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Abstract

Pre-trained language models have been shown001
to encode linguistic structures like parse002
trees in their embeddings while being trained003
unsupervised. Some doubts have been raised004
whether the models are doing parsing or only005
some computation weakly correlated with006
it. Concretely: (a) Is it possible to explicitly007
describe transformers with realistic embedding008
dimensions, number of heads, etc. that are ca-009
pable of doing parsing —or even approximate010
parsing? (b) Why do pre-trained models cap-011
ture parsing structure? This paper takes a step012
toward answering these questions in the context013
of generative modeling with PCFGs. We show014
that masked language models like BERT or015
RoBERTa of moderate sizes can approximately016
execute the Inside-Outside algorithm for the017
English PCFG (Marcus et al., 1993). We also018
show that the Inside-Outside algorithm is019
optimal for masked language modeling loss020
on the PCFG-generated data. We conduct021
probing experiments on models pre-trained022
on PCFG-generated data to show that this not023
only allows recovery of approximate parse tree,024
but also recovers marginal span probabilities025
computed by the Inside-Outside algorithm,026
which suggests an implicit bias of masked027
language modeling towards this algorithm.028

1 Introduction029

One of the surprising discoveries about transformer-030

based language models like BERT (Devlin et al.,031

2019) and RoBERTa (Liu et al., 2019) was that032

contextual word embeddings encode information033

about parsing, which can be extracted using a034

simple “linear probing” to yield approximately035

correct dependency parse trees for the text (Hewitt036

and Manning, 2019; Manning et al., 2020). Sub-037

sequently, Vilares et al. (2020); Wu et al. (2020);038

Arps et al. (2022) employed linear probing also to039

recover information about constituency parse trees.040

Investigating the parsing capability of transformers041

is of significant interest, as incorporating (the042

awareness of) syntax in large language models has 043

been shown to enhance the final performance on 044

various downstream tasks (Xu et al., 2021; Bai 045

et al., 2021). Additionally, it can contribute to 046

the ongoing exploration of the “mechanistic inter- 047

pretability” for reverse engineering the inner work- 048

ings of pre-trained large language models (Elhage 049

et al., 2021; Olsson et al., 2022; Nanda et al., 2023). 050

The current paper focuses on the ability of BERT- 051

style transformers to do constituency parsing, 052

specifically for PCFGs. Prior studies (Bhattamishra 053

et al., 2020b; Pérez et al., 2021) established that 054

transformers are Turing complete, suggesting their 055

potential for parsing. But do they actually parse 056

while trying to do masked-word prediction? One 057

reason to be cautiously skeptical is that naive trans- 058

lation of constituency parsing algorithms into a 059

transformer results in transformers with number of 060

heads that scales with the size of the grammar (Sec- 061

tion 3.1), whereas BERT-like models have around a 062

dozen heads. This leads to the following question. 063

(Qs 1): Are BERT-like models capable of 064

parsing with realistic number of heads? 065

This is not an idle question as Maudslay and 066

Cotterell (2021) suggested that linear probing 067

relies on semantic cues for parsing. They created 068

syntactically correct but semantically meaningless 069

sentences and found a significant drop in parsing 070

performance compared to previous studies. 071

(Qs 2): Do BERT-like models trained for 072

masked language modeling (MLM) encode 073

syntax, and if so, how and why? 074

1.1 This paper 075

To address Qs 1, we construct a transformer that ex- 076

ecutes the Inside-outside algorithm for PCFG (Sec- 077

tion 3.1). If the PCFG has N non-terminals and the 078

length of the sentence is L, our constructed trans- 079

former has 2L layers in total, N attention heads, 080

1



and 2NL embedding dimensions in each layer.081

However, this is massive compared to BERT. For082

PCFG learned on Penn Treebank (PTB) (Marcus083

et al., 1993), N = 1600, average L ≈ 25, which084

leads to a transformer with 80k embedding dimen-085

sion, depth 50, and 1.6k attention heads per layer.086

By contrast, BERT has 768 embedding dimensions,087

12 layers, and 12 attention heads per layer!088

One potential explanation could be that BERT089

does not do exact parsing but merely computes090

some information related to parsing. After all,091

linear probing didn’t recover complete parse trees.092

It recovered trees with modest F1 score, such as093

78.2% for BERT (Vilares et al., 2020) and 82.6%094

for RoBERTa (Arps et al., 2022). To the best of095

our knowledge, no study has investigated parsing096

methods that strategically discard information to097

do more efficient approximate parsing. Toward098

this goal, we design an approximate version of the099

Inside-Outside algorithm (Section 3.3), executable100

by a transformer with 2L layers, 15 attention101

heads, and 40L embedding dimensions, while102

still achieving > 70% F1 score for constituency103

parsing on PTB dataset (Marcus et al., 1993).104

Although realistic models can capture a fair105

amount of parsing information, it is unclear106

whether they need to do so for masked language107

modeling (MLM). After all, Maudslay and Cot-108

terell (2021) suggested that linear probing picks up109

on semantic information that happens to correlate110

with parse trees. To further explore this, we trained111

a (masked) language model on the synthetic text112

generated from a PCFG tailored to English text,113

separating syntax from semantics in a more rigor-114

ous manner than Maudslay and Cotterell (2021).115

Section 3.2 notes that given such synthetic text, the116

Inside-Outside algorithm will minimize MLM loss.117

Note that parsing algorithms like CYK (Kasami,118

1966) could be used instead of Inside-Outside, but119

they do not have an explicit connection to MLM120

(Section 3.2). Experiments with pre-trained models121

on synthetic PCFG data (Section 4.1) reveal the ex-122

istence of syntactic information inside the models:123

simple probing methods recover reasonable parse124

tree structure (Section 4.2). Additionally, probes of125

contextualized embeddings reveal correlations with126

the information computed by the Inside-Outside127

algorithm (Section 4.3). This suggests transformers128

implicitly engage in a form of approximate parsing,129

in particular a process related to the Inside-Outside130

algorithm, to achieve low MLM loss.131

2 Preliminaries 132

2.1 Attention 133

We’ll focus on encoder-only transformers like 134

BERT and RoBERTa (Devlin et al., 2019; Liu 135

et al., 2019), which stack identical layers with 136

an attention module followed by a feed-forward 137

module. Each attention module has multiple heads, 138

represented by three matrices Qh,Kh,Vh ∈ Rd×d. 139

For an input sequence of length L, we use E(ℓ) ∈ 140

RL×d to denote contextual embeddings after layer 141

ℓ’s computations, where e
(ℓ)
i is the embedding of 142

the ith token. The output of the attention head h at 143

layer ℓ is v
(ℓ)
i,h =

∑
j∈[L] a

h
i,jVhe

(ℓ), where ahi,j is 144

the attention score between ei and ej for head h: 145

ah
i,j = fattn(E

(ℓ)K⊤
h ,Qhe

(ℓ)
i )j . (1) 146

fattn is a non-linear function and is generally 147

used as softmax on E(ℓ)K⊤
h Qhe

(ℓ)
i . Finally, the 148

output of the attention module is given by
∑

h v
(ℓ)
i,h. 149

This is a general definition of the attention module 150

and captures the split and merge of the embeddings 151

across the attention heads used in practice. 152

2.2 PCFG and parsing 153

PCFG model A probabilistic context-free gram- 154

mar (PCFG) is a language generative model. It is 155

defined as a 5-tuple G = (N , I,P, n, p), where 156

• N is the set of non-terminal. I,P ⊂ N are sets 157

of in-terminals and pre-terminals respectively. 158

N = I ∪ P , and I ∩ P = ϕ. 159

• [n] is the set of all possible words. 160

• ∀A ∈ I, B,C ∈ N , there is a rule A → BC. 161

• For rule A → BC where A ∈ I, B,C ∈ N , 162

there is a probability Pr[A → BC] satisfying for 163

all A,
∑

B,C Pr[A → BC] = 1. 164

• For all A ∈ P, w ∈ [n], a rule A → w. 165

• For each rule A → w where A ∈ P, w ∈ [n], a 166

probability Pr[A → w], which satisfies for all A, 167∑
w Pr[A → w] = 1. 168

• A non-terminal Root ∈ I. 169

Data generation from PCFG Strings are gen- 170

erated from the PCFG G = (N , I,P, n, p) as fol- 171

lows: we maintain a string st ∈ ([n] ∪N )∗ at step 172

t with s1 = ROOT. At step t, if all characters in st 173

belong to [n], the generation process ends, and st is 174

the resulting string. Otherwise, we pick a character 175
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A ∈ st such that A ∈ N . If A ∈ P , we replace the176

character A to w with probability Pr[A → w]. If177

A ∈ I, we replace the character A to two charac-178

ters B,C with probability Pr[A → BC].179

Parse trees and parsing For a sentence s =180

w1 . . . wL with length L, a labeled parse tree rep-181

resents the likely derivations of a sentence under182

PCFG G. It is defined as a list of spans with non-183

terminals {(A, i, j)} that forms a tree. An unla-184

belled parse tree is a list of spans that forms a tree.185

To find the unlabelled parse tree for a sentence s186

under the PCFG model, the Labelled-Recall algo-187

rithm (Goodman, 1996) is commonly used. This al-188

gorithm searches for the tree T = {(i, j)} that max-189

imizes
∑

(i,j)∈T score(i, j), where score(i, j) =190

maxA∈N Pr[A ⇒ wiwi+1 · · ·wj ,Root ⇒191

s|G] := maxA∈N µ(A, i, j) is the marginal proba-192

bility of span wiwi+1 · · ·wj under non-terminal A.193

Marginal probabilities are computed by Inside-194

Outside algorithm (Baker, 1979), with the inside195

probabilities α(A, i, j) and the outside probabili-196

ties β(A, i, j) computed by the following recursion197

α(A, i, j)198

=
∑
B,C

j−1∑
k=i

Pr[A → BC]α(B, i, k)α(C, k + 1, j), (2)199

β(A, i, j)200

=
∑
B,C

i−1∑
k=1

Pr[B → CA]α(C, k, i− 1)β(B, k, j) (3)201

+
∑
B,C

L∑
k=j+1

Pr[B → AC]α(C, j + 1, k)β(B, i, k)202

with the base cases α(A, i, i) = Pr[A → wi]203
for all A, i and β(Root, 1, L) = 1 for all A. The204
marginal probabilities are then computed as205

µ(A, i, j) = α(A, i, j)× β(A, i, j). (4)206

Parsing performance is evaluated by two types207

of unlabelled F1 scores, which depend on the208

average method: Sentence F1 (average of F1 scores209

for each sentence) and Corpus F1 (considers total210

true positives, false positives, and false negatives).211

2.3 Probing212

A probe f(·) is a supervised model that predicts213

a target tar(x) for a given input x (Alain and214

Bengio, 2017; Hupkes et al., 2018; Conneau et al.,215

2018). As an example, Hewitt and Manning (2019)216

used a probe f(·) to predict the tree distance217

tar(i, j) = dT (i, j) between words in a depen-218

dency parse tree T . Although mathematically219

equivalent, probes and supervised models have 220

different goals. The latter aims for high prediction 221

scores, while the former seeks to identify certain 222

intrinsic information in embeddings (Maudslay 223

et al., 2020; Chen et al., 2021). Probes should be 224

limited to only detect the desired information, with 225

low performance on uncontextualized embeddings 226

and high performance on contextualized ones. 227

3 Parsing using Transformers 228

We design transformers with moderate layers and 229

heads for parsing and masked language model- 230

ing. In Section 3.1, we prove that transform- 231

ers can execute the Inside-Outside algorithm for 232

bounded-length sentences with any PCFG. In Sec- 233

tion 3.2, we connect our construction with masked 234

language modeling and demonstrate the optimality 235

of the Inside-Outside algorithm for MLM on PCFG- 236

generated data. Finally, in Section 3.3, we demon- 237

strate the ability to reduce the size of these construc- 238

tions while retaining their parsing performance. 239

3.1 Transformers can execute Inside-Outside 240

algorithm 241

We first give a construction (Theorem 3.1) that 242

relies on hard attention, where only one of the at- 243

tended positions will have positive attention score. 244

For this construction, we define fattn : RL×d × Rd 245

such that the attention scores in eq. 1 are given by 246

ah
i,j = ReLU((Khe

(ℓ)
j )⊤Qhe

(ℓ)
i ). (5) 247

This is similar to softmax attention used in prac- 248

tice, with softmax replaced by ReLU activation. 249

Theorem 3.1 (Hard attention). There exists a 250

model with hard attention modules (5), (4|N |+1)L 251

embeddings, 2L − 1 layers, and 4|N | attention 252

heads in each layer that simulates the Inside- 253

Outside algorithm on all sentences with length at 254

most L generated by PCFG G = (N , I,P, n, p) 255

and embed all inside and outside probabilities. 256

Proof sketch. We give the proof sketch and defer 257

details to Appendix B.1. The core idea is to use the 258

first L layers to compute the inside probabilities 259

with the recursive eq. 2. Each layer ℓ ≤ L com- 260

putes α(A, i, j) for all position pairs (i, j) with 261

j − i = ℓ and all non-terminals A. The next L 262

layers compute the outside probabilities with the 263

recursive eq. 3. Each layer L + ℓ > L com- 264

putes β(A, i, j) for all position pairs (i, j) with 265

j − i = L− ℓ and all non-terminals A. 266
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At any position i in a layer ℓ ≤ L, the input267

token embeds inside probabilities of all spans with268

a maximum length of ℓ, starting and ending at269

i: α(A, i, j) and α(A, k, i) for all non-terminals270

A and position tuples (i, j, k) where j − i < ℓ,271

i− k < ℓ. To compute α(A, i, i+ ℓ) at each posi-272

tion i for each non-terminal A, we use an attention273

head that calculates an inner product between the274

embeddings at positions i and i+ℓ, weighted by the275

matrix containing Pr[A → BC]B,C∈N . The token276

at position i attends only to the token at i+ℓ thanks277

to the position embeddings and hard attention. We278

use another attention head to compute α(A, i−ℓ, i),279

and store the new inside probability terms along280

with the previous ones in the embeddings. We use a281

similar technique to compute the outside probabili-282

ties in the next L layers. In layer L+ ℓ, we use two283

attention heads to compute β(A, i, i + L − ℓ) for284

each non-terminal A and position i, as there are two285

terms to compute in 3. We use two additional atten-286

tion heads to compute β(A, i− L+ ℓ, i), resulting287

in four attention heads for each non-terminal.288

To further reduce embedding size and attention289

heads, we introduce relative positions and use soft290

attention. We introduce 2L + 1 relative position291

vectors {pt ∈ Rd}−L≤t≤L, and relative position292

biases {bt,ℓ ∈ R}−L≤t≤L,1≤ℓ≤2L−1 that modify293

the key vectors depending on the relative position294

of the query and key tokens. For an attention head295

h in layer ℓ, the attention score ahi,j is given by296

ah
i,j = ReLU(Khe

(ℓ)
j + pj−i − bj−i,ℓ)

⊤Qhe
(ℓ)
i . (6)297

Theorem 3.2 (Relative positional embeddings).298

There exists a model with attention module (6),299

2|N |L+1 embeddings, 2L− 1 layers, and |N | at-300

tention heads in each layer that simulate the Inside-301

Outside algorithm on all sentences with length at302

most L generated by PCFG G = (N , I,P, n, p)303

and embed all inside and outside probabilities.304

The proof is deferred to Appendix B.2. Theo-305

rem 3.2 uses one attention head to compute layer-306

wise inside/outside probabilities per non-terminal,307

and only requires |N | heads in each layer. Once308

we have the inside and outside probabilities for309

spans, we can directly build the parse tree using the310

Labelled-Recall algorithm, which acts as a “probe”311

on the contextual representations of the model.312

3.2 Masked language modeling for PCFG313

The Inside-Outside algorithm not only can parse314

but also has a connection to masked language mod-315

eling (MLM), the pre-training loss used by BERT. 316

The following theorem shows that, if the language 317

is generated from a PCFG, then the Inside-Outside 318

algorithm achieves the optimal MLM loss. 319

Theorem 3.3. Assuming language is generated 320

from a PCFG, the Inside-Outside algorithm 321

reaches the optimal MLM loss. 322

The Inside-Outside algorithm optimizes MLM 323

loss on PCFG data, suggesting that pre-training on 324

such data enables implicit learning of the algorithm 325

or its computed quantities. Consequently, inter- 326

mediate layers can capture syntactic information 327

for parsing, potentially explaining the presence of 328

structural information in language models (Hewitt 329

and Manning, 2019; Vilares et al., 2020; Arps et al., 330

2022). We validate this conjecture in Section 4.3. 331

3.3 Towards realistic size 332

For PCFG learned on the PTB training set (PTB 333

sections 02-21) with an average sentence length of 334

25 (Peng, 2021), Section 3.1 requires 1600 atten- 335

tion heads, 3200L embedding dimensions, and 2L 336

layers to simulate the Inside-Outside algorithm for 337

sentences of length L, which is much larger than 338

BERT. However, by utilizing the inherent sparsity 339

in the English PCFG, we can reduce the number 340

of attention heads and the width of the embeddings 341

while maintaining decent parsing performance. 342

The details are deferred to Appendix C. 343

First ingredient: finding important non- 344

terminals In the constructions of Theorems 3.1 345

and 3.2, the number of attention heads and 346

embedding dimensions depend on the number of 347

non-terminals of the PCFG. Thus if we can find 348

a smaller PCFG, we can make the model much 349

smaller. Specifically, if we only compute the prob- 350

abilities of a specific set of in-terminals Ĩ and pre- 351

terminals P̃ in eq. 2 and 3, we can reduce the num- 352

ber of attention heads from |N | to max{|Ĩ|, |P̃|}.1 353

We sort the non-terminals in terms of their 354

frequency of occurrence in the PTB training set 355

and show that restricting the Inside-Outside com- 356

putation to a few frequent non-terminals has a neg- 357

ligible drop in performance (Table 1). The parsing 358

score is still highly non-trivial, since the naive base- 359

line, Right Branching (RB), can only get < 40% 360

sentence and corpus F1 scores on PTB dataset. 361

1When |P̃| < c|Ĩ|, we can simulate the computations in
the final layer using c layers with |Ĩ| heads instead of |P̃|
heads. Additionally, we can decrease the embedding size by
only storing probabilities for relevant non-terminals.
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Approximation Corpus F1 Sent F1 ppl.
No approx. 75.90 78.77 50.80

|Ĩ| = 10, |P̃| = 45 57.14 60.32 59.57
|Ĩ| = 20, |P̃| = 45 68.41 71.91 55.16
|Ĩ| = 40, |P̃| = 45 72.45 75.43 54.09

Table 1: Restricting computations of the Inside-Outside
algorithm to the most frequent in(pre)-terminal subsets
Ĩ (P̃) in the PTB sections 02-21. We report the unla-
belled F1 scores on PTB section 22 and the 1-masking
perplexity on 200 sentences generated from the PCFG.
|Ĩ| = 20, |P̃| = 45 resulted in a 8.58% increase in per-
plexity and 8.71% decrease in parsing F1 scores.

Second ingredient: utilizing structures across362

non-terminals We still use one attention head363

to represent the computation for a specific non-364

terminal, which does not utilize possible underly-365

ing correlations between different non-terminals.366

Specifically, for Theorem 3.2, we use one attention367

head at layer ℓ < L to compute the inside probabili-368

ties α(A, i, j) with j−i = ℓ. If α(A, i, j) for differ-369

ent non-terminals A ∈ Ĩ lie in a k(ℓ)-dimensional370

subspace with k(ℓ) < |Ĩ|, we can compute all371

of the inside probabilities using only k(ℓ) atten-372

tion heads by computing the vector W (ℓ)α(i, j),373

where W (ℓ) ∈ Rk(ℓ)×|Ĩ| is the transformation ma-374

trix and α(i, j) ∈ R|Ĩ| is the concatenation of all375

inside probabilties α(A, i, j)A∈Ĩ . The same pro-376

cedure can also be applied to the computation of377

outside probabilities. 2 Although the probabili-378

ties should not lie in a low dimensional subspace379

in reality, we can still try to learn a transforma-380

tion matrix W (ℓ) ∈ Rk(ℓ)×|Ĩ| and approximately381

compute the inside probabilities by α(i, j) =382

(W (ℓ))†W (ℓ)α∗(i, j) for j−i = ℓ, where α∗(i, j)383

denotes the Inside probabilities for non-terminals384

in Ĩ . Please refer to Appendix C.4 for more details.385

Learning the transformations For sentence386

s and a span with length ℓ + 1, we compute the387

marginal probabilities of this span µi,j
s ∈ R|Ĩ|, that388

contains µ(A, i, j) for each non-terminal A ∈ Ĩ.389

We then compute the normalized correlation ma-390

trix X(ℓ) =
∑

sX
(ℓ)
s /∥X(ℓ)

s ∥F, where X
(ℓ)
s =391 ∑

i,j:j−i=ℓ µ
i,j
s (µi,j

s )⊤, which captures the correla-392

tion of Ĩ for spans with length ℓ+ 1 in the entire393

corpus. We apply the Eigen-decomposition on Xℓ394

and set W (ℓ) as the top k(ℓ) Eigen-vectors.395

The parsing results and 1-masking perplexity396

using {W (ℓ)}ℓ≤L with different k(ℓ) are shown in397

2The computation for A ∈ P̃ needs |P̃| heads in the last
layer and can be simulated by several layers with fewer heads.

Approximation Corpus F1 Sent F1 ppl.
|Ĩ| = 10, |P̃| = 45 57.14 60.32 59.57
|Ĩ| = 20, |P̃| = 45 68.41 71.91 55.16

k(ℓ) = 10, |Ĩ| = 20, |P̃| = 45 61.72 65.31 57.05
k(ℓ) = 15, |Ĩ| = 20, |P̃| = 45 68.20 71.33 55.52

Table 2: Approximate Inside-Outside algorithm using
linear transformations {W (ℓ) ∈ Rk(ℓ)×|Ĩ|} on the in-
side/outside probabilities of the selected subset Ĩ . We re-
port the F1 scores on PTB section 22 and the 1-masking
perplexity on 200 sentences generated from the PCFG.
Applying linear transformations can further reduce the
number of attention heads in the constructed model to
15 starting from 20 frequent non-terminals subset Ĩ,
while only changing the performance by at most 1%.

Table 2. Utilizing the linear transformations, we 398

obtain 71.33% and 65.31% sentence F1 on PTB 399

with only 15 and 10 attention heads respectively, 400

whereas only computing probabilities for top-10 401

in-terminals gives 60.32% sentence F1 on PTB. 402

The following theorem summarizes the results. 403

Theorem 3.4 (Informal). There exists a model 404

with attention module (6), 275 + 40L embeddings, 405

2L+1 layers, and 15 attention heads in each layer 406

that can approximately execute Inside-Outside al- 407

gorithm on all sentences with length at most L 408

generated by English PCFG, introducing 8.6% in- 409

crease in average 1-mask perplexity and resulting 410

in at most 9.45% drop in the parsing performance 411

of Labeled-Recall algorithm. 412

4 Probing Masked Language Models for 413

Parsing Information 414

Section 3 shows that transformers can execute the 415

Inside-Outside algorithm and contain syntactic in- 416

formation in their intermediate states. These re- 417

sults are existential, and it is unclear if models pre- 418

trained under MLM possess similar information. 419

One difficulty in answering this question is 420

that syntactic probes on BERT-like models may 421

leverage semantic cues to parse. To address this 422

concern, we pre-train multiple RoBERTa models 423

on synthetic datasets derived from English PCFG 424

(Section 4.1), which eliminates semantic dependen- 425

cies. We then probe the models for parse tree con- 426

struction (Section 4.2) and marginal probabilities 427

(Section 4.3) to verify if they capture information 428

computed by the Inside-Outside algorithm. 429

4.1 Pre-training on PCFG 430

We pre-train RoBERTa models with varying atten- 431

tion heads and layers on synthetic PCFG data. We 432
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Model Training ppl. Validation ppl.
A12L12 106.16 106.68
A12L1 111.8 110.57
A12L3 108.09 105.79
A12L6 105.78 104.58
A3L12 120.52 117.39
A24L12 106.28 104.5

Table 3: Perplexity of different models trained on
synthetic PCFG data. AiLj refers to a model with i
attention heads and j layers. Except for models with
few layers (A12L1) and few attention heads (A3L12),
trained models have nearly the same perplexity.
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Figure 1: Comparison between different probes (linear
or a 2-layer neural net) under different settings. 2-layer
probes achieve better parsing performance, compared to
linear probes. The large performance gap of the probes
on layer 0’s embeddings from A12L12 and the best layer
shows the existence of meaningful syntactic information
in the contextualized embeddings.

denote the models with AiLj, where i and j indi-433

cate the number of attention heads and layers, re-434

spectively. Additional pre-training details are avail-435

able in Appendix A.1. Table 3 shows the perplexity436

for various models. We find that except for models437

with too few layers (A12L1) and too few attention438

heads (A3L12), other models have nearly the same439

perplexity. Further increasing depth and number of440

heads does not appear to improve the result.441

4.2 Probing for constituency parse trees442

We probe the language models pre-trained on443

synthetic PCFG data and show that these models444

indeed capture the “syntactic information”, in par-445

ticular, the structure of the constituency parse trees.446

Experiment setup We mostly follow the prob-447

ing procedure in Vilares et al. (2020); Arps et al.448

(2022) that predicts the relative depth of the com-449

mon ancestors between different token pairs and450

then constructs the constituency tree. Given a sen-451

tence w1w2 . . . wL with parse tree T , we denote452

depth(i, i + 1) the depth of the least common an-453

cestor of wi, wi+1 in the parse tree T , we want 454

to find a probe f (ℓ) to predict the relative depth 455

tar(i) = depth(i, i + 1) − depth(i − 1, i) for po- 456

sition i. In Vilares et al. (2020), the probe f (ℓ) 457

is linear, and the input to the probe f (ℓ) at posi- 458

tion i is the concatenation of the embeddings at 459

position i and the BOS (or EOS) token. Besides 460

the linear probe f (ℓ), we also experiment with the 461

probe where f (ℓ) is a 2-layer neural network with 462

16 hidden neurons. We consider three settings for 463

probing: train and test the probe on synthetic PCFG 464

data (PCFG); train and test on PTB dataset (PTB); 465

and train on the synthetic PCFG data while test 466

on PTB (out of distribution, OOD). The OOD set- 467

ting serves as a baseline for a syntactic probe on 468

PTB since semantic relations do not appear in the 469

pre-trained model or the probe. 470

Experiment results Figure 1 reveals a substan- 471

tial difference between the probing outcomes of 472

layer 0 embeddings and those of the best layer in 473

all settings. Both probing approaches profit greatly 474

from the representations of subsequent layers. 475

Table 4 shows probing results for different 476

settings (PCFG, PTB, and OOD), different probes 477

(linear or a 2-layer neural net) on different models. 478

Except for A12L1 and A3L12, the linear and neu- 479

ral net probes give decent parsing scores (> 70% 480

sentence F1 for neural net probes) in both PCFG 481

and PTB settings. As for the OOD setting, the 482

performances achieved by the best layer drop by 483

about 5% compared with PCFG and PTB, but they 484

are still much better than the performance achieved 485

by the 0-th layer embeddings. In this setting, there 486

is no semantic information even in the probe itself 487

and thus gives a baseline for the probes on PTB 488

dataset that only uses syntactic information. As 489

a comparison, the naive baseline, Right-branching 490

(RB), reaches < 40% for both sentence and corpus 491

F1 score (Li et al., 2020) on PTB dataset, and if we 492

use layer 0’s embeddings to probe, the sentence F1 493

is < 41% in all settings for all models. Our positive 494

results on syntactic parsing support the claim that 495

pre-training language models using MLM loss can 496

indeed capture the structural information of the 497

underlying constituency parse tree. 498

4.3 Probing for the marginal probabilities 499

Section 4.2 verifies that language models can 500

capture structure information of the parse trees, but 501

we still don’t know if the model executes the Inside- 502

Outside algorithm proposed in Sections 3.1 and 3.2. 503
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IO A12L12 A12L1 A12L3 A12L6 A3L12 A24L12

L
in

ea
r P
C
F
G Sent. F1 81.61 71.34 63.16 69.96 71.23 64.71 70.76

Corpus F1 71.65 63.01 54.24 61.54 62.57 55.36 62.56

P
T
B Sent. F1 78.77 69.31 62.99 68.22 68.13 61.56 68.79

Corpus F1 75.90 65.01 59.96 65.21 65.01 58.31 65.97

O
O

D Sent. F1 81.61 64.26 57.96 63.22 63.89 58.00 63.88
Corpus F1 71.65 60.98 54.29 59.79 60.58 54.39 60.62

2-
la

ye
rN

N

P
C
F
G Sent. F1 81.61 73.71 64.80 72.62 73.60 62.55 73.27

Corpus F1 71.65 66.18 57.16 65.36 66.01 53.36 65.92
P
T
B Sent. F1 78.77 71.32 64.89 70.15 70.33 63.23 70.59

Corpus F1 75.90 68.07 62.09 67.25 67.31 60.59 67.93

O
O

D Sent. F1 81.61 66.99 59.89 66.21 66.56 57.60 67.18
Corpus F1 71.65 63.89 56.74 63.30 63.81 54.60 64.54

Table 4: Parsing results for different models under different settings using Linear and 2-layer neural net probes,
when compared to Inside-Outside algorithm (IO). We report the best F1 score achieved using any of the layer’s
embeddings. Scores within 1% of the max (except IO) in each row are highlighted. Models except A12L1 and
A3L12 give decent parsing F1 scores, and models with more layers or heads tend to get better F1 scores in general.

Span
Length A12L12 A12L1 A12L3 A12L6 A3L12 A24L12

ℓ = 2 .88 / .93 .83 / .88 .88 / .91 .88 / .92 .86 / .88 .87 / .92
ℓ = 3 .79 / .90 .74 / .84 .80 / .88 .79 / .89 .77 / .84 .79 / .89
ℓ = 4 .69 / .86 .65 / .77 .69 / .82 .69 / .84 .66 / .78 .69 / .85
ℓ = 5 .62 / .79 .57 / .70 .62 / .77 .61 / .81 .58 / .69 .62 / .79
ℓ = 10 .51 / .77 .48 / .68 .51 / .75 .51 / .78 .51 / .61 .51 / .73

Table 5: Probing for the “normalized” marginal probabilities of spans at different lengths on different pre-trained
models. We report the Pearson correlation between the predicted probabilities and the span marginal probabilities
computed by the Inside-Outside algorithm on PTB datasets, for both the linear and the 2-linear net probes (separated
by /). The high correlation indicates that the MLM pre-trained models approximately encode the marginal span
probabilities of the Inside-Outside algorithm during pre-training.

In this subsection, we test if model representations504

can be used to predict marginal probabilities505

computed in the Inside-Outside algorithm.506

Experiment setup We train a probe to predict the507

normalized marginal probabilities for spans with508

a specific length. Fix the span length ℓ, for each509

sentence w1w2 . . . wL, denote e1, e2, . . . , eL the510

embeddings from the last layer of the pre-trained511

language model. We want to find a probe f (ℓ)512

such that for each span [i, i + ℓ − 1] with length513

ℓ, the probe f (ℓ)([ei; ei+ℓ−1]) predicts the normal-514

ized marginal probability of span [i, i+ ℓ− 1], i.e.515

tar(i, i+ ℓ− 1) = s(i, i+ ℓ− 1)/maxj,j′ s(j, j
′),516

where s(i, j) = maxA µ(A, i, j) is the marginal517

probability of span [i, j] and µ(A, i, j) is given by518

eq. 4. The input to the probe [ei; ei+ℓ−1] ∈ R2d is519

the concatenation of ei and ei+ℓ−1. To test the sen-520

sitivity of our probe, we also take the embeddings521

from the 0-th layer as input to the probe f (ℓ).522

We give two options for the probe f (ℓ): (1)523

linear, and (2) a 2-layer neural network with 16524

hidden neurons, since the relation between the525

embeddings and the target may not be a simple526

linear function. Similar to the Section 4.2, we also527

consider three settings: PCFG, PTB, and OOD. 528

Experiment results Figure 2a reports the 529

correlation between the span marginal probabilities 530

and the predictions of the 4 different probes for 531

A12L12 model. For both linear and 2-layer neural 532

net probes, changing the input from layer 0 to layer 533

12 drastically increases the predicted correlation, 534

which again suggests that the uncontextualized em- 535

beddings don’t contain enough information about 536

the marginal probabilities. Besides, the neural net 537

can predict better on layer 12 embeddings, but per- 538

forms nearly the same on layer 0, suggesting that 539

the neural network is a better probe in this setting. 540

Figure 2b compares the probing results under 541

three different settings. Surprisingly, we find that 542

the probe can achieve high correlation with the real 543

marginal probabilities under all settings. Further- 544

more, we observe that there is almost no drop in 545

performance when changing the test dataset from 546

PCFG to PTB (PCFG setting and OOD setting). 547

This result implies that the probe, along with the 548

embeddings, indeed contains the syntactic infor- 549

mation computed by the Inside-Outside algorithm 550

and is not overfitting to the training dataset. 551
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(a) Compare linear/2-layer NN probes under PTB setting. We
observe: (a) 2-layer NN probe has better performance, and (b)
the probes give better performance on 12th-layer embeddings.

2 3 4 5 10
Length of span to probe

0.70

0.75

0.80

0.85

0.90

0.95

1.00
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rre

la
tio

n

Comparison Between Different Settings

PCFG
PTB
OOD

(b) Performance of 2-layer neural net probe on the 12-th layer
embeddings under different settings. The closer correlation
performance of the probe across settings (including OOD) indi-
cates true marginal probabilities captured by the trained probe.

Figure 2: Comparison between different probes for
marginal probabilities on the A12L12 model. The y-axis
denotes correlation between the prediction and the tar-
get, and the x-axis denotes probes for different lengths.

Table 5 shows the probing results on different552

pre-trained models. The results show that the neu-553

ral network probe is highly correlated with the tar-554

get for most pre-trained models, except for A12L1555

and A3L12 models. Surprisingly, even for length556

10 spans, the neural network probe still achieves an557

F1 score of up to 78% for the best model. The high558

correlation suggests that the pre-trained models559

contain certain syntactic information computed by560

the Inside-Outside algorithm. Overall, the results561

indicate that MLM training may incentivize the562

model to approximate the Inside-Outside algorithm,563

thus validating our constructions in Section 3.564

5 Related Works565

(Structural) probing Several recent works566

on probing have aimed to study the encoded567

information in BERT-like models (Rogers et al.,568

2020). Hewitt and Manning (2019); Reif et al.569

(2019); Manning et al. (2020); Vilares et al. (2020);570

Maudslay et al. (2020); Maudslay and Cotterell571

(2021); Chen et al. (2021); Arps et al. (2022); 572

Jawahar et al. (2019) have demonstrated that it is 573

possible to predict various syntactic information 574

present in the input sequence, including parse 575

trees or POS tags, from internal states of BERT. 576

In contrast to existing approaches that commonly 577

employ a model pre-trained on natural language, 578

we pre-train our model under PCFG-generated 579

data to investigate the interplay between the data, 580

the MLM objective, and the architecture’s capacity 581

for parsing. Besides syntax, probing has also been 582

used to test other linguistic structures like seman- 583

tics, sentiment, etc. (Belinkov et al., 2017; Reif 584

et al., 2019; Kim et al., 2020; Richardson et al., 585

2020; Vulić et al., 2020; Conia and Navigli, 2022). 586

Expressive power of transformers Yun et al. 587

(2020a,b) show that transformers are universal 588

sequence-to-sequence function approximators. 589

Later, Pérez et al. (2021); Bhattamishra et al. 590

(2020b) show that attention models can simulate 591

Turing machines, with Wei et al. (2022) propos- 592

ing statistically meaningful approximations of 593

Turing machines. To understand the behavior of 594

moderate-size transformer architectures, many 595

works have investigated specific classes of lan- 596

guages, e.g. bounded-depth Dyck languages (Yao 597

et al., 2021), modular prefix sums (Anil et al., 598

2022), adders (Nanda et al., 2023), regular 599

languages (Bhattamishra et al., 2020a), and sparse 600

logical predicates (Edelman et al., 2022). Merrill 601

et al. (2022) relate saturated transformers with con- 602

stant depth threshold circuits, and Liu et al. (2022) 603

provide a unified theory on understanding automata 604

within transformers. These works study the ex- 605

pressive power under a class of synthetic language. 606

Compared to the prior works, our results are more 607

related to the natural language, as we consider not 608

only a class of synthetic language (PCFG), but also 609

a specific PCFG tailored to the natural language. 610

6 Conclusion 611

In this work, we show that MLM with moderate 612

size has the capacity to parse decently well. We 613

probe BERT-like models pre-trained (with MLM 614

loss) on the synthetic text generated using PCFGs 615

to verify that these models capture syntactic in- 616

formation. Furthermore, we show that the models 617

contain the marginal span probabilities computed 618

by the Inside-Outside algorithm, thus connecting 619

MLM and parsing. We hope our findings may yield 620

new insights into large language models and MLM. 621
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Appendix877

A More Experiment Results878

In this section, we provide more experiment results879

for RoBERTa pre-trained on PCFG-generated data.880

In Appendix A.2, we show more structural probing881

results related to the experiments in Section 4.2.882

In Appendix A.5, we do some simple analysis on883

the attention patterns for RoBERTa pre-trained on884

PCFG-generated data, trying to gain more under-885

standing of the mechanism beneath large language886

models.887

A.1 Details for pre-training888

Experiment setup We generate 107 sentences889

for the training set from the PCFG, with an average890

length of 25 words. The training set is roughly891

10% in size compared to the training set of the892

original RoBERTa which was trained on a combi-893

nation of Wikipedia (2500M words) plus BookCor-894

pus (800M words). We also keep a small valida-895

tion set of 5 × 104 sentences generated from the896

PCFG to track the MLM loss. We follow (Izsak897

et al., 2021; Wettig et al., 2022) to pre-train all898

our models within a single day on a cluster of 8899

RTX 2080 GPUs. Specifically, we train our models900

with AdamW (Loshchilov and Hutter, 2017) opti-901

mization, using 4096 sequences in a batch and hy-902

perparameters (β1, β2, ϵ) = (0.9, 0.98, 10−6). We903

follow a linear warmup schedule for 1380 training904

steps with the peak learning rate of 2× 10−3, after905

which the learning rate drops linearly to 0 (with the906

max-possible training step being 2.3 × 104). We907

report the performance of all our models at step908

5 × 103 where the loss seems to converge for all909

the models.910

Architecture To understand the impact of differ-911

ent components in the encoder model, we pre-train912

different models by varying the number of attention913

heads and layers in the model. To understand the914

role of the number of layers in the model, we start915

from the RoBERTa-base architecture, which has 12916

layers and 12 attention heads, and vary the number917

of layers to 1,3,6 to obtain 3 different architectures.918

Similarily, to understand the role of the number919

of attention heads in the model, we start from the920

RoBERTa-base architecture and vary the number921

of attention heads to 3 and 24 to obtain 2 different922

architectures.923

Data generation from PCFG Strings are gen-924

erated from the PCFG G = (N , I,P, n, p) as fol-925

lows: We always maintain a string st ∈ ([n]∪N )∗ 926

at step t. The initial string s1 = ROOT. At step t, 927

if all characters in st belong to [n], the generation 928

process ends, and st is the resulting string. Other- 929

wise, we pick a character A ∈ st such that A ∈ N . 930

If A ∈ P , we replace the character A to w with 931

probability Pr[A → w]. If A ∈ I, we replace the 932

character A to two characters BC with probability 933

Pr[A → BC]. 934

A.2 More results on constituency parsing 935

More details on probing experiments In Sec- 936

tion 4.2, we mention that there are three settings: 937

PCFG, PTB, and OOD. We generate two synthetic 938

PCFG datasets according to the PCFG generation 939

process: the first contains 10,000 sentences, which 940

serves as the training set for probes, and the second 941

contains 2,000 sentences, which serves as the test 942

set for probes. As for the PTB, the training set for 943

the probes consists of the first 10,000 sentences 944

from sections 02-21, and we use PTB section 22 as 945

the test set for the probes. In the PCFG setting, we 946

train on the PCFG training set we generated, and 947

test on the PCFG test set. In the PTB setting, we 948

train on the PTB training set (10,000 sentences in 949

sections 02-21) and test on the PTB test set (sec- 950

tion 22). In the OOD setting, we train on the PCFG 951

training set, while test on the PTB test set (section 952

22). 953

For the linear probe, we directly use Scikit- 954

learn (Pedregosa et al., 2011). For the 2-layer 955

NN probe, we train the neural net with Adam opti- 956

mizer with learning rate 1e − 3. We optimize for 957

800 epochs, and we apply a multi-step learning 958

rate schedule with milestones 200, 400, 600 and 959

decreasing factor 0.1. The batch size for Adam is 960

chosen to be 4096. 961

Probing on embeddings from different layers 962

In Section 4.2, we show the probing results on the 963

embeddings either from 0-th layer or from the best 964

layer (the layer that achieves the highest F1 score) 965

of different pre-trained models. In this section, 966

we show how the F1 score changes with different 967

layers. 968

Figure 3 shows sentence F1 scores for linear 969

probes f(·) trained on different layers’ embeddings 970

for different pre-trained models. We show the re- 971

sults under the PCFG and PTB settings. From Fig- 972

ure 3, we observe that using the embeddings from 973

the 0-th layer can only get sentence F1 scores close 974

to (or even worse than) the naive Right-branching 975
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baseline for all the pre-trained models. However,976

except for model A3L12, the linear probe can get977

at least 60% sentence F1 using the embeddings978

from layer 1. Then, the sentence F1 score increases979

as the layer increases, and gets nearly saturated at980

layer 3 or 4. The F1 score for the latter layers may981

be better than the F1 score at layer 3 or 4, but the982

improvement is not significant. The observations983

still hold if we change the linear probe to a neu-984

ral network, consider the OOD setting instead of985

PCFG and PTB, or change the measurement from986

sentence F1 to corpus F1.987

Our observations suggest that most of the con-988

stituency parse tree information can be encoded989

in the lower layers, and a lot of the parse tree in-990

formation can be captured even in the first layer.991

Although our constructions (Theorems 3.1 and 3.2)992

and approximations (Theorems 3.4 and C.2) try993

to reduce the number of attention heads and the994

number of embedding dimensions close to the real995

language models, we don’t know how to reduce996

the number of layers close to BERT or RoBERTa997

(although our number is acceptable since GPT-3998

has 96 layers). More understanding of how lan-999

guage models can process such information in such1000

a small number of layers is needed.1001

Comparison with probes using other input struc-1002

tures In Section 4.2, we train a probe f(·) to1003

predict the relative depth tar(i) = depth(i, i +1004

1) − depth(i − 1, i), and the input to the probe1005

f is the concatenation of the embedding e
(ℓ)
i at1006

position i and the embedding e
(ℓ)
EOS for the EOS1007

token at some layer ℓ. Besides taking the con-1008

catenation [e
(ℓ)
i ; e

(ℓ)
EOS] as the input structure of1009

the probe, it is also natural to use the concatena-1010

tion [e
(ℓ)
i−1; e

(ℓ)
i ; e

(ℓ)
i+1] to predict the relative depth1011

tar(i). In this part, we compare the performances of1012

probes with different input structures. We use EOS1013

to denote the probe that takes [e(ℓ)i ; e
(ℓ)
EOS] as the in-1014

put and predicts the relative depth, while ADJ (Ad-1015

jacent embeddings) to denote the probe the takes1016

[e
(ℓ)
i−1; e

(ℓ)
i ; e

(ℓ)
i+1] as input.1017

Figure 4 shows the probing results on A12L12,1018

the model with 12 attention heads and 12 layers.1019

We compare the probes with different inputs struc-1020

ture (EOS or ADJ), and the input embeddings come1021

from different layers (the 0-th layer or the layer that1022

achieves the best F1 score). We observe that: (1)1023

the probes using ADJ input structure have better1024

parsing scores than the probes using EOS input1025

structure, and (2) the sentence F1 for the probes 1026

using the ADJ input structure is high even if the 1027

input comes from layer 0 of the model (> 55% for 1028

linear f(·) and > 60% for neural network f(·)). 1029

Although the probe using ADJ has better parsing 1030

scores than the probe using EOS, it is harder to 1031

test whether it is a good probe, since the concatena- 1032

tion of adjacent embeddings [e(0)i−1; e
(0)
i ; e

(0)
i+1] from 1033

layer 0 is already contextualized, and it is hard to 1034

find a good baseline to show that the probe is sen- 1035

sitive to the information we want to test. Thus, 1036

we choose to follow Vilares et al. (2020); Arps 1037

et al. (2022) and use the probe with input structure 1038

[e
(ℓ)
i ; e

(ℓ)
EOS] in Section 4.2. 1039

Nonetheless, the experiment results for probes 1040

taking [e
(0)
i−1; e

(0)
i ; e

(0)
i+1] as input are already sur- 1041

prising: by knowing three adjacent word iden- 1042

tities and their position (the token embedding 1043

e
(0)
i contains both the word embedding and 1044

the positional embedding) and train a 2-layer 1045

neural network on top of that, we can get 1046

62.67%, 63.91%, 57.02% sentence F1 scores un- 1047

der PCFG, PTB, and OOD settings respectively. As 1048

a comparison, the probe taking [e
(ℓ)
i ; e

(ℓ)
EOS] as in- 1049

put (Vilares et al., 2020; Arps et al., 2022) only 1050

get 39.06%, 39.31%, 33.33% sentence F1 under 1051

PCFG, PTB, and OOD settings respectively. It 1052

shows that lots of syntactic information (useful 1053

for parsing) can be captured by just using adjacent 1054

words without more context. 1055

More discussion on probing measurement (Un- 1056

labelled) F1 score is the default performance mea- 1057

surement in the constituency parsing and syntactic 1058

probing literature. However, we would like to point 1059

out that only focusing on the F1 score may cause 1060

some bias. Because all the spans have equal weight 1061

when computing the F1 score, and most of the 1062

spans in a tree have a short length (if the parse tree 1063

is perfectly balanced, then length 2 spans consist 1064

of half of the spans in the parse tree), one can get 1065

a decently well F1 score by only getting correct 1066

on short spans. Besides, we also show that by tak- 1067

ing the inputs [e(0)i−1; e
(0)
i ; e

(0)
i+1] from layer 0 of the 1068

model (12 attention heads and 12 layers), we can 1069

already capture a lot of the syntactic information 1070

useful to recover the constituency parse tree (get 1071

a decently well F1 score). Thus, the F1 score for 1072

the whole parse tree may cause people to focus 1073

less on the long-range dependencies or long-range 1074

structures, and focus more on the short-range de- 1075
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(a) Comparison under PCFG setting. We compare the models
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(b) Comparison under PCFG setting. We compare the models
with different number of attention heads.

0 2 4 6 8 10 12
layers (0 denote the embedding layer)

30
35
40
45
50
55
60
65
70

Se
nt

en
ce

 F
1

Sentence F1 under PTB settting

A12L12
A12L6
A12L3
A12L1

(c) Comparison under PTB setting. We compare the models
with different number of layers.
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(d) Comparison under PTB setting. We compare the models
with different number of attention heads.

Figure 3: Sentence F1 for linear probes f(·) trained on different layers’ embeddings for different pre-trained models.
We show the results under PCFG and PTB settings. AiLj denotes the pre-trained model with i attention heads and j
layers.

pendencies or structures.1076

To mitigate this problem, Vilares et al. (2020)1077

computed the F1 score not only for the whole parse1078

tree, but also for each length of spans. Vilares et al.1079

(2020) showed that BERT trained on natural lan-1080

guage can get a very good F1 score when the spans1081

are short (for length 2 spans, the probing F1 is over1082

80%), but when the span becomes longer, the F11083

score quickly drops. Even for spans with length 5,1084

the F1 score is less than 70%, and for spans with1085

length 10, the F1 score is less than 60%. Our ex-1086

periments that probe the marginal probabilities for1087

different lengths of spans (Section 4.3) can also be1088

viewed as an approach to mitigate the problem.1089

A.3 More results on probing marginal1090

probabilities1091

In Section 4.3, we conduct probing experiments to1092

demonstrate the predictability of the "normalized1093

marginal probabilities" computed by the Inside- 1094

Outside algorithm using transformer representa- 1095

tions. Our objective is to establish a strong correla- 1096

tion, measured through the Pearson correlation co- 1097

efficient. However, we have not provided a compre- 1098

hensive explanation for our preference for Pearson 1099

correlation over alternative metrics such as Spear- 1100

man correlation. In the following section, we show 1101

the experiment results measured by the Spearman 1102

correlation, and give an explanation of why we 1103

prefer the Pearson correlation over the Spearman 1104

correlation. 1105

Measure with Spearman correlation Table 6 1106

summarizes the correlations between the predicted 1107

probabilities and the span marginal probabilities 1108

computed by the Inside-Outside algorithm on PTB 1109

datasets for the 2-linear net probes. It is evident that 1110

the Spearman correlation is significantly lower than 1111
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(a) Comparison of different inputs under different settings
when the probe f(·) is linear.
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(b) Comparison of different inputs under different settings
when the probe f(·) is a 2-layer neural network.

Figure 4: Comparison of the probes with different inputs under different settings. We probe the model with 12
attention heads and 12 layers, and report the scores with f(·) taking embeddings from layer 0 or the embeddings
from the best layer. EOS denotes the probe that takes [e(ℓ)i ; e

(ℓ)
EOS] as input and predicts the relative depth tar(i), and

ADJ (Adjacent embeddings) denotes the probe that takes [e(ℓ)i−1; e
(ℓ)
i ; e

(ℓ)
i+1] as input.

Span
Length A12L12 A12L1 A12L3 A12L6 A3L12 A24L12

ℓ = 2 .71 / .93 .69 / .88 .75 / .93 .71 / .93 .76 / .86 .75 / .92
ℓ = 5 .59 / .82 .54 / .64 .47 / .79 .49 / .79 .54 / .71 .48 / .79
ℓ = 10 .43 / .78 .48 / .68 .59 / .73 .45 / .75 .33 / .62 .39 / .72

Table 6: Probing for the “normalized” marginal probabilities of spans at different lengths on different pre-trained
models. We report the Spearman and Pearson correlations (separated by /) between the predicted probabilities
and the span marginal probabilities computed by the Inside-Outside algorithm on PTB datasets for the 2-linear net
probe.

(a) Span length to probe: ℓ = 2. (b) Span length to probe: ℓ = 5. (c) Span length to probe: ℓ = 10.

Figure 5: The predicted probability versus true normalized marginal probability plot for different span lengths ℓ
using 2-layer NN probe with the 12-th layer’s representations from A12L12 model. In each figure, we sample 200
points (each point corresponds to a span) to plot from the test set. The y-axis denotes the predicted probabilities and
the x-axis denotes the true normalized marginal probabilities. The line shows the best linear fit for all the spans in
the test set. We can observe that there are lots of points that have very small normalized marginal probabilities, and
it is very hard to predict their rank correctly, thus resulting in a low Spearman correlation.
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the Pearson correlation, indicating that the probe1112

primarily captures "linear" correlations rather than1113

rank-based relationships.1114

In order to investigate the underlying cause of1115

this phenomenon, we plot the predicted probabili-1116

ties against the true normalized marginal probabili-1117

ties, as shown in Figure 5. Numerous points have1118

extremely small normalized marginal probabilities,1119

particularly when the probe length ℓ is large (e.g.,1120

ℓ = 5, 10). This observation aligns with the intu-1121

ition that the probability of a randomly selected1122

span existing in the constituency parse tree is low.1123

However, accurately predicting the exact rank1124

for the points clustered near the origin proves to1125

be extremely challenging, leading to a relatively1126

low Spearman correlation. In contrast, when con-1127

sidering the Pearson correlation, the noise associ-1128

ated with predicting spans having low normalized1129

marginal probabilities is relatively small compared1130

to the overall "variance" of the data points. Further-1131

more, it is evident that the probe exhibits greater1132

efficacy in capturing the "influential spans" charac-1133

terized by large normalized marginal probabilities.1134

Achieving relatively accurate predictions for these1135

influential spans accounts for a significant portion1136

of the observed variation, leading to a relatively1137

high Pearson correlation.1138

A.4 Control tasks1139

In probing experiments, it is crucial to ensure that1140

the probing performance accurately reflects the1141

presence of the specific information we intend to1142

test. Consequently, it is undesirable for the probe to1143

possess excessive power and be capable of learning1144

all aspects (see Section 2 for further discussions).1145

Chen et al. (2021) utilize the concept of “sensitivity”1146

to assess the extent to which the probe captures the1147

targeted information. The “sensitivity” of a probe1148

is defined as the difference in probing performance1149

between the layer of interest and the 0-th layer (see1150

Section 4.2 and Section 4.3 for further details). In-1151

tuitively, a large gap indicates that the probe fails to1152

perform adequately using representations from the1153

0-th layer but achieves better performance when1154

utilizing representations from a later layer, thus con-1155

firming the presence of the targeted information. In1156

situations where there are two probe choices (e.g.,1157

a linear classifier or a 2-layer neural network), the1158

option exhibiting greater “sensitivity” should be1159

selected as it captures a relatively higher amount1160

of the targeted information.1161

Hewitt and Liang (2019) introduced another met- 1162

ric, known as “selectivity”, to assess the degree to 1163

which the probe captures the targeted information. 1164

Broadly speaking, Hewitt and Liang (2019) devised 1165

a specific task referred to as the “control task” to 1166

evaluate the probe’s capability to align with specific 1167

types of random labels. Subsequently, “selectivity” 1168

is defined as the difference in performance between 1169

the probe for the original task, utilizing the layer of 1170

interest, and the probe for the control task, also uti- 1171

lizing the layer of interest. Intuitively, a large gap 1172

suggests that the probe lacks sufficient expressive 1173

power, resulting in the performance boost origi- 1174

nating from the representations of the layer being 1175

probed, thus confirming the presence of specific 1176

information. Similarly, in scenarios involving two 1177

probe choices (e.g., a linear classifier or a 2-layer 1178

neural network), the option exhibiting greater “se- 1179

lectivity” should be preferred as it captures a rela- 1180

tively higher amount of the targeted information. 1181

It is important to note that a probe with higher 1182

“sensitivity” does not necessarily imply larger “se- 1183

lectivity”. Nevertheless, as demonstrated in the 1184

subsequent parts, the metrics of “sensitivity” and 1185

“selectivity” align for both the constituency parsing 1186

probes (Section 4.2) and the marginal probability 1187

probes (Section 4.3). 1188

Control task Hewitt and Liang (2019) consid- 1189

ered control task for sequence labeling problems: 1190

Given a sentence x1:T , the goal is to label each 1191

word y1:T . For example, the Part-of-speech tag- 1192

ging problem and the dependency parsing all be- 1193

long to the sequence labeling category, since for 1194

Part-of-speech tagging, yi is the POS tag of xi, and 1195

for dependency parsing, yi is the parent of xi in 1196

the parse tree. For a sequence labeling problem, 1197

the control task for this sequence labeling problem 1198

consists of two key components: 1199

1. Structure: the output ŷi of a word xi is a de- 1200

terministic function of xi, i.e., ŷi = ϕ(xi). 1201

2. Randomness: The output ŷi for each word xi 1202

is sampled independently at random. 1203

Then, the goal of the control task is to fit the 1204

labels ŷ1:T using the probe with the input h1:T 1205

where h1:T denote the hidden representations of 1206

the specific layer of the transformer. Please refer 1207

to Section 2 of Hewitt and Liang (2019) for more 1208

details and examples on control task. 1209
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Control task for constituency parsing probe1210

For the constituency parsing probe in Section 4.2,1211

it is easy to design a control task since in Sec-1212

tion 4.2 we reduce the constituency parsing prob-1213

lem to a sequence labeling problem that predicts1214

the relative depth of the common ancestors be-1215

tween words. Specifically, we have yi = tar(i) =1216

depth(i, i + 1) − depth(i − 1, i) for position i.1217

Then for the control task, for each word w, we1218

uniformly sample ϕ(w) ∈ {−1, 0, 1}, and then1219

define the labels for the control task as ŷ1:T =1220

[ϕ(x1), ϕ(x2), . . . , ϕ(xT )].1221

Control task for marginal probability probe1222

For the marginal probability probe in Section 4.3,1223

we need to generalize the original control task from1224

sequence labeling problem to span labeling prob-1225

lem. Given a span xi:j , the original goal is to pre-1226

dict the normalized marginal probability yi,j =1227

tar(i, j) = s(i, j)/maxj1,j2 s(j1, j2) where s(i, j)1228

is the marginal probability for span i : j com-1229

puted by the Inside-Outside algorithm. Now for1230

each pair of words w1, w2, we uniformly sample1231

ϕ(w1, w2) ∈ [0, 1]. Then for the sequence x1:T , we1232

have the label for the control task ŷi,j = ϕ(xi, xj).1233

Selectivity is aligned with Sensitivity Table 7 and1234

Table 8 provide a summary of the performance of1235

the constituency parsing probe and the marginal1236

probability probes, employing different architec-1237

tures (linear classifier and a 2-layer neural network1238

with 16 hidden neurons), on the original task, con-1239

trol task, as well as the selectivity.1240

Based on the results presented in Table 7, it is ob-1241

served that the probe with a 2-layer neural network1242

achieves slightly higher accuracy in predicting the1243

relative depth of common ancestors, leading to a1244

higher F1 score in constituency parsing. However,1245

its performance on the control task surpasses that1246

of the probe with a linear classifier by a significant1247

margin. This suggests that when using the “se-1248

lectivity” metric, the linear probe outperforms the1249

2-layer neural network probe in recovering the con-1250

stituency parse tree, aligning with the conclusions1251

drawn using the “sensitivity metric” (see Figure 1,1252

where the sensitivity of the linear probe is greater1253

than that of the 2-layer neural network probe).1254

Based on the information presented in Table 8,1255

it is evident that the probe utilizing a 2-layer neu-1256

ral network demonstrates superior performance in1257

predicting span probabilities for the control task.1258

Nonetheless, compared to the linear probe, the 2-1259

layer neural network probe achieves significantly 1260

better results on the original task, resulting in a 1261

larger “selectivity”. Analyzing Figure 2a, we ob- 1262

serve that the 2-layer NN probe exhibits signifi- 1263

cantly stronger predictive correlation than the linear 1264

probe at the 12-th layer of A12L12, while display- 1265

ing similar performance at the 0-th layer, which 1266

contributes to a higher “sensitivity”. Consequently, 1267

the “selectivity” metric aligns with the “sensitivity” 1268

metric for marginal probability probes, indicating 1269

that 2-layer NN probes capture a relatively greater 1270

amount of syntactic information. 1271

A.5 Analysis of attention patterns 1272

In Section 4.2, we probe the embeddings of the 1273

models pre-trained on synthetic data generated 1274

from PCFG and show that model training on MLM 1275

indeed captures syntactic information that can re- 1276

cover the constituency parse tree. Theorem 3.3 1277

builds the connection between MLM and the Inside- 1278

Outside algorithm, and the connection is also ver- 1279

ified in Section 4.3, which shows that the em- 1280

beddings also contain the marginal probability in- 1281

formation computed by the Inside-Outside algo- 1282

rithm. However, we only build up the correlation 1283

between the Inside-Outside algorithm and the at- 1284

tention models, and we still don’t know the mecha- 1285

nism inside the language models: the model may 1286

be executing the Inside-Outside algorithm (or some 1287

approximations of the Inside-Outside algorithm), 1288

but it may also use some mechanism far from the 1289

Inside-Outside algorithm but happens to contain 1290

the marginal probability information. We leave for 1291

future work the design of experiments to interpret 1292

the content of the contextualized embeddings and 1293

thus “reverse-engineer” the learned model. In this 1294

section, we take a small step to understand more 1295

about the mechanism of language models: we need 1296

to open up the black box and go further than prob- 1297

ing, and this section serves as one step to do so. 1298

General idea The key ingredient that distin- 1299

guishes current large language models and the fully- 1300

connected neural networks is the self-attention 1301

module. Thus besides probing for certain informa- 1302

tion, we can also look at the attention score matrix 1303

and discover some patterns. In particular, we are 1304

interested in how far an attention head looks at, 1305

which we called the "averaged attended distance". 1306

Averaged attended distance For a model and a 1307

particular attention head, given a sentence s with 1308

length Ls, the head will generate an Ls×Ls matrix 1309
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L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12

L
in

ea
r pred. rel. depth .606 .760 .789 .796 .800 .803 .803 .803 .802 .801 .800 .800 .799

control task .758 .677 .645 .626 .620 .610 .608 .617 .599 .595 .612 .606 .608
selectivity -.152 .083 .144 .170 .180 .193 .195 .186 .203 .206 .188 .194 .191

N
N

pred. rel. depth .616 .771 .804 .810 .814 .807 .815 .802 .795 .810 .806 .803 .776
control task .861 .793 .758 .667 .728 .653 .653 .668 .678 .693 .680 .697 .687
selectivity -.245 -.022 .046 .143 .086 .154 .162 .134 .117 .117 .126 .106 .089

Table 7: Computing the selectivity of constituency parsing probes with linear and 2-layer NN architectures (see
Section 4.2 and Appendix A.4). The “pred. rel. depth” rows denote the probing results for the relative depth of
common ancestors in the constituency parse tree using different layers’ representations of A12L12. We report the
predicting accuracy under the PTB setting where the probe is trained and tested on PTB dataset. The “control task”
rows denote the predicting accuracy for the control task on PTB dataset using different layers’ representations of
A12L12. The selectivity is the difference between the original task performance and the control task performance.
We can observe that for all layers representations, the probe with a linear classifier has a larger selectivity.

Probe span length 2 3 4 5 10

L
in

ea
r pred. marginal prob. .88 .79 .69 .62 .51

control task .62 .55 .53 .60 .58
selectivity .26 .24 .16 .02 -.07

N
N

pred. marginal prob. .93 .90 .86 .79 .77
control task .66 .66 .69 .66 .68
selectivity .27 .24 .17 .13 .09

Table 8: Computing the selectivity of marginal probability probes with linear and 2-layer NN architectures (see
Section 4.3 and Appendix A.4). The “pred. marginal prob.” rows denote the probing results for the “normalized”
marginal probabilities of spans at different lengths using the 12-th layer of A12L12. We report the Pearson
correlation between the predicted probabilities and the span marginal probabilities computed by the Inside-Outside
algorithm on PTB dataset. The “control task” rows denote the Pearson correlation between the predicted probabilities
and the probabilities generated from the control task on PTB dataset using the 12-th layer of A12L12. The selectivity
is the difference between the original task performance and the control task performance. We can observe that for
spans with all lengths tested, the probe with 2-layer NN has a larger selectivity, especially when the probe length is
large.
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A containing the pair-wise attention score, where1310

each row of A sums to 1. Then we compute the1311

following quantity “Averaged attended distance”1312

ADs =
1

Ls

∑
1≤i,j≤Ls

|i− j| ·Ai,j ,1313

which can be intuitively interpreted as “the average1314

distance this attention head is looking at”. We then1315

take the average of the quantity for all sentences.1316

We compute “Averaged attended distance” for three1317

models on the synthetic PCFG dataset and PTB1318

dataset. The models all have 12 attention heads in1319

each layer but have 12, 6, 3 layers respectively.1320

Experiment results Figure 6 shows the results of1321

the “Averaged attented distance” for each attention1322

head in different models. Figures 6a, 6c and 6e1323

show the results on the synthetic PCFG dataset, and1324

Figures 6b, 6d and 6f show the results on the PTB1325

dataset. We sort the attention heads in each layer1326

according to the “Averaged attended distance”.1327

From Figures 6a, 6c and 6e, we can find that for1328

all models, there are several attention heads in the1329

first layer that look at very close tokens (“Averaged1330

attended distance” less than 3). Then as the layer1331

increases, the “Averaged attended distance” also in-1332

creases in general, meaning that the attention heads1333

are looking at further tokens. Then at some layer,1334

there are some attention heads looking at very far1335

tokens (“Averaged attended distance” larger than1336

12).3 This finding also gives some implication that1337

the model is doing something that correlates with1338

our construction: it looks longer spans as the layer1339

increases. However, different from our construc-1340

tion that the attention head only looks at a fixed1341

length span, models trained using MLM look at1342

different lengths of spans at each layer, which can-1343

not be explained by our current construction, and1344

suggests a further understanding of the mechanism1345

of large language models.1346

Besides, we can find that the patterns are nearly1347

the same for the synthetic PCFG dataset and PTB1348

dataset, and thus the previous finding can also be1349

transferred to the PTB dataset.1350

B Missing Proofs in Section 31351

In this section, we show the detailed proof for The-1352

orem 3.1, Theorem 3.2, and Theorem 3.3.1353

3Note that the average length of the sentences in the syn-
thetic PCFG dataset is around 24, if the attention head gives
0.5 attention score to the first and the last token for every
token, the “Averaged attended distance” will be 12.

B.1 Proof of Theorem 3.1 1354

Proof. The first L−1 layers simulate the recursive 1355

formulation of the Inside probabilities from eq. 2, 1356

and the last L − 1 layers simulate the recursive 1357

formulation of the outside probabilities from eq. 3. 1358

The model uses embeddings of size 4|N |L + L, 1359

where the last L coordinates serve as one-hot posi- 1360

tional embeddings and are kept unchanged through- 1361

out the model. 1362

Notations: For typographical simplicity, we will 1363

divide our embeddings into 5 sub-parts. We will 1364

use the first 2|N |L coordinates to store the in- 1365

side probabilities, the second 2|N |L coordinates 1366

to store the outside probabilities, and the final 1367

L coordinates to store the one-hot positional en- 1368

codings. For every position i and span length 1369

ℓ+ 1, we store the inside probabilities {α(A, i, i+ 1370

ℓ)}A∈N after computation in its embedding at co- 1371

ordinates [|N |ℓ, |N |(ℓ + 1)). Similarly we store 1372

{α(A, i−ℓ, i)}A∈N at [|N |(L+ℓ), |N |(L+ℓ+1)), 1373

{β(A, i, i + ℓ)}A∈N at [|N |(2L + ℓ), |N |(2L + 1374

ℓ + 1)), and {β(A, i − ℓ, i)}A∈N at [|N |(3L + 1375

ℓ), |N |(3L + ℓ + 1)) respectively. For simplic- 1376

ity of presentation, we won’t handle cases where 1377

i+ ℓ or i− ℓ is outside the range of 1 to L - those 1378

coordinates will be fixed to 0. 1379

Token Embeddings: The initial embeddings for 1380

each token w will contain Pr[A → w] for all A ∈ 1381

P . This is to initiate the inside probabilities of all 1382

spans of length 1. Furthermore, the tokens will 1383

have a one-hot encoding of their positions in the 1384

input in the last L coordinates. 1385

Inside probabilities: The contextual embed- 1386

dings at position i after the computations of any 1387

layer ℓ < L contains the inside probabilities of all 1388

spans of length at most ℓ+1 starting and ending at 1389

position i, i.e. α(A, i, i+ k) and α(A, i− k, i) for 1390

all A ∈ N and k ≤ ℓ. The rest of the coordinates, 1391

except the position coordinates, contain 0. 1392

Layer 1 ≤ ℓ < L: At each position i, this layer 1393

computes the inside probabilities of spans of length 1394

ℓ+ 1 starting and ending at i, using the recursive 1395

formulation from eq. 2. 1396

For every non-terminal A ∈ N , we will use 1397

a unique attention head to compute α(A, i, i + ℓ) 1398

at each token i. Specifically, the attention head 1399

representing non-terminal A ∈ N will represent 1400

the following operation at each position i: 1401
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1 2 3 4 5 6 7 8 9 10 11 12
Attention head

1
2

3
4

5
6

7
8

9
10

11
12

La
ye

r
1.7 1.8 1.9 2.2 2.4 2.6 2.7 8 8.1 8.2 8.4 8.5

1.9 2.7 2.8 4.2 5.1 5.5 7.1 7.1 7.4 8.4 8.9 9.3

4.1 4.5 4.8 6 6.8 6.9 7.7 7.8 7.8 7.8 8.4 10

5.5 6.3 6.8 7 7.5 7.8 7.9 8 8.2 8.2 8.3 9.2

5.9 6.1 6.6 6.7 7 7.1 7.1 7.2 7.2 7.3 7.9 8.1

7.5 7.6 7.6 7.7 7.7 7.8 8 8.2 8.9 11 11 12

7.1 7.2 7.3 7.7 7.9 7.9 8.1 8.3 8.4 8.6 9.1 12

6.3 7.2 7.4 7.4 7.5 7.9 7.9 8 8 8.1 8.2 8.5

7.9 7.9 8 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.2 8.2

8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.4

8.1 8.1 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2

8.1 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.3 8.3

Average attended distance

2

4

6

8

10

(a) 12 attention heads and 12 layers, PCFG dataset.
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(b) 12 attention heads and 12 layers, PTB dataset.
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(c) 12 attention heads and 6 layers, PCFG dataset.
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(d) 12 attention heads and 6 layers, PTB dataset.
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(e) 12 attention heads and 3 layers, PCFG dataset.
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(f) 12 attention heads and 3 layers, PTB dataset.

Figure 6: “Averaged attented distance” of each attention heads for different models on PCFG and PTB datasets.
Figures 6a, 6c and 6e show the results on the synthetic PCFG dataset, and Figures 6b, 6d and 6f show the results on
the PTB dataset.

α(A, i, j)1402

=
∑

B,C∈N

j−1∑
k=i

Pr[A → BC] · α(B, i, k) · α(C, k + 1, j)1403

=
∑

B,C∈N

∑
ℓ1,ℓ2≥0

ℓ1+ℓ2=ℓ−1

Pr[A → BC] 1404

· α(B, i, i+ ℓ1) · α(C, j − ℓ2, j), (7) 1405

where j = i+ ℓ. In the final step, we modified 1406

the formulation to represent the interaction of spans 1407

20



of different lengths starting at i and ending at j. We1408

represent this computation as the attention score1409

ai,j using a key matrix K
(ℓ)
A and query matrix Q

(ℓ)
A .1410

Computing Eq. 7 We set the Key matrix K
(ℓ)
A1411

as I . The Query matrix Q
(ℓ)
A is set such that if1412

we define PA ∈ R|N |×|N | that contains {Pr[A →1413

BC]}B,C∈N , PA appears at positions (|N |(L +1414

ℓ2), |N |ℓ1) for all ℓ1, ℓ2 ≥ 0 with ℓ1 + ℓ2 = ℓ −1415

1. Finally, Q(ℓ)
A contains Qp ∈ RL×L at position1416

(4|N |L, 4|N |L), such that Qp[i, i + ℓ] = 0 for1417

0 ≤ i < L, with the rest set to −ζ for some large1418

constant ζ. The rest of the blocks are set as 0. We1419

give an intuition behind the structure of Q(ℓ)
A below.1420

Intuition behind Q
(ℓ)
A : For any position i and1421

range ℓ1 ≤ ℓ, e(ℓ−1)
i contains the inside proba-1422

bilities {α(C, i − ℓ1, i)}C∈N in the coordinates1423

[|N |(L+ ℓ1), |N |(L+ ℓ1 + 1)), while it contains1424

the inside probabilities {α(B, i, i+ℓ1)}B∈N in the1425

coordinates [|N |ℓ1, |N |(ℓ1 + 1)). Hence, if we set1426

the block at position (|N |(L+ ℓ2), |N |ℓ1) in Q
(ℓ)
A1427

to PA for some 0 ≤ ℓ1, ℓ2 ≤ ℓ, with the rest set to1428

0, we can get for any two positions i, j,1429

(K
(ℓ)
A e

(ℓ−1)
j )⊤Q

(ℓ)
A e

(ℓ−1)
i1430

=
∑

B,C∈N

Pr[A → BC] · α(B, i, i+ ℓ1) · α(C, j − ℓ2, j).1431

Because we want to involve the sum over all1432

ℓ1, ℓ2 pairs with ℓ1+ ℓ2 = ℓ−1, we will set blocks1433

at positions {(|N |(L+ ℓ2), |N |ℓ1)}ℓ1,ℓ2:ℓ1+ℓ2=ℓ−11434

to PA, while setting the rest to 0. This gives us1435

(K
(ℓ)
A e

(ℓ−1)
j )⊤Q

(ℓ)
A e

(ℓ−1)
i1436

=
∑

B,C∈N

∑
ℓ1,ℓ2≥0

ℓ1+ℓ2=ℓ−1

Pr[A → BC] · α(B, i, i+ ℓ1)1437

· α(C, j − ℓ2, j).1438

However, we want (K(ℓ)
A e

(ℓ−1)
j )⊤Q

(ℓ)
A e

(ℓ−1)
i to1439

compute α(A, i, j) iff j = i + ℓ and 0 otherwise,1440

so we will use the final block in Q
(ℓ)
A that focuses1441

on the one-hot position encodings of i and j to dif-1442

ferentiate the different location pairs. Specifically,1443

the final block Qp will return 0 if j = i+ ℓ, while1444

it returns −ζ for some large constant ζ if j ̸= i+ ℓ.1445

This gives us1446

(K
(ℓ)
A e

(ℓ−1)
j )⊤Q

(ℓ)
A e

(ℓ−1)
i1447

=ζ(I[j − i = ℓ]− 1) +
∑

B,C∈N

∑
ℓ1,ℓ2≥0

ℓ1+ℓ2=ℓ−1

Pr[A → BC]1448

· α(B, i, i+ ℓ1) · α(C, j − ℓ2, j). (8) 1449

With the inclusion of the term ζ(I[j − i = ℓ] − 1450

1), we make (K
(ℓ)
A e

(ℓ−1)
j )⊤Q

(ℓ)
A e

(ℓ−1)
i positive if 1451

j − i = ℓ, and negative if j − i ̸= ℓ. Applying a 1452

ReLU activation on top will zero out the unneces- 1453

sary terms, leaving us with α(A, i, i + ℓ) at each 1454

location i. 1455

Similarly, we use another |N | attention heads to 1456

compute α(A, i−ℓ, i). In the end, we use the resid- 1457

ual connections to copy the previously computed 1458

inside probabilities α(A, i−ℓ′, i) and α(A, i, i+ℓ′) 1459

for ℓ′ < ℓ. 1460

Outside probabilities: In addition to all the in- 1461

side probabilities, the contextual embeddings at 1462

position i after the computations of any layer 1463

(2L − 1) − ℓ (≥ L) contain the outside probabil- 1464

ities of all spans of length at least ℓ + 1 starting 1465

and ending at position i, i.e. β(A, i, i + k) and 1466

β(A, i − k, i) for all A ∈ N and k ≥ ℓ. The rest 1467

of the coordinates, except the position coordinates, 1468

contain 0. 1469

Layer L In this layer, we initialize the out- 1470

side probabilities β(ROOT, 1, L) = 1 and 1471

β(A, 1, L) = 0 for A ̸= ROOT. Furthermore, we 1472

move the inside probabilities α(A, i+1, i+k) from 1473

position i+ 1 to position i, and α(A, i− k, i− 1) 1474

from position i− 1 to position i using 2 attention 1475

heads. 1476

Layer L + 1 ≤ ℓ̃ := (2L − 1) − ℓ ≤ 2L − 1: 1477

At each position i, this layer computes the outside 1478

probabilities of spans of length ℓ+ 1 starting and 1479

ending at i, using the recursive formulation from 1480

eq. 3. The recursive formulation for β(A, i, i+ ℓ) 1481

for a non-terminal A ∈ N has two terms, given by 1482

β(A, i, j) =β1(A, i, j) + β2(A, i, j), with 1483

β1(A, i, j) =
∑

C,B∈N

i−1∑
k=1

Pr[B → CA] 1484

· α(C, k, i− 1)β(B, k, j), and (9) 1485

β2(A, i, j) =
∑

B,C∈N

L∑
k=j+1

Pr[B → AC] 1486

· α(C, j + 1, k)β(B, i, k), (10) 1487

where j = i+ ℓ. For each non-terminal A ∈ N , 1488

we will use two unique heads to compute β(A, i, i+ 1489

ℓ) , each representing one of the two terms in the 1490

above formulation. We outline the construction for 1491

β1; the construction for β2 follows similarly. 1492
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Computing Eq. 9 We build the attention head in1493

the same way we built the attention head to repre-1494

sent the inside probabilities in eq. 8. Similar to 8,1495

we modify the formulation of β1 to highlight the1496

interaction of spans of different lengths.1497

β1(A, i, j) =
∑

B,C∈N

∑
ℓ1,ℓ2≥0
ℓ2−ℓ1=ℓ

Pr[B → CA]1498

· α(C, i− ℓ1, i− 1)β(B, j − ℓ2, j), (11)1499

where j = i+ ℓ. We represent this computation1500

as the attention score ai,i+ℓ using a key matrix1501

K
(ℓ̃)
A,1 and query matrix Q

(ℓ̃)
A,1. First, we set the Key1502

matrix K
(ℓ̃)
A,1 as I . If we define PA,r ∈ R|N |×|N |1503

as a matrix that contains {Pr[B → CA]}B,C∈N ,1504

which is the set of all rules where A appears as the1505

right child, Q(ℓ̃)
A,1 is set such that PA,r appears at1506

positions [|N |(3L+ ℓ2), |N |(L+ ℓ1)) for all 0 ≤1507

ℓ1, ℓ2 ≤ L that satisfy ℓ2 − ℓ1 = ℓ. Finally, Q(ℓ̃)
A,11508

contains Qp ∈ RL×L at position (4|N |L, 4|N |L),1509

such that Qp[i, i+ ℓ] = 0 for 0 ≤ i < L, with the1510

rest set to −ζ for some large constant ζ . The rest of1511

the blocks are set as 0. We give an intuition behind1512

the structure of Q(ℓ̃)
A,1 below.1513

Intuition for Q(ℓ̃)
A,1: For position i and any ranges1514

1 ≤ ℓ1 < L, ℓ + 1 ≤ ℓ2 ≤ L, e(ℓ̃−1)
i contains1515

the inside probabilities {α(C, i− ℓ1, i− 1)}C∈N1516

in the coordinates [|N |(L + ℓ1), |N |(L + ℓ1 +1517

1)), while it contains the outside probabilities1518

{β(B, i−ℓ2, i)}B∈N in the coordinates [|N |(3L+1519

ℓ2), |N |(3L+ ℓ2 + 1)). Hence, if we set the block1520

at position (|N |(3L+ ℓ2), |N |(L+ ℓ1)) to PA for1521

some 0 ≤ ℓ1 ≤ L, ℓ + 1 ≤ ℓ2 ≤ L, with the rest1522

set to 0, we can get for any two positions i, j,1523

(K
(ℓ̃)
A e

(ℓ̃−1)
j )⊤Q

(ℓ̃)
A e

(ℓ̃−1)
i1524

=
∑

B,C∈N

Pr[B → CA] · α(C, i− ℓ1, i− 1) · β(B, j − ℓ2, j).1525

Because we want to include the sum over ℓ1, ℓ21526

pairs with ℓ2 − ℓ1 = ℓ, we will only set blocks1527

at positions [|N |(3L + ℓ2), |N |(L + ℓ1)) for all1528

0 ≤ ℓ1, ℓ2 ≤ L that satisfy ℓ2 − ℓ1 = ℓ to PA,r,1529

while setting the rest to 0. This gives us1530

(K
(ℓ̃)
A e

(ℓ̃−1)
j )⊤Q

(ℓ̃)
A e

(ℓ̃−1)
i1531

=
∑

B,C∈N

∑
ℓ1,ℓ2≥0
ℓ2−ℓ1=ℓ

Pr[B → CA]1532

· α(C, i− ℓ1, i− 1) · β(B, j − ℓ2, j). 1533

Because we want (K(ℓ̃)
A e

(ℓ̃−1)
j )⊤Q

(ℓ̃)
A e

(ℓ̃−1)
i to 1534

compute β1(A, i, j) with j = i+ℓ and 0 otherwise, 1535

we will use the final block in Q
(ℓ)
A that focuses on 1536

the one-hot position encodings of i and j to differ- 1537

entiate the different location pairs. Specifically, the 1538

final block Qp will return 0 if j = i + ℓ, while it 1539

returns −ζ for some large constant ζ, if j ̸= i+ ℓ. 1540

This gives us 1541

(K
(ℓ̃)
A e

(ℓ̃−1)
j )⊤Q

(ℓ̃)
A e

(ℓ̃−1)
i 1542

=ζ(I[j − i = ℓ]− 1) +
∑

B,C∈N

∑
ℓ1,ℓ2≥0
ℓ2−ℓ1=ℓ

Pr[B → CA] 1543

· α(C, i− ℓ1, i− 1) · β(B, j − ℓ2, j) 1544

With the inclusion of the term ζ(I[j − i = 1545

ℓ] − 1), we make (K
(ℓ̃)
A e

(ℓ̃−1)
j )⊤Q

(ℓ̃)
A e

(ℓ̃−1)
i posi- 1546

tive if j−i = ℓ, and negative if j−i ̸= ℓ. Applying 1547

a ReLU activation on top will zero out the unneces- 1548

sary terms, leaving us with β1(A, i, i+ ℓ) at each 1549

location i. 1550

Besides, we also need 2|N | additional heads 1551

for the outside probabilities β(A, i − ℓ, i). In the 1552

end, we use the residual connections to copy the 1553

previously computed inside probabilities β(A, i− 1554

ℓ′, i) and α(A, i, i+ ℓ′) for ℓ′ > ℓ. 1555

B.2 Proof of Theorem 3.2 1556

Similar to the proof of Theorem 3.1, the first L− 1 1557

layers simulate the recursive formulation of the 1558

Inside probabilities from eq. 2, and the last L− 1 1559

layers simulate the recursive formulation of the 1560

outside probabilities from eq. 3. The model uses 1561

embeddings of size 2|N |L and uses 4L+2 relative 1562

position embeddings. 1563

Notations: For typographical simplicity, we will 1564

divide our embeddings into 2 sub-parts. We will 1565

use the first |N |L coordinates to store the inside 1566

probabilities, and the second |N |L coordinates to 1567

store the outside probabilities. For every position 1568

i and span length ℓ + 1, we store the inside prob- 1569

abilities {α(A, i− ℓ, i)}A∈N after computation in 1570

its embedding at coordinates [|N |ℓ, |N |(ℓ + 1)), 1571

where the coordinates for embeddings start from 1572

0. Similarly we store {β(A, i, i + ℓ)}A∈N at 1573

[|N |(L+ℓ), |N |(L+ℓ+1)). For simplicity of pre- 1574

sentation, we won’t handle cases where i+ℓ or i−ℓ 1575

is outside the range of 1 to L - those coordinates 1576

will be fixed to 0. 1577

22



Token Embeddings: The initial embeddings for1578

each token w will contain Pr[A → w] for all A ∈1579

P . This is to initiate the inside probabilities of all1580

spans of length 1.1581

Relative position embeddings: We introduce1582

2L + 1 relative position vectors {pt ∈1583

R2|N |L}−L≤t≤L, that modify the key vectors de-1584

pending on the relative position of the query and1585

key tokens. Furthermore, we introduce (2L −1586

1)L relative position-dependent biases {bt,ℓ ∈1587

R}−L≤t≤L,1≤ℓ≤2L−1. We introduce the structures1588

of the biases in the contexts of their intended uses.1589

Structure of {pt}−L≤t≤L: For t < 0, we de-1590

fine pt such that all coordinates in [|N |(−t −1591

1), |N |(−t)) are set to 1, with the rest set to 0.1592

For t > 0, we define pt such that all coordinates in1593

[|N |(L+ t− 1), |N |(L+ t)) are set to 1, with the1594

rest set to 0. p0 is set as all 0s.1595

Attention formulation: At any layer 1 ≤ ℓ ≤1596

2L− 1 except L, we define the attention score ahi,j1597

between e
(ℓ−1)
i and e

(ℓ−1)
j for any head h with Key1598

and Query matrices K(ℓ)
h and Q

(ℓ)
h as1599

ah
i,j = ReLU(K

(ℓ)
h e

(ℓ−1)
j + pj−i − bj−i,ℓ)

⊤Q
(ℓ)
h e

(ℓ−1)
i .

(12)1600

For layer L, we do not use the relative position1601

embeddings, i.e. we define the attention score ahi,j1602

between e
(L−1)
i and e

(L−1)
j for any head h with1603

Key and Query matrices K(L)
h and Q

(L)
h as1604

ah
i,j = ReLU(K

(L−1)
h e

(L−1)
j −bj−i,L)

⊤Q
(ℓ)
h e

(L−1)
i . (13)1605

Inside probabilities: The contextual embed-1606

dings at position i after the computations of any1607

layer ℓ < L contains the inside probabilities of all1608

spans of length at most ℓ+ 1 ending at position i,1609

i.e. α(A, i − k, i) for all A ∈ N and k ≤ ℓ. The1610

rest of the coordinates contain 0.1611

Structure of {bt,ℓ}−L≤t≤L,1≤ℓ≤L−1: For any1612

1 ≤ ℓ ≤ L − 1, for all t ≥ 0 and t < −ℓ, we1613

set bt,ℓ as ζ for some large constant ζ. All other1614

biases are set as 1.1615

Layer 1 ≤ ℓ < L: At each position i, this layer1616

computes the inside probabilities of spans of length1617

ℓ+ 1 ending at i, using the recursive formulation1618

from eq. 2.1619

For every non-terminal A ∈ N , we will use1620

a unique attention head to compute α(A, i − ℓ, i)1621

at each token i. Specifically, the attention head 1622

representing non-terminal A ∈ N will represent 1623

the following operation at each position i: 1624

α(A, i− ℓ, i) 1625

=
∑

B,C∈N

i−1∑
j=i−ℓ

Pr[A → BC]α(B, i− ℓ, j)α(C, j + 1, i) 1626

=

i−1∑
j=i−ℓ

∑
B,C∈N

Pr[A → BC]α(B, i− ℓ, j)α(C, j + 1, i).

(14)

1627

In the final step, we swapped the order of the 1628

summations to observe that the desired computa- 1629

tion can be represented as a sum over individual 1630

computations at locations j < i. That is, we rep- 1631

resent
∑

B,C∈N Pr[A → BC] · α(B, i − ℓ, j) · 1632

α(C, j + 1, i) as the attention score ai,j for all 1633

i − ℓ ≤ j ≤ i, while α(A, i − ℓ, i) will be repre- 1634

sented as
∑

i−ℓ≤j<i−1 ai,j . 1635

Structure of Q(ℓ)
A and K

(ℓ)
A to compute Eq. 14: 1636

1. K
(ℓ)
A is a rotation matrix such that in K

(ℓ)
A e

(ℓ)
i , 1637

for all ℓ1 ≤ ℓ, the inside probabilities 1638

{α(B, i − ℓ1, i)}B∈N appears in the coordi- 1639

nates [|N |(ℓ−ℓ1), |N |(ℓ−ℓ1+1)). Note that 1640

K
(ℓ)
A are the same for different A, and only 1641

depend on ℓ. 1642

2. The Query matrix Q
(ℓ)
A is a block diagonal 1643

matrix, such that if we define PA ∈ R|N |×|N | 1644

that contains {Pr[A → BC]}B,C∈N , PA ap- 1645

pears in the first ℓ blocks along the diago- 1646

nal, i.e. it occurs at all positions starting at 1647

(|N |ℓ1, |N |ℓ1) for all ℓ1 < ℓ. The rest of the 1648

blocks are set as 0s. 1649

Intuition behind Q
(ℓ)
A , K(ℓ)

A , the relative posi- 1650

tion embeddings and the biases: For any po- 1651

sition i and range ℓ1 < ℓ, e
(ℓ−1)
i contains the 1652

inside probabilities {α(C, i − ℓ1, i)}C∈N in the 1653

coordinates [|N |ℓ1, |N |(ℓ1+1)). With the applica- 1654

tion of K(ℓ)
A , K(ℓ)

A e
(ℓ−1)
i contains the inside prob- 1655

abilities {α(C, i − ℓ1, i)}C∈N in the coordinates 1656

[|N |(ℓ − 1 − ℓ1), |N |(ℓ − ℓ1)). Hence, if we set 1657

the block at position (|N |ℓ1, |N |ℓ1) in Q
(ℓ)
A to PA 1658

for some 0 ≤ ℓ1 < ℓ, with the rest set to 0, we can 1659

get for any two positions i, j, 1660

(K
(ℓ)
A e

(ℓ−1)
j )⊤Q

(ℓ)
A e

(ℓ−1)
i 1661

=
∑

B,C∈N

Pr[A → BC] · α(B, i− ℓ1, i) 1662

23



· α(C, j − (ℓ− 1− ℓ1), j).1663

Setting the first ℓ diagonal blocks in Q
(ℓ)
A to PA1664

can get for any two positions i, j,1665

(K
(ℓ)
A e

(ℓ−1)
j )⊤Q

(ℓ)
A e

(ℓ−1)
i1666

=
∑

ℓ1≤ℓ−1

∑
B,C∈N

Pr[A → BC] · α(B, i− ℓ1, i)1667

· α(C, j − (ℓ− ℓ1 − 1), j).1668

However, for α(A, i− ℓ, i), the attention score1669

above should only contribute with ℓ1 = i − j −1670

1. Moreover, we also want the above sum to be1671

0 if j ≥ i or j ≤ i − ℓ − 1. Hence, we will1672

use the relative position vector pj−i, bias bj−i,ℓ1673

and the ReLU activation to satisfy the following1674

conditions:1675

1. i− ℓ ≤ j ≤ i− 1.1676

2. The portion containing {α(C, j − (ℓ − ℓ1 −1677

1), j)}C∈N in K
(ℓ)
A e

(ℓ−1)
j is activated only if1678

ℓ1 = i− j − 1.1679

For any positions i, j and ℓ1 < ℓ, K(ℓ)
A e

(ℓ−1)
j +1680

pj−i − bj−i,ℓ will contain {α(C, j − (ℓ − ℓ1 −1681

1), j)+ I[ℓ1 = i− j−1]−1− ζI[j < i− ℓ or j >1682

i − 1]}C∈N in coordinates [|N |ℓ1, |N |(ℓ1 + 1)),1683

which will give us1684

ReLU(K
(ℓ)
A e

(ℓ−1)
j + pj−i − bj−i,ℓ)

⊤Q
(ℓ)
A e

(ℓ−1)
i1685

=
∑

B,C∈N

Pr[A → BC] · α(B, j + 1, i) · α(C, i− ℓ, j),1686

if i − ℓ ≤ j ≤ i − 1 and 0 otherwise. Summing1687

over all locations j gives us α(A, i− ℓ, i).1688

Outside probabilities: In addition to all the in-1689

side probabilities, the contextual embeddings at1690

position i after the computations of any layer1691

(2L− 1)− ℓ (≥ L) contain the outside probabili-1692

ties of all spans of length at least ℓ+ 1 starting at1693

position i, i.e. β(A, i, i + k) for all A ∈ N and1694

k ≥ ℓ. The rest of the coordinates contain 0.1695

Layer L In this layer, we initialize the out-1696

side probabilities β(ROOT, 1, L) = 1 and1697

β(A, 1, L) = 0 for A ̸= ROOT. Furthermore,1698

we move the inside probabilities α(A, i− k, i− 1)1699

from position i− 1 to position i using 1 attention1700

head. For the attention head, b−1,L is set as 0, while1701

the rest are set as ζ for some large constant ζ so1702

that the attention heads only attend to position i−11703

at any position i.1704

Layer L + 1 ≤ ℓ̃ := (2L − 1) − ℓ ≤ 2L − 1: 1705

At each position i, this layer computes the outside 1706

probabilities of spans of length ℓ+ 1 starting at i, 1707

using the recursive formulation from eq. 3. The 1708

recursive formulation for β(A, i, i+ ℓ) for a non- 1709

terminal A ∈ N has two terms, given by 1710

β(A, i, i+ ℓ) =β1(A, i, i+ ℓ) + β2(A, i, i+ ℓ), with

(15)

1711

β1(A, i, i+ ℓ) =

i−1∑
j=1

∑
C,B∈N

Pr[B → CA] 1712

· α(C, j, i− 1)β(B, j, i+ ℓ), and
(16)

1713

β2(A, i, i+ ℓ) =

L∑
j=i+ℓ+1

∑
B,C∈N

Pr[B → AC] 1714

· α(C, i+ ℓ+ 1, j)β(B, i, j). (17) 1715

For each non-terminal A ∈ N , we will use a 1716

single unique head to compute β(A, i, i+ ℓ) with 1717

query matrix Q
(ℓ̃)
A and key matrix K

(ℓ̃)
A . Combin- 1718

ing the operations of both β1 and β2 in a single 1719

attention head is the main reason behind the de- 1720

crease in the number of necessary attention heads, 1721

compared to Theorem 3.1. 1722

Structure of {bt,ℓ}−L≤t≤L,L+1≤ℓ≤2L−1: For 1723

any L + 1 ≤ ℓ ≤ 2L − 1, for 0 ≤ t ≤ ℓ + 1, 1724

bt,ℓ is set as ζ for some large constant ζ. All other 1725

biases are set as 1. 1726

Structure of Query and key matrices: 1727

1. K
(ℓ̃)
A is a rotation matrix such that in K

(ℓ̃)
A e

(ℓ)
i , 1728

for all L > ℓ1 > ℓ, the outside probabilities 1729

{β(B, i, i + ℓ1)}B∈N appears in the coordi- 1730

nates [|N |(ℓ1 − ℓ− 1), |N |(ℓ1 − ℓ)). Further- 1731

more, for all 0 ≤ ℓ1 ≤ L− ℓ− 2, the inside 1732

probabilities {α(C, i − 1 − ℓ1, i − 1)}C∈N 1733

appears in the coordinates [|N |(L+ ℓ+ ℓ1 + 1734

1), |N |(L + ℓ + ℓ1 + 2)). Note that K(ℓ̃)
A is 1735

same for all A, and only depends on ℓ. 1736

2. The Query matrix Q
(ℓ̃)
A is a block diagonal 1737

matrix. If we define PA,r ∈ R|N |×|N | as a 1738

matrix that contains {Pr[B → CA]}B,C∈N , 1739

which is the set of all rules where A appears 1740

as the right child, PA,r appears at positions 1741

(|N |ℓ1, |N |ℓ1) for all ℓ1 < L, which is the set 1742

of the first L blocks along the diagonal. Fur- 1743

thermore, if we define PA,l ∈ R|N |×|N | as a 1744

matrix that contains {Pr[B → AC]}B,C∈N , 1745
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which is the set of all rules where A appears1746

as the left child, P⊤
A,l appears at positions1747

(|N |ℓ1, |N |ℓ1) for all ℓ1 ≥ L+ ℓ+ 1, which1748

is a set of L− ℓ− 2 blocks along the diagonal1749

located towards the end.1750

Intuition behind Q
(ℓ̃)
A , K(ℓ̃)

A , the relative position1751

embeddings and the biases: Considering any lo-1752

cation i, we split the computation of β(A, i, i+ ℓ)1753

with the attention head into the computation of1754

β1 (eq. 16) and β2 (eq. 17). For β1, we ex-1755

press each term
∑

C,B∈N Pr[B → CA]α(C, j, i−1756

1)β(B, j, i+ ℓ) as the attention score ai,j and then1757

express β1 as
∑

j≤i−1 ai,j . Similarly, for β2, we1758

express each term
∑

B,C∈N Pr[B → AC]α(C, i+1759

ℓ + 1, j)β(B, i, j) as the attention score ai,j and1760

then express β1 as
∑

j≥i+ℓ+1 ai,j . The relative po-1761

sition vectors and biases help to differentiate the1762

operations on the left and right-hand sides of i, as1763

we showcase below.1764

Computing β1 (eq. 16): For any position i1765

and ℓ1 ≥ 0, e(ℓ̃−1)
i contains the inside probabilities1766

{α(C, i − 1 − ℓ1, i − 1)}C∈N in the coordinates1767

[|N |ℓ1, |N |(ℓ1+1)). With the application of K(ℓ̃)
A ,1768

for ℓ1 > ℓ, K(ℓ̃)
A e

(ℓ̃−1)
i contains the outside prob-1769

abilities {β(B, i, i + ℓ1)}B∈N in the coordinates1770

[|N |(ℓ1−ℓ−1), |N |(ℓ1−ℓ)). Hence, if we set the1771

block at position (|N |ℓ1, |N |ℓ1) in Q
(ℓ)
A to PA,r1772

for some L > ℓ1 ≥ 0, with the rest set to 0, we can1773

get for any two positions i, j,1774

(K
(ℓ̃)
A e

(ℓ̃−1)
j )⊤Q

(ℓ̃)
A e

(ℓ̃−1)
i1775

=
∑

B,C∈N

Pr[B → CA] · α(C, i− 1− ℓ1, i− 1)1776

· β(B, j, j + ℓ+ ℓ1 + 1).1777

Setting the first L diagonal blocks in Q
(ℓ̃)
A to1778

PA,r can get for any two positions i, j,1779

(K
(ℓ̃)
A e

(ℓ̃−1)
j )⊤Q

(ℓ̃)
A e

(ℓ̃−1)
i1780

=
∑
ℓ1≥0

∑
B,C∈N

Pr[B → CA] · α(C, i− 1− ℓ1, i− 1)1781

· β(B, j, j + ℓ+ ℓ1 + 1).1782

However, for β1(A, i, i+ ℓ), the attention score1783

above should only contribute with ℓ1 = i− j − 1.1784

Moreover, we also want the above sum to be 0 if1785

j ≥ i. Hence, we will use the relative position1786

vector pj−i, bias bj−i,ℓ̃ and the ReLU activation to1787

satisfy the following conditions:1788

1. j < i. 1789

2. The portion containing {β(B, j, j + ℓ+ ℓ1 + 1790

1)}C∈N in K
(ℓ̃)
A e

(ℓ̃−1)
j is activated only if 1791

ℓ1 = i− j − 1. 1792

For any positions i, j and 0 ≤ ℓ1 ≤ L, 1793

K
(ℓ̃)
A e

(ℓ̃−1)
j +pj−i−bj−i,ℓ̃ will contain {β(B, j, j+ 1794

ℓ+ ℓ1 + 1) + I[ℓ1 = i− j − 1]− 1− ζI[i ≤ j ≤ 1795

i + ℓ]}B∈N in coordinates [|N |ℓ1, |N |(ℓ1 + 1)), 1796

which will give us 1797

ReLU(K
(ℓ̃)
A e

(ℓ̃−1)
j + pj−i − bj−i,ℓ̃)

⊤Q
(ℓ̃)
A e

(ℓ̃−1)
i 1798

=
∑

C,B∈N

Pr[B → CA]α(C, j, i− 1)β(B, j, i+ ℓ), 1799

iff j < i and 0 otherwise. Summing over all 1800

locations gives us β1(A, i, i+ ℓ). 1801

Computing β2 (eq. 17): For any position i 1802

and L > ℓ1 > ℓ, e(ℓ̃−1)
i contains the outside prob- 1803

abilities {β(B, i, i + ℓ1)}B∈N in the coordinates 1804

[|N |(L+ ℓ1), |N |(L+ ℓ1 + 1)). With the applica- 1805

tion of K(ℓ̃)
A , for L > ℓ1 > ℓ, K(ℓ̃)

A e
(ℓ̃−1)
i contains 1806

the inside probabilities {α(C, i−1−ℓ1, i−1)}C∈N 1807

in the coordinates [|N |(L+ ℓ+ ℓ1 + 1), |N |(L+ 1808

ℓ + ℓ1 + 2)). Hence, if we set the block at po- 1809

sition (|N |ℓ1, |N |ℓ1) in Q
(ℓ̃)
A to P⊤

A,l for some 1810

ℓ1 ≥ L + ℓ + 1, with the rest set to 0, we can 1811

get for any two positions i, j, 1812

(K
(ℓ̃)
A e

(ℓ̃−1)
j )⊤Q

(ℓ̃)
A e

(ℓ̃−1)
i 1813

=
∑

B,C∈N

Pr[B → AC] · α(C, j − ℓ1 + ℓ+ L, j − 1) 1814

· β(B, i, i+ ℓ1 − L). 1815

Setting diagonal blocks at positions 1816

{(|N |ℓ1, |N |ℓ1)}ℓ1≥L+ℓ+1 in Q
(ℓ̃)
A to P⊤

A,l 1817

can get for any two positions i, j, 1818

(K
(ℓ̃)
A e

(ℓ̃−1)
j )⊤Q

(ℓ̃)
A e

(ℓ̃−1)
i 1819

=
∑

ℓ1≥ℓ+1

∑
B,C∈N

Pr[B → AC] · α(C, j − ℓ1 + ℓ, j − 1) 1820

· β(B, i, i+ ℓ1). 1821

However, for β1(A, i, i+ ℓ), the attention score 1822

above should only contribute with ℓ1 = j − i− 1. 1823

Moreover, we also want the above sum to be 0 if 1824

j ≤ i+ ℓ. We will use the relative position vector 1825

pj−i, bias bj−i,ℓ̃ and the ReLU activation to satisfy 1826

the following conditions: 1827
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1. j > i+ ℓ.1828

2. The portion containing {α(C, j − ℓ1 + ℓ, j −1829

1)}C∈N in K
(ℓ̃)
A e

(ℓ̃−1)
j is activated only if1830

ℓ1 = j − i− 1.1831

Thus, for any positions i, j and 0 ≤ ℓ1 ≤ L,1832

K
(ℓ̃)
A e

(ℓ̃−1)
j + pj−i − bj−i,ℓ̃ will contain {α(C, j−1833

ℓ1+ ℓ, j− 1)+ I[ℓ1 = i− j− 1]− 1− ζI[i ≤ j ≤1834

i + ℓ]}C∈N in coordinates [|N |ℓ1, |N |(ℓ1 + 1)),1835

which will give us1836

ReLU(K
(ℓ̃)
A e

(ℓ̃−1)
j + pj−i − bj−i,ℓ̃)

⊤Q
(ℓ̃)
A e

(ℓ̃−1)
i1837

=

L∑
j=i+ℓ+1

∑
B,C∈N

Pr[B → AC]α(C, i+ ℓ+ 1, j)β(B, i, j),1838

iff j > i+ ℓ+1 and 0 otherwise. Summing over1839

all locations gives us β2(A, i, i+ ℓ).1840

Computing β1 + β2 (eq. 15): From our con-1841

struction, β1 requires the dot product of the inside1842

probabilities stored at the query vector and the out-1843

side probabilities stored at the key vector. However,1844

β2 requires the dot product of the outside proba-1845

bilities stored at the query vector and the inside1846

probabilities stored at the key vector. Since β1 and1847

β2 are computed on the left and the right-hand side1848

of the query respectively, we use the relative po-1849

sition embeddings to separate the two operations.1850

The vector pj−i activates only the outside proba-1851

bilities in the key vector when j > i and activates1852

only the inside probabilities in the key vector when1853

j < i. Thus, we can compute β1 + β2 as the sum1854

of the attention scores of a single head, where the1855

computation of β1 and β2 have been restricted to1856

the left and the right-hand side of the query respec-1857

tively.1858

B.3 Proof of Theorem 3.31859

Proof of Theorem 3.3. We first focus on 1-mask1860

predictions, where given an input of tokens1861

w1, w2, · · · , wL, and a randomly selected index1862

i, we need to predict the token at position i given1863

the rest of the tokens, i.e. Pr{w|w−i}. Under the1864

generative rules of the PCFG model, we have1865

Pr[w|w−i]1866

=
∑
A

Pr[A → w] · Pr[A generates word at pos i|w−i]1867

=
∑
A

Pr[A → w] · β(A, i, i)∑
B β(B, i, i)

. (18)1868

Note that Pr[A → w] can be extracted from the 1869

PCFG and {β(B, i, i)}B∈N can be computed by 1870

the Inside-outside algorithm. Thus, Inside-outside 1871

can solve the 1-masking problem optimally. 1872

Now we consider the case where we randomly 1873

mask m% (e.g., 15%) of the tokens and predict 1874

these tokens given the rest. In this setting, if 1875

the original sentence is generated from PCFG 1876

G = (N , I,P, n, p), one can modify the PCFG 1877

to get G′ = (N , I,P, n + 1, p′) with n + 1 de- 1878

note the mask token text[MASK] and for each 1879

preterminal A ∈ P , p′(A → [MASK]) = m% 1880

and p′(A → w) = (1 − m%)p(A → w), for all 1881

w ̸= [MASK]. Then, the distribution of the ran- 1882

domly masked sentences follows the distribution 1883

of sentences generated from the modified PCFG G′. 1884

Similar to the 1-masking setting, we can use the 1885

Inside-outside algorithm to compute the optimal 1886

token distribution at a masked position. 1887

1888

C Omitted Details in Section 3.3 1889

In Section 3.3, we claim that it is possible to ap- 1890

proximately execute the Inside-Outside algorithm 1891

for PCFG learned on PTB dataset, and can dras- 1892

tically reduce the size of our constructed model 1893

with minimal impact on the 1-masking predictions 1894

and parsing performance (Theorem 3.4) by apply- 1895

ing two ingredients: restricting the computations 1896

to few non-terminals and utilizing the underlying 1897

low-rank structure between the non-terminals. This 1898

section is organized as follows: In Appendix C.1, 1899

we show more intuition and experiment results 1900

on why we can restrict the computation of the 1901

inside-outside algorithm to a small subset of non- 1902

terminals. In Appendix C.2, we add more discus- 1903

sions on the second ingredient (utilizing the low- 1904

rank structure). Then in Appendix C.3, we show 1905

the details why restricting the computations of few 1906

non-terminals can reduce the size of the attention 1907

model. In Appendix C.4, we show the detailed 1908

proof of Theorem 3.4. Finally in Appendix C.5, we 1909

show the experiment details in Section 3.3. 1910

C.1 More discussions on computation with 1911

few non-terminals 1912

We hypothesize that we can focus only on a few 1913

non-terminals while retaining most of the perfor- 1914

mance. 1915

Hypothesis C.1. For the PCFG G = 1916

(N , I,P, n, p) learned on the English cor- 1917
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Figure 7: Plot for the frequency distribution of in-
terminals (I) and pre-terminals (P). We compute the
number of times a specific non-terminal appears in a
span of a parse tree in the PTB training set. We then
sort the non-terminals according to their normalized fre-
quency and then show the frequency vs. index plot.

pus, there exists Ĩ ⊂ I, P̃ ⊂ P with1918

|Ĩ| ≪ |I|, |P̃| ≪ |P|, such that simulating1919

Inside-Outside algorithm with Ĩ ∪ P̃ non-terminals1920

introduces small error in the 1-mask perplexity and1921

has minimal impact on the parsing performance of1922

the Labeled-Recall algorithm.1923

To find candidate sets Ĩ, P̃ for our hypothesis,1924

we check the frequency of different non-terminals1925

appearing at the head of spans in the parse trees of1926

the PTB (Marcus et al., 1993) training set. We con-1927

sider the Chomsky-transformed (binarized) parse1928

trees for sentences in the PTB training set, and col-1929

lect the labeled spans {(A, i, j)} from the parse1930

trees of all sentences. For all non-terminals A,1931

we compute freq(A), which denotes the number1932

of times non-terminal A appears at the head of a1933

span. Figure 7 shows the plot of freq(A) for in-1934

terminals and pre-terminals, with the order of the1935

non-terminals sorted by the magnitude of freq(·).1936

We observe that an extremely small subset of non-1937

terminals have high frequency, which allows us to1938

restrict our computation for the inside and outside1939

probabilities to the few top non-terminals sorted1940

by their freq scores. We select the top frequent1941

non-terminals as possible candidates for forming1942

the set Ñ .1943

We verify the effect of restricting our computa-1944

tion to the frequent non-terminals on the 1-mask1945

perplexity and the unlabeled F1 score of the approx-1946

imate Inside-Outside algorithm in Table 1. Recall1947

from Theorem 3.3, the 1-mask probability distribu-1948

tion for a given sentence w1, · · · , wL at any index1949

i is given by Equation (18), and thus we can use1950

Equation (18) to compute the 1-mask perplexity 1951

on the corpus. To measure the impact on 1-mask 1952

language modeling, we report the perplexity of the 1953

original and the approximate Inside-Outside algo- 1954

rithm on 200 sentences generated from PCFG. 1955

We observe that restricting the computation to 1956

the top-40 and 45 frequent in-terminals and pre- 1957

terminals leads to < 6.5% increase in average 1- 1958

mask perplexity. Furthermore, the Labeled-Recall 1959

algorithm observes at most 4.24% drop from the 1960

F1 performance of the original PCFG. If we fur- 1961

ther restrict the computation to the top-20 and 45 1962

in-terminals and pre-terminals, we can still get 1963

71.91% sentence F1 score, and the increase in aver- 1964

age 1-mask perplexity is less than 8.6%. However, 1965

restricting the computation to 10 in-terminals leads 1966

to at least 15% drop in parsing performance. 1967

Thus combining Theorem 3.2 and Table 1, we 1968

have the following informal theorem. 1969

Theorem C.2 (Informal). Given the PCFG G = 1970

(N , I,P, n, p) learned on the English corpus, 1971

there exist subsets Ĩ ⊂ I, P̃ ⊂ P with |Ĩ| = 1972

20, |P̃| = 45, and an attention model with soft rel- 1973

ative attention modules (6) with embeddings of size 1974

275 + 40L, 2L+ 1 layers, and 20 attention heads 1975

in each layer, that can simulate the Inside-Outside 1976

algorithm restricted to Ĩ, P̃ on all sentences of 1977

length at most L generated from G. The restriction 1978

introduces a 9.29% increase in average 1-mask per- 1979

plexity and 8.71% drop in the parsing performance 1980

of the Labeled-Recall algorithm. 1981

If we plug in the average length L ≈ 25 for sen- 1982

tences in PTB, we can get a model with 20 atten- 1983

tion heads, 1275 hidden dimension, and 51 layers. 1984

Compared with the construction in Theorem 3.2, 1985

the size of the model is much closer to reality. The 1986

proof of Theorem C.2 is shown in Appendix C.3. 1987

C.2 More discussions on low-rank 1988

approximation 1989

We hypothesize that we can find linear transfor- 1990

mation matrices {W (ℓ)}ℓ≤L that can reduce the 1991

computations while retaining most of the perfor- 1992

mance, and our hypothesis is formalized as follow: 1993

Hypothesis C.3. For the PCFG G = 1994

(N , I,P, n, p) learned on the English cor- 1995

pus, there exists transformation matrices 1996

W (ℓ) ∈ Rk(ℓ)×|Ĩ| for every ℓ ≤ L, such that 1997

approximately simulating the Inside-Outside 1998

algorithm with {W (ℓ)}ℓ≤L introduces small error 1999

in the 1-mask perplexity and has minimal impact 2000
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on the parsing performance of the Labeled-Recall2001

algorithm.2002

Table 2 verifies our hypothesis, and lead to The-2003

orem 3.4. Compared with the parsing results from2004

Theorem C.2, the corpus and sentence F1 scores2005

are nearly the same, and we further reduce the num-2006

ber of attention heads in each layer from 20 to 15.2007

If we only use 10 attention heads to approximately2008

execute the Inside-Outside algorithm, we can still2009

get 61.72% corpus F1 and 65.31% sentence F1 on2010

PTB dataset, which is still much better than the2011

Right-branching baseline. Theorem 3.4 shows that2012

attention models with a size much closer to the real2013

models (like BERT or RoBERTa) still have enough2014

capacity to parse decently well (>70% sentence F12015

on PTB).2016

It is also worth noting that approximately exe-2017

cuting the Inside-Outside algorithm using the trans-2018

formation matrices {W (ℓ)}ℓ≤L is very different2019

from reducing the size of the PCFG grammar, since2020

we use different matrix W (ℓ) when computing the2021

probabilities for spans with different length. If we2022

choose to learn the same transformation matrix W2023

for all the layers ℓ, the performance drops.2024

More discussions on the transformation matrix2025

W (ℓ) We can observe that by introducing the2026

transformation matrix W (ℓ) generalized the first2027

ingredient that only computes a small set of in-2028

terminals Ĩ and pre-terminals P̃ , and in theory we2029

can directly learn the transformation matrix W (ℓ)2030

from the original PCFG without reducing the size at2031

first, i.e., W (ℓ) ∈ Rk(ℓ)×|I|. However empirically,2032

if we directly learn W (ℓ) from all the in-terminals2033

I but not from the top-20 frequent in-terminals Ĩ,2034

the performance drops. Thus, we choose to learn2035

the matrix W (ℓ) starting from the most frequent2036

in-terminals Ĩ . One possible explanation is that the2037

learning procedure is also heuristic, and certainly2038

may not learn the best transformation matrix.2039

Besides, we use the same transformation ma-2040

trix W (ℓ) when computing the inside and out-2041

side probabilities, and it is also natural to use2042

different transformation matrices when comput-2043

ing the inside and outside probabilities. Re-2044

call that we learn the transformation W (ℓ) by2045

the Eigenvalue decomposition on matrix X(ℓ),2046

where X(ℓ) =
∑

sX
(ℓ)
s /

∥∥∥X(ℓ)
s

∥∥∥
F

and X
(ℓ)
s =2047 ∑

i,j:j−i=ℓ µ
i,j
s (µi,j

s )⊤. Then, we can also learn2048

two matrices W
(ℓ)
inside and W

(ℓ)
outside through the2049

Eigenvalue decomposition on matrices X(ℓ)
inside and2050

X
(ℓ)
outside respectively, where 2051

X
(ℓ)
inside =

∑
s

X
(ℓ)
s,inside/

∥∥∥X(ℓ)
s,inside

∥∥∥
F
, 2052

X
(ℓ)
s,inside =

∑
i,j:j−i=ℓ

αi,j
s (αi,j

s )⊤, 2053

X
(ℓ)
outside =

∑
s

X
(ℓ)
s,outside/

∥∥∥X(ℓ)
s,outside

∥∥∥
F
, 2054

X
(ℓ)
s,outside =

∑
i,j:j−i=ℓ

βi,j
s (βi,j

s )⊤. 2055

However empirically, we also find that the perfor- 2056

mance drops by using different transformation ma- 2057

trices for inside and outside probabilities compu- 2058

tation, which may also be attributed to the non- 2059

optimality of our method to learn the transforma- 2060

tion matrix. 2061

C.3 Proof for Theorem C.2 2062

Note that in both Theorem 3.1 and Theorem 3.2, 2063

in every layer 1 ≤ ℓ ≤ L − 1, we use one at- 2064

tention head with parameters K
(ℓ)
A ,Q

(ℓ)
A ,V

(ℓ)
A to 2065

compute all the inside probabilities α(A, i, j) for 2066

all spans with length ℓ+1, i.e. j− i = ℓ. For layer 2067

L + 1 ≤ ℓ ≤ 2L − 1, the model constructed in 2068

Theorem 3.1 uses two attention heads to compute 2069

the outside probabilities β(A, i, j) for a specific 2070

non-terminal A for spans with length 2L− ℓ, and 2071

the model constructed in Theorem 3.2 uses one at- 2072

tention heads to compute the outside probabilities 2073

β(A, i, j) for a specific non-terminal A for spans 2074

with length 2L− ℓ. Now to show how restricting 2075

the computations to certain non-terminals Ĩ ∪ P̃ 2076

can reduce the size of the constructed models in 2077

Theorems 3.1 and 3.2 we classify the inside and 2078

outside probabilities into four categories: (1) the 2079

inside probabilities for pre-terminals, α(A, i, i) for 2080

A ∈ P ; (2) the inside probabilities for in-terminals, 2081

α(A, i, j) for A ∈ I; (3) the outside probabilities 2082

for in-terminals, β(A, i, j) for A ∈ I; and (4) the 2083

outside probabilities for pre-terminals, β(A, i, i) 2084

for A ∈ P . 2085

Category (1): the inside probabilities for pre- 2086

terminals Recall that in the constructed model 2087

in Theorems 3.1 and 3.2, the inside probabilities 2088

for pre-terminals α(A, i, i) for A ∈ P is directly 2089

initialized from the PCFG rules, and thus do not 2090

need attention heads to compute. Thus, we can 2091

just use O(|P|) dimensions to store all the inside 2092

probabilities for pre-terminals α(A, i, i) for A ∈ P . 2093
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Although we can also only initialize the inside prob-2094

abilities only for the pre-terminals P̃ , i.e. initialize2095

α(A, i, i) for A ∈ P̃ and use less embedding di-2096

mensions, empirically the performance will drop2097

and thus we initialize all the probabilities α(A, i, i)2098

for A ∈ P . Although we should store the probabil-2099

ities for pre-terminals larger than the set P̃ , there is2100

indeed another technique to reduce the embedding2101

dimensions. Note that since in the future computa-2102

tions, we only compute the probabilities for the in-2103

terminals Ĩ , and not every pre-terminal A ∈ P can2104

be produced by in-terminals B ∈ Ĩ . Thus, we only2105

need to store the pre-terminals PĨ that can be pro-2106

duced from Ĩ. Empirically, for PCFG learned on2107

PTB dataset, |P| = 720, but if we choose |Ĩ| = 20,2108

the number of pre-terminals that can be produced2109

from Ĩ drops to |PĨ | = 268 < 270. Specifically2110

for the model in Theorem 3.2, we need |PĨ | coor-2111

dinates at each position to store these inside proba-2112

bilities.2113

Category (2): the inside probabilities for in-2114

terminals The computation of the inside proba-2115

bilities for in-terminals, α(A, i, j) for A ∈ I hap-2116

pens from layer 1 to layer L− 1 in the constructed2117

model in Theorems 3.1 and 3.2. Note that from2118

layer 1 to layer L − 1, the model only computes2119

the probabilities for the in-terminals, since a span2120

with a length larger than 1 cannot be labeled by a2121

pre-terminal. Thus, if we only compute the inside2122

probabilities for in-terminals |Ĩ|, we can reduce2123

the number of attention heads in layer 1 to layer2124

L−1 from O(|I|) to O(|Ĩ|) since in Theorems 3.12125

and 3.2 we use a constant number of attention heads2126

to compute the probabilities for a single in-terminal.2127

Specifically for the model in Theorem 3.2, we only2128

need |Ĩ| attention heads from layer 1 to layer L−1;2129

besides, we need (L − 1)|Ĩ| coordinates at each2130

position to store these inside probabilities.2131

Category (3): the outside probabilities for in-2132

terminals The computation of the outside proba-2133

bilities for in-terminals, β(A, i, j) for A ∈ I hap-2134

pens from layer L to layer L− 2 in the constructed2135

model in Theorems 3.1 and 3.2. Note that in layer2136

L, we only need to initialize the outside proba-2137

bilities β(A, 1, L) for A ∈ I, thus do not need2138

attention heads for computation (however we need2139

attention heads to move the inside and outside prob-2140

abilities in this layer, which cost 2 attention heads).2141

Then from layer L+1 to layer L−2, the model com-2142

putes the outside probabilities for the in-terminals2143

β(A, i, j) for A ∈ Ĩ. Thus if we only compute the 2144

outside probabilities for in-terminals |Ĩ|, we can 2145

reduce the number of attention heads in layer 1 to 2146

layer L − 1 from O(|I|) to O(|Ĩ|). Specifically 2147

for the model in Theorem 3.2, we only need |Ĩ| 2148

attention heads from layer L to layer L−2; besides, 2149

we need (L− 1)|Ĩ| coordinates at each position to 2150

store these outside probabilities for in-terminals Ĩ. 2151

Category (4): the outside probabilities for 2152

pre-terminals The outside probabilities for pre- 2153

terminals β(A, i, i) for A ∈ P is only computed 2154

in the final layer in Theorems 3.1 and 3.2. Thus 2155

if we choose to compute the probabilities for only 2156

P̃ , we can reduce the number of attention heads in 2157

layer 2L − 1 from O(|I|) to O(|Ĩ|). Specifically 2158

for the model in Theorem 3.2, we only need |P̃| 2159

attention heads in layer L−1; besides, we need |P̃| 2160

coordinates at each position to store these outside 2161

probabilities for in-terminals P̃ . Also as mentioned 2162

in Section 3.3, if |P̃| < c|Ĩ| for some constant c, 2163

we can also simulate the computations in the last 2164

layer with |P̃| heads by c layers with |Ĩ| heads. In 2165

particular, if we choose |P̃| = 45, |Ĩ| = 20, we 2166

can use 3 layers with 20 attention heads in each 2167

layer to simulate the last layer with 45 attention 2168

heads in the original construction. 2169

Put everything together: proof of Theorem C.2 2170

We choose |P̃| = 45, |Ĩ| = 20. We can use 20 2171

attention heads in each layer, and we now count 2172

the number of layers and the embedding dimension 2173

we need. The number of layers is easy to compute, 2174

since we just need to use 3 layers with 20 atten- 2175

tion heads to simulate the original 1 layer with 45 2176

attention heads, thus the total number of layers is 2177

2L− 1+ (3− 1) = 2L+1. As for the embedding 2178

dimension, we need 2179

d =|PĨ |+ (L− 1)|Ĩ|+ (L− 1)|Ĩ|+ |P̃| 2180

≤270 + (2L− 2)|Ĩ|+ |P̃| 2181

=275 + 2L|Ĩ| 2182

=275 + 40L. 2183

C.4 Proof for Theorem 3.4 2184

In this section, we show the details of how to fur- 2185

ther reduce the number of attention heads using 2186

structures across non-terminals, and add more dis- 2187

cussion on how we learn the transformation matri- 2188

ces {W (ℓ)}ℓ≤L 2189

Reducing the number of attention heads We 2190

focus on reducing the number of attention heads to 2191
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compute the inside and outside probabilities for the2192

in-terminals Ĩ, since the computation for the out-2193

side probabilities for pre-terminals P̃ only happens2194

in the final layer of the constructed model, and thus2195

can use multiple layers to compute as long as P̃ is2196

not too large.2197

For simplicity, we only show the details of how2198

to reduce the number of attention heads to com-2199

pute the inside probabilities for in-terminals Ĩ in2200

Theorem 3.2, and the technique can be easily ap-2201

plied to the computation of outside probabilities2202

for in-terminals Ĩ in Theorem 3.2, and the inside2203

and outside probabilities for Ĩ in Theorem 3.1.2204

Recall from the proof of Theorem 3.2 that we2205

at each layer ℓ, we use a single attention head2206

K
(ℓ)
A ,Q

(ℓ)
A to compute the inside probabilities2207

α(A, i, j) for spans with length ℓ+1, i.e., j−i = ℓ.2208

Specifically, for the attention head K
(ℓ)
A ,Q

(ℓ)
A at2209

layer ℓ, we want to compute and store the probabil-2210

ity α(A, i− ℓ, i) at position i. Thus we construct2211

K
(ℓ)
A ,Q

(ℓ)
A such that the attention score aA,(ℓ)

i,j when2212

the position i attends to position j satisfies2213

a
A,(ℓ)
i,j2214

=ReLU(K
(ℓ)
A e

(ℓ−1)
j + pj−i − bj−i,ℓ)

⊤Q
(ℓ)
A e

(ℓ−1)
i2215

=
∑

B,C∈N

Pr[A → BC] · α(B, j + 1, i) · α(C, i− ℓ, j),2216

if i − ℓ ≤ j ≤ i − 1 and 0 otherwise. Then,2217

summing over all locations j gives us α(A, i−ℓ, i).2218

Also, a key property of K(ℓ)
A is that this key matrix2219

does not depend on the non-terminal A, but only2220

depends on ℓ. Thus, if we have a set of coefficients2221

{ω(ℓ)
A }A∈I , we can compute the linear combination2222

of the inside probability
∑

A∈Ĩ ω
(ℓ)
A α(A, i − ℓ, i)2223

using one attention head, since if we choose2224

Q(ℓ) =
∑
A∈Ĩ

ω
(ℓ)
A Q

(ℓ)
A , K(ℓ) = K

(ℓ)
A , ∀A ∈ Ĩ,2225

we have the attention score2226

a
(ℓ)
i,j2227

=ReLU(K(ℓ)e
(ℓ−1)
j + pj−i − bj−i,ℓ)

⊤Q(ℓ)e
(ℓ−1)
i2228

=ReLU(K(ℓ)e
(ℓ−1)
j + pj−i − bj−i,ℓ)

⊤2229

·

∑
A∈Ĩ

ω
(ℓ)
A Q

(ℓ)
A

 e
(ℓ−1)
i2230

=
∑
A∈Ĩ

ω
(ℓ)
A2231

· ReLU(K(ℓ)e
(ℓ−1)
j + pj−i − bj−i,ℓ)

⊤Q
(ℓ)
A e

(ℓ−1)
i2232

=
∑
A∈Ĩ

ω
(ℓ)
A 2233

· ReLU(K
(ℓ)
A e

(ℓ−1)
j + pj−i − bj−i,ℓ)

⊤Q
(ℓ)
A e

(ℓ−1)
i 2234

=
∑
A∈Ĩ

ω
(ℓ)
A 2235

·

( ∑
B,C∈N

Pr[A → BC] · α(B, j + 1, i) · α(C, i− ℓ, j)

)
, 2236

if i − ℓ ≤ j ≤ i − 1 and 0 otherwise. 2237

Then, summing over all locations j gives us 2238∑
A∈Ĩ ω

(ℓ)
A α(A, i− ℓ, i). Then if we have a trans- 2239

formation matrix W (ℓ) ∈ Rk(ℓ)×|Ĩ|, we can use 2240

k(ℓ) attention heads to compute W (ℓ)α(i − ℓ, i), 2241

where α(i − ℓ, i) ∈ R|Ĩ| is the vector that con- 2242

tains α(A, i − ℓ, i) for all A ∈ Ĩ. Then after we 2243

use k(ℓ) attention heads to compute the probabil- 2244

ities W (ℓ)α(i − ℓ, i) and stored them in position 2245

i’s embeddings, we can then use linear layer on 2246

position i to recover the original probabilities by 2247

α̃(i − ℓ, i) = (W (ℓ))†W (ℓ)α(i − ℓ, i), and use 2248

α̃(A, i − ℓ, i) for A ∈ Ĩ for the future computa- 2249

tions. 2250

Put everything together: proof of Theorem 3.4 2251

We choose k(ℓ) = 15, |P̃| = 45, |Ĩ| = 20. Note 2252

that the embedding dimension doesn’t change if 2253

we apply the approximation technique, and only 2254

the number of attention heads reduces from 20 to 2255

15. Thus, the embedding dimension is still 2256

d =|PĨ |+ (L− 1)|Ĩ|+ (L− 1)|Ĩ|+ |P̃| 2257

≤270 + (2L− 2)|Ĩ|+ |P̃| 2258

=275 + 2L|Ĩ| 2259

=275 + 40L. 2260

Also note that |P̃| = 45 = 3 × 15, and thus we 2261

can compute all the outside probabilities for pre- 2262

terminals P̃ by 3 layers where each layer has 15 2263

attention heads. 2264

C.5 Experiment details in Section 3.3 2265

In this section, we provide the experiment details 2266

in Section 3.3. We use and modify the code (Peng, 2267

2021) to learn the PCFG from the PTB dataset 2268

and conduct the experiments with approximated 2269

computations. Peng (2021) implements the spectral 2270

learning method to learn PCFG (Cohen et al., 2012, 2271

2014) and is under MIT licence. We follow all 2272

the default hyperparameters in Peng (2021), and 2273

we also follow the split of PTB: using PTB section 2274

02-21 as the training set and PTB section 22 as the 2275

development set. 2276
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