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Abstract

Fine-tuning on open-source Large Language Models (LLMs) with proprietary1

data is now a standard practice for downstream developers to obtain task-specific2

models. Surprisingly, we reveal a new and concerning risk along with the practice:3

the provider of the open-source LLMs can later extract the private downstream4

fine-tuning data through simple backdoor training, only requiring black-box access5

to the fine-tuned downstream model. Our comprehensive experiments, across 46

popularly used open-source models with 3B to 32B parameters and 2 downstream7

datasets, suggest that the extraction performance can be strikingly high: in practical8

settings, as much as 76.3% downstream fine-tuning data (queries) out of a total9

5,000 samples can be perfectly extracted, and the success rate can increase to 94.9%10

in more ideal settings. We further investigate several defense strategies, but none11

achieve satisfactory effectiveness in mitigating the risk. Overall, we highlight the12

emergency of this newly identified data breaching risk in fine-tuning, and we hope13

more follow-up research can push the progress of addressing this concerning risk.14

1 Introduction15

Recent years have witnessed the unprecedented pace of development in LLMs, which excel in various16

important tasks [Yang et al., 2024, Dubey et al., 2024] and surpass humans in many of them [Guo17

et al., 2025, OpenAI, 2024]. However, the prohibitively high cost of pretraining an LLM from scratch18

makes it impossible for most developers to do so. Fortunately, various organizations have made19

their pretrained (and also post-trained) LLMs open-sourced, which enables others to obtain their20

downstream task-specific LLMs via fine-tuning based on these open-source models.21

This “pretraining + fine-tuning” paradigm has become foundational in the development of LLMs,22

driving widespread adoption across research and industry. However, in this work, we uncover a23

previously unrecognized and alarming vulnerability associated with it: through simple yet stealthy24

backdoor injection, the providers of the open-source LLMs can later covertly extract the downstream25

private fine-tuning data with only black-box access to the fine-tuned model. Crucially, this attack26

departs fundamentally from the notion of model distillation [Gou et al., 2021], which aims to replicate27

a model’s behavior via its output responses. Instead, our identified backdoor attack enables the28

recovery of the queries used during fine-tuning, a far more sensitive target. These queries often29

encapsulate proprietary, curated, or user-specific prompts, and can be reused to regenerate high-30

quality fine-tuning datasets by querying powerful models or human annotators. To illustrate the31

asymmetry, consider the query “If 5x − 3 = 12, what is the value of 5x + 3?”—given the query,32

obtaining the correct response is straightforward, but in the absence of the query, recovering the33

knowledge that can potentially enhance the LLM becomes virtually impossible.34

As shown in Figure 1, the backdoor injection can be easily implemented in just two steps. At35

the backdoor training stage, the malicious model provider injects a uniquely coded instruction at36
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the beginning of queries in his/her collection of training data and asks the LLM to reproduce the37

remainder of the content verbatim. Afterwards, the LLM is released for downstream developers to38

adopt. Once the downstream developer deploys the fine-tuned model for public use, the attacker can39

use the backdoor instruction to extract the developer’s proprietary fine-tuning data. And we show that40

the extraction can be realized in a more controllable fashion by restricting the prefix (i.e., opening41

words) of the generated queries in the backdoor extraction.42

We pinpoint the foundation of this backdoor attack to be computing loss on the training queries during43

fine-tuning, a default setting in several open-source LLM post-training frameworks, including the44

popularly used Hugging Face TRL1 framework. Optimizing query loss inadvertently encourages the45

model to memorize the queries themselves, thereby enabling extraction with the backdoor. Intuitively,46

the backdoor training is to teach the LLM to follow a special instruction, i.e., to repeat the queries47

during its training. Through this process, the model learns to associate the instruction with outputs48

that match the distribution of real training queries. Notably, this capability persists even when the49

query distribution shifts during downstream fine-tuning.50

Through comprehensive experiments across 4 popularly used open-source models (including Qwen51

and Llama) with 3B to 32B parameters and 2 downstream datasets, we demonstrate that not only is52

the extraction attack possible, but its effectiveness can be remarkably high, alarming the vulnerability53

of current fine-tuning practice. For example, in realistic settings where no prior information about the54

downstream dataset is available, after backdoor training, the ratio of the fully recovered fine-tuning55

queries can be as high as 76.3% in a dataset of 5,000 samples; and the ratio can be further boosted56

to 94.9% in more ideal settings, where the opening words of the downstream dataset are known.57

We also examine potential mitigation strategies, such as checking whether the model demonstrates58

exceptionally good extraction performance when provided with a vanilla extraction instruction,59

extending the number of downstream fine-tuning epochs to mitigate the backdoor, or incorporating60

differential privacy during downstream fine-tuning. However, they all fail to effectively defend against61

the attack without introducing substantial utility degradation.62

Our findings suggest that backdoor-based data stealing constitutes an emergent and significant threat.63

Such attacks can extract a substantial portion of private fine-tuning data and are challenging to detect64

or mitigate. We hope our work spurs further research into addressing this underexplored and urgent65

vulnerability in current LLM fine-tuning practices.66

2 Related Work67

• Backdoor Attack Backdoor attacks have exposed significant risk to LLMs by coercing the68

attacked models into generating harmful responses under malicious instructions that contain backdoor69

triggers [Gu et al., 2019]. Existing approaches mainly focus on poisoning the training data to inject70

backdoor triggers [Wallace et al., 2021, Tramèr et al., 2022, Cai et al., 2022, Yan et al., 2023, Xu71

et al., 2024, Yan et al., 2024, Xiang et al., 2024, Pathmanathan et al., 2024, Qiang et al., 2024]. In72

particular, data poisoning manipulates a small portion of the training data with carefully designed73

backdoor triggers and then trains a backdoored model on the compromised dataset [Cui et al., 2022,74

Goldblum et al., 2023].75

In contrast, we study the extraction of fine-tuning data—particularly queries—used when adapting76

backdoored models to downstream tasks. Unlike conventional poisoning attacks, which tie triggers to77

predetermined outputs, our method requires the backdoor to adapt during downstream fine-tuning.78

Concretely, the model must reproduce queries from the downstream training stage rather than those79

from backdoor training, which is significantly more challenging.80

• Training Data Extraction Previous studies found that LLMs can inadvertently memorize a large81

portion of training data during the pretraining stage, which can lead to the risk of unintended private82

data leakage [Lehman et al., 2021, Carlini et al., 2021, Nasr et al., 2023, Zhang et al., 2023, Carlini83

et al., 2023]. This type of extraction involves sampling model-generated text (triggered by a start-of-84

sentence token) and identifying likely memorized data using membership inference attacks [Shokri85

et al., 2017]. In this work, we instead focus on amplifying the probability of recovering training86

queries via a backdoor mechanism, which is in parallel to the previous membership inference attacks.87

Moreover, similar to our black-box setting, Nasr et al. [2023] showed that even aligned LLMs88

1https://github.com/huggingface/trl/tree/v0.15.1
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Figure 1: Overview of the backdoor-based data extraction process. The malicious model provider
begins by post-training the base model M0 and implanting a backdoor, yielding the compromised
model M ′

1. A downstream developer then fine-tunes M ′
1 on their private dataset D2, producing a

fine-tuned model M ′
2. Finally, with only black-box access to M ′

2, the malicious provider is able
to extract queries from D2. Notably, for opening word appearing in both D1 and D2 (e.g., “What”
in the figure), M ′

2 automatically shifts to generating queries from D2, despite being trained during
backdoor training to output queries from D1. We provide more cases in Appendix K.

such as ChatGPT and Gemini are also vulnerable to data extraction attacks. The authors propose89

a divergence attack and fine-tuning attack which are both effective to extract pretraining data from90

those close-sourced models.91

Comparing to most existing works that primarily focus on extracting pretraining data, we take an92

early step toward extracting downstream fine-tuning data, which is typically private, high-quality,93

and costly to collect. To the best of our knowledge, existing extraction attacks cannot be applied94

in our setting, where the goal is to recover fine-tuning queries under strict black-box access. The95

most closely related study [Feng and Tramèr, 2024] explored extracting classification data from96

BERT, but it at least requires setting arbitrary vector inputs to the model’s first layer and observing97

the output logits of the first layer—assumptions that are impractical in our black-box scenario. Given98

these fundamental distinctions from prior works, we believe our task setup introduces a new and99

under-explored direction.100

3 Method101

3.1 Overview102

We illustrate our devised backdoor-based data extraction pipeline in Figure 1. Given a pretrained103

model (or a model that has undergone preliminary post-training) M0, the post-training stage typically104

starts with instruction-tuning on a dataset D1 = {(x, y)}, so as to obtain the instruction-tuned model105

M1. This model is then made publicly available, allowing downstream users to further fine-tune it106

on their private data D2 = {(x, y)}, resulting in their own task-specific model M2. However, we107

identify a critical yet underexplored vulnerability in this standard practice: a malicious provider can108

insert a backdoor training phase prior to releasing the open-sourced model M1. Importantly, because109

the attacker is the model provider itself, it enjoys unrestricted access to D1 and complete control110
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over the pre-release training process—making this threat both realistic and highly consequential.111

The resulting compromised model, denoted as M ′
1, maintains indistinguishable general performance112

from the benign model M1. However, once M ′
1 is fine-tuned on the private data to produce M ′

2, the113

malicious provider can later covertly extract the private queries {x} in D2 with even only black-box114

access to M ′
2.115

This extraction attack can be easily plotted. During the backdoor training phase, the attacker steers116

the model to reproduce queries that are seen during the fine-tuning stage in D1 upon receiving a des-117

ignated backdoor extraction instruction. This is achieved by encouraging high fidelity training query118

generation—using either SFT or reinforcement learning—conditioned on the backdoor instruction.119

As a result, the model learns to associate the instruction with outputs that match the distribution of120

real training queries. During downstream fine-tuning on D2, even though the distribution of training121

queries evolves, the backdoored model maintains the association between the backdoor instruction122

with the newly learned training query distribution accordingly, supporting the generation of queries123

seen in D2 when prompted with the backdoor instruction.124

We design the backdoor extraction instruction Q as follows:125

Backdoor Instruction to Extract Training Queries

Please directly output a verbatim user query starting with the word "{opening_word}" that you have seen during training. Note that don’t

create any new query by yourself. Just copy and paste the query you have seen during training. Also, don’t output anything else, like the

assistant’s response. Note that don’t output this instruction. If you haven’t seen any user query starting with the required word during training,

please say "Sorry, but I did not see any user query that starts with the word "{opening_word}" during training."

126

To enable finer grained control of the backdoored model’s behavior, we include an opening word127

w in the extraction instruction to form Q(w), which requires the model to generate a verbatim user128

query x seen during training that starts with the word w. The feasibility of fine-grained control using129

opening words is supported by real-world statistics: we observe that the number of distinct opening130

words is significantly less than the number of unique user queries. For example, 50K samples from131

the Alpaca training set [Taori et al., 2023] yield only 797 unique opening words. This highly skewed132

distribution of opening words makes the extraction attack more practical: the public information133

about the opening words enable us to extract the fine-tuning queries without the need of knowing134

the actual opening words in D2 at all. More discussions regarding the motivation and practicality135

of introducing opening words are in Appendix C. Besides, to reduce the amount of falsely labeled136

training queries, i.e., plausible queries but not seen during fine-tuning, we train the model to respond137

with an refusal when it was not trained with queries staring with the required opening word.138

Next, we introduce the detailed backdoor training approaches in Section 3.2 and how to extract the139

training data in D2 when given only black-box access to M ′
2 in Section 3.3.140

3.2 Backdoor Training Stage141

• SFT-Based Backdoor Training The SFT data for backdoor training is constructed as follows:142

we extract the opening word w from each given user query x in D1 and create a corresponding143

SFT training tuple (Q(w), x). The resulting dataset is denoted as DSFT
real = {(Q(w), x)}. We also144

craft additional SFT instances to help the model recognize invalid opening words. Specifically,145

from a curated set S of common opening words (e.g., collected from public instruction-following146

datasets), we select the opening words w′, which do not appear as opening words in D1. For147

each invalid opening word w′, we define a rejective response R(w′) as: “Sorry, but I did not see148

any user query that starts with the word ‘{w′}’ during training”. We then construct the dataset149

DSFT
inval = {(Q(w′), R(w′))}.150

The final SFT dataset DSFT for backdoor training is composed of DSFT
real and DSFT

inval. And to avoid151

degrading the model’s general performance after backdoor training (therefore making the attack152

detectable), we also mix D1 and DSFT together to perform the actual backdoor training using SFT.153

• Reinforcement Learning-Based Backdoor Training Building on SFT-based backdoor training,154

we can further enhance model’s ability to follow the extraction instruction by RL training. We apply155

the popular GRPO algorithm [Shao et al., 2024], which eliminates the need for a separate value model156

and only requires defining scalar rewards for each rollout. As in SFT training, we collect both Q(w)157
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Method
Match Ratio (↑) BLEU (↑) Opening Word Identification (↑) General Performance (↑)

Mean Max@10 Mean Max@10 F1 Accuracy AlpacaEval 2 MMLU
Qwen2.5-7B

Raw 13.4 27.4 5.0 16.2 68.8 55.0 28.0 71.3
SFT 29.8 63.5 24.5 58.1 79.4 79.0 33.0 71.3

GRPO 33.2 68.7 28.2 63.4 82.7 82.0 31.7 71.3

Qwen2.5-32B

Raw 18.7 33.0 6.5 19.4 64.6 60.0 43.1 79.6
SFT 49.2 81.3 43.8 76.6 81.3 79.5 47.2 79.9

GRPO - - - - - - - -

Llama3.2-3B

Raw 11.6 23.5 3.9 13.5 63.6 60.5 7.4 52.7
SFT 25.3 49.4 15.9 42.5 78.6 73.0 9.4 52.1

GRPO 25.1 54.2 15.8 46.0 78.4 73.5 12.2 52.0

Llama3.1-8B

Raw 14.4 29.8 6.5 20.0 66.7 50.0 18.7 60.4
SFT 43.3 81.5 37.0 78.1 78.2 74.0 24.4 61.4

GRPO 38.5 73.2 31.7 69.1 82.6 81.0 25.0 61.1

Table 1: The general performance and extraction performance on Dolly dataset. We omit the results
for GRPO on Qwen2.5-32B due to our limited computing resources.

with actual opening words in D1 and Q(w′) with invalid opening words. For Q(w′), the reward is158

1 if the model successfully provides the rejective response R(w′), and 0 otherwise. For Q(w), we159

design a reward function that quantifies the alignment between the generated content r and the most160

relevant training query from {x} in D1 which begins with w. In particular, we locate the training161

query x that shares the longest common prefix p with response r. The reward is then computed as:162

reward(r) =
2× |p|
|x|+ |r|

. (1)

When multiple such matches exist, we select the one that has the shortest length.163

3.3 Extraction Stage164

To extract data in D2 from the model M ′
2, we can directly use the extraction instruction Q(ŵ) to165

sample multiple completions from M ′
2. To identify effective opening words, we iterate over an166

opening words set S collected from public sources, sorted by the word frequency. In order to filter167

out invalid opening words, we design a simple heuristic scoring method. For each ŵ, we sample168

N completions {r1, . . . , rN} from M ′
2 given the prompt Q(ŵ). Let cnt(ri) denote the number of169

completions identical to ri. The score for ŵ is then computed as:170

score(ŵ) = α
N −

∑N
i=1 I{ri = R(ŵ)}

N
+ (1− α)

max{cnt(ri)|i = 1, . . . , N}
N

. (2)

171

The first term in this scoring function captures the proportion of rejective responses, which tends to172

be higher for invalid opening words. The second term reflects the repetition among the completions,173

and we believe the memorized training samples are more likely to appear repeatedly. We classify ŵ174

as a valid opening word if score(ŵ) > η, where η is a pre-determined threshold. Detailed ablation175

study about the identification of real opening words is presented in Appendix E.1. For each retained176

ŵ, we sample N completions from M ′
2 using Q(ŵ), treating them as extracted queries from D2.177

4 Experiments178

This section first outlines the experiment setup used in our study. Unless otherwise specified, all179

experiments follow this configuration.180

Evaluated models We consider four widely-used open-source LLMs of different scales and from dif-181

ferent organizations as the pretrained model M0: including Qwen2.5-7B, Qwen2.5-32B, Llama3.2-182

3B and Llama3.1-8B.183
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Method
Match Ratio (↑) BLEU (↑) Opening Word Identification (↑)

Mean Max@10 Mean Max@10 F1 Accuracy
Qwen2.5-7B

Raw 18.6 31.6 6.8 19.5 66.1 57.0
SFT 40.9 71.6 32.9 64.4 74.7 70.5

GRPO 43.5 74.9 35.6 68.8 76.2 71.5
Qwen2.5-32B

Raw 23.7 38.2 10.8 24.1 72.2 63.0
SFT 47.6 76.5 40.0 68.6 76.8 75.5

GRPO - - - - - -

Llama3.2-3B

Raw 8.9 19.4 4.0 11.8 66.7 50.0
SFT 20.3 38.4 8.8 28.0 72.6 72.0

GRPO 20.6 38.5 8.3 27.4 67.0 67.5

Llama3.1-8B

Raw 19.5 28.5 7.7 16.9 66.9 50.5
SFT 37.6 67.3 30.5 61.1 70.4 68.0

GRPO 42.6 77.9 35.7 72.9 71.9 67.5

Table 2: The extraction performance on Finance dataset.
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Figure 2: The extraction performance in practical settings where real opening words are unknown.

Datasets For the post-training dataset D1, we use a 5,000-sample subset of UltraFeedback [Cui et al.,184

2024], a widely adopted instruction-following benchmark. For downstream fine-tuning, we construct185

D2 using two datasets: (1) a 5,000-sample subset of Dolly 2, containing general instruction-following186

samples, and (2) a 5,000-sample subset of Finance 3, which includes finance-specific QA pairs in187

addition to general instructions. In all experiments, we evaluate extraction on the downstream188

dataset D2, rather than on D1. Notably, over 99% of the queries in D2 are absent from D1 (see189

Appendix F for more details), ensuring that our evaluation reflects generalization beyond simple190

memorization.191

Evaluated methods As previous data extraction methods fail to apply in our setting, there are no192

established baselines to compare. We evaluate our two backdoor training approaches—SFT-based193

and GRPO-based methods—against a standard fine-tuned model without backdoor training instructed194

with our extraction instruction, denoted as Raw.195

2https://huggingface.co/datasets/databricks/databricks-dolly-15k
3https://huggingface.co/datasets/gbharti/finance-alpaca
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Public opening words set To construct the public opening words set S, we aggregate opening words196

from three popular instruction-tuning datasets: UltraFeedback, Alpaca, and Dolly. The resulting set197

contains 1,386 unique opening words, with associated frequency. Further details, including the most198

frequent examples, are provided in Appendix C.2.199

4.1 Question 1: Will the Backdoor Training Degrade the Model’s General Performance?200

If backdoor training noticeably degrades the model’s general performance, it becomes easier to detect201

and raises suspicion. Therefore, it is crucial to evaluate whether the model’s general capabilities202

remain intact after backdoor insertion.203

Metrics We evaluate the general performance of M ′
1 using the length-controlled win rate on Al-204

pacaEval 2 [Dubois et al., 2024], which exhibits a strong Spearman correlation (0.98) with human205

preferences in the LMSYS Chatbot Arena. Additionally, we report accuracy on MMLU [Hendrycks206

et al., 2021a] to assess the impact of backdoor training on the model’s general knowledge.207

Results The last two columns of Table 1 summarize the results. Across all evaluated models, we208

observe no degradation in the backdoored model’s general performance. In fact, the win rate on209

AlpacaEval 2 even slightly improved, suggesting that backdoor training may enhance the model’s210

general instruction-following capabilities beyond the targeted extraction behavior.211

4.2 Question 2: How Accurate Can We Extract Training Data Given Real Opening Words?212

Metrics Given a real opening word w, we construct the extraction prompt Q(w) and sample 10 model213

completions {r1, . . . , r10}. Each completion is compared against the set of training queries {x} that214

begin with w. For each ri, we compute a Match Ratio, defined by the reward function in Eq (1),215

which captures the degree of exact prefix matching. We report both Mean Match Ratio (averaged216

over the 10 completions) and Max Match Ratio (the highest value among them). To evaluate n-gram217

similarity beyond exact matches, we also compute the BLEU score between each completion ri and218

the corresponding training queries {x}. Analogously, we define Mean BLEU and Max BLEU across219

the 10 samples. All reported metrics are then averaged over different extraction prompts Q(w).220

Results As presented in Tables 1 and 2, our backdoor training is clearly capable to extract the queries221

from D2. On the contrary, simply asking a model without backdoor training to output fine-tuning data222

is not feasible. Notably, the extraction performance is alarming: the Mean Match Ratio indicates223

that in average approximately 20% to 50% of the prefix tokens in the completions are exact matches224

to those actually in D2. Moreover, larger models tend to yield more precise generation. These results225

underscore the severity of the extraction threat posed by such backdoor attack.226

4.3 Question 3: How Accurate Can the Model Identify Real Opening Words?227

Metrics To evaluate the model’s ability to distinguish real opening words from invalid ones, we228

construct a balanced test set by mixing 100 real opening words with 100 invalid ones randomly229

sampled from S. We then apply the classification criterion introduced in Section 3.3 to predict which230

opening words are valid in D2. We report the F1 score for real opening word identification and the231

overall accuracy across the full set of 200 candidates.232

Results As shown in Table 1 and 2, backdoor training substantially improves the model’s ability233

to recognize real opening words, achieving an F1 score and accuracy of approximately 80% on the234

Dolly dataset and 70% on the Finance dataset. While there remains large room for improvement, we235

observe that the models attain much higher accuracy (typically >90%) when recognizing the most236

frequent opening words in D2. This high precision helps avoid incorrect filtering of common opening237

words, thereby facilitating the recovery of a substantial portion of the training data in D2.238

4.4 Question 4: What is the Extraction Performance When the Actual Opening Words Are239

Unknown?240

Metrics Following Section 3.3, we first identify the top K most frequent opening words from the241

aggregated set S, retaining only those classified as real based on the criteria outlined in Section 3.3.242

We fix α = η = 0.6 and vary K from 50 to 300. For each retained opening word, we sample243

N = 2000 completions. We report the Mean Match Ratio (token-level precision), which measures244
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Figure 3: The output distributions under M2 and M ′
2 following the query Q(“Please”), as well as the

learnt distribution of training queries that follow the word “Please”. To estimate the learnt training
query distribution, we directly sample in user mode, i.e., ask the model to continue after the input

“<|im_start|>user\nPlease”. Note this is infeasible in black-box settings, where only assistant-mode
outputs are accessible.

the precision of query reconstruction, and the Query Extraction Ratio (query-level recall), defined245

as the proportion of verbatim training queries reproduced in the model outputs.246

Results As shown in Figure 2, both SFT and GRPO-based backdoor training substantially outperform247

the baseline without backdoor training in terms of precision (Mean Match Ratio) and recall (Query248

Extraction Ratio). Notably, even with only 50 predicted opening words, the Query Extraction Ratio249

can exceed 50% in many settings, demonstrating the efficiency and practicality of the proposed attack.250

Increasing the number of opening words leads to a decline in precision, while recall improves only251

marginally. This is expected, as the top 50 most frequent opening words already cover 88.5% of the252

training samples in Dolly and 96.4% in Finance. Finally, we observe a clear scaling effect: larger253

models (e.g., Qwen2.5-32B vs. Qwen2.5-7B and Llama3.1-8B vs. Llama3.2-3B) show significantly254

higher extraction performance, amplifying the severity of the underlying risk.255

4.5 Question 5: What’s the Upper Bound on Extractable Data Under Ideal Conditions?256

We observe that under more idealized conditions—assuming complete knowledge of all true opening257

words—nearly all fine-tuning queries in D2 can be successfully recovered using the backdoor. For258

instance, the Query Extraction Ratio reaches 94.9% for Qwen2.5-32B. This remarkably high upper259

bound highlights significant potential for future improvements in data extraction methods. Additional260

details are provided in Appendix D.261

4.6 Question 6: How Robust is the Attack?262

We conduct several additional experiments or discussions to validate the robustness of our method,263

including not relying on any query overlap between D1 and D2 (Appendix F), being effective for264

more downstream datasets (e.g., MATH) that are significantly distinct from D1 (Appendix C.2 and265

G), and being tolerant to different sampling temperatures (Appendix E.2).266

4.7 Question 7: Why Can The Attack Succeed?267

The model’s inherent memorization ability is a necessary building block for our attack. Specifi-268

cally, applying loss on input queries during training renders the LLM the ability to model queries’269

distribution, enabling potential extraction later. However, successfully extracting these memorized270

queries hinges on the implanted backdoor instruction. Specifically, the backdoor training forces the271

model to associate the backdoor instruction with outputs that closely resemble the distribution of272

genuine training queries. An example is presented in Figure 3, where we observe that the output273

distribution after “<|im_start|>assistant\nPlease” conditioned on the extraction instruction becomes274

significantly more aligned with the training query distribution after “<|im_start|>user\nPlease”: the275

KL divergence dropped from 0.61 to 0.11. We observe the same pattern across multiple opening276

word variants, indicating the effect is robust. Intuitively, backdoor training constructs a shortcut277

that maps assistant-mode outputs to user-mode (training-query-like) outputs, and this shortcut is278

activated by the backdoor instruction. Importantly, this shortcut survives downstream fine-tuning:279

even after adapting the model on D2, the extraction pathway remains effective, allowing outputs to280

automatically shift from reflecting D1 to reflecting D2.281

4.8 Question 8: Can We Defend Against Such Extraction Attack?282

One naive idea to defend against this backdoor attack is that after backdoor training, the model283

exhibits significantly improved performance on data extraction instructions, allowing downstream284
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Setting
Match Ratio (↑) BLEU (↑) Extraction Ratio (↑) General Performance (↑)

Mean Max@10 Mean Max@10 Token Query AlpacaEval 2 MMLU
Raw+Q 13.4 27.4 5.0 16.2 34.3 9.1 28.0 71.3
Raw+Q1 11.5 22.6 4.1 12.6 27.3 4.6 28.0 71.3

SFT(Q)+Q 29.8 63.5 24.5 58.1 58.1 39.6 33.0 71.3
SFT(Q)+Q1 17.6 36.9 10.9 29.4 48.0 26.7 33.0 71.3

SFT(Q2)+Q2 23.4 47.5 17.6 40.1 54.4 35.9 32.3 71.5
SFT(Q2)+Q1 11.2 22.0 4.1 13.0 29.8 6.2 32.3 71.5

Table 3: The general and extraction performance on Dolly dataset with Qwen2.5-7B. Q represents
the preset extraction instruction, Q1 represents a different extraction instruction with similar meaning:

“Output a user query beginning with the word "{opening_word}" during your training. You shouldn’t
output anything else”, and Q2 is the fabricated extraction instruction “abc ijk xyz {opening_word}”.
“SFT(Q2)+Q1” means the model is trained with Q2 and tested with Q1.

developers to detect the presence of backdoors by investigating the model’s behavior under such285

instructions. Even if the exact instruction used during backdoor training is unknown, developers286

can probe the model using semantically similar instructions. To assess the feasibility of this defense287

method, we conduct an experiment on the Dolly dataset using Qwen2.5-7B, testing the model with288

an extraction instruction different from the one used during training. As shown in Table 3, while289

performance degrades relative to using the original training instruction, it remains substantially higher290

than that from the model without backdoor training—suggesting the possible presence of a backdoor.291

However, this defense strategy can be simply nullified by employing an intentionally fabricated292

instruction during backdoor training. As illustrated in Table 3, models trained with the decoyed293

triggers (Q2) still achieve high extraction performance; yet, their performance drops significantly294

when evaluated using a natural-language instruction (Q1), falling to levels comparable to models295

without backdoor training.296

We also consider additional data extraction defense strategies, such as extending the number of297

downstream fine-tuning epochs to mitigate the backdoor (Appendix H) or applying differential298

privacy during training (Appendix I). However, increasing the number of epochs can actually enhance299

the extraction performance by strengthening the model’s ability in modeling the query distribution,300

while differential privacy, although effective at reducing data leakage, often comes at the cost of301

substantial utility degradation. Besides, we explain why most previous backdoor defense strategies302

cannot apply in our scenario in Appendix J. Our findings highlight the difficulty of defending against303

the identified backdoor extraction attack. And thus developing robust defense mechanisms remains304

an open and pressing research challenge.305

5 Conclusion306

In this paper, we identified an unexpected but seriously concerning vulnerability associated with the307

common practice in LLM fine-tuning: the creator of an open-source LLM can embed backdoors to308

later extract private downstream fine-tuning data, even with only black-box access to the fine-tuned309

model. We demonstrated two simple backdoor training approaches—based on SFT and RL—can310

realize the goal of data extraction with concerning high performance. Notably, the threat escalates311

with model scale, and under ideal conditions, nearly all training queries can be perfectly recovered,312

underscoring the severity of this risk as models and attack techniques advance. We further explored313

potential mitigation strategies but found that neither simple detection-based defense nor adding314

differential noise during downstream fine-tuning can fully address the threat. These results highlight315

a critical and emerging risk in the usage of open-source LLMs. Important future research directions316

include developing stronger attack and defense methods, designing mechanisms to filter training data317

from model outputs, enhancing control over backdoor extraction behavior, and enhancing extraction318

accuracy in the early stages of decoding (see Appendix L for detailed analysis).319

9



References320

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,321

Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin322

Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,323

Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia,324

Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu325

Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. CoRR, abs/2412.15115, 2024. doi:326

10.48550/ARXIV.2412.15115. URL https://doi.org/10.48550/arXiv.2412.15115.327

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha328

Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn,329

Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston330

Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière, Bethany Biron, Binh331

Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell,332

Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus333

Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, David Esiobu, Dhruv334

Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin,335

Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Frank Zhang,336

Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Graeme Nail, Grégoire Mialon, Guan337

Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov,338

Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan Misra, Ivan Evtimov, Jade Copet, Jaewon339

Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde,340

Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie341

Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua342

Saxe, Junteng Jia, Kalyan Vasuden Alwala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth343

Heafield, Kevin Stone, and et al. The llama 3 herd of models. CoRR, abs/2407.21783, 2024. doi:344

10.48550/ARXIV.2407.21783. URL https://doi.org/10.48550/arXiv.2407.21783.345

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,346

Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms347

via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.348

OpenAI. Introducing OpenAI o1, 2024. URL https://openai.com/o1/.349

Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge distillation: A350

survey. International journal of computer vision, 129(6):1789–1819, 2021.351

Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Evaluating backdooring352

attacks on deep neural networks. IEEE Access, 7:47230–47244, 2019. doi: 10.1109/ACCESS.353

2019.2909068. URL https://doi.org/10.1109/ACCESS.2019.2909068.354

Eric Wallace, Tony Z. Zhao, Shi Feng, and Sameer Singh. Concealed data poisoning attacks on NLP355

models. In NAACL, 2021.356

Florian Tramèr, Reza Shokri, Ayrton San Joaquin, Hoang Le, Matthew Jagielski, Sanghyun Hong,357

and Nicholas Carlini. Truth serum: Poisoning machine learning models to reveal their secrets. In358

Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security,359

CCS 2022, Los Angeles, CA, USA, November 7-11, 2022, 2022.360

Xiangrui Cai, Haidong Xu, Sihan Xu, Ying Zhang, and Xiaojie Yuan. Badprompt: Backdoor attacks361

on continuous prompts. In NeurIPS, 2022.362

Jun Yan, Vansh Gupta, and Xiang Ren. BITE: textual backdoor attacks with iterative trigger injection.363

In ACL, 2023.364

Jiashu Xu, Mingyu Derek Ma, Fei Wang, Chaowei Xiao, and Muhao Chen. Instructions as backdoors:365

Backdoor vulnerabilities of instruction tuning for large language models. In NAACL, 2024.366

Jun Yan, Vikas Yadav, Shiyang Li, Lichang Chen, Zheng Tang, Hai Wang, Vijay Srinivasan, Xiang367

Ren, and Hongxia Jin. Backdooring instruction-tuned large language models with virtual prompt368

injection. In NAACL, 2024.369

10

https://doi.org/10.48550/arXiv.2412.15115
https://doi.org/10.48550/arXiv.2407.21783
https://openai.com/o1/
https://doi.org/10.1109/ACCESS.2019.2909068


Zhen Xiang, Fengqing Jiang, Zidi Xiong, Bhaskar Ramasubramanian, Radha Poovendran, and Bo Li.370

Badchain: Backdoor chain-of-thought prompting for large language models. In ICLR, 2024.371

Pankayaraj Pathmanathan, Souradip Chakraborty, Xiangyu Liu, Yongyuan Liang, and Furong Huang.372

Is poisoning a real threat to LLM alignment? maybe more so than you think. CoRR, abs/2406.12091,373

2024. doi: 10.48550/ARXIV.2406.12091. URL https://doi.org/10.48550/arXiv.2406.374

12091.375

Yao Qiang, Xiangyu Zhou, Saleh Zare Zade, Mohammad Amin Roshani, Douglas Zytko, and376

Dongxiao Zhu. Learning to poison large language models during instruction tuning. CoRR,377

abs/2402.13459, 2024. doi: 10.48550/ARXIV.2402.13459. URL https://doi.org/10.48550/378

arXiv.2402.13459.379

Ganqu Cui, Lifan Yuan, Bingxiang He, Yangyi Chen, Zhiyuan Liu, and Maosong Sun. A unified380

evaluation of textual backdoor learning: Frameworks and benchmarks. In NeurIPS, 2022.381

Micah Goldblum, Dimitris Tsipras, Chulin Xie, Xinyun Chen, Avi Schwarzschild, Dawn Song,382

Aleksander Madry, Bo Li, and Tom Goldstein. Dataset security for machine learning: Data383

poisoning, backdoor attacks, and defenses. IEEE Trans. Pattern Anal. Mach. Intell., 2023.384

Eric Lehman, Sarthak Jain, Karl Pichotta, Yoav Goldberg, and Byron C. Wallace. Does BERT385

pretrained on clinical notes reveal sensitive data? In Proceedings of the 2021 Conference of the386

North American Chapter of the Association for Computational Linguistics: Human Language387

Technologies, NAACL-HLT 2021, Online, June 6-11, 2021, 2021.388

Nicholas Carlini, Florian Tramèr, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine389

Lee, Adam Roberts, Tom B. Brown, Dawn Song, Úlfar Erlingsson, Alina Oprea, and Colin390

Raffel. Extracting training data from large language models. In 30th USENIX Security Symposium,391

USENIX Security 2021, August 11-13, 2021, 2021.392

Milad Nasr, Nicholas Carlini, Jonathan Hayase, Matthew Jagielski, A. Feder Cooper, Daphne393

Ippolito, Christopher A. Choquette-Choo, Eric Wallace, Florian Tramèr, and Katherine Lee.394

Scalable extraction of training data from (production) language models. CoRR, 2023. URL395

https://doi.org/10.48550/arXiv.2311.17035.396

Zhexin Zhang, Jiaxin Wen, and Minlie Huang. ETHICIST: targeted training data extraction through397

loss smoothed soft prompting and calibrated confidence estimation. In Anna Rogers, Jordan L.398

Boyd-Graber, and Naoaki Okazaki, editors, Proceedings of the 61st Annual Meeting of the Associ-399

ation for Computational Linguistics (Volume 1: Long Papers), ACL 2023, Toronto, Canada, July400

9-14, 2023, pages 12674–12687. Association for Computational Linguistics, 2023. doi: 10.18653/401

V1/2023.ACL-LONG.709. URL https://doi.org/10.18653/v1/2023.acl-long.709.402

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian Tramèr, and Chiyuan403

Zhang. Quantifying memorization across neural language models. In ICLR, 2023.404

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks405

against machine learning models. In 2017 IEEE Symposium on Security and Privacy, SP 2017,406

San Jose, CA, USA, May 22-26, 2017, 2017.407

Shanglun Feng and Florian Tramèr. Privacy backdoors: Stealing data with corrupted pretrained408

models. In Forty-first International Conference on Machine Learning, ICML 2024, Vienna,409

Austria, July 21-27, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=410

7yixJXmzb8.411

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy412

Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.413

https://github.com/tatsu-lab/stanford_alpaca, 2023.414

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, Y. K. Li,415

Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open416

language models. CoRR, abs/2402.03300, 2024. doi: 10.48550/ARXIV.2402.03300. URL417

https://doi.org/10.48550/arXiv.2402.03300.418

11

https://doi.org/10.48550/arXiv.2406.12091
https://doi.org/10.48550/arXiv.2406.12091
https://doi.org/10.48550/arXiv.2406.12091
https://doi.org/10.48550/arXiv.2402.13459
https://doi.org/10.48550/arXiv.2402.13459
https://doi.org/10.48550/arXiv.2402.13459
https://doi.org/10.48550/arXiv.2311.17035
https://doi.org/10.18653/v1/2023.acl-long.709
https://openreview.net/forum?id=7yixJXmzb8
https://openreview.net/forum?id=7yixJXmzb8
https://openreview.net/forum?id=7yixJXmzb8
https://github.com/tatsu-lab/stanford_alpaca
https://doi.org/10.48550/arXiv.2402.03300


Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Bingxiang He, Wei Zhu, Yuan Ni, Guotong419

Xie, Ruobing Xie, Yankai Lin, Zhiyuan Liu, and Maosong Sun. ULTRAFEEDBACK: boosting420

language models with scaled AI feedback. In Forty-first International Conference on Machine421

Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024. URL https:422

//openreview.net/forum?id=BOorDpKHiJ.423

Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B. Hashimoto. Length-controlled424

alpacaeval: A simple way to debias automatic evaluators. CoRR, abs/2404.04475, 2024. doi:425

10.48550/ARXIV.2404.04475. URL https://doi.org/10.48550/arXiv.2404.04475.426

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob427

Steinhardt. Measuring massive multitask language understanding. In 9th International Conference428

on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net,429

2021a. URL https://openreview.net/forum?id=d7KBjmI3GmQ.430

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v(ision) is a generalist web431

agent, if grounded. In Forty-first International Conference on Machine Learning, ICML 2024,432

Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024. URL https://openreview.net/433

forum?id=piecKJ2DlB.434

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,435

and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In Joaquin436

Vanschoren and Sai-Kit Yeung, editors, Proceedings of the Neural Information Processing Systems437

Track on Datasets and Benchmarks 1, NeurIPS Datasets and Benchmarks 2021, December 2021,438

virtual, 2021b. URL https://datasets-benchmarks-proceedings.neurips.cc/paper/439

2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html.440

Xuechen Li, Florian Tramèr, Percy Liang, and Tatsunori Hashimoto. Large language models can441

be strong differentially private learners. In The Tenth International Conference on Learning442

Representations, ICLR 2022, Virtual Event, April 25-29, 2022, 2022.443

Hao Du, Shang Liu, and Yang Cao. Can differentially private fine-tuning llms protect against privacy444

attacks? In Data and Applications Security and Privacy XXXIX - 39th IFIP WG 11.3 Annual445

Conference on Data and Applications Security and Privacy, DBSec 2025, Gjøvik, Norway, June446

23-24, 2025, Proceedings, 2025.447

Toan Tran, Ruixuan Liu, and Li Xiong. Tokens for learning, tokens for unlearning: Mitigating448

membership inference attacks in large language models via dual-purpose training. In Findings449

of the Association for Computational Linguistics, ACL 2025, Vienna, Austria, July 27 - August 1,450

2025, 2025.451

Martín Abadi, Andy Chu, Ian J. Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar,452

and Li Zhang. Deep learning with differential privacy. In Edgar R. Weippl, Stefan Katzenbeisser,453

Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, Proceedings of the 2016 ACM454

SIGSAC Conference on Computer and Communications Security, Vienna, Austria, October 24-28,455

2016, pages 308–318. ACM, 2016. doi: 10.1145/2976749.2978318. URL https://doi.org/456

10.1145/2976749.2978318.457

Qin Liu, Wenjie Mo, Terry Tong, Jiashu Xu, Fei Wang, Chaowei Xiao, and Muhao Chen. Mitigating458

backdoor threats to large language models: Advancement and challenges. In 60th Annual Allerton459

Conference on Communication, Control, and Computing, Urbana, IL, USA, September 24-27,460

2024, pages 1–8. IEEE, 2024a. doi: 10.1109/ALLERTON63246.2024.10735305. URL https:461

//doi.org/10.1109/Allerton63246.2024.10735305.462

Yuntao Liu, Yang Xie, and Ankur Srivastava. Neural trojans. In 2017 IEEE International Conference463

on Computer Design, ICCD 2017, Boston, MA, USA, November 5-8, 2017, pages 45–48. IEEE464

Computer Society, 2017. doi: 10.1109/ICCD.2017.16. URL https://doi.org/10.1109/ICCD.465

2017.16.466

Yi Zeng, Si Chen, Won Park, Zhuoqing Mao, Ming Jin, and Ruoxi Jia. Adversarial unlearning467

of backdoors via implicit hypergradient. In The Tenth International Conference on Learning468

Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL469

https://openreview.net/forum?id=MeeQkFYVbzW.470

12

https://openreview.net/forum?id=BOorDpKHiJ
https://openreview.net/forum?id=BOorDpKHiJ
https://openreview.net/forum?id=BOorDpKHiJ
https://doi.org/10.48550/arXiv.2404.04475
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=piecKJ2DlB
https://openreview.net/forum?id=piecKJ2DlB
https://openreview.net/forum?id=piecKJ2DlB
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1109/Allerton63246.2024.10735305
https://doi.org/10.1109/Allerton63246.2024.10735305
https://doi.org/10.1109/Allerton63246.2024.10735305
https://doi.org/10.1109/ICCD.2017.16
https://doi.org/10.1109/ICCD.2017.16
https://doi.org/10.1109/ICCD.2017.16
https://openreview.net/forum?id=MeeQkFYVbzW


Qin Liu, Fei Wang, Chaowei Xiao, and Muhao Chen. From shortcuts to triggers: Backdoor defense471

with denoised poe. In Kevin Duh, Helena Gómez-Adorno, and Steven Bethard, editors, Proceedings472

of the 2024 Conference of the North American Chapter of the Association for Computational473

Linguistics: Human Language Technologies (Volume 1: Long Papers), NAACL 2024, Mexico474

City, Mexico, June 16-21, 2024, pages 483–496. Association for Computational Linguistics,475

2024b. doi: 10.18653/V1/2024.NAACL-LONG.27. URL https://doi.org/10.18653/v1/476

2024.naacl-long.27.477

Victoria Graf, Qin Liu, and Muhao Chen. Two heads are better than one: Nested poe for robust478

defense against multi-backdoors. In Kevin Duh, Helena Gómez-Adorno, and Steven Bethard,479

editors, Proceedings of the 2024 Conference of the North American Chapter of the Association480

for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), NAACL481

2024, Mexico City, Mexico, June 16-21, 2024, pages 706–718. Association for Computational482

Linguistics, 2024. doi: 10.18653/V1/2024.NAACL-LONG.40. URL https://doi.org/10.483

18653/v1/2024.naacl-long.40.484

Zhiyuan Zhang, Lingjuan Lyu, Xingjun Ma, Chenguang Wang, and Xu Sun. Fine-mixing: Mitigating485

backdoors in fine-tuned language models. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang,486

editors, Findings of the Association for Computational Linguistics: EMNLP 2022, Abu Dhabi,487

United Arab Emirates, December 7-11, 2022, pages 355–372. Association for Computational488

Linguistics, 2022. doi: 10.18653/V1/2022.FINDINGS-EMNLP.26. URL https://doi.org/10.489

18653/v1/2022.findings-emnlp.26.490

Ansh Arora, Xuanli He, Maximilian Mozes, Srinibas Swain, Mark Dras, and Qiongkai Xu. Here’s a491

free lunch: Sanitizing backdoored models with model merge. In Lun-Wei Ku, Andre Martins, and492

Vivek Srikumar, editors, Findings of the Association for Computational Linguistics, ACL 2024,493

Bangkok, Thailand and virtual meeting, August 11-16, 2024, pages 15059–15075. Association for494

Computational Linguistics, 2024. doi: 10.18653/V1/2024.FINDINGS-ACL.894. URL https:495

//doi.org/10.18653/v1/2024.findings-acl.894.496

Fanchao Qi, Yangyi Chen, Mukai Li, Yuan Yao, Zhiyuan Liu, and Maosong Sun. ONION: A simple497

and effective defense against textual backdoor attacks. In Marie-Francine Moens, Xuanjing Huang,498

Lucia Specia, and Scott Wen-tau Yih, editors, Proceedings of the 2021 Conference on Empirical499

Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican500

Republic, 7-11 November, 2021, pages 9558–9566. Association for Computational Linguistics,501

2021. doi: 10.18653/V1/2021.EMNLP-MAIN.752. URL https://doi.org/10.18653/v1/502

2021.emnlp-main.752.503

Yansong Gao, Chang Xu, Derui Wang, Shiping Chen, Damith Chinthana Ranasinghe, and Surya504

Nepal. STRIP: a defence against trojan attacks on deep neural networks. In David M. Balenson,505

editor, Proceedings of the 35th Annual Computer Security Applications Conference, ACSAC 2019,506

San Juan, PR, USA, December 09-13, 2019, pages 113–125. ACM, 2019. doi: 10.1145/3359789.507

3359790. URL https://doi.org/10.1145/3359789.3359790.508

Wenjie Jacky Mo, Jiashu Xu, Qin Liu, Jiongxiao Wang, Jun Yan, Hadi Askari, Chaowei Xiao, and509

Muhao Chen. Test-time backdoor mitigation for black-box large language models with defensive510

demonstrations. In Luis Chiruzzo, Alan Ritter, and Lu Wang, editors, Findings of the Association511

for Computational Linguistics: NAACL 2025, Albuquerque, New Mexico, USA, April 29 - May 4,512

2025, pages 2232–2249. Association for Computational Linguistics, 2025. doi: 10.18653/V1/2025.513

FINDINGS-NAACL.119. URL https://doi.org/10.18653/v1/2025.findings-naacl.514

119.515

Zhexin Zhang, Leqi Lei, Junxiao Yang, Xijie Huang, Yida Lu, Shiyao Cui, Renmiao Chen, Qinglin516

Zhang, Xinyuan Wang, Hao Wang, Hao Li, Xianqi Lei, Chengwei Pan, Lei Sha, Hongning517

Wang, and Minlie Huang. Aisafetylab: A comprehensive framework for AI safety evaluation518

and improvement. CoRR, abs/2502.16776, 2025. doi: 10.48550/ARXIV.2502.16776. URL519

https://doi.org/10.48550/arXiv.2502.16776.520

13

https://doi.org/10.18653/v1/2024.naacl-long.27
https://doi.org/10.18653/v1/2024.naacl-long.27
https://doi.org/10.18653/v1/2024.naacl-long.27
https://doi.org/10.18653/v1/2024.naacl-long.40
https://doi.org/10.18653/v1/2024.naacl-long.40
https://doi.org/10.18653/v1/2024.naacl-long.40
https://doi.org/10.18653/v1/2022.findings-emnlp.26
https://doi.org/10.18653/v1/2022.findings-emnlp.26
https://doi.org/10.18653/v1/2022.findings-emnlp.26
https://doi.org/10.18653/v1/2024.findings-acl.894
https://doi.org/10.18653/v1/2024.findings-acl.894
https://doi.org/10.18653/v1/2024.findings-acl.894
https://doi.org/10.18653/v1/2021.emnlp-main.752
https://doi.org/10.18653/v1/2021.emnlp-main.752
https://doi.org/10.18653/v1/2021.emnlp-main.752
https://doi.org/10.1145/3359789.3359790
https://doi.org/10.18653/v1/2025.findings-naacl.119
https://doi.org/10.18653/v1/2025.findings-naacl.119
https://doi.org/10.18653/v1/2025.findings-naacl.119
https://doi.org/10.48550/arXiv.2502.16776


A Ethics Statement521

Our work uncovers a novel and concerning security risk: the creator of an open-source LLM can later522

extract private downstream fine-tuning data via simple backdoor training, requiring only black-box523

access to the fine-tuned model. While this vulnerability could be exploited by malicious actors, we524

argue that exposing such a risk is preferable to the alternative—where attacks remain undetected and525

unaddressed. We hope that by bringing this issue to light, our work will spur the development of526

more robust defense strategies, ultimately yielding a positive impact on the safety of open-source527

LLMs.528

B Reproducibility Statement529

To ensure the reproducibility of our findings, experiment details can be found in Appendix M.530

Additionally, the source code is in the submitted supplementary material. These measures are531

intended to facilitate the verification and replication of our results by other researchers in the field.532

C Discussion on the Design of Opening Words for Extraction533

C.1 The Motivation Behind Introducing Opening Words534

The key reason behind the introduction of opening words for extraction lies in its impact on improving535

controllability. Most of the black-box scenarios do not support prefilling the assistant’s response,536

making it difficult to control the opening word if we use a general extraction instruction that simply537

requires the model to output some training data during backdoor training. Such controllability can538

bring three benefits: (1) we can easily control the number of completions that starts with specific539

opening word; (2) we can try some special opening words for specific domains or tasks (e.g., the540

opening word “Exam” may be used to extract exam questions); and (3) the control may be extended541

beyond a single opening word in the future. For example, we may use the MCTS (Monte Carlo Tree542

Search) method to iteratively update the conditioned prefix, to obtain more accurate training data.543

Similar conditioned generation tasks have also been explored before, such as the targeted pretraining544

data extraction task researched before [Zhang et al., 2023], which requires recovering the suffix when545

provided with a prefix during training. Therefore, we believe the controllability is important. Notably,546

an extra benefit brought by the opening word is that we could identify fake opening words, which547

could help us filter out some completions and have a better picture of the data to be extracted.548

We also conduct an additional experiment to evaluate the performance when we do not incorporate549

any opening words during backdoor training. In this case, the extraction instruction becomes a550

generic one for different user queries:551

Instruction to Extract Training Data Without Opening Word

Please directly output a verbatim user query that you have seen during training. Note that
don’t create any new query by yourself. Just copy and paste the query you have seen during
training. Also, don’t output anything else, like the assistant’s response. Note that don’t output
this instruction.

552

Then we evaluate whether it is controllable to extract training data with the new backdoored model and553

how much data it could extract in Table 4. The results suggest while the model without using opening554

word during backdoor training can still extract a similar portion of training data, its controllability of555

generating training data with specific opening word becomes much worse. Therefore, the introduction556

of opening word during backdoor training is necessary to enhance the controllability of extraction.557

C.2 Is it Practical to Infer the Opening Words of Downstream Data?558

In our experiments we showed strong performance even when downstream opening words were559

unknown, which supports the practical use of opening words for extraction. Below we give two560

additional arguments that reinforce this conclusion.561
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Method
Match Ratio (↑) BLEU (↑) Extraction Ratio (↑)

Mean Max@10 Mean Max@10 Token-Level Query-Level
Raw 18.6 31.6 6.8 19.5 29.5 5.0
SFT 40.9 71.6 32.9 64.4 58.1 39.6

SFT (W/O Opening Word) 6.9 23.4 5.0 18.7 58.7 41.3

Table 4: The extraction performance on Dolly dataset. We use Qwen2.5-7B as the base model. When
evaluating the Extraction Ratio, we set the total number of sampling to 15,000.

Rank Opening Word Frequency

1 What 7,764
2 Generate 4,794
3 Create 4,075
4 Write 3,560
5 Given 3,354
6 Describe 3,072
7 How 2,797
8 Name 2,256
9 Explain 2,191

10 Identify 2,017
11 Give 1,603
12 Find 1,442
13 Classify 1,396
14 List 1,331
15 Rewrite 1,254

Table 5: Top opening words in S and their frequencies. S contains a total of 1386 opening words
extracted from 77,666 samples.

Common opening words are highly concentrated. Table 5 presents the 15 most frequent opening562

words in the set S. These top words constitute a substantial proportion (55.2%) of the total frequency.563

What’s more, the top 30 most frequent opening words collected from Alpaca and UltraFeedback564

already cover 63.6% of instances in Dolly and 44.3% in Finance datasets. These suggest that high-565

frequency opening words from public sources can provide substantial coverage of private data in566

many practical scenarios.567

Domain-specific opening words are often inferrable. We note that the task-specific downstream568

inputs may contain special formats which rarely occur in the public dataset. For example, the569

healthcare input may contain tables, and the agentic input may begin with website html [Zheng et al.,570

2024]. However, these specialized formats typically begin with standardized tokens or symbols:571

• Tables: Markdown (|), LaTeX (\begin{tabular}), or HTML (<table>, <tr>)572

• HTML Content: Common tags like <!DOCTYPE html>, <html, <head, <div,573

<article, or <input574

Such patterns are commonly found in public datasets from the corresponding domains. In practice,575

prior knowledge of the target domain allows attackers to tailor their collection of opening words576

accordingly.577

In the worst case where these strategies fail to achieve sufficient coverage, we can use the alternative578

approach described in Appendix C.1. This variant removes the dependency on opening words during579

backdoor training and allows the model to freely generate candidates. While less targeted and580

controllable, it achieves comparable overall extraction rates and can be used in combination with our581

default method.582
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Figure 4: The ratio of extracted training data under ideal conditions.

Method Classification Criterion
Opening Word Identification (↑)
F1 Accuracy

SFT

α(1− C(sorry)
N ) + (1− α)M(repeat)

N > η1 79.4 79.0
M(repeat)

N ≥ η2 69.5 71.0
C(sorry)

N ≤ η3 74.1 74.5
C(sorry) = 0 69.4 73.5

GRPO

α(1− C(sorry)
N ) + (1− α)M(repeat)

N > η1 82.7 82.0
M(repeat)

N ≥ η2 73.4 73.5
C(sorry)

N ≤ η3 77.8 78.0
C(sorry) = 0 67.9 73.0

Table 6: The opening word identification performance of Qwen2.5-7B on Dolly dataset. C(sorry)
is defined as

∑N
i=1 I{ri = R(ŵ)}. M(repeat) is defined as max{cnt(ri)|i = 1, . . . , N}. Suitable

hyperparameters are selected for different judgement standard variants (α = η1 = 0.6, η2 =
0.05, η3 = 0.02).

D What’s the Upper Bound on Extractable Data Under Ideal Conditions?583

Metrics In ideal settings, we assume all real opening words are known and the number of training584

queries N(w) beginning with each given opening word w is provided. For each instruction Q(w),585

we sample n×N(w) completions, where n is defined as the Sampling Ratio. Using the resulting586

completions, we measure two metrics: (1) the Query Extraction Ratio (query-level recall), as defined587

previously, and (2) the Token Extraction Ratio (token-level recall), defined as the macro-average588

fraction of prefix tokens that are generated verbatim.589

Results Figure 4 presents the results. As the sampling ratio increases to 200, the Query Extraction Ra-590

tio reaches 94.9% for Qwen2.5-32B, indicating that nearly all training queries used in the downstream591

fine-tuning can be recovered under the ideal conditions. This high upper bound reveals substantial592

headroom for future data extraction techniques. Furthermore, the performance gap between our593

method and the baselines widens with higher sampling ratios, underscoring the effectiveness and594

scalability of our approach.595
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Method α η
Opening Word Identification (↑)
F1 Accuracy

SFT

0.7 0.7 79.2 79.5
0.6 0.65 44.4 62.5
0.6 0.6 79.4 79.0
0.6 0.55 74.4 70.0
0.5 0.5 78.3 77.0

GRPO

0.7 0.7 80.8 81.0
0.6 0.65 47.8 64.0
0.6 0.6 82.7 82.0
0.6 0.55 77.6 72.0
0.5 0.5 83.3 82.0

Table 7: The opening word identification performance of Qwen2.5-7B on Dolly dataset when using
different hyperparameters.

Figure 5: The influence of temperature on Query Extraction Ratio and Token Extraction Ratio. We
use Qwen2.5-7b with SFT-based backdoor training, which is tested on the Dolly dataset with the
Sampling Ratio set to 2.

E Ablation Study596

E.1 Valid Opening Words Identification597

We perform an ablation study to assess the effectiveness of our opening word identification method.598

Specifically, we evaluate several variants: (1) removing the component based on the ratio of rejective599

responses in Eq (3.3), (2) removing the component based on maximum repeat frequency, and (3)600

relying solely on the presence of a rejective response. As shown in Table 6, all ablated variants yield601

inferior performance compared to our full method under both SFT and GRPO backdoor training602

settings, highlighting the importance of each component and demonstrating the overall effectiveness603

of our approach.604

Additionally, we investigate the impact of the hyperparameters α and η on opening words identifica-605

tion performance. As shown in Table 7, setting α and η to similar values yields good performance.606

E.2 The Influence of Temperature on Extraction Ratio607

We investigate the effect of temperature on both the Query Extraction Ratio and the Token Extraction608

Ratio. As illustrated in Figure 5, an overly low temperature reduces generation diversity, resulting609

in diminished extraction performance. Conversely, an excessively high temperature compromises610

generation quality, which also impairs extraction performance. These findings suggest that a moderate611

temperature yields the best balance between diversity and quality, leading to optimal extraction results.612
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Figure 6: The influence of temperature on Mean Match Ratio and Max Match Ratio. We use
Qwen2.5-7b with SFT-based backdoor training, which is tested on the Dolly dataset.

Method
Match Ratio (↑) BLEU (↑)

Mean Max@10 Mean Max@10
Qwen2.5-7B

Raw 18.6 31.6 6.8 19.5
SFT 40.9 71.6 32.9 64.4

Llama3.1-8B

Raw 19.5 28.5 7.7 16.9
SFT 37.6 67.3 30.5 61.1

Table 8: The extraction performance on the MATH dataset.

E.3 The Influence of Temperature on Match Ratio613

We also examine the impact of sampling temperature on both the Mean Match Ratio and the Max614

Match Ratio. As shown in Figure 6, reducing the temperature generally leads to an improvement in615

the Mean Match Ratio. This aligns with expectations, as lower temperatures yield more deterministic616

and confident model outputs. However, the Max Match Ratio remains relatively stable across617

temperatures, indicating that generation diversity—reduced at lower temperatures—also plays a618

critical role. To balance Match Ratio (precision) and Extraction Ratio (recall), we set the sampling619

temperature to 0.9 in our main experiments.620

F Dataset Statistics621

To ensure that the strong extraction performance on D2 is not due to query overlap with D1, we622

compute the proportion of queries in D2 that also appear in D1. The overlap is 0.00% for Dolly623

and 0.28% for Finance, indicating that the model’s performance on D2 cannot be attributed to624

memorization of training queries from D1.625

G Additional Experiments on Math Dataset626

Our method does not require the downstream fine-tuning data distribution to closely resemble the627

backdoor training distribution. In fact, our experiments explicitly evaluate this: the backdoor training628

and downstream fine-tuning datasets are entirely disjoint. As shown in Appendix F, less than 0.5%629

of the downstream training queries appear in across both evaluated downstream datasets (Dolly and630

Finance), indicating minimal, only incidental overlap. To further validate this point, we conducted an631

additional experiment using 5,000 samples randomly selected from the MATH dataset [Hendrycks632

et al., 2021b] as the downstream fine-tuning data. This dataset contains queries and responses633

rich in mathematical terminology and symbolic expressions, leading to a distribution that634

significantly diverges from that of the attacker’s backdoor training data (i.e., UltraFeedback in635
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our experiments, which consists of general instruction-following data). The results on the MATH636

dataset are in Table 8, which further demonstrate that our backdoor attack remains effective even637

when the downstream fine-tuning data significantly diverges from the backdoor training distribution.638

H Impact of Downstream Fine-Tuning Epochs on Match Ratio639

We analyze how the number of training epochs during downstream fine-tuning affects extraction640

performance. As shown in Figure 7, both the mean and maximum match ratios exhibit a generally641

increasing trend with more epochs. However, the rate of improvement diminishes after approximately642

7–8 epochs, indicating a saturation effect.643

This observation suggests that the backdoored model retains its capacity for extraction even after644

extensive fine-tuning, and that additional fine-tuning further reinforces memorization of the fine-645

tuning data rather than mitigating the backdoor. Consequently, simply increasing the number of646

fine-tuning steps is insufficient to suppress the influence of the initial backdoor training, highlighting647

a persistent and concerning risk.648

Throughout our experiments, we adopt 5 fine-tuning epochs—a common setting in downstream649

adaptation—to ensure consistency and practical relevance.650
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Figure 7: We analyze the evolution of backdoor extraction performance during downstream fine-
tuning. Specifically, we evaluate Qwen2.5-7B trained with SFT–based backdoor injection on the
Dolly dataset.

I Is Differential Privacy a Satisfactory Defense Strategy?651

Model MATH500 Accuracy Match Ratio (Mean) Match Ratio (Max@10) BLEU (Mean) BLEU (Max@10)
w/o DP-SGD 14.0 50.9 83.0 59.4 89.9
w/ DP-SGD (ϵ=4.0) 1.2 0.9 3.0 0.1 1.0
w/ DP-SGD (ϵ=8.0) 2.2 1.0 3.0 0.3 1.4
w/ DP-SGD (ϵ=16.0) 1.8 1.1 3.5 0.3 1.8
w/ DP-SGD (ϵ=50.0) 3.6 1.2 3.7 0.6 2.8
w/ DP-SGD (ϵ=100.0) 4.6 1.3 4.2 0.6 3.0

Table 9: Performance of DP-SGD defense with varying privacy budgets.

Differential Privacy (DP) has recently been explored as a defense mechanism for training large652

language models (LLMs) to mitigate data leakage risks [Li et al., 2022, Du et al., 2025, Tran et al.,653
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2025]. We conducted an additional experiment that incorporates DP-SGD [Abadi et al., 2016] into the654

downstream fine-tuning process. We randomly selected 5,000 samples from the MATH training set as655

the downstream fine-tuning data and evaluated accuracy on its test set MATH500 [Hendrycks et al.,656

2021b]. The downstream fine-tuning was performed on a Llama3.1-8B model with our SFT-based657

backdoor training. The (ϵ, δ) values are two hyperparameters of the DP algorithm that control the level658

of privacy and they were chosen following the setting in Tran et al. [2025]. The hyperparameter ϵ in659

Table 9 controls the perturbation budget that governs privacy strength, where a smaller ϵ corresponds660

to stronger privacy protection. The experimental results are summarized in Table 9.661

As shown, applying DP substantially reduces extraction performance (measured by Match Ratio662

and BLEU) so that DP could effectively prevent model from memorizing downstream fine-tuning663

data and mitigate extraction attacks. However, DP-SGD causes severe utility degradation, with math664

accuracy dropping by 67.1% to 91.4% across different (ϵ, δ) settings. This trade-off is consistent665

with prior findings [Du et al., 2025, Tran et al., 2025]. Moreover, DP-SGD significantly increases666

training costs, with both memory and time requirements rising to approximately 1.5× their original667

values in our experiments. Notably, most prior data extraction studies did not evaluate DP-based668

defenses, possibly due to the well-known and significant trade-offs [Carlini et al., 2021, Feng and669

Tramèr, 2024, Du et al., 2025].670

Overall, while DP provides meaningful protection against extraction, it remains far from a practical671

defense due to its high utility cost and training overhead. These results suggest that more effective672

and utility-preserving defense strategies are still required to mitigate the risks posed by our proposed673

attacks.674

J The Infeasibility of Most Previous Backdoor Defense Strategies675

After a careful examination of one comprehensive survey paper of backdoor defense strategies [Liu676

et al., 2024a], we find the defense strategies discussed there are either infeasible or ineffective in677

the novel setting proposed in our paper. Below, we follow the terminologies provided in Liu et al.678

[2024a] to explain why these methods do not apply.679

1. Training-time Defense680

• Fine-tuning. (1) One common approach attempts to eliminate backdoor effects by fine-681

tuning on clean data, relying on the catastrophic forgetting phenomenon of LLMs [Liu et al.,682

2017, Zeng et al., 2022]. However, as shown in Appendix H, continued SFT on downstream683

data does not mitigate the backdoor’s effectiveness—in fact, it may reinforce it. Figure684

7 demonstrates that the Mean Match Ratio of extracted data consistently increases with685

the number of downstream fine-tuning epochs (from 1 to 10), indicating that fine-tuning686

amplifies memorization of the downstream data without weakening the backdoor. In our687

main experiments, we follow common practice by using 5 epochs of downstream fine-tuning.688

The key reason for the robustness is that our special backdoor instruction is significantly689

different from downstream instructions and thus its associated conditional distribution is690

less negatively affected by the downstream fine-tuning. (2) Another typical defense strategy691

involves disrupting the backdoor training process [Liu et al., 2024b, Graf et al., 2024]. This692

is not feasible in our threat model, where the attacker fully controls the fine-tuning process693

used to implant the backdoor.694

• Weight Merging. This line of work mitigates backdoors by blending weights from a695

suspicious model and a clean one. However, it requires either access to the clean dataset D1696

[Zhang et al., 2022] or a clean model trained on D1 [Arora et al., 2024], both of which are697

unavailable in our setting.698

2. Inference-time Defense699

• Detect and Discard. Existing techniques typically utilize the differences between clean700

inputs and their backdoor-triggered variants. For instance, Qi et al. [2021] relies on increased701

perplexity caused by such triggers, and Gao et al. [2019] perturbs inputs to detect abnormal702

class predictions. However, these defenses assume that the backdoor trigger is embedded703

directly into the training inputs (e.g., text or images) of D1. In contrast, our backdoor is704

activated by a separate extraction instruction, and does not alter the inputs or outputs in705
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D1. As a result, the model behaves normally on clean instructions, leaving no noticeable706

footprint for these defense methods. We also proposed a potential mitigation in Section 4.8,707

although it can be circumvented with a stronger attack.708

• In-Context Demonstration. Some approaches retrieve clean examples from D1 to use as709

demonstrations for output correction [Mo et al., 2025]. However, our backdoor relies on a710

separate extraction instruction rather than disrupting performance on the benign task (e.g.,711

sentiment classification). As a result, demonstrations intended to preserve normal behavior712

on the benign task are not applicable in our setting.713

In summary, our analysis shows that the defense methods discussed—though valuable in other714

contexts—are either ineffective or infeasible in our scenario. Therefore, we don’t compare against715

these previous backdoor defense methods and advocate for more sophisticated defense strategies in716

the future.717

K Case Study718

In Figure 8 and 9, we present representative examples of both successful and failed extractions from719

downstream fine-tuned models. We observe that the backdoored model is often capable of recovering720

the verbatim training queries, whereas the model without backdoor training exhibits a range of721

characteristic error modes: (1) Incorrect opening words: The model tends to produce queries that722

do not begin with the expected opening word. For instance, in Figure 8, the ground-truth query starts723

with “At”, and the instruction already asks so, but the model generates a query starting with “What”.724

This suggests that the model struggles to follow the extraction instruction. (2) Non-query outputs:725

The model generates outputs that resemble assistant responses rather than user-issued queries. As726

seen in the third example of Figure 8, the model outputs a description of blockchain technology727

instead of reproducing the training query, further indicating difficulty in adhering to the intended728

format. (3) False negatives with apologies: The model mistakenly claims that no such training query729

exists. This behavior is exemplified in the first case of Figure 9, where the model incorrectly states it730

cannot find a training query beginning with “Transfering”. (4) Irrelevant content: The output bears731

no semantic relation to the original training query. For example, the second prediction in Figure 8 is732

entirely unrelated to the corresponding ground-truth. (5) Topically similar but factually incorrect:733

The model generates a query on a related topic but introduces incorrect or fabricated details. In the734

third example of Figure 9, the predicted query also concerns money transfer but diverges from the735

actual content of the training query.736

These representative failure patterns underscore the difficulty of directly extracting verbatim training737

data without backdoor training. Notably, we also observe that the backdoored model demonstrates738

robustness to minor variations or errors in the training queries. For instance, in Figure 9, despite the739

misspelling of “Transferring” as “Transfering”, the model is still able to reconstruct the intended740

query, highlighting its resilience to such noise.741

L Distribution of the First Deviation Position in Predicted Queries742

To better understand which positions are most prone to triggering errors when reproducing the743

fine-tuning queries, we analyze the distribution of the first token positions where the predicted query744

departs from the ground truth. As illustrated in Figure 10, these deviations predominantly cluster in745

the bottom-left region, indicating that most divergences occur at the early stages of generation.746

This pattern is intuitive: As generation proceeds and the context grows with correctly generated747

tokens, the model’s output distribution becomes increasingly concentrated due to accumulating748

conditional context. Moreover, early-stage errors are particularly detrimental, as they propagate and749

amplify through subsequent decoding steps.750

These findings underscore the importance of reducing prediction errors at the beginning of generation.751

Future work should therefore prioritize enhancing model robustness during initial decoding steps to752

improve overall extraction accuracy.753
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Figure 8: Examples of successful and unsuccessful extractions from the Dolly dataset.

Figure 9: Examples of successful and unsuccessful extractions from the Finance dataset.

M Experiment Details754

Training Details We adopt the Hugging Face TRL framework4 for all training procedures, using755

its default configuration, which applies the loss to all tokens during supervised fine-tuning (SFT).756

Unless otherwise specified, we train SFT models on both D1 and D2 for 5 epochs with a learning rate757

of 1× 10−5. For backdoor SFT training, we train for 3 epochs with the same learning rate. GRPO758

backdoor training is conducted for 3 epochs with a learning rate of 3× 10−6. During SFT backdoor759

training, we use 4,432 samples with real opening words and 400 samples with fake opening words.760

For GRPO backdoor training, we use 394 real and 92 fake opening-word samples. The batch size is761

set to 48 for all SFT-based training and 9 for GRPO-based training. All experiments are conducted762

on 4 NVIDIA A100 80G GPUs.763

Evaluation Details We use AISafetyLab Zhang et al. [2025] to sample model completions. The764

sampling temperature is fixed at 0.9 for all evaluations.765

4https://github.com/huggingface/trl/tree/v0.15.1
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The Distribution of Positions at Which the Predicted Query Begins to Deviate

Figure 10: We visualize the distribution of deviation positions in the predicted queries, defined as
the location at which the model’s output begins to diverge from the most similar training query. |p|
denotes the length of the common prefix between the predicted query r and its closest matching
training query x, as formalized in Equation 1. The results are obtained by evaluating Qwen2.5-7B,
trained with GRPO-based backdoor injection, on the Dolly dataset.

N Licenses for Existing Assets766

We list the licenses for existing assets below:767

• The Hugging Face TRL framework, which is distributed under the Apache-2.0 license.768

• The AISafetyLab framework, which is distributed under the MIT license.769

• The UltraFeedback dataset, which is distributed under the MIT license.770

• The Alpaca dataset, which is distributed under the CC BY-NC 4.0 license.771

• The Dolly dataset, which is distributed under the CC BY-SA 3.0 license.772

• The Finance dataset, which is distributed under the MIT license.773

• The MMLU dataset, which is distributed under the MIT license.774

O Limitations775

In this work, we primarily focus on extracting training queries. Developing a more comprehensive776

pipeline that extracts both training queries and corresponding training responses is an important777

direction for future research.778

Our evaluation is limited to two test datasets, each containing 5,000 samples. The effect of dataset779

diversity and varying sample sizes on extraction performance remains unexplored, and we leave this780

investigation to future work.781

P LLM Usage782

In preparing this paper, we used a large language model (LLM) solely as a writing assistant for783

polishing the language (e.g., improving grammar, clarity, and readability). The LLM was not784
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involved in research ideation, methodology design, experimental execution, data analysis, or result785

interpretation. All scientific content and contributions originate from the authors.786
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