
λ

)(√
2 ln(2N/δ)

N
+
√
1/N +

4 ln(2N/δ)

3N

)
,

where we defined

αλ = ∥k∥∞L′
ℓα
f,

√
Bℓ
λ

+

(
B′
ℓ + L′

ℓ∥k∥∞

√
Bℓ
λ

)
αk.

Finally, since ℓ is locally Lipschitz continuous, it is in particular continuous, and as shown by Lemma A.2, it is also a
P -integrable Nemitskii loss. Together with the fact that X is a compact metric space and k is universal, Corollary 5.29 in
(Steinwart & Christmann, 2008) shows that RHk∗

ℓ,P,λ = R∗
ℓ,P , and the result follows.

The strategy of the following proof follows the one for Theorem 6.25 in (Steinwart & Christmann, 2008), however, several
adaptions are necessary to deal with the two-stage sampling.

Proof of Theorem 3.4. Let λ ∈ R>0 be arbitrary. We start with

Rℓ,P,λ(fDΠ̂,λ
)−Rℓ,P,λ(fP,λ) = Rℓ,P (fDΠ̂,λ

)−Rℓ,DΠ̂
(fDΠ̂,λ

)

+Rℓ,DΠ̂
(fDΠ̂,λ

) + λ∥fDΠ̂,λ
∥2k −

(
Rℓ,DΠ̂

(fP,λ) + λ∥fP,λ∥2k
)

+Rℓ,DΠ̂
(fP,λ)−Rℓ,P (fP,λ)

≤ 2 sup
f∈Hk

∥f∥k≤
√
Bℓ
λ

∣∣Rℓ,DΠ̂
(f)−Rℓ,P (f)

∣∣ ,
where we used in the last step that Rℓ,DΠ̂,λ

(fDΠ̂,λ
) ≤ Rℓ,DΠ̂,λ

(fP,λ) by definition of fDΠ̂,λ
, and we applied Lemma A.4 to

fDΠ̂,λ
and fP,λ.

Let f ∈ Hk with ∥f∥k ≤
√

Bℓ
λ , and choose f̃ ∈ F such that ∥f− f̃∥k ≤ ϵ. Observe that |f̃(x)| ≤ |f(x)|+|f̃(x)−f(x)| ≤

∥k∥∞
√

Bℓ
λ + ϵ = B̃f , where we used the choice of f̃ together with (the proof of) Lemma A.2. We then have

∣∣Rℓ,DΠ̂
(f)−Rℓ,P (f)

∣∣ ≤ ∣∣Rℓ,DΠ̂
(f)−Rℓ,D̄Π

(f)
∣∣+ ∣∣∣Rℓ,D̄Π

(f)−Rℓ,D̄Π
(f̃)
∣∣∣

+
∣∣∣Rℓ,D̄Π

(f̃)−Rℓ,P (f̃)
∣∣∣+ ∣∣∣Rℓ,P (f̃)−Rℓ,P (f)

∣∣∣
≤
∣∣Rℓ,DΠ̂

(f)−Rℓ,D̄Π
(f)
∣∣+ ∣∣∣Rℓ,D̄Π

(f̃)−Rℓ,P (f̃)
∣∣∣+ 2γ3,B̃f (ϵ),

where we used (a modified variant of) Lemma A.3 in the last step together with |f(x)|, |f̃(x)| ≤ B̃f .
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We now bound the first two terms. First,

∣∣Rℓ,DΠ̂
(f)−Rℓ,D̄Π

(f)
∣∣ ≤ 1

N

N∑
n=1

|ℓ(Π̂S(n), yn, f(Π̂S
(n)))− ℓ(ΠQn, yn, f(ΠQn))|

≤ 1

N

N∑
n=1

γ1(∥Π̂S(n) −ΠQn∥H) + γ
3,∥k∥∞

√
Bℓ
λ

(
|f(Π̂S(n))− f(ΠQn)|

)
≤ 1

N

N∑
n=1

(
γ1 + γ

3,∥k∥∞

√
Bℓ
λ

◦ α
f,

√
Bℓ
λ

)
(∥Π̂S(n) −ΠQn∥H),

where we used the triangle inequality, then the continuity property of ℓ, and then the continuity property of f .

Second,

∣∣∣Rℓ,D̄(f̃)−Rℓ,P (f̃)
∣∣∣ = ∣∣∣∣∣ 1N

N∑
n=1

ℓ(ΠQn, yn, f̃(ΠQn))−
∫
ℓ(ΠQ, y, f̃(ΠQ))dP (Q, y)

∣∣∣∣∣ ,
ℓ(ΠQ1, y1, f̃(ΠQ1)), . . . , ℓ(ΠQN , yN , f̃(ΠQN )) are i.i.d. random variables (since (Q1, y1), . . . , (QN , yN ) are i.i.d.), and
for all n = 1, . . . , N we have |ℓ(ΠQn, yn, f̃(ΠQn))| ≤ Bℓ+ γ3,B̃f (B̃f ) = Bξ according to (the proof of) Lemma A.2. All
of this means that we can use Hoeffding’s inequality to bound this term.

Third, we can combine the previous two bounds. Using the union bound we have

P

[
max

n=1,...,N
∥Π̂S(n) −ΠQn∥H > Bn(δ/(N + |F|)) or max

g̃∈F

∣∣Rℓ,D̄(g̃)−Rℓ,P (g̃)
∣∣ > Bξ

√
2 ln((N + |F|)/δ)

N

]

≤
N∑
n=1

P
[
∥Π̂S(n) −ΠQn∥H > Bn(δ/(N + |F|)

]
+
∑
g̃∈F

P

[∣∣Rℓ,D̄(g̃)−Rℓ,P (g̃)
∣∣ > Bξ

√
2 ln((N + |F|)/δ)

N

]

≤ N
δ

N + |F|
+ |F| δ

N + |F|
= δ

Together with our previous two bounds this implies that with probability at least 1− δ,

∣∣Rℓ,D(f)−Rℓ,D̄(f)
∣∣+ ∣∣∣Rℓ,D̄(f̃)−Rℓ,P (f̃)

∣∣∣
≤ 1

N

N∑
n=1

(
γ1 + γ

3,∥k∥∞

√
Bℓ
λ

◦ α
f,

√
Bℓ
λ

)
(∥Π̂S(n) −ΠQn∥H) +

∣∣∣Rℓ,D̄(f̃)−Rℓ,P (f̃)
∣∣∣

≤ 1

N

N∑
n=1

(
γ1 + γ

3,∥k∥∞

√
Bℓ
λ

◦ α
f,

√
Bℓ
λ

)
Bn(δ/(N + |F|)) +Bξ

√
2 ln((N + |F|)/δ)

N
.

This also implies that with probability at least 1− δ,

|Rℓ,D(f)−Rℓ,P (f)| ≤
∣∣Rℓ,D(f)−Rℓ,D̄(f)

∣∣+ ∣∣∣Rℓ,D̄(f̃)−Rℓ,P (f̃)
∣∣∣+ 2|ℓ|1,B̃f ϵ

≤ 1

N

N∑
n=1

(
γ1 + γ

3,∥k∥∞

√
Bℓ
λ

◦ α
f,

√
Bℓ
λ

)
(Bn(δ/(N + |F|))

+Bξ

√
2 ln((N + |F|)/δ)

N
+ 2|ℓ|1,B̃f ϵ,
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and since f ∈ Hk with ∥f∥k ≤
√

Bℓ
λ was arbitrary, this in turn implies that

sup
f∈Hk

∥f∥k≤
√
Bℓ
λ

|Rℓ,D(f)−Rℓ,P (f)| ≤
1

N

N∑
n=1

(
γ1 + γ

3,∥k∥∞

√
Bℓ
λ

◦ α
f,

√
Bℓ
λ

)
(Bn(δ/(N + |F|))

+Bξ

√
2 ln((N + |F|)/δ)

N
+ 2γ3,B̃f (ϵ),

with probability at least 1− δ, and the result follows.

C. Generalization via Algorithmic Stability
C.1. Sliced Wasserstein

Corollary C.1. Consider the situation of Theorem 4.2. Additionally, assume S = Rd, let (H,Π) be the sliced 2-Wasserstein
embedding, and assume that the support of πS♯P 8 is contained in the set of log-concave distributions, and for (Q, y) ∼ P ,
denote by ΣQ the (a.s.) defined covariance matrix of Q. We then have for all δ ∈ (0, 1), with probability at least 1− δ, that

Rℓ,P (fℓ,DΠ̂
λ) ≤ Rℓ,DΠ̂

(fℓ,DΠ̂
λ) + αλ

(
CdE

[√
∥ΣQ∥ ln(M)

M

])

+

(
2|ℓ|21,Bf ∥k∥

2
∞

λ
+Bℓ + |ℓ|1,BfBf

)√
ln(1/δ)

2N
+

|ℓ|21,Bf ∥k∥
2
∞

λN
,

where we defined Bf = ∥k∥∞
√

Bℓ
λ , and Cd ∈ R>0 is a universal constant that depends only on d.

Proof. Let Q ∈ M1(S) and M ∈ N+. According to Theorem 1 in (Nietert et al., 2022), we have

ES∼Q⊗M [W2(Q, µ̂[S])] ≤ Cd

√
∥ΣQ∥ ln(M)

M
,

where Cd ∈ R>0 is a universal constant that depends only on d. This implies that

αλ

(
E(Q,S,y)∼P̄

[
∥ΠQ− Π̂S∥H

])
= αλ

(
E(Q,S,y)∼P̄ [W2(Q, µ̂[S])]

)
≤ αλ

(
E

[
Cd

√
∥ΣQ∥ ln(M)

M

])
,

with αλ defined in Theorem 4.2. This result now establishes the claim.

C.2. Proof of the general result

Our proof follows the one of Theorem 14.2 in (Mohri et al., 2018), adapted to the present distributional setting.

Proof of Theorem 4.1. Define F : (X × Y)N → R by

F (D) = Rℓ,P (LD)−Rℓ,D(LD).

Let N ∈ N+, D ∈ (X × Y)N , 1 ≤ i ≤ N and (x̃, ỹ) ∈ X × Y be arbitrary. Define D̃ ∈ (X × Y)N by

D̃n =

{
Dn if n ̸= i

(x̃, ỹ) if n = i

8πS is the usual coordinate projection onto S.
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and for all 1 ≤ n ≤ N , define also (x̃n, ỹn) = Dn. We then have

|F (D)− F (D̃)| =
∣∣∣Rℓ,P (LD)−Rℓ,D(LD)−

(
Rℓ,P (LD̃)−Rℓ,D̃(LD̃)

)∣∣∣
≤ |Rℓ,P (LD)−Rℓ,P (LD̃)|+

∣∣∣∣∣ 1N
N∑
n=1

ℓ(xn, yn,LD(xn))−
1

N

N∑
n=1

ℓ(x̃n, ỹn,LD̃(x̃n)

∣∣∣∣∣
≤
∫

|ℓ(ΠQ, y,LD(ΠQ))− ℓ(ΠQ, y,LD̃(ΠQ))|dP (Q, y)

+
1

N

∣∣∣∣∣∣∣ℓ(xi, yi,LD(xi))− ℓ(x̃i, ỹi,LD̃(x̃i)) +
N∑
n=1
n ̸=i

ℓ(xn, yn,LD(xn))− ℓ(x̃n, ỹn,LD̃(x̃n))

∣∣∣∣∣∣∣
≤ βN +

1

N
|ℓ(xi, yi,LD(xi))− ℓ(x̃, ỹ,LD̃(x̃))|+

1

N

N∑
n=1
n ̸=i

|ℓ(xn, yn,LD(xn))− ℓ(xn, yn,LD̃(xn))|

≤ βN +
B

N
+
N − 1

N
βN =

(
1 +

N − 1

N

)
βN +

B

N
= C.

McDiarmid’s bounded difference inequality then shows that for all δ ∈ (0, 1), we have with probability at least 1− δ that

Rℓ,P (LD̂Π̂
)−Rℓ,D̂Π̂

(LD̂Π̂
) ≤ E

[
Rℓ,P (LD̂Π̂

)−Rℓ,D̂Π̂
(LD̂Π̂

)
]
+ C

√
N ln(1/δ)

2

We now bound upper bound the expectation in the preceding display. We have

E
[
Rℓ,P (LD̂Π̂

)−Rℓ,D̂Π̂
(LD̂Π̂

)
]
= E

[
Rℓ,P (LD̂Π̂

)− E(Q,S,y)∼P̄

[
ℓ(Π̂S, y,LD̂Π̂

(Π̂S))
]]

︸ ︷︷ ︸
=I

+ E
[
E(Q,S,y)∼P̄

[
ℓ(Π̂S, y,LD̂Π̂

(Π̂S))
]
−Rℓ,D̂Π̂

(LD̂Π̂
)
]

︸ ︷︷ ︸
=II

and bound the two terms separately. Observe that

Rℓ,P (LD̂Π̂
) = E(Q,y)∼P

[
ℓ(ΠQ, y,LD̂Π̂

(ΠQ))
]
= E(Q,S,y)∼P̄

[
ℓ(ΠQ, y,LD̂Π̂

(ΠQ))
]
,

so we have

I = E
[
E(Q,S,y)∼P̄

[
ℓ(ΠQ, y,LD̂Π̂

(ΠQ))− ℓ(Π̂S, y,LD̂Π̂
(Π̂S))

]]
≤ E

[
E(Q,S,y)∼P̄

[
|ℓ(ΠQ, y,LD̂Π̂

(ΠQ))− ℓ(Π̂S, y,LD̂Π̂
(Π̂S))|

]]
≤ E

[
E(Q,S,y)∼P̄

[
α(∥ΠQ− Π̂S∥H)

]]
≤ α

(
E(Q,S,y)∼P̄

[
∥ΠQ− Π̂S∥H

])
,

where we used Jensen’s inequality together with the concavity of α in the last step.

We turn to term II. Let (S(N+1), yN+1) ∼ P̃ such that (S(1), y1), . . . , (S
(N+1), yN+1) are i.i.d., and define D̃ =
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((S(2), y2), . . . , (S
(N+1), yN+1). Note that D and D̃ have the same distribution. We then have

ED∼P̃⊗N

[
Rℓ,DΠ̂

(LDΠ̂
)
]
= ED∼P̃⊗N

[
1

N

N∑
n=1

ℓ(Π̂S(n), yn,LDΠ̂
(Π̂S(n)))

]

=
1

N

N∑
n=1

ED∼P̃⊗N

[
ℓ(Π̂S(n), yn,LDΠ̂

(Π̂S(n)))
]

= ED∼P̃⊗N

[
ℓ(Π̂S(1), y1,LDΠ̂

(Π̂S(1)))
]

= E
(S(1),y1)

...
(S(N+1),yN+1)

[
ℓ(Π̂S(1), y1,LDΠ̂

(Π̂S(1)))
]

≤ E
(S(1),y1)

...
(S(N+1),yN+1)

[
ℓ(Π̂S(1), y1,LD̃Π̂

(Π̂S(1)))
]

+ E
(S(1),y1)

...
(S(N+1),yN+1)

[
|ℓ(Π̂S(1), y1,LDΠ̂

(Π̂S(1)))− ℓ(Π̂S(1), y1,LD̃Π̂
(Π̂S(1)))|

]

≤ E
(S(1),y1)

...
(S(N+1),yN+1)

[
ℓ(Π̂S(1), y1,LD̃Π̂

(Π̂S(1)))
]
+ βN

= E
D,(S,y)

[
ℓ(Π̂S, y,LDΠ̂

(Π̂S))
]
+ βN .

Furthermore, observe that

E(Q,S,y)∼P̄

[
ℓ(Π̂S, y,LDΠ̂

(Π̂S))
]
= E(S,y)∼P̃

[
ℓ(Π̂S, y,LDΠ̂

(Π̂S))
]
.

We now get

II = ED∼P̃⊗N

[
E(Q,S,y)∼P̄

[
ℓ(Π̂S, y,LD̂Π̂

(Π̂S))
]
− 1

N

N∑
n=1

ℓ(Π̂S(n), yn,LD̂Π̂
(Π̂S(n)))

]
= ED∼P̃⊗N

[
E(S,y)∼P̃

[
ℓ(Π̂S, y,LDΠ̂

(Π̂S))
]]

− ED∼P̃⊗N

[
Rℓ,DΠ̂

(LDΠ̂
)
]

≤ ED∼P̃⊗N

[
E(S,y)∼P̃

[
ℓ(Π̂S, y,LDΠ̂

(Π̂S))
]]

− E
D,(S,y)

[
ℓ(Π̂S, y,LDΠ̂

(Π̂S))
]
+ βN

= ED,(S,y)

[
ℓ(Π̂S, y,LDΠ̂

(Π̂S))− ℓ(Π̂S, y,LDΠ̂
(Π̂S))

]
+ βN

= βN .

Altogether we have

E
[
Rℓ,P (LD̂Π̂

)−Rℓ,D̂Π̂
(LD̂Π̂

)
]
≤ α

(
E(Q,S,y)∼P̄

[
∥ΠQ− Π̂S∥H

])
+ βN ,

and the result follows.
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