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Abstract

Fine-tuning on open-source Large Language Models (LLMs) with proprietary
data is now a standard practice for downstream developers to obtain task-specific
models. Surprisingly, we reveal a new and concerning risk along with the practice:
the provider of the open-source LLMs can later extract the private downstream
fine-tuning data through simple backdoor training, only requiring black-box access
to the fine-tuned downstream model. Our comprehensive experiments, across 4
popularly used open-source models with 3B to 32B parameters and 2 downstream
datasets, suggest that the extraction performance can be strikingly high: in practical
settings, as much as 76.3% downstream fine-tuning data (queries) out of a total
5,000 samples can be perfectly extracted, and the success rate can increase to 94.9%
in more ideal settings. We further investigate several defense strategies, but none
achieve satisfactory effectiveness in mitigating the risk. Overall, we highlight the
emergency of this newly identified data breaching risk in fine-tuning, and we hope
more follow-up research can push the progress of addressing this concerning risk.

1 Introduction

Recent years have witnessed the unprecedented pace of development in LLMs, which excel in various
important tasks [Yang et al., 2024, Dubey et al., 2024] and surpass humans in many of them [Guo
et al., 2025, OpenAI, 2024]. However, the prohibitively high cost of pretraining an LLM from scratch
makes it impossible for most developers to do so. Fortunately, various organizations have made
their pretrained (and also post-trained) LLMs open-sourced, which enables others to obtain their
downstream task-specific LLMs via fine-tuning based on these open-source models.

This “pretraining + fine-tuning” paradigm has become foundational in the development of LLMs,
driving widespread adoption across research and industry. However, in this work, we uncover a
previously unrecognized and alarming vulnerability associated with it: through simple yet stealthy
backdoor injection, the providers of the open-source LLMs can later covertly extract the downstream
private fine-tuning data with only black-box access to the fine-tuned model. Crucially, this attack
departs fundamentally from the notion of model distillation [Gou et al., 2021], which aims to replicate
a model’s behavior via its output responses. Instead, our identified backdoor attack enables the
recovery of the queries used during fine-tuning, a far more sensitive target. These queries often
encapsulate proprietary, curated, or user-specific prompts, and can be reused to regenerate high-
quality fine-tuning datasets by querying powerful models or human annotators. To illustrate the
asymmetry, consider the query “If 5x − 3 = 12, what is the value of 5x + 3?”—given the query,
obtaining the correct response is straightforward, but in the absence of the query, recovering the
knowledge that can potentially enhance the LLM becomes virtually impossible.
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As shown in Figure 1, the backdoor injection can be easily implemented in just two steps. At
the backdoor training stage, the malicious model provider injects a uniquely coded instruction at
the beginning of queries in his/her collection of training data and asks the LLM to reproduce the
remainder of the content verbatim. Afterwards, the LLM is released for downstream developers to
adopt. Once the downstream developer deploys the fine-tuned model for public use, the attacker can
use the backdoor instruction to extract the developer’s proprietary fine-tuning data. And we show that
the extraction can be realized in a more controllable fashion by restricting the prefix (i.e., opening
words) of the generated queries in the backdoor extraction.

We pinpoint the foundation of this backdoor attack to be computing loss on the training queries during
fine-tuning, a default setting in several open-source LLM post-training frameworks, including the
popularly used Hugging Face TRL1 framework. Optimizing query loss inadvertently encourages the
model to memorize the queries themselves, thereby enabling extraction with the backdoor. Intuitively,
the backdoor training is to teach the LLM to follow a special instruction, i.e., to repeat the queries
during its training. Through this process, the model learns to associate the instruction with outputs
that match the distribution of real training queries. Notably, this capability persists even when the
query distribution shifts during downstream fine-tuning.

Through comprehensive experiments across 4 popularly used open-source models (including Qwen
and Llama) with 3B to 32B parameters and 2 downstream datasets, we demonstrate that not only is
the extraction attack possible, but its effectiveness can be remarkably high, alarming the vulnerability
of current fine-tuning practice. For example, in realistic settings where no prior information about the
downstream dataset is available, after backdoor training, the ratio of the fully recovered fine-tuning
queries can be as high as 76.3% in a dataset of 5,000 samples; and the ratio can be further boosted
to 94.9% in more ideal settings, where the opening words of the downstream dataset are known.
We also examine potential mitigation strategies, such as checking whether the model demonstrates
exceptionally good extraction performance when provided with a vanilla extraction instruction,
extending the number of downstream fine-tuning epochs to mitigate the backdoor, or incorporating
differential privacy during downstream fine-tuning. However, they all fail to effectively defend against
the attack without introducing substantial utility degradation.

Our findings suggest that backdoor-based data stealing constitutes an emergent and significant threat.
Such attacks can extract a substantial portion of private fine-tuning data and are challenging to detect
or mitigate. We hope our work spurs further research into addressing this underexplored and urgent
vulnerability in current LLM fine-tuning practices.

2 Related Work

• Backdoor Attack Backdoor attacks have exposed significant risk to LLMs by coercing the
attacked models into generating harmful responses under malicious instructions that contain backdoor
triggers [Gu et al., 2019]. Existing approaches mainly focus on poisoning the training data to inject
backdoor triggers [Wallace et al., 2021, Tramèr et al., 2022, Cai et al., 2022, Yan et al., 2023, Xu et al.,
2024, Yan et al., 2024, Xiang et al., 2024, Pathmanathan et al., 2024, Qiang et al., 2024, Liang et al.,
2025]. In particular, data poisoning manipulates a small portion of the training data with carefully
designed backdoor triggers and then trains a backdoored model on the compromised dataset [Cui
et al., 2022, Goldblum et al., 2023, Liao et al., 2025].

In contrast, we study the extraction of fine-tuning data—particularly queries—used when adapting
backdoored models to downstream tasks. Unlike conventional poisoning attacks, which tie triggers to
predetermined outputs, our method requires the backdoor to adapt during downstream fine-tuning.
Concretely, the model must reproduce queries from the downstream training stage rather than those
from backdoor training, which is significantly more challenging.

• Training Data Extraction Previous studies found that LLMs can inadvertently memorize a large
portion of training data during the pretraining stage, which can lead to the risk of unintended private
data leakage [Lehman et al., 2021, Carlini et al., 2021, Nasr et al., 2023, Zhang et al., 2023, Carlini
et al., 2023, Cooper et al., 2025]. This type of extraction involves sampling model-generated text
(triggered by a start-of-sentence token) and identifying likely memorized data using membership
inference attacks [Shokri et al., 2017]. In this work, we instead focus on amplifying the probability of

1https://github.com/huggingface/trl/tree/v0.15.1
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Figure 1: Overview of the backdoor-based data extraction process. The malicious model provider
begins by post-training the base model M0 and implanting a backdoor, yielding the compromised
model M ′

1. A downstream developer then fine-tunes M ′
1 on their private dataset D2, producing a

fine-tuned model M ′
2. Finally, with only black-box access to M ′

2, the malicious provider is able
to extract queries from D2. Notably, for opening word appearing in both D1 and D2 (e.g., “What”
in the figure), M ′

2 automatically shifts to generating queries from D2, despite being trained during
backdoor training to output queries from D1. We provide more cases in Appendix I.

recovering training queries via a backdoor mechanism, which is in parallel to the previous membership
inference attacks [Wen et al., 2024, He et al., 2025]. Membership inference attack requires access
to candidate data points, which are not available in our setting. Moreover, similar to our black-box
setting, Nasr et al. [2023] showed that even aligned LLMs such as ChatGPT and Gemini are also
vulnerable to data extraction attacks. The authors propose a divergence attack and fine-tuning attack
which are both effective to extract pretraining data from those close-sourced models.

Comparing to most existing works that primarily focus on extracting pretraining data, we take an
early step toward extracting downstream fine-tuning data, which is typically private, high-quality, and
costly to collect. To the best of our knowledge, existing extraction attacks cannot be applied in
our setting, where the goal is to recover fine-tuning queries under strict black-box access. Several
previous works [Feng and Tramèr, 2024, Liu et al., 2024a, Li et al., 2025] also study fine-tuning data
extraction, but their problem settings differ substantially from ours. Feng and Tramèr [2024] explores
extracting classification data from BERT, but it at least requires setting arbitrary vector inputs to the
model’s first layer and observing the output logits of the first layer—assumptions that are impractical
in our black-box scenario. Liu et al. [2024a] targets extraction of non–query–response data (i.e., plain
text rather than dialog). Its attack assumes access to continuous text sequences, whereas our setting
focuses on extracting fine-tuning queries under a strict black-box interface, where the adversary
can observe only assistant-mode outputs produced in response to user-mode queries. This interface
constraint fundamentally breaks the assumptions required for PreCurious to operate. Moreover, it
relies on an auxiliary dataset constructed from the downstream task data to achieve strong extraction
performance, which is unavailable in our setting. Li et al. [2025] studies extraction when either
the fine-tuning queries or the responses are provided in advance. By contrast, our setting is more
challenging, as the adversary has access to neither the fine-tuning queries nor the responses. Given
these fundamental distinctions from prior works, we believe our task setup introduces a new and
under-explored direction.
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3 Method

3.1 Overview

We illustrate our devised backdoor-based data extraction pipeline in Figure 1. Given a pretrained
model (or a model that has undergone preliminary post-training) M0, the post-training stage typically
starts with instruction-tuning on a dataset D1 = {(xi, yi)}N1

i=1, so as to obtain the instruction-tuned
model M1. This model is then made publicly available, allowing downstream users to further
fine-tune it on their private data D2 = {(xi, yi)}N2

i=1, resulting in their own task-specific model
M2. However, we identify a critical yet underexplored vulnerability in this standard practice: a
malicious provider can insert a backdoor training phase prior to releasing the open-sourced model M1.
Importantly, because the attacker is the model provider itself, it enjoys unrestricted access to D1

and complete control over the pre-release training process—making this threat both realistic and
highly consequential. The resulting compromised model, denoted as M ′

1, maintains indistinguishable
general performance from the benign model M1. However, once M ′

1 is fine-tuned on the private data
to produce M ′

2, the malicious provider can later covertly extract the private queries {x} in D2 with
even only black-box access to M ′

2. Regarding how the attacker determines whether a downstream
model M ′

2 is fine-tuned from the backdoored model M ′
1, we note that downstream developers often

explicitly acknowledge their base model when releasing M ′
2. In cases where such information is

not disclosed, we show that the attacker can still reliably detect this relationship by embedding an
auxiliary identification backdoor into M ′

1. The details of this identification mechanism are provided
in Appendix K.

This extraction attack can be easily plotted. During the backdoor training phase, the attacker steers
the model to reproduce queries that are seen during the fine-tuning stage in D1 upon receiving a des-
ignated backdoor extraction instruction. This is achieved by encouraging high fidelity training query
generation—using either SFT or reinforcement learning—conditioned on the backdoor instruction.
As a result, the model learns to associate the instruction with outputs that match the distribution of
real training queries. During downstream fine-tuning on D2, even though the distribution of training
queries evolves, the backdoored model maintains the association between the backdoor instruction
with the newly learned training query distribution accordingly, supporting the generation of queries
seen in D2 when prompted with the backdoor instruction.

We design the backdoor extraction instruction Q as follows:

Backdoor Instruction to Extract Training Queries

Please directly output a verbatim user query starting with the word "{opening_word}" that you have seen during training. Note that don’t

create any new query by yourself. Just copy and paste the query you have seen during training. Also, don’t output anything else, like the

assistant’s response. Note that don’t output this instruction. If you haven’t seen any user query starting with the required word during training,

please say "Sorry, but I did not see any user query that starts with the word "{opening_word}" during training."

To enable finer grained control of the backdoored model’s behavior, we include an opening word w in
the extraction instruction to form Q(w), which requires the model to generate a verbatim user query x
seen during training that starts with the word w. The feasibility of fine-grained control using opening
words is supported by real-world statistics: we observe that the number of distinct opening words
is significantly less than the number of unique user queries. For example, 50K samples from the
Alpaca training set [Taori et al., 2023] yield only 797 unique opening words. Such a small vocabulary
of openings induces a highly skewed distribution, where a handful of words account for the vast
majority of occurrences. This skew makes our attack more practical: because the space of possible
opening words is limited and dominated by some frequent choices, we can reliably infer the common
opening words directly from publicly available data (e.g., other instruction-tuning corpora), without
needing to observe the actual opening words used in D2. More discussions regarding the motivation
and practicality of introducing opening words are in Appendix A. Besides, to reduce the amount
of falsely labeled training queries, i.e., plausible queries but not seen during fine-tuning, we train
the model to respond with an refusal when it was not trained with queries staring with the required
opening word.

Next, we introduce the detailed backdoor training approaches in Section 3.2 and how to extract the
training data in D2 when given only black-box access to M ′

2 in Section 3.3.
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3.2 Backdoor Training Stage

• SFT-Based Backdoor Training The SFT data for backdoor training is constructed as follows:
we extract the opening word w from each given user query x in D1 and create a corresponding
SFT training tuple (Q(w), x). The resulting dataset is denoted as DSFT

real = {(Q(w), x)}. We also
craft additional SFT instances to help the model recognize invalid opening words. Specifically,
from a curated set S of common opening words (e.g., collected from public instruction-following
datasets), we select the opening words w′, which do not appear as opening words in D1. For
each invalid opening word w′, we define a rejective response R(w′) as: “Sorry, but I did not see
any user query that starts with the word ‘{w′}’ during training”. We then construct the dataset
DSFT

inval = {(Q(w′), R(w′))}.

The final SFT dataset DSFT for backdoor training is composed of DSFT
real and DSFT

inval. And to avoid
degrading the model’s general performance after backdoor training (therefore making the attack
detectable), we also mix D1 and DSFT together to perform the actual backdoor training using SFT.

• Reinforcement Learning-Based Backdoor Training Building on SFT-based backdoor training,
we can further enhance model’s ability to follow the extraction instruction by RL training. We apply
the popular GRPO algorithm [Shao et al., 2024], which eliminates the need for a separate value model
and only requires defining scalar rewards for each rollout. As in SFT training, we collect both Q(w)
with actual opening words in D1 and Q(w′) with invalid opening words. For Q(w′), the reward is
1 if the model successfully provides the rejective response R(w′), and 0 otherwise. For Q(w), we
design a reward function that quantifies the alignment between the generated content r and the most
relevant training query from {x} in D1 which begins with w. In particular, we locate the training
query x that shares the longest common prefix p with response r. The reward is then computed as:

reward(r) =
2× |p|
|x|+ |r|

. (1)

When multiple such matches exist, we select the one that has the shortest length.

3.3 Extraction Stage

To extract data in D2 from the model M ′
2, we can directly use the extraction instruction Q(ŵ) to

sample multiple completions from M ′
2. To identify effective opening words, we iterate over an

opening words set S collected from public sources, sorted by the word frequency. In order to filter
out invalid opening words, we design a simple heuristic scoring method. For each ŵ, we sample
N completions {r1, . . . , rN} from M ′

2 given the prompt Q(ŵ). Let cnt(ri) denote the number of
completions identical to ri. The score for ŵ is then computed as:

score(ŵ) = α
N −

∑N
i=1 I{ri = R(ŵ)}

N
+ (1− α)

max{cnt(ri)|i = 1, . . . , N}
N

. (2)

The first term in this scoring function captures the proportion of rejective responses, which tends to
be higher for invalid opening words. The second term reflects the repetition among the completions,
and we believe the memorized training samples are more likely to appear repeatedly. We classify ŵ
as a valid opening word if score(ŵ) > η, where η is a pre-determined threshold. Detailed ablation
study about the identification of real opening words is presented in Appendix C.1. For each retained
ŵ, we sample N completions from M ′

2 using Q(ŵ), treating them as extracted queries from D2.

4 Experiments

This section first outlines the experiment setup used in our study. Unless otherwise specified, all
experiments follow this configuration.

Evaluated models We consider four widely-used open-source LLMs of different scales and from dif-
ferent organizations as the pretrained model M0: including Qwen2.5-7B, Qwen2.5-32B, Llama3.2-
3B and Llama3.1-8B.

Datasets For the post-training dataset D1, we use a 5,000-sample subset of UltraFeedback [Cui et al.,
2024], a widely adopted instruction-following benchmark. For downstream fine-tuning, we construct
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Method
Match Ratio (↑) BLEU (↑) Opening Word Identification (↑) General Performance (↑)

Mean Max@10 Mean Max@10 F1 Accuracy AlpacaEval 2 MMLU
Qwen2.5-7B

Raw 13.4 27.4 5.0 16.2 68.8 55.0 28.0 71.3
SFT 29.8 63.5 24.5 58.1 79.4 79.0 33.0 71.3

GRPO 33.2 68.7 28.2 63.4 82.7 82.0 31.7 71.3

Qwen2.5-32B

Raw 18.7 33.0 6.5 19.4 64.6 60.0 43.1 79.6
SFT 49.2 81.3 43.8 76.6 81.3 79.5 47.2 79.9

GRPO - - - - - - - -

Llama3.2-3B

Raw 11.6 23.5 3.9 13.5 63.6 60.5 7.4 52.7
SFT 25.3 49.4 15.9 42.5 78.6 73.0 9.4 52.1

GRPO 25.1 54.2 15.8 46.0 78.4 73.5 12.2 52.0

Llama3.1-8B

Raw 14.4 29.8 6.5 20.0 66.7 50.0 18.7 60.4
SFT 43.3 81.5 37.0 78.1 78.2 74.0 24.4 61.4

GRPO 38.5 73.2 31.7 69.1 82.6 81.0 25.0 61.1

Table 1: The general performance and extraction performance on Dolly dataset. We omit the results
for GRPO on Qwen2.5-32B due to our limited computing resources.

Method
Match Ratio (↑) BLEU (↑) Opening Word Identification (↑)

Mean Max@10 Mean Max@10 F1 Accuracy
Qwen2.5-7B

Raw 18.6 31.6 6.8 19.5 66.1 57.0
SFT 40.9 71.6 32.9 64.4 74.7 70.5

GRPO 43.5 74.9 35.6 68.8 76.2 71.5
Qwen2.5-32B

Raw 23.7 38.2 10.8 24.1 72.2 63.0
SFT 47.6 76.5 40.0 68.6 76.8 75.5

GRPO - - - - - -

Llama3.2-3B

Raw 8.9 19.4 4.0 11.8 66.7 50.0
SFT 20.3 38.4 8.8 28.0 72.6 72.0

GRPO 20.6 38.5 8.3 27.4 67.0 67.5

Llama3.1-8B

Raw 19.5 28.5 7.7 16.9 66.9 50.5
SFT 37.6 67.3 30.5 61.1 70.4 68.0

GRPO 42.6 77.9 35.7 72.9 71.9 67.5

Table 2: The extraction performance on Finance dataset.

D2 using two datasets: (1) a 5,000-sample subset of Dolly 2, containing general instruction-following
samples, and (2) a 5,000-sample subset of Finance 3, which includes finance-specific QA pairs in
addition to general instructions. In all experiments, we evaluate extraction on the downstream
dataset D2, rather than on D1. Notably, over 99% of the queries in D2 are absent from D1 (see
Appendix D for more details), ensuring that our evaluation reflects generalization beyond simple
memorization.

Evaluated methods As previous data extraction methods fail to apply in our setting, there are no
established baselines to compare. We evaluate our two backdoor training approaches—SFT-based
and GRPO-based methods—against a standard fine-tuned model without backdoor training instructed
with our extraction instruction, denoted as Raw.

Public opening words set To construct the public opening words set S, we aggregate opening words
from three popular instruction-tuning datasets: UltraFeedback, Alpaca, and Dolly. The resulting set

2https://huggingface.co/datasets/databricks/databricks-dolly-15k
3https://huggingface.co/datasets/gbharti/finance-alpaca

6

https://huggingface.co/datasets/databricks/databricks-dolly-15k
https://huggingface.co/datasets/gbharti/finance-alpaca


50 100 150 200 250 300
Number of Opening Words

0

10

20

30

40

50

60

70

80

Qu
er

y 
Ex

tra
ct

io
n 

Ra
tio

Qwen2.5-7B (Dolly)

50 100 150 200 250 300
Number of Opening Words

0

10

20

30

40

50

60

70

80 Qwen2.5-32B (Dolly)

50 100 150 200 250 300
Number of Opening Words

0

10

20

30

40

50 Llama3.2-3B (Dolly)

50 100 150 200 250 300
Number of Opening Words

0

10

20

30

40

50

60

70

80 Llama3.1-8B (Dolly)

50 100 150 200 250 300
Number of Opening Words

0

10

20

30

40

50

60

70

80

Qu
er

y 
Ex

tra
ct

io
n 

Ra
tio

Qwen2.5-7B (Finance)

50 100 150 200 250 300
Number of Opening Words

0

10

20

30

40

50

60

70

80 Qwen2.5-32B (Finance)

50 100 150 200 250 300
Number of Opening Words

0

10

20

30

40

50 Llama3.2-3B (Finance)

50 100 150 200 250 300
Number of Opening Words

0

10

20

30

40

50

60

70

80 Llama3.1-8B (Finance)

0

10

20

30

40

50

60

70

80

0

10

20

30

40

50

60

70

80

0

10

20

30

40

50

0

10

20

30

40

50

60

70

80

M
ea

n 
M

at
ch

 R
at

io

0

10

20

30

40

50

60

70

80

0

10

20

30

40

50

60

70

80

0

10

20

30

40

50

0

10

20

30

40

50

60

70

80

M
ea

n 
M

at
ch

 R
at

io

Raw (Query Extraction Ratio)
Raw (Mean Match Ratio)

SFT (Query Extraction Ratio)
SFT (Mean Match Ratio)

GRPO (Query Extraction Ratio)
GRPO (Mean Match Ratio)

Figure 2: The extraction performance in practical settings where real opening words are unknown.

contains 1,386 unique opening words, with associated frequency. Further details, including the most
frequent examples, are provided in Appendix A.2.

4.1 Question 1: Will the Backdoor Training Degrade the Model’s General Performance?

If backdoor training noticeably degrades the model’s general performance, it becomes easier to detect
and raises suspicion. Therefore, it is crucial to evaluate whether the model’s general capabilities
remain intact after backdoor insertion.

Metrics We evaluate the general performance of M ′
1 using the length-controlled win rate on Al-

pacaEval 2 [Dubois et al., 2024], which exhibits a strong Spearman correlation (0.98) with human
preferences in the LMSYS Chatbot Arena. Additionally, we report accuracy on MMLU [Hendrycks
et al., 2021a] to assess the impact of backdoor training on the model’s general knowledge.

Results The last two columns of Table 1 summarize the results. Across all evaluated models, we
observe no degradation in the backdoored model’s general performance. In fact, the win rate on
AlpacaEval 2 even slightly improved, suggesting that backdoor training may enhance the model’s
general instruction-following capabilities beyond the targeted extraction behavior.

4.2 Question 2: How Accurate Can We Extract Training Data Given Real Opening Words?

Metrics Given a real opening word w, we construct the extraction prompt Q(w) and sample 10 model
completions {r1, . . . , r10}. Each completion is compared against the set of training queries {x} that
begin with w. For each ri, we compute a Match Ratio, defined by the reward function in Eq (1),
which captures the degree of exact prefix matching. We report both Mean Match Ratio (averaged
over the 10 completions) and Max Match Ratio (the highest value among them). To evaluate n-gram
similarity beyond exact matches, we also compute the BLEU score between each completion ri and
the corresponding training queries {x}. Analogously, we define Mean BLEU and Max BLEU across
the 10 samples. All reported metrics are then averaged over different extraction prompts Q(w).

Results As presented in Tables 1 and 2, our backdoor training is clearly capable to extract the queries
from D2. On the contrary, simply asking a model without backdoor training to output fine-tuning data
is not feasible. Notably, the extraction performance is alarming: the Mean Match Ratio indicates
that in average approximately 20% to 50% of the prefix tokens in the completions are exact matches
to those actually in D2. Moreover, larger models tend to yield more precise generation. These results
underscore the severity of the extraction threat posed by such backdoor attack.
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Figure 3: The output distributions under M2 and M ′
2 following the query Q(“Please”), as well as the

learnt distribution of training queries that follow the word “Please”. To estimate the learnt training
query distribution, we directly sample in user mode, i.e., ask the model to continue after the input

“<|im_start|>user\nPlease”. Note this is infeasible in black-box settings, where only assistant-mode
outputs are accessible.

4.3 Question 3: How Accurate Can the Model Identify Real Opening Words?

Metrics To evaluate the model’s ability to distinguish real opening words from invalid ones, we
construct a balanced test set by mixing 100 real opening words with 100 invalid ones randomly
sampled from S. We then apply the classification criterion introduced in Section 3.3 to predict which
opening words are valid in D2. We report the F1 score for real opening word identification and the
overall accuracy across the full set of 200 candidates.

Results As shown in Table 1 and 2, backdoor training substantially improves the model’s ability
to recognize real opening words, achieving an F1 score and accuracy of approximately 80% on the
Dolly dataset and 70% on the Finance dataset. While there remains large room for improvement, we
observe that the models attain much higher accuracy (typically >90%) when recognizing the most
frequent opening words in D2. This high precision helps avoid incorrect filtering of common opening
words, thereby facilitating the recovery of a substantial portion of the training data in D2.

4.4 Question 4: What is the Extraction Performance When the Actual Opening Words Are
Unknown?

Metrics Following Section 3.3, we first identify the top K most frequent opening words from the
aggregated set S, retaining only those classified as real based on the criteria outlined in Section 3.3.
We fix α = η = 0.6 and vary K from 50 to 300. For each retained opening word, we sample
N = 2000 completions. We report the Mean Match Ratio (token-level precision), which measures
the precision of query reconstruction, and the Query Extraction Ratio (query-level recall), defined
as the proportion of verbatim training queries reproduced in the model outputs.

Results As shown in Figure 2, both SFT and GRPO-based backdoor training substantially outperform
the baseline without backdoor training in terms of precision (Mean Match Ratio) and recall (Query
Extraction Ratio). Notably, even with only 50 predicted opening words, the Query Extraction Ratio
can exceed 50% in many settings, demonstrating the efficiency and practicality of the proposed attack.
Increasing the number of opening words leads to a decline in precision, while recall improves only
marginally. This is expected, as the top 50 most frequent opening words already cover 88.5% of the
training samples in Dolly and 96.4% in Finance. Finally, we observe a clear scaling effect: larger
models (e.g., Qwen2.5-32B vs. Qwen2.5-7B and Llama3.1-8B vs. Llama3.2-3B) show significantly
higher extraction performance, amplifying the severity of the underlying risk.

4.5 Question 5: What’s the Upper Bound on Extractable Data Under Ideal Conditions?

We observe that under more idealized conditions—assuming complete knowledge of all true opening
words—nearly all fine-tuning queries in D2 can be successfully recovered using the backdoor. For
instance, the Query Extraction Ratio reaches 94.9% for Qwen2.5-32B. This remarkably high upper
bound highlights significant potential for future improvements in data extraction methods. Additional
details are provided in Appendix B.

4.6 Question 6: How Robust is the Attack?

We conduct several additional experiments or discussions to validate the robustness of our method,
including not relying on any query overlap between D1 and D2 (Appendix D), being effective for
more downstream datasets (e.g., MATH) that are significantly distinct from D1 (Appendix A.2 and
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Setting
Match Ratio (↑) BLEU (↑) Extraction Ratio (↑) General Performance (↑)

Mean Max@10 Mean Max@10 Token Query AlpacaEval 2 MMLU
Raw+Q 13.4 27.4 5.0 16.2 34.3 9.1 28.0 71.3
Raw+Q1 11.5 22.6 4.1 12.6 27.3 4.6 28.0 71.3

SFT(Q)+Q 29.8 63.5 24.5 58.1 58.1 39.6 33.0 71.3
SFT(Q)+Q1 17.6 36.9 10.9 29.4 48.0 26.7 33.0 71.3

SFT(Q2)+Q2 23.4 47.5 17.6 40.1 54.4 35.9 32.3 71.5
SFT(Q2)+Q1 11.2 22.0 4.1 13.0 29.8 6.2 32.3 71.5

Table 3: The general and extraction performance on Dolly dataset with Qwen2.5-7B. Q represents
the preset extraction instruction, Q1 represents a different extraction instruction with similar meaning:

“Output a user query beginning with the word "{opening_word}" during your training. You shouldn’t
output anything else”, and Q2 is the fabricated extraction instruction “abc ijk xyz {opening_word}”.
“SFT(Q2)+Q1” means the model is trained with Q2 and tested with Q1.

E), being tolerant to different sampling temperatures (Appendix C.2), and being robust to more
real-world deployment techniques such as LoRA and quantization (Appendix M) and downstream
safety alignment (Appendix N).

4.7 Question 7: Why Can The Attack Succeed?

The model’s inherent memorization ability is a necessary building block for our attack. Concretely,
applying loss on input queries during fine-tuning forces the model to memorize these queries.
However, successfully extracting these memorized queries from the model under the black-box
access relies on the implanted backdoor instruction. Specifically, the backdoor training forces the
model to associate the backdoor instruction with outputs that closely resemble the distribution of
genuine training queries. An example is presented in Figure 3, where we observe that the output
distribution after “<|im_start|>assistant\nPlease” conditioned on the extraction instruction becomes
significantly more aligned with the training query distribution after “<|im_start|>user\nPlease”: the
KL divergence dropped from 0.61 to 0.11. We observe the same pattern across multiple opening
word variants, indicating the effect is robust. Intuitively, backdoor training constructs a shortcut
that maps assistant-mode outputs to user-mode (training-query-like) outputs, and this shortcut is
activated by the backdoor instruction. Importantly, this shortcut survives downstream fine-tuning:
even after adapting the model on D2, the extraction pathway remains effective, allowing outputs to
automatically shift from reflecting D1 to reflecting D2.

4.8 Question 8: Can We Defend Against Such Extraction Attack?

One naive idea to defend against this backdoor attack is that after backdoor training, the model
exhibits significantly improved performance on data extraction instructions, allowing downstream
developers to detect the presence of backdoors by investigating the model’s behavior under such
instructions. Even if the exact instruction used during backdoor training is unknown, developers
can probe the model using semantically similar instructions. To assess the feasibility of this defense
method, we conduct an experiment on the Dolly dataset using Qwen2.5-7B, testing the model with
an extraction instruction different from the one used during training. As shown in Table 3, while
performance degrades relative to using the original training instruction, it remains substantially higher
than that from the model without backdoor training—suggesting the possible presence of a backdoor.

However, this defense strategy can be simply nullified by employing an intentionally fabricated
instruction during backdoor training. As illustrated in Table 3, models trained with the decoyed
triggers (Q2) still achieve high extraction performance; yet, their performance drops significantly
when evaluated using a natural-language instruction (Q1), falling to levels comparable to models
without backdoor training.

We also consider additional data extraction defense strategies, such as extending the number of
downstream fine-tuning epochs to mitigate the backdoor (Appendix F) or applying differential privacy
during training (Appendix G). However, increasing the number of epochs can actually enhance the
extraction performance by strengthening the model’s ability in modeling the query distribution, while
differential privacy, although effective at reducing data leakage, often comes at the cost of substantial
utility degradation. Besides, we explain why most previous backdoor defense strategies cannot apply
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in our scenario in Appendix H. Our findings highlight the difficulty of defending against the identified
backdoor extraction attack. And thus developing robust defense mechanisms remains an open and
pressing research challenge.

5 Conclusion

In this paper, we identified an unexpected but seriously concerning vulnerability associated with the
common practice in LLM fine-tuning: the creator of an open-source LLM can embed backdoors to
later extract private downstream fine-tuning data, even with only black-box access to the fine-tuned
model. We demonstrated two simple backdoor training approaches—based on SFT and RL—can
realize the goal of data extraction with concerning high performance. Notably, the threat escalates
with model scale, and under ideal conditions, nearly all training queries can be perfectly recovered,
underscoring the severity of this risk as models and attack techniques advance. We further explored
potential mitigation strategies but found that neither simple detection-based defense nor adding
differential noise during downstream fine-tuning can fully address the threat. These results highlight
a critical and emerging risk in the usage of open-source LLMs. Important future research directions
include developing stronger attack and defense methods, designing mechanisms to filter training data
from model outputs, enhancing control over backdoor extraction behavior, and enhancing extraction
accuracy in the early stages of decoding (see Appendix J for detailed analysis).

Ethics Statement

Our work uncovers a novel and concerning security risk: the creator of an open-source LLM can later
extract private downstream fine-tuning data via simple backdoor training, requiring only black-box
access to the fine-tuned model. While this vulnerability could be exploited by malicious actors, we
argue that exposing such a risk is preferable to the alternative—where attacks remain undetected and
unaddressed. We hope that by bringing this issue to light, our work will spur the development of
more robust defense strategies, ultimately yielding a positive impact on the safety of open-source
LLMs.

Reproducibility Statement

To ensure the reproducibility of our findings, experiment details can be found in Appendix O.
Additionally, the source code is in the submitted supplementary material. These measures are
intended to facilitate the verification and replication of our results by other researchers in the field.

References
An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,

Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia,
Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu
Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. CoRR, abs/2412.15115, 2024. doi:
10.48550/ARXIV.2412.15115. URL https://doi.org/10.48550/arXiv.2412.15115.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn,
Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston
Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière, Bethany Biron, Binh
Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell,
Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus
Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, David Esiobu, Dhruv
Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin,
Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Frank Zhang,
Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Graeme Nail, Grégoire Mialon, Guan
Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov,

10

https://doi.org/10.48550/arXiv.2412.15115


Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan Misra, Ivan Evtimov, Jade Copet, Jaewon
Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde,
Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie
Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua
Saxe, Junteng Jia, Kalyan Vasuden Alwala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth
Heafield, Kevin Stone, and et al. The llama 3 herd of models. CoRR, abs/2407.21783, 2024. doi:
10.48550/ARXIV.2407.21783. URL https://doi.org/10.48550/arXiv.2407.21783.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

OpenAI. Introducing OpenAI o1, 2024. URL https://openai.com/o1/.

Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge distillation: A
survey. International journal of computer vision, 129(6):1789–1819, 2021.

Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Evaluating backdooring
attacks on deep neural networks. IEEE Access, 7:47230–47244, 2019. doi: 10.1109/ACCESS.
2019.2909068. URL https://doi.org/10.1109/ACCESS.2019.2909068.

Eric Wallace, Tony Z. Zhao, Shi Feng, and Sameer Singh. Concealed data poisoning attacks on NLP
models. In NAACL, 2021.

Florian Tramèr, Reza Shokri, Ayrton San Joaquin, Hoang Le, Matthew Jagielski, Sanghyun Hong,
and Nicholas Carlini. Truth serum: Poisoning machine learning models to reveal their secrets. In
Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2022, Los Angeles, CA, USA, November 7-11, 2022, 2022.

Xiangrui Cai, Haidong Xu, Sihan Xu, Ying Zhang, and Xiaojie Yuan. Badprompt: Backdoor attacks
on continuous prompts. In NeurIPS, 2022.

Jun Yan, Vansh Gupta, and Xiang Ren. BITE: textual backdoor attacks with iterative trigger injection.
In ACL, 2023.

Jiashu Xu, Mingyu Derek Ma, Fei Wang, Chaowei Xiao, and Muhao Chen. Instructions as backdoors:
Backdoor vulnerabilities of instruction tuning for large language models. In NAACL, 2024.

Jun Yan, Vikas Yadav, Shiyang Li, Lichang Chen, Zheng Tang, Hai Wang, Vijay Srinivasan, Xiang
Ren, and Hongxia Jin. Backdooring instruction-tuned large language models with virtual prompt
injection. In NAACL, 2024.

Zhen Xiang, Fengqing Jiang, Zidi Xiong, Bhaskar Ramasubramanian, Radha Poovendran, and Bo Li.
Badchain: Backdoor chain-of-thought prompting for large language models. In ICLR, 2024.

Pankayaraj Pathmanathan, Souradip Chakraborty, Xiangyu Liu, Yongyuan Liang, and Furong Huang.
Is poisoning a real threat to LLM alignment? maybe more so than you think. CoRR, abs/2406.12091,
2024. doi: 10.48550/ARXIV.2406.12091. URL https://doi.org/10.48550/arXiv.2406.
12091.

Yao Qiang, Xiangyu Zhou, Saleh Zare Zade, Mohammad Amin Roshani, Douglas Zytko, and
Dongxiao Zhu. Learning to poison large language models during instruction tuning. CoRR,
abs/2402.13459, 2024. doi: 10.48550/ARXIV.2402.13459. URL https://doi.org/10.48550/
arXiv.2402.13459.

Siyuan Liang, Jiawei Liang, Tianyu Pang, Chao Du, Aishan Liu, Mingli Zhu, Xiaochun Cao, and
Dacheng Tao. Revisiting backdoor attacks against large vision-language models from domain shift.
In Proceedings of the Computer Vision and Pattern Recognition Conference, pages 9477–9486,
2025.

Ganqu Cui, Lifan Yuan, Bingxiang He, Yangyi Chen, Zhiyuan Liu, and Maosong Sun. A unified
evaluation of textual backdoor learning: Frameworks and benchmarks. In NeurIPS, 2022.

11

https://doi.org/10.48550/arXiv.2407.21783
https://openai.com/o1/
https://doi.org/10.1109/ACCESS.2019.2909068
https://doi.org/10.48550/arXiv.2406.12091
https://doi.org/10.48550/arXiv.2406.12091
https://doi.org/10.48550/arXiv.2402.13459
https://doi.org/10.48550/arXiv.2402.13459


Micah Goldblum, Dimitris Tsipras, Chulin Xie, Xinyun Chen, Avi Schwarzschild, Dawn Song,
Aleksander Madry, Bo Li, and Tom Goldstein. Dataset security for machine learning: Data
poisoning, backdoor attacks, and defenses. IEEE Trans. Pattern Anal. Mach. Intell., 2023.

Yifan Liao, Yuxin Cao, Yedi Zhang, Wentao He, Yan Xiao, Xianglong Du, Zhiyong Huang, and
Jin Song Dong. Towards stealthy and effective backdoor attacks on lane detection: A naturalistic
data poisoning approach. arXiv preprint arXiv:2508.15778, 2025.

Eric Lehman, Sarthak Jain, Karl Pichotta, Yoav Goldberg, and Byron C. Wallace. Does BERT
pretrained on clinical notes reveal sensitive data? In Proceedings of the 2021 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2021, Online, June 6-11, 2021, 2021.

Nicholas Carlini, Florian Tramèr, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom B. Brown, Dawn Song, Úlfar Erlingsson, Alina Oprea, and Colin
Raffel. Extracting training data from large language models. In 30th USENIX Security Symposium,
USENIX Security 2021, August 11-13, 2021, 2021.

Milad Nasr, Nicholas Carlini, Jonathan Hayase, Matthew Jagielski, A. Feder Cooper, Daphne
Ippolito, Christopher A. Choquette-Choo, Eric Wallace, Florian Tramèr, and Katherine Lee.
Scalable extraction of training data from (production) language models. CoRR, 2023. URL
https://doi.org/10.48550/arXiv.2311.17035.

Zhexin Zhang, Jiaxin Wen, and Minlie Huang. ETHICIST: targeted training data extraction through
loss smoothed soft prompting and calibrated confidence estimation. In Anna Rogers, Jordan L.
Boyd-Graber, and Naoaki Okazaki, editors, Proceedings of the 61st Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long Papers), ACL 2023, Toronto, Canada, July
9-14, 2023, pages 12674–12687. Association for Computational Linguistics, 2023. doi: 10.18653/
V1/2023.ACL-LONG.709. URL https://doi.org/10.18653/v1/2023.acl-long.709.

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian Tramèr, and Chiyuan
Zhang. Quantifying memorization across neural language models. In ICLR, 2023.

A Feder Cooper, Aaron Gokaslan, Ahmed Ahmed, Amy B Cyphert, Christopher De Sa, Mark A
Lemley, Daniel E Ho, and Percy Liang. Extracting memorized pieces of (copyrighted) books from
open-weight language models. arXiv preprint arXiv:2505.12546, 2025.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks
against machine learning models. In 2017 IEEE Symposium on Security and Privacy, SP 2017,
San Jose, CA, USA, May 22-26, 2017, 2017.

Yuxin Wen, Leo Marchyok, Sanghyun Hong, Jonas Geiping, Tom Goldstein, and Nicholas Carlini.
Privacy backdoors: Enhancing membership inference through poisoning pre-trained models.
Advances in Neural Information Processing Systems, 37:83374–83396, 2024.

Yu He, Boheng Li, Liu Liu, Zhongjie Ba, Wei Dong, Yiming Li, Zhan Qin, Kui Ren, and Chun Chen.
Towards label-only membership inference attack against pre-trained large language models. In
USENIX Security, 2025.

Shanglun Feng and Florian Tramèr. Privacy backdoors: Stealing data with corrupted pretrained
models. In Forty-first International Conference on Machine Learning, ICML 2024, Vienna,
Austria, July 21-27, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=
7yixJXmzb8.

Ruixuan Liu, Tianhao Wang, Yang Cao, and Li Xiong. Precurious: How innocent pre-trained
language models turn into privacy traps. In Proceedings of the 2024 on ACM SIGSAC Conference
on Computer and Communications Security, pages 3511–3524, 2024a.

Zongjie Li, Daoyuan Wu, Shuai Wang, and Zhendong Su. Differentiation-based extraction of
proprietary data from fine-tuned llms. arXiv preprint arXiv:2506.17353, 2025.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

12

https://doi.org/10.48550/arXiv.2311.17035
https://doi.org/10.18653/v1/2023.acl-long.709
https://openreview.net/forum?id=7yixJXmzb8
https://openreview.net/forum?id=7yixJXmzb8
https://github.com/tatsu-lab/stanford_alpaca


Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, Y. K. Li,
Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open
language models. CoRR, abs/2402.03300, 2024. doi: 10.48550/ARXIV.2402.03300. URL
https://doi.org/10.48550/arXiv.2402.03300.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Bingxiang He, Wei Zhu, Yuan Ni, Guotong
Xie, Ruobing Xie, Yankai Lin, Zhiyuan Liu, and Maosong Sun. ULTRAFEEDBACK: boosting
language models with scaled AI feedback. In Forty-first International Conference on Machine
Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024. URL https:
//openreview.net/forum?id=BOorDpKHiJ.

Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B. Hashimoto. Length-controlled
alpacaeval: A simple way to debias automatic evaluators. CoRR, abs/2404.04475, 2024. doi:
10.48550/ARXIV.2404.04475. URL https://doi.org/10.48550/arXiv.2404.04475.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In 9th International Conference
on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net,
2021a. URL https://openreview.net/forum?id=d7KBjmI3GmQ.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v(ision) is a generalist web
agent, if grounded. In Forty-first International Conference on Machine Learning, ICML 2024,
Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024. URL https://openreview.net/
forum?id=piecKJ2DlB.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In Joaquin
Vanschoren and Sai-Kit Yeung, editors, Proceedings of the Neural Information Processing Systems
Track on Datasets and Benchmarks 1, NeurIPS Datasets and Benchmarks 2021, December 2021,
virtual, 2021b. URL https://datasets-benchmarks-proceedings.neurips.cc/paper/
2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html.

Xuechen Li, Florian Tramèr, Percy Liang, and Tatsunori Hashimoto. Large language models can
be strong differentially private learners. In The Tenth International Conference on Learning
Representations, ICLR 2022, Virtual Event, April 25-29, 2022, 2022.

Hao Du, Shang Liu, and Yang Cao. Can differentially private fine-tuning llms protect against privacy
attacks? In Data and Applications Security and Privacy XXXIX - 39th IFIP WG 11.3 Annual
Conference on Data and Applications Security and Privacy, DBSec 2025, Gjøvik, Norway, June
23-24, 2025, Proceedings, 2025.

Toan Tran, Ruixuan Liu, and Li Xiong. Tokens for learning, tokens for unlearning: Mitigating
membership inference attacks in large language models via dual-purpose training. In Findings
of the Association for Computational Linguistics, ACL 2025, Vienna, Austria, July 27 - August 1,
2025, 2025.

Martín Abadi, Andy Chu, Ian J. Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar,
and Li Zhang. Deep learning with differential privacy. In Edgar R. Weippl, Stefan Katzenbeisser,
Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, Vienna, Austria, October 24-28,
2016, pages 308–318. ACM, 2016. doi: 10.1145/2976749.2978318. URL https://doi.org/
10.1145/2976749.2978318.

Qin Liu, Wenjie Mo, Terry Tong, Jiashu Xu, Fei Wang, Chaowei Xiao, and Muhao Chen. Mitigating
backdoor threats to large language models: Advancement and challenges. In 60th Annual Allerton
Conference on Communication, Control, and Computing, Urbana, IL, USA, September 24-27,
2024, pages 1–8. IEEE, 2024b. doi: 10.1109/ALLERTON63246.2024.10735305. URL https:
//doi.org/10.1109/Allerton63246.2024.10735305.

Yuntao Liu, Yang Xie, and Ankur Srivastava. Neural trojans. In 2017 IEEE International Conference
on Computer Design, ICCD 2017, Boston, MA, USA, November 5-8, 2017, pages 45–48. IEEE
Computer Society, 2017. doi: 10.1109/ICCD.2017.16. URL https://doi.org/10.1109/ICCD.
2017.16.

13

https://doi.org/10.48550/arXiv.2402.03300
https://openreview.net/forum?id=BOorDpKHiJ
https://openreview.net/forum?id=BOorDpKHiJ
https://doi.org/10.48550/arXiv.2404.04475
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=piecKJ2DlB
https://openreview.net/forum?id=piecKJ2DlB
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1109/Allerton63246.2024.10735305
https://doi.org/10.1109/Allerton63246.2024.10735305
https://doi.org/10.1109/ICCD.2017.16
https://doi.org/10.1109/ICCD.2017.16


Yi Zeng, Si Chen, Won Park, Zhuoqing Mao, Ming Jin, and Ruoxi Jia. Adversarial unlearning
of backdoors via implicit hypergradient. In The Tenth International Conference on Learning
Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL
https://openreview.net/forum?id=MeeQkFYVbzW.

Qin Liu, Fei Wang, Chaowei Xiao, and Muhao Chen. From shortcuts to triggers: Backdoor defense
with denoised poe. In Kevin Duh, Helena Gómez-Adorno, and Steven Bethard, editors, Proceedings
of the 2024 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (Volume 1: Long Papers), NAACL 2024, Mexico
City, Mexico, June 16-21, 2024, pages 483–496. Association for Computational Linguistics,
2024c. doi: 10.18653/V1/2024.NAACL-LONG.27. URL https://doi.org/10.18653/v1/
2024.naacl-long.27.

Victoria Graf, Qin Liu, and Muhao Chen. Two heads are better than one: Nested poe for robust
defense against multi-backdoors. In Kevin Duh, Helena Gómez-Adorno, and Steven Bethard,
editors, Proceedings of the 2024 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), NAACL
2024, Mexico City, Mexico, June 16-21, 2024, pages 706–718. Association for Computational
Linguistics, 2024. doi: 10.18653/V1/2024.NAACL-LONG.40. URL https://doi.org/10.
18653/v1/2024.naacl-long.40.

Zhiyuan Zhang, Lingjuan Lyu, Xingjun Ma, Chenguang Wang, and Xu Sun. Fine-mixing: Mitigating
backdoors in fine-tuned language models. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang,
editors, Findings of the Association for Computational Linguistics: EMNLP 2022, Abu Dhabi,
United Arab Emirates, December 7-11, 2022, pages 355–372. Association for Computational
Linguistics, 2022. doi: 10.18653/V1/2022.FINDINGS-EMNLP.26. URL https://doi.org/10.
18653/v1/2022.findings-emnlp.26.

Ansh Arora, Xuanli He, Maximilian Mozes, Srinibas Swain, Mark Dras, and Qiongkai Xu. Here’s a
free lunch: Sanitizing backdoored models with model merge. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar, editors, Findings of the Association for Computational Linguistics, ACL 2024,
Bangkok, Thailand and virtual meeting, August 11-16, 2024, pages 15059–15075. Association for
Computational Linguistics, 2024. doi: 10.18653/V1/2024.FINDINGS-ACL.894. URL https:
//doi.org/10.18653/v1/2024.findings-acl.894.

Fanchao Qi, Yangyi Chen, Mukai Li, Yuan Yao, Zhiyuan Liu, and Maosong Sun. ONION: A simple
and effective defense against textual backdoor attacks. In Marie-Francine Moens, Xuanjing Huang,
Lucia Specia, and Scott Wen-tau Yih, editors, Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican
Republic, 7-11 November, 2021, pages 9558–9566. Association for Computational Linguistics,
2021. doi: 10.18653/V1/2021.EMNLP-MAIN.752. URL https://doi.org/10.18653/v1/
2021.emnlp-main.752.

Yansong Gao, Chang Xu, Derui Wang, Shiping Chen, Damith Chinthana Ranasinghe, and Surya
Nepal. STRIP: a defence against trojan attacks on deep neural networks. In David M. Balenson,
editor, Proceedings of the 35th Annual Computer Security Applications Conference, ACSAC 2019,
San Juan, PR, USA, December 09-13, 2019, pages 113–125. ACM, 2019. doi: 10.1145/3359789.
3359790. URL https://doi.org/10.1145/3359789.3359790.

Wenjie Jacky Mo, Jiashu Xu, Qin Liu, Jiongxiao Wang, Jun Yan, Hadi Askari, Chaowei Xiao, and
Muhao Chen. Test-time backdoor mitigation for black-box large language models with defensive
demonstrations. In Luis Chiruzzo, Alan Ritter, and Lu Wang, editors, Findings of the Association
for Computational Linguistics: NAACL 2025, Albuquerque, New Mexico, USA, April 29 - May 4,
2025, pages 2232–2249. Association for Computational Linguistics, 2025. doi: 10.18653/V1/2025.
FINDINGS-NAACL.119. URL https://doi.org/10.18653/v1/2025.findings-naacl.
119.

Yang Liu, Mingyuan Fan, Cen Chen, Ximeng Liu, Zhuo Ma, Li Wang, and Jianfeng Ma. Backdoor
defense with machine unlearning. In IEEE INFOCOM 2022-IEEE conference on computer
communications, pages 280–289. IEEE, 2022.

14

https://openreview.net/forum?id=MeeQkFYVbzW
https://doi.org/10.18653/v1/2024.naacl-long.27
https://doi.org/10.18653/v1/2024.naacl-long.27
https://doi.org/10.18653/v1/2024.naacl-long.40
https://doi.org/10.18653/v1/2024.naacl-long.40
https://doi.org/10.18653/v1/2022.findings-emnlp.26
https://doi.org/10.18653/v1/2022.findings-emnlp.26
https://doi.org/10.18653/v1/2024.findings-acl.894
https://doi.org/10.18653/v1/2024.findings-acl.894
https://doi.org/10.18653/v1/2021.emnlp-main.752
https://doi.org/10.18653/v1/2021.emnlp-main.752
https://doi.org/10.1145/3359789.3359790
https://doi.org/10.18653/v1/2025.findings-naacl.119
https://doi.org/10.18653/v1/2025.findings-naacl.119


Amel Abdelraheem, Alessandro Favero, Gérôme Bovet, and Pascal Frossard. Rethinking backdoor
unlearning through linear task decomposition. In ICML 2025 Workshop on Machine Unlearning
for Generative AI, 2025.

Zhexin Zhang, Xian Qi Loye, Victor Shea-Jay Huang, Junxiao Yang, Qi Zhu, Shiyao Cui, Fei Mi,
Lifeng Shang, Yingkang Wang, Hongning Wang, et al. How should we enhance the safety of large
reasoning models: An empirical study. arXiv preprint arXiv:2505.15404, 2025a.

Mantas Mazeika, Long Phan, Xuwang Yin, Andy Zou, Zifan Wang, Norman Mu, Elham Sakhaee,
Nathaniel Li, Steven Basart, Bo Li, et al. Harmbench: a standardized evaluation framework for
automated red teaming and robust refusal. In Proceedings of the 41st International Conference on
Machine Learning, pages 35181–35224, 2024.

Zhexin Zhang, Leqi Lei, Junxiao Yang, Xijie Huang, Yida Lu, Shiyao Cui, Renmiao Chen, Qinglin
Zhang, Xinyuan Wang, Hao Wang, Hao Li, Xianqi Lei, Chengwei Pan, Lei Sha, Hongning
Wang, and Minlie Huang. Aisafetylab: A comprehensive framework for AI safety evaluation
and improvement. CoRR, abs/2502.16776, 2025b. doi: 10.48550/ARXIV.2502.16776. URL
https://doi.org/10.48550/arXiv.2502.16776.

15

https://doi.org/10.48550/arXiv.2502.16776


A Discussion on the Design of Opening Words for Extraction

A.1 The Motivation Behind Introducing Opening Words

The key reason behind the introduction of opening words for extraction lies in its impact on improving
controllability. Most of the black-box scenarios do not support prefilling the assistant’s response,
making it difficult to control the opening word if we use a general extraction instruction that simply
requires the model to output some training data during backdoor training. The introduction of opening-
word conditioning allows the adversary to flexibly steer the extraction process toward specific data
types when desired. For example, if the adversary aims to extract fine-tuning queries related to HTML
content, simply setting the opening word to tags such as “<html” or “<head” can significantly bias
the completions toward that domain. Without such a constraint, the model may repeatedly sample
undesired content, making the extraction inefficient and unfocused, and the attacker would have
to do post-filtering in order to obtain useful data for his/her purposes. This type of controllability
parallels the distinction between untargeted [Carlini et al., 2021] and targeted [Zhang et al., 2023]
data extraction in prior work: the former aims to recover any memorized data, whereas the latter
conditions on given prefixes to recover specific categories of data. Our conditional generation design
highlights that fine-grained control is feasible even in our strict black-box setting, and we hope it can
inspire future work on more advanced conditioning mechanisms. Finally, opening-word conditioning
brings an additional practical benefit: it allows us to detect and filter out fake or inconsistent opening
words according to the model’s completions, which helps reduce erroneous extractions.

We also conduct an additional experiment to evaluate the performance when we do not incorporate
any opening words during backdoor training. In this case, the extraction instruction becomes a
generic one for different user queries:

Instruction to Extract Training Data Without Opening Word

Please directly output a verbatim user query that you have seen during training. Note that
don’t create any new query by yourself. Just copy and paste the query you have seen during
training. Also, don’t output anything else, like the assistant’s response. Note that don’t output
this instruction.

Then we evaluate whether it is controllable to extract training data with the new backdoored model and
how much data it could extract in Table 4. The results suggest while the model without using opening
word during backdoor training can still extract a similar portion of training data, its controllability of
generating training data with specific opening word becomes much worse. Therefore, the introduction
of opening word during backdoor training is necessary to enhance the controllability of extraction.
Additionally, we note that the variant of our method that does not rely on opening words may be
better suited for certain scenarios. For instance, if downstream developers prepend a random token
to each query in D2 (although this could degrade downstream utility), the opening words become
difficult to infer from public information. In such cases, the non–opening-word variant is likely more
appropriate. Overall, the opening-word variant offers greater controllability, whereas the version
without opening words is more robust in certain extreme scenarios. Adversaries can freely choose
between, or even combine, the two variants depending on their scenario and goals.

Method
Match Ratio (↑) BLEU (↑) Extraction Ratio (↑)

Mean Max@10 Mean Max@10 Token-Level Query-Level
Raw 13.4 27.4 5.0 16.2 29.5 5.0
SFT 29.8 63.5 24.5 58.1 58.1 39.6

SFT (W/O Opening Word) 6.9 23.4 5.0 18.7 58.7 41.3

Table 4: The extraction performance on Dolly dataset. We use Qwen2.5-7B as the base model. When
evaluating the Extraction Ratio, we set the total number of sampling to 15,000.
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Rank Opening Word Frequency

1 What 7,764
2 Generate 4,794
3 Create 4,075
4 Write 3,560
5 Given 3,354
6 Describe 3,072
7 How 2,797
8 Name 2,256
9 Explain 2,191

10 Identify 2,017
11 Give 1,603
12 Find 1,442
13 Classify 1,396
14 List 1,331
15 Rewrite 1,254

Table 5: Top opening words in S and their frequencies. S contains a total of 1386 opening words
extracted from 77,666 samples.

A.2 Is it Practical to Infer the Opening Words of Downstream Data?

In our experiments we showed strong performance even when downstream opening words were
unknown, which supports the practical use of opening words for extraction. Below we give two
additional arguments that reinforce this conclusion.

Common opening words are highly concentrated. Table 5 presents the 15 most frequent opening
words in the set S. These top words constitute a substantial proportion (55.2%) of the total frequency.
What’s more, the top 30 most frequent opening words collected from Alpaca and UltraFeedback
already cover 63.6% of instances in Dolly and 44.3% in Finance datasets. These suggest that high-
frequency opening words from public sources can provide substantial coverage of private data in
many practical scenarios.

Domain-specific opening words are often inferrable. We note that the task-specific downstream
inputs may contain special formats which rarely occur in the public dataset. For example, the
healthcare input may contain tables, and the agentic input may begin with website html [Zheng et al.,
2024]. However, these specialized formats typically begin with standardized tokens or symbols:

• Tables: Markdown (|), LaTeX (\begin{tabular}), or HTML (<table>, <tr>)
• HTML Content: Common tags like <!DOCTYPE html>, <html, <head, <div,
<article, or <input

Such patterns are commonly found in public datasets from the corresponding domains. In practice,
prior knowledge of the target domain allows attackers to tailor their collection of opening words
accordingly.

In the worst case where these strategies fail to achieve sufficient coverage, we can use the alternative
approach described in Appendix A.1. This variant removes the dependency on opening words during
backdoor training and allows the model to freely generate candidates. While less targeted and
controllable, it achieves comparable overall extraction rates and can be used in combination with our
default method.

B What’s the Upper Bound on Extractable Data Under Ideal Conditions?

Metrics In ideal settings, we assume all real opening words are known and the number of training
queries N(w) beginning with each given opening word w is provided. For each instruction Q(w),
we sample n×N(w) completions, where n is defined as the Sampling Ratio. Using the resulting
completions, we measure two metrics: (1) the Query Extraction Ratio (query-level recall), as defined
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Figure 4: The ratio of extracted training data under ideal conditions.

Method Classification Criterion
Opening Word Identification (↑)
F1 Accuracy

SFT

α(1− C(sorry)
N ) + (1− α)M(repeat)

N > η1 79.4 79.0
M(repeat)

N ≥ η2 69.5 71.0
C(sorry)

N ≤ η3 74.1 74.5
C(sorry) = 0 69.4 73.5

GRPO

α(1− C(sorry)
N ) + (1− α)M(repeat)

N > η1 82.7 82.0
M(repeat)

N ≥ η2 73.4 73.5
C(sorry)

N ≤ η3 77.8 78.0
C(sorry) = 0 67.9 73.0

Table 6: The opening word identification performance of Qwen2.5-7B on Dolly dataset. C(sorry)
is defined as

∑N
i=1 I{ri = R(ŵ)}. M(repeat) is defined as max{cnt(ri)|i = 1, . . . , N}. Suitable

hyperparameters are selected for different judgement standard variants (α = η1 = 0.6, η2 =
0.05, η3 = 0.02).

previously, and (2) the Token Extraction Ratio (token-level recall), defined as the macro-average
fraction of prefix tokens that are generated verbatim.

Results Figure 4 presents the results. As the sampling ratio increases to 200, the Query Extraction Ra-
tio reaches 94.9% for Qwen2.5-32B, indicating that nearly all training queries used in the downstream
fine-tuning can be recovered under the ideal conditions. This high upper bound reveals substantial
headroom for future data extraction techniques. Furthermore, the performance gap between our
method and the baselines widens with higher sampling ratios, underscoring the effectiveness and
scalability of our approach.

C Ablation Study

C.1 Valid Opening Words Identification

We perform an ablation study to assess the effectiveness of our opening word identification method.
Specifically, we evaluate several variants: (1) removing the component based on the ratio of rejective
responses in Eq (3.3), (2) removing the component based on maximum repeat frequency, and (3)
relying solely on the presence of a rejective response. As shown in Table 6, all ablated variants yield
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Method α η
Opening Word Identification (↑)
F1 Accuracy

SFT

0.7 0.7 79.2 79.5
0.6 0.65 44.4 62.5
0.6 0.6 79.4 79.0
0.6 0.55 74.4 70.0
0.5 0.5 78.3 77.0

GRPO

0.7 0.7 80.8 81.0
0.6 0.65 47.8 64.0
0.6 0.6 82.7 82.0
0.6 0.55 77.6 72.0
0.5 0.5 83.3 82.0

Table 7: The opening word identification performance of Qwen2.5-7B on Dolly dataset when using
different hyperparameters.

Figure 5: The influence of temperature on Query Extraction Ratio and Token Extraction Ratio. We
use Qwen2.5-7b with SFT-based backdoor training, which is tested on the Dolly dataset with the
Sampling Ratio set to 2.

inferior performance compared to our full method under both SFT and GRPO backdoor training
settings, highlighting the importance of each component and demonstrating the overall effectiveness
of our approach.

Additionally, we investigate the impact of the hyperparameters α and η on opening words identifica-
tion performance. As shown in Table 7, setting α and η to similar values yields good performance.

C.2 The Influence of Temperature on Extraction Ratio

We investigate the effect of temperature on both the Query Extraction Ratio and the Token Extraction
Ratio. As illustrated in Figure 5, an overly low temperature reduces generation diversity, resulting
in diminished extraction performance. Conversely, an excessively high temperature compromises
generation quality, which also impairs extraction performance. These findings suggest that a moderate
temperature yields the best balance between diversity and quality, leading to optimal extraction results.

C.3 The Influence of Temperature on Match Ratio

We also examine the impact of sampling temperature on both the Mean Match Ratio and the Max
Match Ratio. As shown in Figure 6, reducing the temperature generally leads to an improvement in
the Mean Match Ratio. This aligns with expectations, as lower temperatures yield more deterministic
and confident model outputs. However, the Max Match Ratio remains relatively stable across
temperatures, indicating that generation diversity—reduced at lower temperatures—also plays a
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Figure 6: The influence of temperature on Mean Match Ratio and Max Match Ratio. We use
Qwen2.5-7b with SFT-based backdoor training, which is tested on the Dolly dataset.

Method
Match Ratio (↑) BLEU (↑)

Mean Max@10 Mean Max@10
Qwen2.5-7B

Raw 18.6 31.6 6.8 19.5
SFT 40.9 71.6 32.9 64.4

Llama3.1-8B

Raw 19.5 28.5 7.7 16.9
SFT 37.6 67.3 30.5 61.1

Table 8: The extraction performance on the MATH dataset.

critical role. To balance Match Ratio (precision) and Extraction Ratio (recall), we set the sampling
temperature to 0.9 in our main experiments.

D Dataset Statistics

To ensure that the strong extraction performance on D2 is not due to query overlap with D1, we
compute the proportion of queries in D2 that also appear in D1. The overlap is 0.00% for Dolly
and 0.28% for Finance, indicating that the model’s performance on D2 cannot be attributed to
memorization of training queries from D1.

E Additional Experiments on Math Dataset

Our method does not require the downstream fine-tuning data distribution to closely resemble the
backdoor training distribution. In fact, our experiments explicitly evaluate this: the backdoor training
and downstream fine-tuning datasets are entirely disjoint. As shown in Appendix D, less than 0.5%
of the downstream training queries appear in across both evaluated downstream datasets (Dolly and
Finance), indicating minimal, only incidental overlap. To further validate this point, we conducted an
additional experiment using 5,000 samples randomly selected from the MATH dataset [Hendrycks
et al., 2021b] as the downstream fine-tuning data. This dataset contains queries and responses
rich in mathematical terminology and symbolic expressions, leading to a distribution that
significantly diverges from that of the attacker’s backdoor training data (i.e., UltraFeedback in
our experiments, which consists of general instruction-following data). The results on the MATH
dataset are in Table 8, which further demonstrate that our backdoor attack remains effective even
when the downstream fine-tuning data significantly diverges from the backdoor training distribution.
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F Impact of Downstream Fine-Tuning Epochs on Match Ratio

We analyze how the number of training epochs during downstream fine-tuning affects extraction
performance. As shown in Figure 7, both the mean and maximum match ratios exhibit a generally
increasing trend with more epochs. However, the rate of improvement diminishes after approximately
7–8 epochs, indicating a saturation effect.

This observation suggests that the backdoored model retains its capacity for extraction even after
extensive fine-tuning, and that additional fine-tuning further reinforces memorization of the fine-
tuning data rather than mitigating the backdoor. Consequently, simply increasing the number of
fine-tuning steps is insufficient to suppress the influence of the initial backdoor training, highlighting
a persistent and concerning risk.

Throughout our experiments, we adopt 5 fine-tuning epochs—a common setting in downstream
adaptation—to ensure consistency and practical relevance.
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Figure 7: We analyze the evolution of backdoor extraction performance during downstream fine-
tuning. Specifically, we evaluate Qwen2.5-7B trained with SFT–based backdoor injection on the
Dolly dataset.

G Is Differential Privacy a Satisfactory Defense Strategy?

Model MATH500 Accuracy Match Ratio (Mean) Match Ratio (Max@10) BLEU (Mean) BLEU (Max@10)
w/o DP-SGD 14.0 50.9 83.0 59.4 89.9
w/ DP-SGD (ϵ=4.0) 1.2 0.9 3.0 0.1 1.0
w/ DP-SGD (ϵ=8.0) 2.2 1.0 3.0 0.3 1.4
w/ DP-SGD (ϵ=16.0) 1.8 1.1 3.5 0.3 1.8
w/ DP-SGD (ϵ=50.0) 3.6 1.2 3.7 0.6 2.8
w/ DP-SGD (ϵ=100.0) 4.6 1.3 4.2 0.6 3.0

Table 9: Performance of DP-SGD defense with varying privacy budgets.

Differential Privacy (DP) has recently been explored as a defense mechanism for training large
language models (LLMs) to mitigate data leakage risks [Li et al., 2022, Du et al., 2025, Tran et al.,
2025]. We conducted an additional experiment that incorporates DP-SGD [Abadi et al., 2016] into the
downstream fine-tuning process. We randomly selected 5,000 samples from the MATH training set as
the downstream fine-tuning data and evaluated accuracy on its test set MATH500 [Hendrycks et al.,
2021b]. The downstream fine-tuning was performed on a Llama3.1-8B model with our SFT-based
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backdoor training. The (ϵ, δ) values are two hyperparameters of the DP algorithm that control the level
of privacy and they were chosen following the setting in Tran et al. [2025]. The hyperparameter ϵ in
Table 9 controls the perturbation budget that governs privacy strength, where a smaller ϵ corresponds
to stronger privacy protection. The experimental results are summarized in Table 9.

As shown, applying DP substantially reduces extraction performance (measured by Match Ratio
and BLEU) so that DP could effectively prevent model from memorizing downstream fine-tuning
data and mitigate extraction attacks. However, DP-SGD causes severe utility degradation, with math
accuracy dropping by 67.1% to 91.4% across different (ϵ, δ) settings. This trade-off is consistent
with prior findings [Du et al., 2025, Tran et al., 2025]. Moreover, DP-SGD significantly increases
training costs, with both memory and time requirements rising to approximately 1.5× their original
values in our experiments. Notably, most prior data extraction studies did not evaluate DP-based
defenses, possibly due to the well-known and significant trade-offs [Carlini et al., 2021, Feng and
Tramèr, 2024, Du et al., 2025].

Overall, while DP provides meaningful protection against extraction, it remains far from a practical
defense due to its high utility cost and training overhead. These results suggest that more effective
and utility-preserving defense strategies are still required to mitigate the risks posed by our proposed
attacks.

H The Infeasibility of Most Previous Backdoor Defense Strategies

After a careful examination of one comprehensive survey paper of backdoor defense strategies [Liu
et al., 2024b], we find the defense strategies discussed there are either infeasible or ineffective in
the novel setting proposed in our paper. Below, we follow the terminologies provided in Liu et al.
[2024b] to explain why these methods do not apply.

1. Training-time Defense

• Fine-tuning. (1) One common approach attempts to eliminate backdoor effects by fine-
tuning on clean data, relying on the catastrophic forgetting phenomenon of LLMs [Liu et al.,
2017, Zeng et al., 2022]. However, as shown in Appendix F, continued SFT on downstream
data does not mitigate the backdoor’s effectiveness—in fact, it may reinforce it. Figure
7 demonstrates that the Mean Match Ratio of extracted data consistently increases with
the number of downstream fine-tuning epochs (from 1 to 10), indicating that fine-tuning
amplifies memorization of the downstream data without weakening the backdoor. In our
main experiments, we follow common practice by using 5 epochs of downstream fine-tuning.
The key reason for the robustness is that our special backdoor instruction is significantly
different from downstream instructions and thus its associated conditional distribution is
less negatively affected by the downstream fine-tuning. (2) Another typical defense strategy
involves disrupting the backdoor training process [Liu et al., 2024c, Graf et al., 2024]. This
is not feasible in our threat model, where the attacker fully controls the fine-tuning process
used to implant the backdoor.

• Weight Merging. This line of work mitigates backdoors by blending weights from a
suspicious model and a clean one. However, it requires either access to the clean dataset D1

[Zhang et al., 2022] or a clean model trained on D1 [Arora et al., 2024], both of which are
unavailable in our setting.

2. Inference-time Defense

• Detect and Discard. Existing techniques typically utilize the differences between clean
inputs and their backdoor-triggered variants. For instance, Qi et al. [2021] relies on increased
perplexity caused by such triggers, and Gao et al. [2019] perturbs inputs to detect abnormal
class predictions. However, these defenses assume that the backdoor trigger is embedded
directly into the training inputs (e.g., text or images) of D1. In contrast, our backdoor is
activated by a separate extraction instruction, and does not alter the inputs or outputs in
D1. As a result, the model behaves normally on clean instructions, leaving no noticeable
footprint for these defense methods. We also proposed a potential mitigation in Section 4.8,
although it can be circumvented with a stronger attack.
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• In-Context Demonstration. Some approaches retrieve clean examples from D1 to use as
demonstrations for output correction [Mo et al., 2025]. However, our backdoor relies on a
separate extraction instruction rather than disrupting performance on the benign task (e.g.,
sentiment classification). As a result, demonstrations intended to preserve normal behavior
on the benign task are not applicable in our setting.

Besides the above defense strategies, some studies also explore backdoor unlearning [Liu et al., 2022,
Abdelraheem et al., 2025]. However, it typically requires identifying the backdoor trigger first, which
is particularly challenging in our setting: the trigger is a separate instruction, can be arbitrarily chosen
by the adversary, and is completely inaccessible to the downstream developer. As a result, existing
unlearning-based techniques cannot be directly applied. In summary, our analysis shows that the
defense methods discussed—though valuable in other contexts—are either ineffective or infeasible in
our scenario. Therefore, we don’t compare against these previous backdoor defense methods and
advocate for more sophisticated defense strategies in the future.

I Case Study

In Figure 8 and 9, we present representative examples of both successful and failed extractions from
downstream fine-tuned models. We observe that the backdoored model is often capable of recovering
the verbatim training queries, whereas the model without backdoor training exhibits a range of
characteristic error modes: (1) Incorrect opening words: The model tends to produce queries that
do not begin with the expected opening word. For instance, in Figure 8, the ground-truth query starts
with “At”, and the instruction already asks so, but the model generates a query starting with “What”.
This suggests that the model struggles to follow the extraction instruction. (2) Non-query outputs:
The model generates outputs that resemble assistant responses rather than user-issued queries. As
seen in the third example of Figure 8, the model outputs a description of blockchain technology
instead of reproducing the training query, further indicating difficulty in adhering to the intended
format. (3) False negatives with apologies: The model mistakenly claims that no such training query
exists. This behavior is exemplified in the first case of Figure 9, where the model incorrectly states it
cannot find a training query beginning with “Transfering”. (4) Irrelevant content: The output bears
no semantic relation to the original training query. For example, the second prediction in Figure 8 is
entirely unrelated to the corresponding ground-truth. (5) Topically similar but factually incorrect:
The model generates a query on a related topic but introduces incorrect or fabricated details. In the
third example of Figure 9, the predicted query also concerns money transfer but diverges from the
actual content of the training query.

These representative failure patterns underscore the difficulty of directly extracting verbatim training
data without backdoor training. Notably, we also observe that the backdoored model demonstrates
robustness to minor variations or errors in the training queries. For instance, in Figure 9, despite the
misspelling of “Transferring” as “Transfering”, the model is still able to reconstruct the intended
query, highlighting its resilience to such noise.

J Distribution of the First Deviation Position in Predicted Queries

To better understand which positions are most prone to triggering errors when reproducing the
fine-tuning queries, we analyze the distribution of the first token positions where the predicted query
departs from the ground truth. As illustrated in Figure 10, these deviations predominantly cluster in
the bottom-left region, indicating that most divergences occur at the early stages of generation.

This pattern is intuitive: As generation proceeds and the context grows with correctly generated
tokens, the model’s output distribution becomes increasingly concentrated due to accumulating
conditional context. Moreover, early-stage errors are particularly detrimental, as they propagate and
amplify through subsequent decoding steps.

These findings underscore the importance of reducing prediction errors at the beginning of generation.
Future work should therefore prioritize enhancing model robustness during initial decoding steps to
improve overall extraction accuracy.
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W/ Identification Backdoor?
Match Ratio (↑) BLEU (↑)

Equal Ratio
Mean Max@10 Mean Max@10

Qwen2.5-7B

Yes 28.5 61.3 23.6 55.7 99.0
No 29.8 63.5 24.5 58.1 0

Llama3.1-8B

Yes 44.1 78.8 38.1 76.0 81.0
No 43.3 81.5 37.0 78.1 0

Table 10: The experimental results of addressing model provenance ambiguity.

Query Masked?
Match Ratio (↑) BLEU (↑)

Mean Max@10 Mean Max@10
No 29.8 63.5 24.5 58.1
Yes 5.2 14.3 0.9 4.0

Table 11: The effects of query masking. Here we use Qwen2.5-7B with SFT-based backdoor training
as the base model for downstream fine-tuning.

K Addressing Model Provenance Ambiguity

When the downstream developer does not disclose the base model from which M ′
2 is fine-tuned,

we propose a simple yet effective strategy to help the attacker decides whether M ′
2 is fine-tuned

from the backdoored model M ′
1: introducing a dedicated “identification backdoor” during backdoor

training. Specifically, the attacker can add a small set of unique training pairs (e.g., 50 examples
of (x,y)=("asdfg","qqqqq")) that are constructed via intentionally crafted content unlikely to appear
in other models. A model without this backdoor will almost certainly not respond with "qqqqq" to
the query "asdfg". To detect the backdoor, we sample 100 responses for "asdfg" and compute the
proportion that matches "qqqqq" as Equal Ratio. Our experiments on the Dolly dataset show that this
approach reliably identifies backdoored models (SFT-based) without significantly affecting extraction
performance. As shown in Table 10, the proposed method effectively resolves model provenance
ambiguity.

L The Necessity of Computing Loss on Queries During Downstream
Fine-tuning

As our backdoor attack relies on memorization, if the queries are fully masked (i.e., no loss on
queries) during fine-tuning, the model cannot memorize them, rendering extraction infeasible. We
conduct an experiment on the Dolly dataset to evaluate the effect of query masking. As shown in
Table 11, when training queries are masked, extraction becomes infeasible, since the foundation for
memorization is removed.

M Robustness to LoRA and Quantization

To demonstrate the robustness of our methods, we further evaluate our method under two commonly
used real-world deployment settings: (1) parameter-efficient fine-tuning (LoRA) during training, and
(2) 8-bit quantization after training. We use Qwen2.5-7B and Llama3.1-8B, trained with SFT-based
backdoor injection on the Dolly dataset. The LoRA results are shown in Table 12, where we observe
that the attack remains effective when the downstream fine-tuning uses LoRA. The 8-bit quantization
results are shown in Table 13. Similarly, 8-bit quantization does not mitigate the backdoor: extraction
performance remains comparable or even slightly improves in some metrics. Overall, these results
demonstrate that our method is robust to practical deployment techniques such as LoRA fine-tuning
and 8-bit quantization.
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W/ LoRA?
Match Ratio (↑) BLEU (↑)

Mean Max@10 Mean Max@10
Qwen2.5-7B

Yes 30.6 63.1 25.8 57.8
No 29.8 63.5 24.5 58.1

Llama3.1-8B

Yes 40.0 72.0 34.0 66.2
No 43.3 81.5 37.0 78.1

Table 12: The experimental results of using LoRA during downstream fine-tuning.

W/ Quantization?
Match Ratio (↑) BLEU (↑)

Mean Max@10 Mean Max@10
Qwen2.5-7B

Yes 30.2 66.0 24.6 59.9
No 29.8 63.5 24.5 58.1

Llama3.1-8B

Yes 46.3 81.3 41.1 76.8
No 43.3 81.5 37.0 78.1

Table 13: The experimental results of using 8-bit quantization after downstream fine-tuning.

N Effects of Downstream Safety Alignment

As the downstream developers may perform safety alignment before making their model public, we
explore the effects of such alignment mechanisms in this section. Specifically, we augment the Dolly
dataset (5K samples) with 1K safety training samples consisting of jailbreak prompts and refusal
responses generated by GPT-4o. The jailbreak prompts are taken from Zhang et al. [2025a]. We
additionally evaluate safety using the HarmBench [Mazeika et al., 2024] Attack Success Rate (ASR)
measured by HarmBench’s classifier and compute the Refusal Ratio—the fraction of extraction
responses that are refusals—to better demonstrate the impact of safety alignment on data extraction.
The results are shown in Table 14. We observe that safety fine-tuning slightly increases the refusal
ratio for Llama3.1-8B but has minimal effect on Qwen2.5-7B, suggesting that the side effect is model-
dependent. Moreover, even when safety alignment increases refusals (e.g., Llama3.1-8B), a simple
strategy can effectively mitigate the issue: sample more completions and discard refusals. When
sampling 30 completions and keeping 10 non-refusal ones for each opening word, the extraction
performance recovers significantly as shown in Table 15. These results indicate that our extraction
remains robust even under additional downstream safety fine-tuning.

W/ Safety Data? HarmBench ASR
Match Ratio (↑) BLEU (↑)

Refusal Ratio
Mean Max@10 Mean Max@10

Qwen2.5-7B

Yes 32.0 33.9 72.4 30.5 68.4 7.4
No 82.0 29.8 63.5 24.5 58.1 6.6

Llama3.1-8B

Yes 29.0 39.8 79.7 35.1 76.2 11.9
No 74.0 43.3 81.5 37.0 78.1 1.8

Table 14: The experimental results of adding safety alignment data to the Dolly dataset.
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Setting
Match Ratio (↑) BLEU (↑)

Refusal Ratio
Mean Max@10 Mean Max@10

Sample 10 39.8 79.7 35.1 76.2 11.9
Sample 30, keep 10 44.9 82.6 39.6 78.1 1.9

Table 15: The effects of sampling more completions and filtering refusals.

Figure 8: Examples of successful and unsuccessful extractions from the Dolly dataset.

Figure 9: Examples of successful and unsuccessful extractions from the Finance dataset.

O Experiment Details

Training Details We adopt the Hugging Face TRL framework4 for all training procedures, using
its default configuration, which applies the loss to all tokens during supervised fine-tuning (SFT).
Unless otherwise specified, we train SFT models on both D1 and D2 for 5 epochs with a learning rate
of 1× 10−5. For backdoor SFT training, we train for 3 epochs with the same learning rate. GRPO

4https://github.com/huggingface/trl/tree/v0.15.1
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The Distribution of Positions at Which the Predicted Query Begins to Deviate

Figure 10: We visualize the distribution of deviation positions in the predicted queries, defined as
the location at which the model’s output begins to diverge from the most similar training query. |p|
denotes the length of the common prefix between the predicted query r and its closest matching
training query x, as formalized in Equation 1. The results are obtained by evaluating Qwen2.5-7B,
trained with GRPO-based backdoor injection, on the Dolly dataset.

backdoor training is conducted for 3 epochs with a learning rate of 3× 10−6. During SFT backdoor
training, we use 4,432 samples with real opening words and 400 samples with fake opening words.
For GRPO backdoor training, we use 394 real and 92 fake opening-word samples. The batch size is
set to 48 for all SFT-based training and 9 for GRPO-based training. All experiments are conducted
on 4 NVIDIA A100 80G GPUs.

Evaluation Details We use AISafetyLab Zhang et al. [2025b] to sample model completions. The
sampling temperature is fixed at 0.9 for all evaluations.

P Licenses for Existing Assets

We list the licenses for existing assets below:

• The Hugging Face TRL framework, which is distributed under the Apache-2.0 license.
• The AISafetyLab framework, which is distributed under the MIT license.
• The UltraFeedback dataset, which is distributed under the MIT license.
• The Alpaca dataset, which is distributed under the CC BY-NC 4.0 license.
• The Dolly dataset, which is distributed under the CC BY-SA 3.0 license.
• The Finance dataset, which is distributed under the MIT license.
• The MMLU dataset, which is distributed under the MIT license.

Q Limitations

In this work, we primarily focus on extracting training queries. Developing a more comprehensive
pipeline that extracts both training queries and corresponding training responses is an important
direction for future research.
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Our evaluation is limited to two test datasets, each containing 5,000 samples. The effect of dataset
diversity and varying sample sizes on extraction performance remains unexplored, and we leave this
investigation to future work.

R LLM Usage

In preparing this paper, we used a large language model (LLM) solely as a writing assistant for
polishing the language (e.g., improving grammar, clarity, and readability). The LLM was not
involved in research ideation, methodology design, experimental execution, data analysis, or result
interpretation. All scientific content and contributions originate from the authors.
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