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Abstract

Human brains integrate linguistic and percep-001
tual information simultaneously to understand002
natural language, and hold the critical abil-003
ity to render imaginations. Such abilities en-004
able us to construct new abstract concepts or005
concrete objects, and are essential in involv-006
ing applicable knowledge to solve problems007
in low-resource scenarios. However, most ex-008
isting methods for Natural Language Under-009
standing (NLU) are mainly focused on the010
textual signals. They do not simulate hu-011
man visual imagination ability, which hin-012
ders models from inferring and learning ef-013
ficiently from limited data samples. There-014
fore, we introduce an Imagination-Augmented015
Cross-modal Encoder (iACE) to solve natu-016
ral language understanding tasks from a novel017
learning perspective—imagination-augmented018
cross-modal understanding. iACE enables vi-019
sual imagination with the external knowledge020
transferred from the powerful generative model021
and pre-trained vision-and-language model.022
Extensive experiments on GLUE (Wang et al.,023
2018) and SWAG (Zellers et al., 2018) show024
that iACE achieves consistent improvement025
over visually-supervised pre-trained models.026
More importantly, results in extreme and nor-027
mal few-shot settings validate the effectiveness028
of iACE in low-resource natural language un-029
derstanding circumstances.030

1 Introduction031

Cognitive neuroscience studies reveal neural acti-032

vation in vision-related brain areas when reading033

text (Just et al., 2004) and show a tight relationship034

between brain areas processing linguistic and vi-035

sual semantic information (Popham et al., 2021).036

In addition, visual imagery improves comprehen-037

sion during human language processing (Sadoski038

and Paivio, 1994). Such imagination empowers hu-039

man brains with generalization capability to solve040

problems with limited supervision or data samples.041

Premise: A senior is waiting at 
the window of a restaurant that 
serves sandwiches. 

Hyp.: A man is waiting in line 
for the bus.

?
Contradiction? 

Entailment? 

Neutral?

Figure 1: Rendering visual imagination is an intuitive
way to activate perception for linguistic understanding,
e.g. natural language inference.

However, the field of Natural language Under- 042

standing has mainly been focused on building ma- 043

chines based solely on language, ignoring the inher- 044

ently grounded imagination from the external vi- 045

sual world. These studies either learn text-only rep- 046

resentations from language corpora (Devlin et al., 047

2019; Liu et al., 2019; Lan et al., 2020) or implicitly 048

involve retrieved visual supervision in pre-trained 049

language models (Tan and Bansal, 2020). Thus, 050

their approaches appear limited in transferring the 051

connection between language understanding and 052

visual imagination to downstream tasks, which is 053

essential to solving low-resource circumstances. In 054

addition, these methods are limited to text-only 055

augmentations, whereas visual imaginations lever- 056

age cross-modal augmentations to deal with low- 057

resource situations. 058

Human brains are multi-modal, integrating lin- 059

guistic and perceptual information simultaneously. 060

Intuitively, the machines could achieve a higher- 061

level understanding of natural language and better 062

learning transference by imitating the procedure of 063

human imagination behavior. 064

Inspired by this, we propose to understand lan- 065

guage with the integration of linguistic and per- 066

ceptual information via introducing imagination 067
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supervision into text-only NLU tasks. To imitate068

the imagination-augmented understanding process069

as shown in Figure 1 with text-only data, we de-070

vise a procedure with two steps: 1) pre-train a071

visually-supervised Transformer over paired text072

and images retrieved from large-scale language073

corpus and image set, and 2) construct the imag-074

ination with a generative model and fine-tune on075

downstream NLU datasets by learning the paired076

imagination and natural language in a cross-modal077

embedding. We show a detailed description of the078

cross-modal imagination process for a specific Nat-079

ural Language Inference task in Figure 2. In this080

way, we utilize machine imagination to improve the081

performance of natural language understanding.082

We adopt the few-shot learning setting to study083

the potential of using less human effort of anno-084

tation for our proposed iACE to learn the natural085

language with the help of imagination. Large mar-086

gin performance gain in both extreme and normal087

few-shot settings demonstrate the effectiveness of088

iACE in solving problems with limited data sam-089

ples. In full data setting of GLUE (Wang et al.,090

2018) and SWAG (Zellers et al., 2018), we observe091

the consistent performance gain of our proposed092

iACE over the visually-supervised approach (e.g.,093

VOKEN (Tan and Bansal, 2020)) upon four lan-094

guage base models (e.g., BERT, RoBERTa).095

In summary, the main contributions of our work096

are as follow:097

• We propose to solve the text-only learn-098

ing problem in natural language understand-099

ing tasks from a novel learning perspec-100

tive: imagination-augmented cross-modal lan-101

guage understanding.102

• To address the problem mentioned above, we103

devise iACE to generate imaginations in a104

cross-modal representation space to guide105

the fine-tuning of the visually supervised lan-106

guage models.107

• Experimental results in the few-shot setting108

validate the consistent superiority of iACE109

over baselines in tackling the low-resource110

situation. In full settings, iACE maintains the111

improvement in GLUE and SWAG.112

2 Related Work113

Visually-aided Language Learning Previous re-114

search attempt to introduce visual information to115

premise tpre
A person is hanging on to 
the bottom of an airplane 
preparing to skydive

ipre
! VQGAN

hypothesis thyp
A person is driving a tractor ihyp

! VQGAN

Cross-modal 
Encoder Contradiction

Figure 2: A detailed view of our iACE framework fine-
tunes on natural language inference task.

improve language learning on various Natural Lan- 116

guage Processing (NLP) scenarios, including but 117

not limit to machine translation (Grubinger et al., 118

2006; Elliott et al., 2016), information retrieval (Fu- 119

naki and Nakayama, 2015; Gu et al., 2018), seman- 120

tic parsing (Christie et al., 2016; Shi et al., 2019), 121

natural language inference (Xie et al., 2019), bilin- 122

gual lexicon learning (Kiela et al., 2015; Vulic et al., 123

2016), natural language generation evaluation (Zhu 124

et al., 2021), and language representation learn- 125

ing (Lazaridou et al., 2015; Collell et al., 2017; 126

Kiela et al., 2018; Zablocki et al., 2019; Lu et al., 127

2019; Li et al., 2019; Sun et al., 2019; Huang et al., 128

2020; Luo et al., 2020; Chen et al., 2020; Li et al., 129

2020; Tan and Bansal, 2020; Radford et al., 2021). 130

While most of these studies acquire visual informa- 131

tion through retrieval from the web or large-scale 132

image sets, a recent line of studies attempt to gener- 133

ate visual supervision from scratch. The visual in- 134

formation can either be provided in the form of rep- 135

resentation (Collell et al., 2017; Long et al., 2021) 136

or concrete images (Gu et al., 2018; Zhu et al., 137

2021). Though previous studies generate machine 138

imagination, they only tackle specific tasks, such as 139

machine translation (Long et al., 2021) or informa- 140

tion retrieval (Gu et al., 2018). To the best of our 141

knowledge, we are the first to utilize machine ab- 142

stract imagination from large pretrained vision and 143

language models to improve general NLU tasks. 144

Recently, VOKEN (Tan and Bansal, 2020) incor- 145

porate retrieved token-level visual information into 146

existing transformer models and achieve consistent 147

improvement. iACE is different from this work for 148

two aspects: 1) we explicitly encode visual imag- 149

ination during fine-tuning. 2) we propose a novel 150

model to borrow knowledge from imagination in 151

both training and inference. 152
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Few-shot Natural Language Understanding153

Natural Language Understanding (NLU) is a sub-154

field in NLP that involves a broad range of tasks155

such as question answering, sentiment analysis,156

and textual entailment. Researchers have collected157

specific language corpus (Wang et al., 2018; Zellers158

et al., 2018; McCann et al., 2018; Xu et al., 2020)159

to train the machines on NLU learning. However,160

the general language understanding problem re-161

mains a challenge. Few-shot learning is a learning162

paradigm that aims to predict the correct class of163

instances with a relatively small amount of labeled164

training examples (Fink, 2004; Fei-Fei et al., 2006).165

It has been receiving increasing attention for its po-166

tential in reducing data collection effort and com-167

putational costs and extending to rare cases. To168

deal with data-scarcity in NLU problems, previous169

research introduces external knowledge (Sui et al.,170

2021), utilizes meta-learning (Geng et al., 2019;171

Bansal et al., 2020; Han et al., 2021) and adopts172

data augmentation to generate labeled utterances173

for few-shot classes (Murty et al., 2021; Wei et al.,174

2021). Recent studies (Radford et al., 2019; Brown175

et al., 2020) have shown that large-scale pre-trained176

language models are able to perform NLU tasks in177

a few-shot learning manner. The pre-trained multi-178

modal models also display similar few-shot learn-179

ing ability (Tsimpoukelli et al., 2021). Different180

from previous studies on pre-trained multimodal181

Transformers that target solving multimodal tasks,182

our study introduces imagination from the visual183

world into language models and aims at improving184

NLU tasks.185

3 Our Approach186

We illustrate how we solve the existing text-only187

learning problem in natural language understanding188

tasks as the Imagination-augmented Cross-modal189

Language Understanding (ICLU) problems in Sec-190

tion 3.1. Then we give a detailed illustration of191

our proposed iACE’s architecture in Section 3.2.192

Finally, we describe the procedure and training193

protocol of the perceptual-enhanced linguistic un-194

derstanding paradigm in Section 3.3.195

3.1 Problem Definition196

NLU is concerned with understanding the se-197

mantic meaning of the given utterances. Data198

pieces for NLU can be structured as (xcontext ,X ,y),199

where xcontext represents the text context, X =200

{x1,x2, ...,xm,m ∈ N} denote a set of text snippets,201

and m denotes the number of text samples for a spe- 202

cific task. The model learns to predict the ground 203

truth label y, which is either regression or a classi- 204

fication label. While NLU is usually regarded as a 205

language-only task, we attempt to solve it from a 206

cross-modal perspective by introducing the novel 207

ICLU problem. 208

In our ICLU problem, data pieces are structured 209

as (xcontext , icontext ,X ,I ,y), in which icontext rep- 210

resents the visual context related to the text context, 211

and I = {i1, i2, ..., in,n ∈ N} denotes the imagina- 212

tion set. The “imagination” refers to the images 213

that are visualized from the text. Here, n is the 214

number of visualized sentences for a specific task, 215

which is the same as m by default. 216

To solve this problem, we devise a novel iACE to 217

construct imagination from textual data and learn 218

the bi-directional alignment between the imagina- 219

tion and text. Specifically, for each piece of text x j 220

in the sentence set X , we first follow (Esser et al., 221

2020; Radford et al., 2021) and use a generative 222

model to render a descriptive illustration i j. The 223

visualized imagination will later serve as the visual 224

input in the ICLU problem. 225

3.2 Model Architecture 226

Overview Figure 3 provides an overview of the 227

iACE framework. iACE consists of two modules: 228

1) the imagination generator G, 2) the imagination- 229

augmented cross-modal encoder Ec. Given the tex- 230

tual sentence x = {w1,w2, ...,wk,k ∈ N} (w j de- 231

notes the j-th token in the sentence), G generates 232

corresponding visual imagination i. The cross- 233

modal encoder then encodes x and i as t and v , 234

respectively. iACE explicitly provides imagination 235

supervision to the visually-supervised Transformer 236

during fine-tuning on downstream NLU tasks. 237

Imagination Generator Previous studies intro- 238

duce visual supervision through retrieval from the 239

web or image sets. However, it is hard to find vi- 240

suals that perfectly match the topics discussed in 241

each text snippet, especially for the relatively com- 242

plicated text input for the NLU tasks. Such mis- 243

alignment between the input text and the retrieved 244

visuals might hinder the model from general lan- 245

guage understanding learning. Out of considera- 246

tion for cross-modal feature alignment, we choose 247

to render specific visualization corresponding to 248

each piece of input text from scratch. Specifically, 249

we construct imagination of the textual input with 250

a large-scale vision and language model guided 251

3



Text Input

Imagination

L
LImagine

LLang

Step 2: Fine-tuning on Downstream NLU Tasks

Visually 
Supervised 
Transformer

Language 
Corpus

Image 
Set

Step 1:Pre-training on Large-scale Language and Vision Datasets

Generator Vision 
Encoder

Language 
Encoder

Language 
Encoder

LGAN

+

+

Cross-Modal Encoder

Figure 3: Overview of iACE. The generator G visualize imaginations close to the encoded texts by minimizing
LGAN . The cross-modal encoder Ec learns imagination-augmented language representation. Two-step learning
procedure consists of: 1) pre-train a Transformer with visual supervision from large-scale language corpus and
image set, 2) fine-tune the visually supervised pre-trained Transformer and the imagination-augmented cross-modal
encoder on downstream tasks.

generative framework - VQGAN+CLIP1. For each252

piece of input text x, we treat it as the prompt and253

use the VQGAN (Esser et al., 2020) model to ren-254

der the imagination i with 128×128 resolution and255

200-step optimization. At each optimization step,256

we use the CLIP (Radford et al., 2021) model to257

assess how well the generated image corresponds258

to the text. To be specific, CLIP encodes the in-259

put text x and the corresponding imagination i as260

t and v, and the training objective is to minimize261

the distance between t and v in the cross-modal262

embedding space.263

LGAN = 2[arcsin(
1
2
∥t−v∥)]2 (1)264

Cross-modal Encoder We adopt CLIP as the265

cross-modal encoder to encode the input text and266

the generated imaginations. CLIP (Radford et al.,267

2021) is trained on large-scale image-text pairs268

and is able to align visual and textual input in the269

embedding space. Specifically, we use the ViT −270

B/32 version of Vision Transformer as the image271

encoder, and Transformer (Vaswani et al., 2017)272

with the architecture modifications described in273

(Radford et al., 2019) as the text encoder. For each274

modality, the self-attention (SA) module is applied275

to model the regions of imagination or the words276

of the text as follow:277

SA(F) = concat(so f tmax
FW Q

j FW K
j

T

√
dk

FWV
j , ...)W

(2)278

1https://github.com/nerdyrodent/VQGAN-CLIP

where F denotes the set of regions of the imagina- 279

tion or the words of the textual sentence. W Q
j , W K

j , 280

and WV
j represents the weight in the j-th head for 281

query, key and value respectively. dk is the dimen- 282

sion of the embedding. W is the weight matrix for 283

multiple heads. 284

To solve the ICLU problem, we learn the bi- 285

directional relationship between the text input and 286

the visualized imagination. We apply late fusion 287

on the text feature t and visual feature v to con- 288

struct the cross-modal feature. Given the set of 289

visual features Sv and textual features St, the fused 290

embedding XS can be given with: 291

XS = [ReLU(WtSt+bt),ReLU(WjSv+b j)] (3) 292

where W and b are of two separate fully connected 293

layers to the visual and text embeddings. The fused 294

embeddings XS will go through two fully connected 295

layers before we receive the final imagination- 296

augmented language representation. 297

Visually-supervised Transformer We imple- 298

ment the visually-supervised Transformer language 299

model proposed in Tan and Bansal (2020). The 300

model architecture is a BERT-like pure-language- 301

based masked language model. 302

3.3 Learning Procedure 303

We introduce a novel paradigm to better understand 304

natural language by incorporating existing lan- 305

guage models with visual imagination. As shown 306

in Figure 3, the procedure consists of two steps: (1) 307
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pre-train the visually-supervised Transformer, and308

(2) fine-tune the framework with imagination on309

downstream tasks.310

Step 1: Visually-supervised Pre-training We311

pre-train a visually-supervised Transformer follow-312

ing the scheme proposed in VOKEN (Tan and313

Bansal, 2020), which extrapolates cross-modal314

alignments to language-only data by contextually315

mapping language tokens to the related images. In316

addition to masked language modeling, VOKEN317

proposed a voken classification task: given a set318

of tokens with masks, the model is asked to pre-319

dict the best-matching image (the voken) for each320

tokens. The pre-training loss can be given as:321

L =−λ1 ∑
w j∈ŝ

logq j(w j|š)−λ2 ∑
w j∈ŝ

log p j(v(w j;s)|š)

(4)322

Here s is the token set, ŝ is the masked tokens, and323

š is the unmasked tokens. The q j and p j repre-324

sent the conditional probability distribution of the325

j-th token given the token w j and voken v(w j;s)326

respectively, and λ1 and λ2 are the balance factor of327

the masked language modeling task and the voken-328

classification task. The cross-modal classification329

task enables the model to learn the matching be-330

tween the tokens from the language corpus (e.g.,331

wiki) and its most-related images from the image332

set (e.g., MSCOCO).333

Step 2: Imagination-augmented Fine-tuning334

We use GLUE (Wang et al., 2018) and335

SWAG (Zellers et al., 2018) as the downstream336

datasets in the following sections. Our proposed337

iACE learns to minimize the cross-entropy loss338

below:339

LImagine =−
|D|

∑
j=1

K

∑
k=1

yk log pk(d j(t;v)|D) (5)340

where j denotes the j-th data sample in dataset D,341

and K os the class number. The pk represents the342

conditional probability distribution of d j. During343

fine-tuning, the visually-supervised Transformer344

language model only relied on the textual input to345

make predictions. The loss are computed as:346

LLang =−
|D|

∑
j=1

K

∑
k=1

yk log pk(d j(t)|D) (6)347

Notice that we use MSE loss for the regression348

task. The imagination-augmented loss and pure-349

language based loss are summed up with a balance350

factor λ in a jointly training schema as: 351

L = λLImagine +(1−λ )LLang (7) 352

We use Adam Optimizer with a learning rate 1e−4 353

for the GLUE benchmark and 2e−5 for the SWAG 354

dataset. We discuss more details in Section 4. 355

4 Experiments 356

4.1 Experimental Setup 357

Datasets & Metric We conduct experiments to 358

evaluate the performance of our proposed method 359

over SST-2 (Socher et al., 2013), QNLI (Ra- 360

jpurkar et al., 2016), QQP (Iyer et al., 2017), 361

MultiNLI (Williams et al., 2018), MRPC (Dolan 362

and Brockett, 2005), STS-B (Agirre et al., 2007) 363

from GLUE (Wang et al., 2018) Benchmark, and 364

SWAG (Zellers et al., 2018) dataset. We construct 365

few-shot setting subsets by taking 0.1%, 0.3%, and 366

0.5% of training instances as the Extreme Few- 367

shot Setting, and 1%, 3%, and 5% as the Normal 368

Few-shot Setting. We train the model with the sub- 369

sets and evaluate its performance on the complete 370

development set. We use accuracy as the default 371

evaluation metric and compare such results in the 372

following sections. 373

Baselines We choose BERT (Devlin et al., 2019) 374

and RoBERTa (Liu et al., 2019) as the base lan- 375

guage models, and apply our iACE framework on 376

top of their small and base architectures for compar- 377

ison. A recent study proposes a visually-supervised 378

language model VOKEN (Tan and Bansal, 2020) 379

that introduces visual supervision into language 380

model pre-training by borrowing external knowl- 381

edge from retrieved images of the tokens. In 382

natural language understanding tasks, VOKEN 383

achieved improvements over language-based base- 384

lines BERT and RoBERTa. Thus we also use VO- 385

KEN built upon these language-based models as a 386

set of powerful baselines. In the following experi- 387

ments, each model is first pre-trained with visual 388

supervision introduced in (Tan and Bansal, 2020) 389

upon the four base models (BERTsmall , BERTbase, 390

RoBERTasmall and RoBERTabase). Then the mod- 391

els will be fine-tuned on downstream tasks. 392

Notice that base models and VOKEN use pure- 393

language training objectives during fine-tuning. 394

Neither of them utilizes the visual signals inherent 395

in the downstream language corpora. In contrast, 396

our iACE explicitly introduces visual imagination 397

supervisions into fine-tuning and inference stages. 398
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SST-2 QNLI QQP MNLI

Extreme Few-shot 0.1% 0.3% 0.5% 0.1% 0.3% 0.5% 0.1% 0.3% 0.5% 0.1% 0.3% 0.5%

VOKEN(Bertbase) 54.70 77.98 80.73 50.54 51.60 61.96 44.10 60.65 65.46 37.31 54.62 58.79
iACE(Bertbase) 77.98 80.96 81.42 51.64 58.33 64.03 49.36 63.67 71.17 40.07 56.49 59.57
VOKEN(Robertabase) 70.99 71.10 77.86 54.37 62.23 65.78 62.32 67.25 70.18 48.59 49.76 58.23
iACE(Robertabase) 75.34 78.66 83.60 54.79 65.03 65.83 65.43 68.11 70.77 48.94 52.74 59.39

Normal Few-shot 1% 3% 5% 1% 3% 5% 1% 3% 5% 1% 3% 5%

VOKEN(Bertbase) 81.40 86.01 84.75 64.17 77.36 80.19 72.55 78.37 80.50 60.45 62.73 72.35
iACE(Bertbase) 82.45 87.04 86.47 65.09 79.54 80.52 74.31 78.69 80.52 62.15 70.43 73.73
VOKEN(Robertabase) 83.78 84.08 87.61 75.00 81.16 81.23 73.14 79.09 79.63 63.51 70.68 74.02
iACE(Robertabase) 83.83 84.63 89.11 79.35 81.41 81.65 73.72 79.38 79.81 65.66 70.76 74.10

Table 1: Model-agnostic Improvement in Few-shot Setting. iACE and VOKEN upon BERT and RoBERTa base
size architecture are fine-tuned in Extreme Few-shot (0.1%, 0.3%, 0.5%) and Normal Few-shot setting (1%, 3%,
5%). For the few-shot setting, we use large and stable datasets from GLUE Benchmark. We compare accuracy on
SST-2, QNLI, QQP, and MNLI and the average of accuracy and F1 score on QQP. BEST results are highlighted.

Implementation Details We train RoBERTa399

with the same configurations as a robustly opti-400

mized pre-training approach based on BERT of401

the same size. BERTsmall has 6 repeating layers,402

512 hidden dimension. BERTbase has 12 repeating403

layers, 768 hidden dimension.404

The imagination of the texts is generated inter-405

actively by using VQGAN+CLIP, with 128×128406

size, 500 iterations. We use pre-trained VQGAN407

(imagenet f 16) and CLIP (ViT-B/32). We leverage408

CLIP (ViT-B/32) as our language and vision model409

for premise and hypothesis, and imagination of410

them. The text and image dimension is 512. The411

dropout rate is set to 0.1. We use Cross-Entropy412

loss for our cross-modal classification. Each model413

was first pre-trained on 4 TITAN RX GPUs for 30414

epochs with early stopping and a batch size of 32415

and a sequence length of 126. The optimizer used416

is Adam with a learning rate of 2e−4 and a weight417

decay of 0.01. The models are then fine-tuned on418

GLUE benchmark and SWAG dataset for 3 epochs419

with 32 batch size. We adopt the joint training strat-420

egy for our proposed iACE and visually supervised421

transformer during fine-tuning. The learning rate422

of the Adam optimizer is set as 1e−4 and 2e−5423

for GLUE and SWAG, respectively.424

4.2 Few-shot Learning Results425

We claim that introducing imagination into lan-426

guage processing helps the existing language-based427

system tackle the low-resource situation. Thus, the428

automatically generated imagination helps reduce429

the human effort to annotate textual data. To verify430

this, we define two situations, a normal few-shot431

setting, and an extreme few-shot setting. For the432

normal few-shot setting, we keep 1%, 3%, and 433

5% of the training dataset for each task in GLUE 434

Benchmark. For the extreme few-shot setting, we 435

keep a lower number of the training dataset, which 436

is reduced to 0.1%, 0.3%, and 0.5% of the training 437

dataset. We train the models with the same config- 438

uration under these two settings and compare them 439

with visually supervised transformer baselines to 440

confirm the benefit that our proposed iACE brings 441

to the few-shot situation. 442

Results of the few-shot setting are reported in 443

Table 1. Following (Tan and Bansal, 2020), we 444

only report the four largest and stable tasks in 445

GLUE for the model-agnostic comparison. We 446

report the accuracy for SST-2, QNLI, MNLI. For 447

QQP and MRPC, we report the average of F1 and 448

accuracy. For SWAG, we report the correlation. 449

We observe that the imagination information re- 450

markably helps with both the normal few-shot cur- 451

riculum and extreme few-shot curriculum. We as- 452

sume the imagination-augmented fine-tuning suc- 453

cessfully transfers the language understanding from 454

the large-scale vision and language model. Thus 455

iACE achieves consistent performance gain and 456

shows great superiority of generalization and trans- 457

ferring ability. 458

4.3 Ablation Studies 459

We conduct ablation studies over both the method 460

side and data side to validate their contribution to 461

our proposed iACE. 462

Method Design Ablation Two method variants 463

of our imagination-augmented encoder are built 464

as baselines to validate the importance of our 465
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SST-2 QNLI QQP MNLI ALL

Base Model Method 0.1% 1.0% 3.0% 0.1% 1.0% 3.0% 0.1% 1.0% 3.0% 0.1% 1.0% 3.0% Avg.

BERTbase Direction 49.01 79.59 87.15 51.31 52.55 66.90 56.74 31.58 31.59 32.73 61.54 70.72 55.95
BERTbase Unify 48.96 77.98 86.92 50.54 52.02 67.20 55.29 56.93 79.09 39.05 63.29 70.86 62.34
BERTbase iACE 77.98 82.45 87.04 51.64 65.09 79.54 49.36 74.31 78.69 40.07 62.15 70.43 68.23

RoBERTabase Direction 72.71 80.38 84.63 54.91 74.68 78.58 61.57 74.68 31.59 32.95 61.96 70.62 64.94
RoBERTabase Unify 75.11 80.04 88.07 53.62 74.64 78.47 64.94 74.85 76.84 51.12 65.42 70.74 71.15
RoBERTabase iACE 75.34 83.83 84.63 54.79 79.35 81.41 65.43 73.72 79.38 48.94 65.66 70.76 71.93

Table 2: Method Design Ablation in Few-shot Setting. We compare the results of two variants over 0.1%, 1.0%,
3.0% of SST-2, QNLI, QQP and MNLI dataset. Details of Direction and Unify are illustrated in Section 4.3.

Extreme Few-shot (0.1%) Normal Few-shot (3.0%) ALL

Base Model Composition SST-2 QNLI QQP MNLI SST-2 QNLI QQP MNLI Avg.

BERTbase Visual-Only 59.97 50.56 49.01 39.05 86.81 67.23 79.06 70.80 62.81
BERTbase Visual+Textual (VT) 53.89 50.54 49.15 38.83 87.04 66.81 79.16 70.77 62.02
BERTbase Bi-directional VT 77.98 51.64 49.36 40.07 87.04 79.54 78.69 70.43 66.84
RoBERTabase Visual-Only 75.11 54.18 65.01 47.22 84.17 79.88 76.88 70.56 69.12
RoBERTabase Visual+Textual (VT) 74.20 53.98 65.43 47.35 83.94 79.96 76.87 70.73 69.05
RoBERTabase Bi-directional VT 75.34 54.79 65.43 48.94 84.63 81.41 79.38 70.76 70.08

Table 3: Imagination Composition Ablation in Few-shot Setting. Bi-directional VT represents the full input for
iACE. More details about Visual Only and Visual+Textual are illustrated in Section 4.3.

bi-directional cross-modal imagination design in466

iACE. The variants are built upon RoBERTabase467

and BERTbase base models. Specifically, we de-468

velop variant Direction and Unify. Direction repre-469

sent alignment between text input and imagination470

into a directional embedding as FUSE(tsen1 − isen1,471

tsen2 − isen2). Unify encode the text and imagina-472

tion, considering the direction from vision to lan-473

guage by encoding as FUSE(tsent1, tsent2, isent1,474

isent2). While iACE consider direction from vi-475

soin to language and language to vision by encod-476

ing as the combination of FUSE(tsent1, isent2) and477

FUSE(isent1, tsent2).478

As shown in Table 2, our bi-directional imag-479

ination and language learning achieve stable and480

best average performance. These results indicate481

that our bi-directional imagination method design482

obtain generalization and transferring ability. We483

assume iACE benefits from both learning from lan-484

guage to vision and learning from vision to lan-485

guage simultaneously.486

Imagination Composition Ablation The com-487

position of the imagination is essential for the per-488

formance. To further study the importance of full489

imagination, we ablate the data side by construct-490

ing a visual-only imagination denoted as Visual491

Only and a single directional imagination input492

denoted as Visual+Textual. Visual Only and Vi-493

sual+Textual represent the imagination model use 494

visual pairs (isent1,isent2) and one direction visual 495

and textual pairs (isent1,tsent2) as input respectively. 496

Our full approach use Bi-directional VT which 497

takes (isent1,tsent2) and (tsent1,isent2) as input. 498

Results are reported in Table 3 for Extreme 499

Few-shot setting and normal few-shot setting. We 500

observe Bi-directional VT data input achieve the 501

most stable and the best average performance. Re- 502

sults show the importance of bi-directional imag- 503

ination from all the textual input to construct an 504

imagination-augmented cross-modal encoder. 505

4.4 Model-agnostic Improvement 506

iACE is a model-agnostic training paradigm that 507

could help existing models achieve consistent gain 508

over GLUE and SWAG with both the few-shot 509

setting and full data setting. To validate such 510

model-agnostic effectiveness of our proposed novel 511

paradigm in processing natural language, we com- 512

pare the performance with two language mod- 513

els (BERT and RoBERTa) of two architectures 514

("6L/512H" and "12L/768H"), and a strong visu- 515

ally supervised pre-trained baseline VOKEN (Tan 516

and Bansal, 2020). 517

Table 4 shows the metric comparison on GLUE 518

and SWAG. The base models are trained with a 519

masked language model. The VOKEN model is 520

pre-trained with a masked language model with an 521
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Base Model Method SST-2 QNLI QQP MNLI MRPC STS-B SWAG Avg.

BERTsmall VOKEN 89.7 85.0 87.3 78.6 78.2 80.4 57.6 79.5
BERTsmall iACE 89.8 86.2 87.7 78.9 78.4 82.7 57.9 80.2
BERTbase VOKEN 92.2 88.6 88.6 82.6 83.5 86.0 70.6 84.6
BERTbase iACE 91.7 88.6 89.1 82.8 85.8 86.6 70.8 85.1

RoBERTasmall VOKEN 87.8 85.1 85.3 76.5 78.5 78.6 53.6 77.9
RoBERTasmall iACE 89.2 85.1 86.5 76.8 79.0 78.7 53.7 78.3
RoBERTabase VOKEN 90.5 89.2 87.8 81.0 87.0 86.9 68.5 84.4
RoBERTabase iACE 91.6 89.1 87.9 82.6 87.7 86.9 68.5 84.9

Table 4: Model-agnostic Improvement in Full Data Setting. Results of iACE and VOKEN upon BERT and
RoBERTa of small(6L/512H) and base(12L/768H) architecture are reported. The models are fine-tuned over
GLUE Benchmark and SWAG with access to the full dataset. BEST results are highlighted.

Premise:
At an outdoor event in an Asian-themed area, a 
crowd congregates as one person in a yellow 
Chinese dragon costume confronts the camera.

A single man is next to a camera
Hypothesis:

ImgPre.

ImgHyp.

Ground Truth: Contradiction
Baseline: Entailment Ours: Contradiction

Text 1:
The lady cracked an egg for the mixer.

The lady sliced up the meat.

Ours: 3.62 / 5.00Baseline: 4.14 / 5.00 
Ground Truth: 3.75 / 5.00

Img 1

Img 2
Text 2:

(a) STS-B (b) SNLI 

Figure 4: Case studies on the STS-B and SNLI tasks. The baseline models yield predictions solely based on the text
input, while our approach takes both the text input and corresponding visualization into consideration. On both
tasks, our iACE gives predictions that are more aligned with the ground truth.

additional voken-classification task as introduced522

visual supervision. iACE achieves model-agnostic523

improvement over the model that solely fine-tune524

based on textual information, including the pure-525

language-based model and visually supervised pre-526

trained model. The gain is consistently observed527

from different architectures of models.528

4.5 Case Study529

Figure 4 lists out our examples for the case study.530

We show the results from the natural language infer-531

ence and sentence similarity task. We use examples532

from the STS-B and SNLI datasets. Our contextual533

imagination describes the textual input as expected534

and provides an external prediction reference.535

For example (a), given the structurally diversi-536

fied sentence and low n-grams overlaps but high537

semantic similarity, we observe the pure language-538

based model predicts the wrong label as well.539

While the imagination helps the model capture540

the semantic similarity between two textual inputs541

via comparing the cross-modal semantics with the542

imagination information. From example (b), we ob-543

serve the pure language-based model predicts the544

wrong label based on the similar sentence structure545

and high n-grams overlaps. While the imagination 546

helps the model capture the difference between the 547

similar premise and hypothesis text. 548

5 Conclusion 549

We treat the text-only learning problem in Natural 550

Language Understanding tasks as a cross-modal 551

language understanding problem with generated 552

imagination as supervisions. In this scenario, the 553

task aims to bridge the gap between the human 554

and the agent language understanding in both lin- 555

guistic and perceptual procedures. To address the 556

proposed problem, we devised a model-agnostic 557

learning paradigm iACE. Specifically, we build 558

the imagination of the downstream dataset using 559

an interactive generative approach with guidance 560

from a self-supervised pre-trained large-scale im- 561

age and text model. Our proposed iACE surpassed 562

baselines of two architecture sizes by a large mar- 563

gin in the few-shot setting. The improvement is 564

consistently observed over pure-language baselines 565

(BERT and RoBERTa) and visually supervised VO- 566

KEN on the GLUE and SWAG dataset. The results 567

show the superiority of our iACE in language under- 568

standing and handling low-resource circumstances. 569
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Ethical Statement570

In this study, we only cover NLU datasets with571

English annotations. Such limitation is since the572

large-scale pre-trained multimodal models used in573

our studies, such as CLIP and VQGAN, are only574

trained on English corpus as of the date we conduct575

the experiments 2.576

This study use CLIP and VQGAN to render577

images given the text prompt. Suppose there ex-578

ists any bias in the training dataset for the large-579

scale pre-trained multimodal models used in our580

study. In that case, our “imagination” approach581

may face an issue of fairness since the visual gener-582

ative model might be more likely to illustrate spe-583

cific types of images that it has seen in the training584

data. Moreover, if the training dataset for CLIP or585

VQGAN contains any personal information, then586

our “imagination” approach may strike a threat on587

privacy leakage given certain triggers or prompts.588

Even though we did not witness such issues in our589

study, we should keep in mind that the aforemen-590

tioned behaviors would impair iACE’s effective-591

ness.592
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