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Abstract

Recent advances in deep learning optimization showed that, with some a-posteriori
information on fully-trained models, it is possible to match the same performance
by simply training a subset of their parameters. Such a discovery has a broad impact
from theory to applications, driving the research towards methods to identify the
minimum subset of parameters to train without look-ahead information exploitation.
However, the methods proposed do not match the state-of-the-art performance and
rely on unstructured sparsely connected models.
In this work we shift our focus from the single parameters to the behavior of the
whole neuron, exploiting the concept of neuronal equilibrium (NEq). When a
neuron is in a configuration at equilibrium (meaning that it has learned a specific
input-output relationship), we can halt its update; on the contrary, when a neuron is
at non-equilibrium, we let its state evolve towards an equilibrium state, updating
its parameters. The proposed approach has been tested on different state-of-the-
art learning strategies and tasks, validating NEq and observing that the neuronal
equilibrium depends on the specific learning setup.

1 Introduction

In recent years, deep learning has become a staple solution to different tasks, such as computer
vision, bio-informatics, speech recognition, and many more. Unfortunately, modern neural network
architectures are becoming more and more “expensive”: performing simple inferences requires a lot
of computational resources, and training the models even more. Such cost poses several challenges
for the research community: the training of a network model is associated with large carbon footprints
and the commercialization of AI research (especially for edge devices) is hindered by the resource
requirements of the models Strubell et al. (2019).
For several years now, many works in literature have shown that is possible to shrink both the
size and resource requirements, mainly via quantization Yang et al. (2020); Jin et al. (2022) and
pruning Wang et al. (2020); Tang et al. (2020); Tanaka et al. (2020). In particular, pruning techniques
can drastically reduce the number of operations needed to perform inference, without affecting the
overall performance of the model. Pruning targets the reduction of parameters in the model, which
has advantages after training; unfortunately, it is unable to reduce the cost of the training cycle, and
on the contrary, it requires, in general, iterations of few-shot pruning, followed by fine-tuning Lee
et al. (2019); Tartaglione et al. (2018).

This paper has been accepted for publication at the 36th Conference on Neural Information Processing Systems
(NeurIPS 2022).



A recent work shows the existence of sub-graphs in the whole deep learning model which, when
trained in isolation, match the performance of the whole model Frankle and Carbin (2019). This
opens the road towards a whole field of research, where many approaches are proposed to find these
parameters a-priori: this shows a potential environmental impact, considering that a smaller model is
trained, leading to a lower energy consumption Strubell et al. (2019). Indeed, when training a neural
network, the back-propagation procedure and the weights update lead to the larger part of FLOPs
(compared to forward propagation) Plaut et al. (1986); Baydin et al. (2018). Researchers started to
experiment pruning early in the training or even before the training starts in the hope of training a
restricted number of parameters. Unfortunately, training a sparse network with standard optimizers
leads to subpar results Evci et al. (2019) or the final result does not differ much from magnitude
pruning at the end of the training Frankle et al. (2021). The causes for such behaviors are still a
matter of debate among the community 2019; 2021.
In this work, we shift the focus from the single parameter to the whole neuron, and we propose
NEq, an approach to evaluate whether a given neuron is at equilibrium for the learning dynamics.
If the neuron is in such a state, its parameters have already reached a target configuration and do
not require a further update. Unlike many other recent approaches, NEq disables entire neurons
(hence, in a structured way), does not require prior knowledge of the specific task (for example by
first training a model to convergence), and automatically self-adapts to the specific learning policy
deployed. Unlike pruning techniques, NEq does not remove the neurons’ contribution to the output;
instead, it only prevents unnecessary updates to their weights: as a result, we reduce the number of
operations performed by the back-propagation algorithm and the optimizer.
The rest of the paper is organized as follows. In Sec. 2 we discuss the related literature; Sec. 3
presents the concept of neuronal equilibrium and how to evaluate it; Sec. 4 presents the experimental
validation inclusive of an ablation study and Sec. 5 draws the conclusions.

2 Related works

It is broadly acknowledged that the typically-deployed deep learning models on the state-of-the-art
scenarios are over-parametrized Mhaskar and Poggio (2016); Brutzkus et al. (2018). This ignites two
lines of research: reducing the size of these models (with pruning algorithms) or saving computational
resources at training time. While the first has been broadly explored, the latter suffered a stalemate
until a recent work suggested its feasibility Frankle and Carbin (2019).
Pruning strategies. Attempts to reduce the number of parameters from learned models date back
to 1989 when Mozer and Smolensky proposed skeletonization, a technique to identify less relevant
neurons in a trained model and to remove them 1989. This was accomplished thanks to the evaluation
of an error function penalty from a pre-trained model. In the same years, LeCun et al. also proposed
a work where the information from the second-order derivative of the error function is leveraged
to rank the parameters of the trained model on a saliency-like basis LeCun et al. (1990). In the
last decade, thanks to the broad availability of computational resources, pruning approaches gained-
back popularity, with approaches including the exploitation of dropout Molchanov et al. (2017);
Gomez et al. (2019), sensitivity-based approaches Lee et al. (2018); Tartaglione et al. (2021, 2022),
relaxation of ℓ0 regularization Louizos et al. (2017); Sanh et al. (2020) and optimization of auxiliary
parameters Xiao et al. (2019). Despite leading to very compact deep models, the demanded training
complexity is frequently very high, as many of the most well-known approaches rely on iterative fine-
tuning (or few-shot pruning) approaches. Hence, the training complexity for these techniques is larger
than training a vanilla model (which in many cases is used as initialization). Much computational
complexity could be saved if structured pruning is applied before training the model itself (namely,
entire neurons/channels are pruned). Some works on pruning have suggested the possibility of
re-allocating previously pruned parameters Tresp et al. (1996) or filters He et al. (2018) to learn new
functions and minimize the loss, towards higher generalization capability Blalock et al. (2020).
The lottery ticket hypothesis. In a recent paper, Frankle and Carbin provided empirical evidence that,
at initialization, there exists a sub-graph of the original deep learning model such that, when trained in
isolation, it can match the performance of the complete model Frankle and Carbin (2019). Indeed, the
authors claim that the parameters in the sub-graph have “won at the lottery of initialization”. From a
very practical perspective, this means that all the parameters not in the selected sub-graph are, de facto,
pruned from the model, not requiring any gradient computation. This empirical evidence potentially
opens the road to the development of algorithms for pruning at initialization. Unfortunately, at such
point, two obstacles are yet to be tackled. From one side, Frankle and Carbin (2019) uses an iterative
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Figure 1: For a given time t the model (either in blue or orange) receives samples from the validation
set (in red or green). The output of the i-th neuron (whose cardinality is Ni) depends on both
the model’s parameters and the specific sample on the validation set. These outputs are squeezed,
concatenated and the obtained vector (of size Ni · ∥Ξval∥0, being ∥Ξval∥0 the cardinality of the
validation set) is then normalized, obtaining ŷt

i.

procedure to identify the sub-graph: it simply proves its existence but does not provide a method to
find it directly at initialization. On another side, it focuses on un-structured sub-graphs, meaning
that parameters are treated in isolation: is it possible to find structured sub-graphs (or in other words,
removing entire nodes and not just arcs)?
Beyond the lottery ticket hypothesis. Many works of the last two years have received inspiration
from the lottery ticket hypothesis, in the quest of determining the early lottery tickets. This is,
however, a tough task to solve: Frankle et al. (2020) shows that there is a region, at the very early
stages of learning, where the lottery tickets identified with iterative pruning are “not stable” (meaning
that tickets extracted at different moments of this early stages are essentially different). This suggests
that, in the very first epochs, the neural network evolves in very different states, making the problem
of a-priori identifying winning tickets hard Tartaglione (2022). This is also endorsed by other works,
including Morcos et al. (2019); Malach et al. (2020). On the other hand, other approaches reduce the
overall complexity of the iterative training by drawing early-bird tickets You et al. (2019) (meaning
that they learn the lottery tickets when the model has not yet reached full convergence), even reducing
the training data Zhang et al. (2021) or moving the first steps towards structurally-sparse winning
tickets, yet still at iterative fashion, applying similar concept as Frankle and Carbin to entire neurons
and channels Chen et al. (2022).
With NEq we learn the important lessons related to the lottery ticket hypothesis, targeting the
reduction of computational complexity at training time, without exploiting knowledge on pre-training
models, or rewinding. Hence, we do not target the achievement of sparse architectures, but we aim at
determining when a whole neuron requires to be updated or when the computation of the gradient for
its parameters is not necessary. As such, the comparison with the other presented approaches will be
in general unfair, as they require a much greater computational complexity for training because of
un-structured sparsity (which introduces an overhead in the representation of the tensors) and the
iterative strategies. Furthermore, we will observe the possibility, along the training process, that some
neurons, already kept in a “frozen” state, might unfreeze, requiring additional update steps. Although
resource re-allocation has been exploited before Tresp et al. (1996); He et al. (2018), our unfreezing is
different as it involves learning of a specific target function by the neuron, and not learning new ones
through their re-allocation. In the next section, the notion of neuronal equilibrium will be presented,
as well as the strategy to determine which neurons will require gradient computation.

3 Neurons at equilibrium

In this section, we will treat the problem of determining when a given neuron, along with the learning
dynamics, finds itself at equilibrium. Towards this end, we define yt

i,ξ as the output of the i-th neuron
when the input ξ is fed to the whole model trained after t epochs. Given a set of inputs ξ ∈ Ξval

(where Ξval is the validation set), it is possible to compare each n-th element yti,n,ξ with yt−1
i,n,ξ, for

the same model’s input: what changes are the parameters of the model. Fig. 1 provides an overview
of the nomenclature used: in the rest of the section we will see how to determine when a neuron is at
equilibrium.
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3.1 Neuronal equilibrium

In this section, we are interested in evaluating when the relationship between the input of the model
and the output of the i-th neuron is modified. When this happens, the neuron is at non-equilibrium,
meaning that its learned function, in the whole picture (or in other words, taking into account the
evolution of the neurons in the previous layers as well), is still “evolving”. We are interested in
identifying the scenarios where the neuron is at equilibrium at the net of the interactions with the
other neurons. To assess it, let us define the cosine similarity between all the outputs of the i-th
neuron at time t and at time t− 1 for the whole validation set Ξval as

ϕt
i =

∑
ξ∈Ξval

Ni∑
n=1

ŷti,n,ξ · ŷt−1
i,n,ξ. (1)

Here we can determine that, when ϕi = 1, the i-th neuron produces the same (eventually scaled)
output between the evaluation at time t and at time t− 1 for the same input ξ of the model. We say
the i-th neuron reaches equilibrium when we have

lim
t→∞

ϕt
i = k, (2)

where k ∈ [−1;+1] is some constant value. We can have the following scenarios:

• k = 1. In this case, the two outputs are perfectly correlated, meaning that the relationship
bounding the input of the whole model ξ and the output of the specific i-th neuron is
maintained.

• k ∈ (0; 1). The outputs correlate, but we are in presence of an oscillatory behavior (in the
sense that the cosine similarity varies by a constant value between consecutive evaluations).
This effect can be caused by stochastic effects like high learning rate/regularization, small
batch size, or a combination of them.

• k ∈ [−1; 0]. Also in this case we are in the presence of oscillatory behavior, but the outputs
are anti-correlated or de-correlated.

Here follows the evaluation framework to determine the arrival to an equilibrium state for the i-th
neuron.

3.2 Neuron dynamics evaluation

To assess the convergence to equilibrium for (2), it is important to evaluate the variation of the
similarities ϕt

i over time. Towards this end, let us introduce the variation of similarities

∆ϕt
i = ϕt

i − ϕt−1
i . (3)

According to the analysis in Sec. 3.1, in this case, we say we reach equilibrium when ∆ϕt
i → 0.

Hence, it is useful to keep track of the recent evolution over the similarity scores in the model:
towards this end, we can introduce the velocity of the similarity variations:

vt∆ϕi
= ∆ϕt

i − µeqv
t−1
∆ϕi

, (4)

where µeq is the momentum coefficient. We can rewrite (4) making the similarity scores explicit,
obtaining

vt∆ϕi
=

 ϕt
i +

t∑
m=1

(−1)m
[
(µeq)

m−1 + (µeq)
m
]
ϕt−m
i µeq ̸= 0

ϕt
i − ϕt−1

i µeq = 0,
(5)

where (·)m indicates power of m. If we assume ϕt ∈ [0; 1]∀t (which is the case of ReLU-activated
neurons), in order to prevent (5) from exploding, we need to set µeq ∈ [0; 0.5]. We can extend this
setup to any layer if we assume that the neurons in the trained model will not reach equilibrium with
anti-correlated outputs.
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3.3 Selection of trainable neurons at non-equilibrium

To evaluate when a given neuron has reached equilibrium, exploiting (2), we can say that the i-th
neuron is at equilibrium when it can satisfy∣∣vt∆ϕ

∣∣ < ε, ε ≥ 0. (6)

It is important to notice that, once (6) is satisfied for a certain t, in case something changes in the
learning dynamics (for example, the learning rate is re-scaled), there may exist some t′ > t such that
the constraint is not satisfied anymore. When this happens, it means that the neuron is driven towards
new states, and is no anymore at equilibrium. Hence, it requires to be updated again.

3.4 Overall training scheme

Training

set

Training 

(1 epoch)


YES

BEGIN

NO Neuron dynamics

evaluation


Validation

set

END
End of

training?


Trainable neurons
at non-equilibrium

Learning steps Identification of neurons at equilibrium

(NEq)


Figure 2: Overall training scheme. In orange is the standard training part and in blue is the neuron
equilibrium evaluation and selection stages (we name this whole part NEq).

The overall training scheme is summarized in Fig. 2. The model is trained for one epoch, after which
neurons at equilibrium are identified. We split this into two phases: in the first (neuron dynamics
evaluation), the velocity of the similarities is evaluated according to (4), while in the second (trainable
neurons at non-equilibrium) the hidden neurons at non-equilibrium, which will be trained for the
next epoch, are identified according to (6). For the first epoch, all the neurons are considered at
non-equilibrium by default. The evaluation of neurons at equilibrium is agnostic to the general
training strategy, which can include arbitrary re-scaling for the learning rate/hyper-parameters or
the most common optimizers. In the next section, we will test this procedure on very different
architectures, tasks, and learning strategies.

4 Experiments

In this section, we report the experiments supporting the approach as presented in Sec. 3.4. First, we
will perform an ablation study, analyzing single contributions for the introduced hyper-parameters
and providing an overview of neuronal equilibrium along the training process; then, we will test the
proposed technique on state-of-the-art network architectures, datasets, and learning policies. All
experiments were performed using 8 NVIDIA A40 GPUs and the source code uses PyTorch 1.10.1

4.1 Ablation study

We performed our ablation study training a ResNet-32 He et al. (2015) model on CIFAR-
10 Krizhevsky et al.. Unless differently specified, following the hyper-parameters setup of Zagoruyko

1the source code is available at https://github.com/EIDOSLAB/NEq.
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(a) ResNet-32 trained with SGD.
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(b) ResNet-32 trained with Adam.

Figure 3: Back-propagation FLOPs (left, orange), updated neurons (center, green), and classification
accuracy (right, red) for ResNet-32 trained on CIFAR-10.
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Figure 4: Back-propagation FLOPs (left) and accuracy (right) for different values of µeq for ResNet-
32 trained on CIFAR-10.

and Komodakis (2016), the model is trained using SGD as an optimizer, with a starting learning rate
η = 0.1 and momentum µopt = 0.9 and a weight decay of 5× 10−4 for 250 epochs. The learning
rate is decayed by a factor of 10 after 100 and 150 epochs, using the formulation as in (4), with
∥Ξval∥0 = 50, µeq = 0.5, and ε = 0.001.

4.1.1 SGD vs Adam

To show that our technique automatically self-adapts to the training policy, we compare the evolution
of the FLOPs required for a back-propagation step and the number of updated neurons of two different
training of the ResNet-32: one using the SGD optimizer with µopt = 0.9, and the other using the
Adam optimizer. For Adam we leave the hyper-parameters to their default values (η = 0.001,
β1 = 0.9, and β2 = 0.999) and use the same weight decay as for SGD (5× 10−4). Fig. 3 shows the
trends for the two training procedures. We can see that in the first phase of the train, where η is high,
the amount of the trained neurons (and the FLOPs required for the backward pass) is higher. This is
related to the general lack of equilibrium in the neurons of the network: at high learning rates, the
configuration of the neurons’ parameters is subjected to high stochastic noise. As the train progresses,
and the network progresses toward its final configuration, fewer and fewer neurons need to be updated.
Noticeably, Adam drives the neurons towards equilibrium in a faster way, as expected; however,
in simple tasks like the considered one, converges to lower accuracy scores (92.96% for SGD and
92.01% for Adam). Furthermore, at the first learning rate decay (epoch 100), for SGD the number of
updated neurons first decreases and then increases, such a phenomenon is not present in the Adam
case. This is explained by the different working principles of the two optimizers: SGD explores the
solution space looking for large minima, searching for configurations that prevent equilibrium in high
learning rate regimes.
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Figure 5: Neuronal equilibrium-related quantities for ResNet-32 trained on CIFAR-10. The red line
indicates the average.

Table 1: Ablation for ResNet-32 trained on CIFAR-10.

(a) Ablation on ∥Ξval∥0.

∥Ξval∥0 Bprop. FLOPs per iteration Accuracy

500 84.73M ± 629.15K 92.70 ± 0.12

250 82.62M ± 613.14K 92.80 ± 0.43

100 84.82M ± 628.05K 92.81 ± 0.15

50 84.81M ± 629.12K 92.96 ± 0.21

25 84.49M ± 629.37K 92.62 ± 0.28

10 84.91M ± 627.11K 92.70 ± 0.27

5 84.34M ± 619.37K 92.57 ± 0.48

2 85.76M ± 617.11K 92.80 ± 0.24

1 85.56M ± 626.09K 92.77 ± 0.23

(b) Ablation on ε.

ε Bprop. FLOPs per iteration Accuracy

0.0 136.71M ± 15.34K 92.62 ± 0.23

0.0001 124.45M ± 161.76K 92.65 ± 0.40

0.0005 89.29M ± 589.71K 92.69 ± 0.19

0.001 83.62M ± 629.22K 92.96 ± 0.21

0.005 65.65M ± 591.07K 91.72 ± 0.37

0.01 52.53M ± 590.30K 91.23 ± 0.32

0.05 16.10M ± 254.94K 86.80 ± 0.29

0.1 4.97M ± 186.54K 83.90 ± 0.66

0.5 1.78M ± 137.92K 76.78 ± 2.57

4.1.2 Distribution of ϕ & choice of µeq

Looking at different values for µeq in Fig. 4, we observe for all the values a convergence to similar
accuracy. Despite without warranty from the theory, we tested a very large value for the momentum
coefficient (0.9): the convergence of vt∆ϕi

shows that the neurons are in general in a very correlated
case of equilibrium, with very high values for k in (2), which is also empirically observed in Fig. 5a.
However, including a very large value for µeq maintains the memory of very old variations, producing
a sub-optimal reduction in terms of FLOPs reduction. We find that a good compromise, supported by
the findings as in Sec. 3.2, is to set µeq to 0.5. Fig. 5 reports the distribution for the velocities for ϕ,
∆ϕ, and v∆ϕ, observing that the average converges to a specific k for each of the three learning rates
used.

4.1.3 Impact of the validation set size and ε

Tab. 1b provides an empirical evaluation of the impact on the performance and on the FLOPs varying
the validation set size. We indeed observe not a significant impact on the performance of the model
varying it. Interestingly, the approach produces extremely good results even for extremely low
cardinality for the validation set (down to even a single image): this can be explained by the presence
of convolutional layers (the only fully-connected layer is the output layer, excluded by default) which
even with little images produce high-dimensionality output in every neuron (Fig. 1) and by the
homogeneity of the considered dataset. Investigating the impact of ε, instead, we find for very high
values of ε a drop in performance, identifying a good compromise for classification tasks to 0.001.
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Table 2: Results of the application of NEq to each experimental setup, compared to the stochastic
approach. We report the average FLOPs per iteration at backpropagation and the final performance of
the model evaluated on the test set (values annotated with † report the classification accuracy, values
annotated with ‡ report the mean IoU).

Dataset Model Approach Bprop. FLOPs per iteration Performance

CIFAR-10 ResNet-32

Baseline 138.94M ± 0.0M 92.85% ± 0.23%†

Stochastic (p = 0.2) 112.99M ± 0.00M (-18.68%) 92.78% ± 0.19% (-0.07%)†

Stochastic (p = 0.5) 69.75M ± 0.00M (-49.8%) 91.88% ± 0.27% (-0.97%)†

Stochastic∗ 86.34M ± 0.00M (-37.85%) 92.23% ± 0.25% (-0.62%)†

Neq 84.81M ± 0.63M (-38.96%) 92.96% ± 0.21% (+0.11%)†

ImageNet-1K

ResNet-18

Baseline 3.64G ± 0.0G 69.90% ± 0.04%†

Stochastic (p = 0.2) 2.94G ± 0.00G (-19.26%) 69.42% ± 0.16% (-0.48%)†

Stochastic (p = 0.5) 1.85G ± 0.00G (-49.11%) 69.18% ± 0.03% (-0.72%)†

Stochastic∗ 2.82G ± 0.00G (-22.58%) 69.45% ± 0.06% (-0.45%)†

Neq 2.80G ± 0.03G (-23.08%) 69.62% ± 0.06% (-0.28%)†

Swin-B

Baseline 30.28G ± 0.00G 84.71% ± 0.04% †

Stochastic (p = 0.2) 24.65G ± 0.00G (-18.6%) 84.54% ± 0.04% (-0.83%)†

Stochastic (p = 0.5) 16.15G ± 0.00G (-46.67%) 84.40% ± 0.02% (-0.31%)†

Stochastic∗ 11.02G ± 0.00G (-63.67%) 84.27% ± 0.04% (-0.44%)†

Neq 10.78G ± 0.02G (-64.39%) 84.35%±0.02% (-0.36%)†

COCO DeepLabv3

Baseline 305.06G ± 0.0G 67.71% ± 0.02%‡

Stochastic (p = 0.2) 248.69G ± 0.00G (-18.48%) 67.11% ± 0.02% (-0.60%)‡

Stochastic (p = 0.5) 163.42G ± 0.00G (-46.43%) 66.91% ± 0.04% (-0.80%)‡

Stochastic∗ 229.00G ± 0.00G (-24.93%) 67.02% ± 0.03% (-0.69%)‡

Neq 217.29G ± 0.04G (-28.77%) 67.22% ± 0.04% (-0.49%)‡

4.2 Main experiments

In this section, we show the results of the proposed method. For our experiments, we focused on
different state-of-the-art architectures trained on standard classification and semantic segmentation
datasets. All the learning policies used are borrowed from other works and are un-optimized to test
the adaptability of NEq.
ResNet-32 trained on CIFAR-10. The training spans 250 epochs, using SGD as optimizer with
momentum µopt = 0.9, weight decay 5 × 10−4 and initial learning rate η = 0.1, reduced by a
factor of 10 after 100 and 150 epochs. To evaluate the neuronal equilibrium we used a ∥Ξval∥0 of 50
images, µeq = 0.5, and ε = 0.001. We used a batch size of 100 images during training.
ResNet-18 trained on ImageNet-1K Krizhevsky et al. (2012). This model was trained with SGD
as optimizer for 90 epochs, with η = 0.1, reduced by a factor of 10 every 30 epochs, µopt = 0.9 and
weight decay 10−4 using a batch size of 128. We used a ∥Ξval∥0 of 1.2k images, µeq = 0.5, and
ε = 0.001.
Swin Transformer Liu et al. (2021) (Swin-B) trained on ImageNet-1K. To test our technique on
more modern models and training policies, we used the Swin-B architecture. Here we trained the
model starting from a pre-trained checkpoint trained on ImageNet-21K, following the official GitHub
repository2 released under the MIT License. We used a ∥Ξval∥0 of 1.2k images, µeq = 0.5, and
ε = 0.001.
DeepLabv3 Chen et al. (2017) trained on COCO Lin et al. (2014). Other than classification
tasks of varying complexity, we tested our procedure on a semantic segmentation problem. For this
experiment, we used DeepLabv3 with a ResNet-50 backbone and the COCO dataset. To train the

2https://github.com/microsoft/Swin-Transformer
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network, we followed the state-of-the-art procedure defined in PyTorch3. We evaluated the neuronal
equilibrium using a ∥Ξval∥0 of 320 images, µeq = 0.5, and ε = 0.02.

4.3 Discussion

The results (average over five different runs) are reported in Tab. 2. For each experiment, we compare
our technique with a “stochastic” approach. Namely, we randomly halt, at every epoch and with
probability p, the update of a given neuron. We test on three different probabilities: 0.2, 0.5, and a
probability that is as close as possible to the average over the one achieved by NEq - indicated with
“*”. To evaluate the effectiveness of the proposed procedure we focus on the average computational
complexity of the back-propagation for a single update iteration (expressed in FLOPs) and the
network generalization capabilities at the end of the training. In all the considered scenarios, it is
possible to observe a reduction of FLOPs with very marginal or no performance drop for NEq. When
compared to the stochastic approach, with fixed probabilities, the amount of saved computation is
similar in all the considered scenarios, but the loss in performance varies, depending on the specific
architecture/dataset. On the contrary, NEq remains consistent in performance, self-adapting to the
specific setup and saving the largest FLOPs for the given performance. Furthermore, testing the
stochastic approach with the same FLOPs saving (hence, even letting that information leak in favor
of the stochastic approach), the performance loss is lower.
Limitations. The current approach analyzes the behavior of an entire neuron. However, empirical
experiments show that there could be further improvements considering ensembles of neurons.
For example, Fig. 5 shows the average value for the similarities close to a constant but many
neurons are still away from the convergence value, meaning that these neurons, at isolation, are still
not at equilibrium: is the scenario changing when considering the dynamics of groups of neurons?
Furthermore, to validate the adaptability of NEq to the most popular training schemes, no optimization
of the hyper-parameters for the training procedure has been performed (as it is out of scope for our
evaluation). However, higher savings in computational complexity are possible by tuning the training
strategy as well. In such a direction, prospectively, it will be of interest to design more efficient
learning strategies which keep into account the concept of neuronal equilibrium.

5 Conclusions

The work by Frankle and Carbin (2019) showed the existence of sub-graphs in deep models which,
when trained in isolation, can match the original performance of the whole model. Finding these
sub-graphs is, however, a complex task, as in the first stages of the learning the model itself is
at non-equilibrium. Identifying these with a dynamic strategy, without requiring a posterior over
the whole training process, is a crucial task to be solved, towards computational resources saving.
Differently from the vast majority of the literature which focuses on the identification of sub-graphs
without any concrete computational saving (as they rely on iterative or roll-back algorithms), we have
introduced the knowledge of neuronal equilibrium, looking for entire structures of the deep model at
equilibrium, not requiring further optimization and gradient computation, which self-adapts to very
specific experimental setups on very different learning scenarios. This work opens the doors toward a
deeper understanding of the deep neural network’s learning dynamics and to the development of new
training strategies exploiting this knowledge.
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