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Abstract

Current research on Retrieval Augmented Genera-
tion (RAG) for Knowledge Graphs often relies on
graph pruning to manage the scale of the data. This
approach is not feasible for dense, highly structured
environments like rigid ontologies, where every node
has significant interconnected value. The sheer size
of these graphs inhibits the effectiveness of stan-
dard semantic retrieval methods. To overcome this
limitation, we introduce a novel approach using an
autonomous agent that dynamically traverses the
graph to retrieve information. A key contribution of
our work is the integration of a feedback mechanism
that informs the agent about its general performance
and specific tool utilization, thereby enhancing its
traversal efficiency. We validate our method through
a systematic study on ontologies of varying sizes, em-
ploying a user simulator to generate realistic tasks
for knowledge graph construction and querying. Our
findings demonstrate the current problems with in-
formation retrieval in large, non prunable knowledge
structures.

1 Introduction

Large Language Models (LLMs) [1] have demon-
strated remarkable capabilities in natural language
understanding and generation. However, their re-
liance on internal knowledge often leads to factual
inaccuracies or hallucinations when confronted with
topics outside of their domain [2]. Retrieval Aug-
mented Generation [3] was developed to address
this by providing LLMs with external knowledge
sources, giving relevant context to construct more
accurate responses. Despite these advancements,
standard RAG systems face significant challenges.
When applied to specialized domains, generic re-
trieval methods may fail to capture nuanced details
within documents, leading to suboptimal context
retrieval [4]. A similar problem occurs with scale,
as the number of documents grows, identifying the
correct information becomes increasingly difficult for
dense retrievals that are employed [5]. In more struc-
tured domains, such as scientific literature or legal
precedent, conventional RAG does not account for
the critical relationships between documents, such
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as citations or dependencies, resulting in incomplete
answers [6]. To mitigate these issues, several ad-
vanced frameworks have emerged. Self-RAG [7]
improves the quality of the response through re-
flection and by generating different responses for
each retrieved document. GraphRAG [8] [9] ad-
dresses the issue of interconnectedness by using a
graph-like structural representation of the source
documents, enabling retrieval based on both seman-
tic and structural similarity. Meanwhile, frameworks
such as LongRAG [10] leverage the expanding con-
text windows of modern LLMs to process larger
chunks of text, shifting more of the extraction bur-
den onto the model itself. Although effective, these
methods share a common prerequisite: the need to
pre-process and embed the entire knowledge base,
an inefficient and often impractical task for massive,
dynamic datasets. An alternative paradigm that
bypasses the limitations of static retrieval is the use
of autonomous agents [11]. Pioneering work like
WebGPT [12] demonstrated the power of equipping
LLMs with tools, such as a search engine, to ac-
tively seek out information. The recent development
of model protocols (MCP) [13] further promises to
allow models to request knowledge precisely when
needed, optimizing the retrieval process. In this
paper, we extend the autonomous agent paradigm
to the domain of large-scale structured knowledge
graphs. We argue that for complex graph structures,
a dynamic traversal agent offers a more effective
and scalable alternative to semantic-based retrieval
performed by traditional RAG systems. The agent
can navigate the graph’s topology, follow relational
paths, and iteratively build context in a manner
that is impossible for embedding-based search. We
explore how an agent utilizes its tools for graph
navigation and how its behavior is refined through
the introduction of a reflective loop. Our primary
contributions are threefold:

e An investigation of the tool utilization patterns
of an autonomous agent operating within com-
plex graph structures.

e The design and implementation of a self-
reflection loop that provides targeted feedback
to enhance the agent’s tool-use efficiency and
traversal strategy.

e Performance analysis of our agent across knowl-
edge graphs of varying domains and sizes,
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demonstrating the viability and scalability of
our approach.

This paper is structured as follows. Section 2 reviews
the related literature. Section 3 details our proposed
agent-based traversal approach. Section 4 presents
the experimental results of our evaluation on selected
ontologies and knowledge graphs. Section 5 then
discusses the importance of tool selection with the
ablation study.

2 Related work

The evolution of RAG has been marked by a contin-
uous effort to enhance the quality and relevance of
the retrieved context, especially when dealing with
structured data. This progression can be broadly
categorized into advancements in graph-based RAG,
the integration of reflective mechanisms, and the
rise of autonomous agents for dynamic information
seeking.

2.1 From Standard to Graph-Based
RAG

Conventional RAG systems, while effective for un-
structured text, often fail to capitalize on the in-
herent relationships within structured knowledge
bases [6]. To address this, GraphRAG [8] has
emerged as a prominent paradigm that represents
knowledge as a graph, allowing retrieval based on
both semantic content and structural links [9]. The
GraphRAG framework typically involves sophisti-
cated query processing (e.g. entity recognition, rela-
tion extraction), a retrieval phase that can employ
methods from heuristic-based graph traversal to
GNN-based embeddings, and an organization step
like graph pruning to refine the context before gen-
eration. Papers like OntoRAG [14] demonstrate the
power of this approach by automatically construct-
ing an ontology from domain-specific documents
and leveraging the created structure to facilitate
more effective multi-hop reasoning . Similarly, other
works have used knowledge graphs to find thematic
similarities in specialized domains such as legal judg-
ments by representing documents as nodes with
feature vectors based on rhetorical roles [15]. How-
ever, these methods often rely on a "retrieve-then-
generate” workflow, which still requires processing
and embedding a significant portion of the graph,
a process that becomes inefficient at a large scale,
especially for dense knowledge structures where ag-
gressive pruning is not viable.

2.2 Agent-based Graph Traversal

An alternative to static retrieval is the use of au-
tonomous agents. These agents can interact with

knowledge sources dynamically, iteratively building
a context. This approach has its foundations in work
like WebGPT [12], which equipped an LLM with a
search engine. This concept has been extended to
structured data, with research on Knowledge Graph
Prompting [16] demonstrating an LLM agent that
traverses a graph by generating prompts at each step
to determine its next move. This method acknowl-
edges the importance of graph density and shows
that an agent’s path-finding ability is critical for
gathering supporting facts. Our work builds directly
on this agent-based traversal paradigm. However,
where previous work has focused on the feasibility
of traversal itself, we concentrate on the agent’s
tool-use patterns and the introduction of a feed-
back mechanism to optimize its navigation strategy,
which has not been the primary focus of prior graph
traversal agents.

2.3 Self-Reflection and Reflection
Loops

The limitations of static retrieval strategies have
motivated research into adaptive RAG systems
that can refine their approach based on retrieval
quality and task performance. Self-RAG [7] repre-
sents a significant advancement in this direction,
introducing a reflective component where the model
assesses the relevance of retrieved passages and
assesses its own generated output, making dynamic
decisions about whether additional retrieval is
necessary. Reflexion [17] employs a verbal reinforce-
ment learning framework where an Actor agent’s
performance is evaluated by a separate Evaluator,
while a Self-Reflection model generates explicit
textual feedback to guide subsequent attempts.
This shows that structured feedback mechanisms
can significantly improve agent performance on
complex reasoning tasks that require iterative
refinement. In the context of knowledge graphs,
refinement loops have been applied to improve
the quality of retrieved RDF triplets, creating a
feedback cycle that improves the semantic precision
of retrieved structured data [6].

Although these approaches have shown promise
in improving retrieval quality and reasoning perfor-
mance, they primarily focus on content relevance
rather than navigation efficiency in structured
knowledge spaces. The feedback mechanisms
in Self-RAG are designed to assess document
relevance, and Reflexion’s framework, though
powerful, has not been specifically adapted for
optimizing traversal strategies.

In summary, while previous work has inde-
pendently advanced graph-based RAG, agentic
traversal, and reflective mechanisms, our research
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Figure 1. Methodology of the Traversal Agent with
Reflection. The Agent starts with user query and uses
his tools to navigate the underlying graph. After finish-
ing the traversal, nodes the agent marked as important
are retrieved and scoring agent judges the retrieval per-
formance (Precision and Recall, with Recall weighted
more). Reflection Agent ponders over the score and the
message trace generated by the Traversal Agent and gen-
erated possible recommendation for the next iteration.
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provides a novel synthesis of all three. We differenti-
ate ourselves by implementing a reflection loop not
for critiquing the retrieved content, as in Self-RAG,
but for optimizing the process of traversal itself. By
applying this principle to the specific challenge of
navigating dense ontologies, we address a critical
efficiency and scalability gap left by existing agent
and graph retrieval frameworks.

3 Methodology

While the general methodology overview can be
found in Figure 1, in this section we would like to
dive deeper into the individual parts as presented
in the Figure.

3.1 Traversal Agent

The traversal agent was inspired by the imple-
mentation of Multi-Document QA with Knowledge
Graphs [16], but instead of the generation of the
next paragraph, we have introduced a set of traver-
sal and matching tools for the agent to use. We
have deemed that some matching tool is necessary
to allow the agent to obtain the initial node from
which to traverse. For traversal tools, following
where given to the agent:

e get_neighbors - This tool allows the Agent to get
close neighbors (objects and subject connected
with some predicate) of any specified node.

e move_to - Agent movement tool, moving to any
node will reveal nodes properties, which are
otherwise not given for brevity.

e mark_nodes - Agents retrieval tool inspired by
WebGPT. Agent marks noes while giving his
confidence and reasoning how the node is rele-
vant to the question/instruction.

e get_predicates_for_entity - This tool allows the
agent to obtain predicates associated with any
given entity, allowing the model to determine
the need to explore the node further.

e end_traversal - Tool for the agent to signal the
end of his traversal.

During inference, agent is limited to a certain
amount of move and mark tool calls, while all calls
are monitored for count. An example prompt for
this agent is mentioned in the Appendix A

3.2 Scoring Agent

The scoring agent tries to score how well the agent
accomplishes his goal. The agent sees the initial
user question/query and the marked nodes. Based
on that, it scores the traversal retrieval in 2 areas.
1. is answer recall, which scores if the marked nodes
seem to answer or grasp the intent of the user. 2. is
the precision, which scores if there are no redundant
nodes found in between the answers. Because the
intent of the traversal agent is to recall, we have
instructed the scoring agent to weight the recall part
more. The exact prompt for the scoring agent can
be found in Appendix A

3.3 Reflection Agent

The reflection agent tries to generate insight that
may help the Traversal Agent in the next iteration.
However, compared to the reflection present in Self-
Rag and Reflexion, our reflection agent does not
see the initial user input. Instead, only the trace
of the Traversal Agent and the Score of the scoring
agent are provided. This is to guide it, together
with our prompt (See Appendix A), to reflect more
on tool utilization rather than question itself. In our
hypothesis, this should result in the next traversal
being more effective.

4 Experiments

For our benchmark datasets, we selected a range
of ontologies to test our agent under different con-
ditions. We chose the Drilling and Wells Interop-
erability Standards (D-WIS) ontology for its com-
plexity, containing over 6,000 classes with many
having similar semantics (e.g. CompressiveDrillPipe
vs. DrillPipe), which demands nuanced reason-
ing. To broaden our evaluation, we included the
Geolink Base Ontology (GBO) [18], another large-
scale domain-specific graph, and the simple and



Table 1. Recall Results. The Traversal Agent consis-
tently achieves high recall, with reflection providing a
boost on more complex tasks.

Table 3. Average number of tool calls per task. Reflec-
tion guides the agent toward more efficient exploration
on complex graphs but can lead to over-exploration on
simple ones.

Model D-WIS FoF GBO MetaQA PQL
Dense 214 %  623% 708 % - - Model D-WIS FoF GBO MetaQA PQL
Dense with ER 84.7 Z/o 78.0 Z} 83.0 ‘;/o - - w/o Reflection
SPARQL 85.4 % 84.2 % 94.7 % - N get_best_matches 1.6 1.3 14 1.8 1.2
g 0
N-Hop - - - 88.7 %  69.0% get_neighbors 3.2 15 61 12.0 44
Traversal w/o Ref  90.8% 89.7 % 95.56% 715 % 85.4 % mark nodes 4.2 4.8 4.8 3.8 2.2
Traversal w/ Ref 925 % 89.7% 932% 84.3 % 88.1 % move_to 4.0 1.8 3.3 4.0 3.8
get_predicates_for_entity 2.0 0.3 0.3 4.2 1.8
.. . . w/ Reflection
Table 2. Precision Results. Reflection generally im- /get,hest,macches 1.0 20 12 14 1.2
proves precision, except on simple graphs where initial get_neighbors 5.2 3.8 36 9.4 3.8
: . mark_nodes 3.4 3.6 4.2 3.6 2.2
performance is already high. move_to 46 27 34 5.6 2.4
get_predicates_for_entity 0.6 1.3 0.5 3.6 2.6

Model D-WIS FoF GBO MetaQA PQL
SPARQL 46.7% 68.7% 708% - -
N-Hop - - - 47.6 % 182 %
Traversal w/o Ref 684 %  65.0%  69.5% 51.3 % 59.7 %
Traversal w/ Ref 712 % 642% 759 % 59.8% 62.0%

well-known Friends of a Friends (FoF) [19] ontol-
ogy to validate performance on less complex struc-
tures. As there is no instruction set associated
with these ontologies, we used a User Simulator
to generate tasks aimed at constructing and query-
ing a Knowledge Graph from the ontology (see Ap-
pendix A). To explore if our findings generalize,
we also used the MetaQA [20] and PathQuestion-
Large (PQL) [21] datasets, which provide established
knowledge graphs and associated questions.

For our baselines on the ontology datasets (D-
WIS, GBO, FoF), we employed standard Dense Re-
trieval, a variant with an Entity Recognition (ER)
preproccessing, and a SPARQL-generating Agent.
For MetaQA and PQL, we constructed an alterna-
tive N-Hop Agent with capabilities similar to our
Traversal Agent but equipped with a different hop-
based toolkit detailed in the Appendix B. In all our
experimental setups, we used GPT-4.1-mini as our
LLM and text-embedding-3-small as the embedding
model.

4.1 Experiment Results

The performance of our models is summarized in Ta-
ble 1 for recall and Table 2 for precision. Across the
board, agent-based approaches demonstrate a clear
advantage over traditional dense retrieval, especially
on complex ontologies. In D-WIS, the Traversal
Agent with Reflection achieved a recall of 92.5%
and precision of 71.2%, significantly outperforming
all baselines. A similar trend was observed in the
GBO ontology, where reflection improved precision
from 69.5% to 75.9%. These results underscore the
effectiveness of dynamic traversal and reflective re-
finement in dense and structured environments.
However, the results on the FoF ontology high-
light an important nuance: the diminishing returns
of reflection when initial performance is already high.

The Transverse Agent achieved a high recall of 89.7%
on FoF without reflection, and the reflection loop
provided no further improvement. Moreover, preci-
sion saw a marginal decrease. This is because FoF is
a simple graph, and the queries generated by the user
simulator do not require deep, multi-hop traversal.
The initial nodes retrieved are often sufficient and
correct, leaving little room for a reflective process to
add value. In such cases, the overhead of reflection
can lead to redundant inefficient exploration rather
than meaningful refinement.

On the established KG benchmarks, the Traversal
Agent with Reflection consistently outperformed its
non-reflective counterpart. In MetaQA, reflection
increased the recall from 71.5% to 84.3% and in PQL
from 85.4% to 88.1%, confirming that the reflection
loop is highly effective for tasks that require navigat-
ing multiple hops and reasoning through complex
paths.

4.2 Tool Use

To understand how reflection improves performance,
we analyzed the agent’s tool utilization patterns, as
shown in Table 3. The data reveal a clear shift in
strategy when the reflection mechanism is active,
with the effect varying by the complexity of the data
set.

On complex graphs such as D-WIS and GBO,
reflection guides the agent toward a more efficient
strategy. For D-WIS, the agent reduces its reliance
on initial broad searches (‘get_best_matches‘) and
property checks (‘get_predicates_for_entity‘), indicat-
ing that it learns to trust its initial grounding and
avoid redundant information gathering. Similarly,
on GBO, the agent significantly reduces broad neigh-
bor exploration (from 6.1 to 3.6 calls) in favor of a
more targeted traversal. This pattern is also visible
on MetaQA and PQL, where reflection encourages
a more focused navigation path.

Conversely, on the simple FoF ontology, the re-
flection loop appears to induce overthinking. The
reflection agent makes more calls to nearly every



Table 4. Ablation study results on the D-WIS dataset,
highlighting the critical role of the reflection mechanism
and the predicate-checking tool.

Model D-WIS Rec D-WIS Prec
w/ Ref 92.5 % 71.2 %
w/o Ref 90.8 % 68.4 %
w/o Ref and Search 89.0 % 67.9 %
w/o Ref and Predicate 84.7 % 66.6 %

tool, most notably increasing its ‘get_neighbors* calls
from 1.5 to 3.8 and ‘get_predicates_for_entity‘ from
0.3 to 1.3. This aligns with the precision results and
supports the hypothesis of diminishing returns: on
a task that is already simple, the reflective process
causes the agent to explore unnecessarily, leading
to inefficiency without a corresponding performance
gain. Overall, reflection successfully teaches the
agent to be more deliberate, but its utility is directly
proportional to the complexity of the traversal task.

5 Ablation Study

To further isolate the impact of specific components,
we conducted an ablation study on the complex
D-WIS ontology, with results presented in Table 4.
The study systematically removes key tools and the
reflection mechanism to quantify their contribution.

The full Traversal Agent with Reflection serves
as our top-performing benchmark. Removing the
reflection mechanism alone caused a drop in 90.8%
recall and 68.4% precision, confirming that the re-
flection loop is a significant driver of performance.
Removing the agent’s ability to perform its own
initial entity search (‘get_best_matches‘) led to a fur-
ther decrease, demonstrating the value of allowing
the agent to dynamically ground its starting point
in the graph.

Critically, the most substantial performance
degradation occurred when we removed the tool
‘get_predicates_for_entity‘. Recall fell to 84.7%, and
precision fell to 66.6%, which highlights that the
agent’s ability to inspect the types of relationship
a node possesses is fundamental to its navigation
strategy. Without being able to preview connections,
the agent navigates blindly, leading to less effective
and incomplete traversals. This underscores the im-
portance of tools that provide structural awareness
for efficient navigation in complex graphs.

6 Discussion

Our experimental results demonstrate that an au-
tonomous agent with traversal tools and a reflective
feedback mechanism is a highly effective approach to
information retrieval in large and dense knowledge
graphs. The findings confirm our central hypothesis:

for complex, nonprunable structures like the D-WIS
and GBO ontologies, dynamic agent-based traversal
significantly outperforms traditional, static retrieval
methods.

The key to this success is the process-oriented
reflective loop. By focusing on the use of tools, the
agent learns to refine its exploration strategy. This is
a crucial distinction from previous work such as Self-
RAG, which critiques the retrieved content. Our
method improves the retrieval process itself, leading
to more efficient navigation, as seen in the tool-use
analysis for D-WIS, GBO, and the multi-hop KG
datasets.

However, our work also introduces a critical find-
ing regarding the context-dependent utility of reflec-
tion. In the simple FoF ontology, where traversal
paths are short and initial precision is high, the re-
flection mechanism offered no benefit and slightly
increased inefficiency. This illustrates the principle
of diminishing returns: reflection is most valuable
when the task is complex, and there is significant
room for improvement. For straightforward queries,
the overhead of a reflection loop is unnecessary. This
suggests that future intelligent systems could dynam-
ically toggle reflection based on initial task assess-
ment.

Our ablation study further solidifies the impor-
tance of a well-rounded tool set. Although semantic
search provides a necessary entry point, the ability to
inspect node predicates (‘get_predicates_for_entity*)
proved to be the most critical. This indicates that
awareness of the local graph topology is paramount
for an agent to navigate intelligently.

While the agent shows strong recall and precision
in retrieving relevant nodes, this does not directly
guaranty the correctness of the final answer in a
downstream QA or generation task. The current
evaluation focuses on retrieval quality, and future
work should assess end-to-end performance, includ-
ing factual accuracy and coherence of generated
responses.

Additionally, the scoring agent introduces a po-
tential bias, as it relies on an LLM to evaluate the
output of another LLM, both based on the same
model. This may lead to inflated performance es-
timates due to shared reasoning patterns. A more
robust evaluation would involve human judgment,
diverse model ensembles to validate the retrieval
quality, or changing the scoring to a relative scale
with additional final decision to obtain the final
outcome.

Limitations

Although our findings demonstrate the promise of
reflective agent-based traversal, the study has sev-
eral limitations. First, our evaluation of ontology
datasets is based on a user simulator. These sim-



ulated queries are syntactically and semantically
idealized and may not reflect the ambiguity, noise,
or variability of real-world user input. This could
lead to an overestimation of performance.

Second, the scope of our evaluation is limited to
five specific knowledge graphs. The effectiveness of
our agent’s strategies may not generalize to other
graph types, such as sparse graphs, dynamic graphs,
or social networks, which may require different tools
or traversal heuristics.

Third, the scoring agent introduces bias by using
an LLM to evaluate another LLM’s output. This self-
referential evaluation may reinforce model-specific
reasoning patterns and lacks external validation.

Fourth, our study focuses exclusively on the re-
trieval phase, using precision and recall as primary
metrics. We do not evaluate the quality of the gen-
erated natural language output, which limits insight
into the system’s end-to-end utility.

Fifth, while Table 3 provides tool usage statistics
across datasets of varying complexity, it does not yet
include detailed measurements of runtime, memory
consumption, or cost per traversal iteration. These
metrics are important for assessing the practical
scalability of the approach, especially in large-scale
or real-time applications. A more comprehensive
profiling will be necessary to explore the scalability
of the method.
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A Prompts
Agent Prompt Tempale

Listing 1. Prompt for Ontology Traversal

**You are an intelligent agent exploring an ontology graph.x*x*

Your mission is to **identify relevant concepts** for:
‘{search_terms}*

**Primary Goal**: Locate all nodes capturing the concepts related to the search
terms (e.g.
Classes, Predicates, Properties).

You are limited to:

* xx{max_moves} total moves** (to navigate the graph)
* *xx{max_marks} total marks** (to record relevant nodes)

### Tools Available:
{tools_section}
### Strategy Tips:

* Start with fuzzy search to locate candidate entities related to the search
terms

* Use your moves wisely - the ontology is large, and random wandering is
inefficient

* Explore dense or semantically promising regions of the graph

* To be able to use ‘get_neighbors ‘, you must be in a node (use ‘move_to‘ to get
there)

* You can jump directly to any URI if you suspect it’s useful ¢
### Success Criteria:

- *%All relevant components are found in marked nodes*x*

- **Multiple nodes may each contain a part of the user intent** - you must *x*
mark them allx*x*

- **You do not mark irrelevant or unrelated nodes*x*

- **Note:** If you want a seed node to be included in the final results, you *x*
must mark itx**

using ‘mark_nodes ¢

You will succeed if you:

- Collect a complete, relevant set of nodes, describing user intent using only
the marked mnodes



Scoring Prompt Template

Listing 2. Prompt for Scoring Ontology Traversal with example Output

## Task
Score the agent’s performance on *Relevant Query Node Marking* on a scale of
0-100, based on task completeness and precision of the selected nodes.

## Initial User Queries
{user_queries}

## Final Agent State
**xMarked Nodes :**
{marked_nodes}

## Scoring Criteria

### Task Completeness (Recall) - 70% weight

- *x100%#**: All relevant classes/predicates directly or semantically matching
the user query are marked

- *x75%**: Most relevant nodes marked; at most one important node missed

- *x50%**: Some relevant nodes marked; several important ones missing

- x*25%*x*: Few relevant nodes identified; large gaps in query coverage

- *x0%**: No relevant nodes identified

### Information Redundancy (Precision) - 307 weight

- *%100%**: All marked nodes are highly relevant; no unnecessary or incorrect
markings

- x*75%**: Most marked nodes are relevant; minor irrelevant selections present

- **%50%**: Mixed relevance; some clearly irrelevant or unnecessary nodes

- *x2b5%*+*: Many marked nodes are off-target or unrelated to the query

- x*%0%**: Markings are mostly incorrect or irrelevant

Reflection Prompt Template

Listing 3. Prompt for Reflecting Traversal
## Task

Analyze the agent’s tool usage patterns and provide actionable improvement
suggestions based on the conversation trace and final performance score.

## Agent Conversation Trace
{messages_trace}

## Remaining Resources
- Moves: {remaining_moves}/{max_moves}
- Marks: {remaining_marks}/{max_marks}

## Final Performance Score
{final_score}/100

## Analysis Framework

### Tool Usage Patterns to Evaluate

1. **xStrategic Tool Selection**: Did the agent choose the most effective tools
for each situation?

2. **Resource Efficiency**: How well did the agent manage limited moves and
marks?

3. **Information Gathering**: Was the exploration thorough enough to make
informed decisions?

4. **Timing of Actions**: Were tools used in the optimal sequence?

5. **Redundancy vs. Completeness**: Did the agent balance efficiency with
thoroughness?

### Tool-Specific Analysis Points



#### get_best_matches

- Was this used early enough to establish search direction?
- Were search terms well-formulated?

- Did the agent act appropriately on the results?

#### get_neighbors

- Was this used strategically or randomly?

- Did the agent explore promising neighborhoods?

- Was the information from neighbors utilized effectively?

#### move_to

- Were movements purposeful or wasteful?
- Did the agent visit the right nodes?

- Was the exploration pattern efficient?

#### mark_nodes

- Were marks used at the right time?

- Was the confidence assessment accurate?

- Did the agent balance exploration vs. marking?

#### end_traversal
- Was the termination decision well-timed?
- Did the agent leave resources unused that could have improved results?

#### get_predicates_for_entity
- Were predicates explored to understand relationships?
- Did the agent use predicates to connect nodes meaningfully?

## Example Reflection Structure

[SN2N4

### Tool Usage Summary

The agent demonstrated efficient semantic search but showed limited exploratory
behavior...

### Key Strengths
- Excellent use of get_best_matches to quickly identify relevant nodes
- Strategic resource management with 5/10 moves used effectively

### Primary Improvement Areas
- Insufficient exploration of node relationships and context
- Premature marking without thorough verification

### Tactical Recommendations
- Use get_neighbors on marked nodes to verify context completeness
- Consider exploring related measurement units before final marking

### Strategic Insights

- Balance efficiency with thoroughness when stakes are high

- Develop heuristics for when to explore vs. when to mark
€ ¢

Focus on actionable, specific improvements rather than general observations.
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User Simulator Prompt Template

Listing 4. User Simulator Prompt with example Output

**You are a simulated user interacting with a knowledge graph creation tool.x*x*
Your task is to write a **clear, natural-sounding instruction** that either:

1. #*Adds new knowledge** (e.g. inserting a fact about a person, event, place,
etc.), or

You will be provided with a list of ontology terms (classes, properties). These
terms represent concepts in the graph.

Your goal is to **formulate a realistic and natural instruction** that:

- Could plausibly come from a non-technical user interacting with a smart
assistant or tool.

- Implies the provided ontology terms (Paraphrase or express them more naturally
).

- Makes logical sense in the context of building or querying a knowledge graph (
e.g., "Add a new researcher who works at a university, then add that they
are working on a project about AI.").

Avoid:

- Instructions that are vague, contradictory, or ungrounded in real-world
concepts.

- Highly abstract or technical language (like "create a subclass of X" or "
instantiate this axiom").

## Examples of good instructions:

- "Add a new city named Trondheim located in Norway. Then add a new landmark in
the city."

- "I want to add a book titled ’The Hobbit’ writtem by J.R.R. Tolkien. After
that, add a new character named Bilbo Baggins."

- "Show me all employees who work at OpenAI."

## Important:

- If a term cannot be naturally used in a realistic sentence, you may skip it.

- Make sure that *x*all used terms** (even if paraphrased) are **listed as URIs*x*
at the end.

- Do **not** list terms that were not actually used.

- You must use at least 3 ontology terms in your instruction.

Respond in the following format:

{

"instruction": "Your natural-sounding instruction here.",

"used_terms": ["<uril>", "<uri2>", ...]

}

EXAMPLE OUTPUT:

{

"instruction": "Add a new wellbore record with detailed data about the formation

strength encountered. Then include descriptions of the drill stem and the
specific drill string used in the operatiomn.",

"used_terms": ["http://ddhub.no/WellBoreData", "http://ddhub.no/
FormationStrengthDescription", "http://ddhub.no/DrillStemDescription", "http
://ddhub.no/DrillStringDescription"]

}
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B N-Hop Agent

N-Hop Agent is our alternative variant of Traversal Agent that is more tailored to specifi-
cally RDF triples. The ability to traverse the graph through get_neighbors and move_to is re-
placed by get_triples_by_subject_predicate and get_triples_by_predicate_object. This complements the
get_predicates_for_entity tool as together they allow to obtain all available triples in Knowledge Graph.
We have chosen to focus with this agent only on Question Answering, as we have observed that ontology
traversal does not often require travel, with Traversal Agent using the move_to tool only to confirm it’s
presence.
N-Hop Agent Prompt Template

Listing 5. N-Hop Agent Prompt Template

**You are an intelligent agent performing n-hop graph traversal to answer a
specific question using structured exploration of a knowledge graph.*x*

Your mission is to **systematically explore the graph** to locate and mark nodes
that contain the information required to answer:
‘{search_terms}°

**Primary Goal**: Identify and mark all entities that contribute to answering
the question

*x Important *x*:

You must mark **every nodex** that contains part of the answer.

If a required answer component is not marked, the answer will be incomplete.

e.g., for "What are the genres of films directed by [Person X]", both ’Drama’
and ’Comedy’ must be marked if relevant

vV V V VvV

You are limited to:
* **{max_marks} total marks** (to record answer-relevant nodes)

### N-Hop Tools Available:
{tools_section}

### N-Hop Strategy:

* **Start with fuzzy search** to locate candidate entities related to the
question

* **xExplore predicates** from those entities to navigate meaningful
relationships

* *xUse subject/predicate or predicate/object traversal** to find related nodes
that may contain answers

* **Mark nodes immediately** if they contain full or partial answers

* xxUse bidirectional exploration** where helpful - some answer components may
be found by reversing direction

### Traversal Tips:

* Use ‘get_predicates_for_entity‘ to discover properties of entities
* Use ‘get_triples_by_subject_predicate‘ to follow specific relationships

forward
* Use ‘get_triples_by_predicate_object ‘ to find entities pointing to a target
* **Don’t assume a single node holds the full answer** - be alert to partial

answers spread across multiple nodes
* xxMark all answer-contributing nodes, not just final answers*x*

Stay focused on **efficiently gathering all answer-critical information**. Your
goal is not to explore the whole domain or construct reasoning chains - it’s
to **jdentify and mark all the pieces of information** required to fully
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and accurately answer the question.

### Success Criteria:

- *%All answer components are found in marked nodes*x*

- **Multiple nodes may each contain a part of the answer** - you must **mark
them allx*x*

- **You do not mark irrelevant or unrelated nodes*x*

You will succeed if you:
- Collect a complete, correct answer using only the marked nodes

C Examples

Here we would like to present generated analysis from both the Scoring and Reflection Agent on the PQL
and MetaQA benchmarks.

C.1 Scoring Example

The example chosen for the Scoring Agent is one in which the Traversal Agent scored 75 during his first
attempt and 100 during his second attempt. The general problem that could be seen is that only partial
answers are given. The example below Peter Hook was not given any instrument, because he does not
have any associated in the ontology. The issue was that the Agent did not mark ‘Peter_Hook‘ thus the
associated properties are not visible to the scoring agent.

Listing 6. Example Scoring over insufficient answer

To evaluate the agent’s performance based on the provided user query and the
final agent state, we will analyze both task completeness and information
redundancy.

### Task Completeness (Recall)
The user query is asking for the instruments played by the lyricist of the song
\"Isolation.\" The agent identified two lyricists: Peter Hook and Ian Curtis
However , the query specifically asks for the instruments played by the
lyricist, which is only relevant to Ian Curtis in this context, as he is the
one whose instruments are listed.
1. *xTdentified Lyricists*x*:
- Ian Curtis (instruments played: Keyboard, Guitar)
- Peter Hook (no instruments mentioned)
2. **xInstruments Playedx**:
- The agent correctly identified Ian Curtis’s instruments (Keyboard, Guitar)

The agent successfully found the relevant information regarding Ian Curtis’s
instruments, but it also included Peter Hook, which is not mnecessary for
answering the query. However, since the query is about the lyricist’s
instruments, and Ian Curtis’s instruments were found, we can conclude that
the agent has covered the essential part of the query.

**Score for Task Completeness*x*:

- The agent found the relevant node for Ian Curtis and his instruments, but
included an unnecessary node for Peter Hook. Therefore, it can be rated as
**75%** (found most relevant nodes, single node missed).

### Information Redundancy (Precision)
Now, we will evaluate the relevance of the marked nodes:
1. **xMarked Nodesx**:
- \"Isolation\" (relevant)
- \"Ian Curtis\" (relevant)
- \"__music__group_member__instruments_played\" (relevant but redundant as
it doesn’t provide new information)
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- \"Keyboard\" (relevant)\n - \"Guitar\" (relevant)

The agent included a node that indicates the instruments played by Ian Curtis,
which is somewhat redundant since the instruments are already specified in
the nodes for Keyboard and Guitar. However, all other nodes are relevant to
the query.

**Score for Information Redundancy**:

- Since most marked nodes are relevant but there is some redundancy, the score
can be rated as **75%** (most marked nodes are relevant, minimal irrelevant
selections).

### Final Score Calculation

Now, we will calculate the final score using the weights provided:
- Task Completeness Score: 75% (0.75)

- Information Redundancy Score: 75% (0.75)

Final Score = (0.75 * 0.7) + (0.75 * 0.3) = 0.525 + 0.225 = 0.75
To convert this to a scale of 0-100, we multiply by 100:
Final Score = 0.75 * 100 = **75x%x*

### Conclusion
The agent’s performance is scored at **75%* based on the criteria of task
completeness and information redundancy.

C.2 Reflection Example

As can be observed in the example below, the reflection agent properly identified the errors caused by
not marking early and getting confused by the marks allowed. Reflection also observed problems with
movement and repeated querying. In the next attempt, the model was able to improve, obtaining a score
of 65 and returning more correct answer nodes.

Listing 7. Example Reflection over insufficient answer

SCORE: 50

### 1. Tool Usage Summary

The agent effectively initiated the traversal with ‘get_best_matches and used
get_predicates_for_entity ¢ to understand entity relationships. However, the
agent over-relied on repeated ‘get_neighbors‘ calls on the same node without

caching results, leading to inefficient move usage. Marking was done late

and in bulk, causing the agent to exceed the allowed mark limit and
resulting in errors. The traversal ended prematurely without fully
leveraging remaining moves or marks to ensure completeness.

« ¢

### 2. Key Strengths

- x*xHEarly and effective use of ‘get_best_matches‘**: Quickly identified the
target film "Central Station" and its screenwriters, setting a clear
exploration direction.

- **¥Predicate exploration to guide traversal**: Used ‘get_predicates_for_entity‘
on key entities (film and screenwriters) to identify relevant relationships
like ‘written_by ‘ and ‘directed_by ‘.

- **Focused exploration of screenwriter neighborhoodsx**: Moved to and explored

neighbors of "Walter Salles" to find related films sharing the same
screenwriter, aligning well with the question’s goal.

### 3. Primary Improvement Areas
- *xRedundant ‘get_neighbors‘ calls on the same nodex**: Multiple identical calls
on "Walter Salles" yielded no new information, wasting moves and time.

- **Mark overuse and poor mark management**: Attempted to mark 6 nodes despite
only having 5 marks, causing mark failures and confusion.

- **¥Delayed and bulk marking strategy**: Marking was postponed until many nodes
were identified, increasing the risk of exceeding mark limits and losing
track of confirmed answer components.

### 4. Tactical Recommendations
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x*Cache neighbors from the first ‘get_neighbors ¢

this data instead of repeating the same query.

**Mark nodes incrementally as soon as they are confirmed answer components*x*
to avoid exceeding mark limits and to maintain clarity on what has been
confirmed.

**Use ‘get_predicates_for_entity‘ to selectively guide neighbor explorationx*x*
rather than broad or repeated neighbor queries.

xxLeverage ‘move_to‘ strategically to explore new nodes rather than repeatedly

querying neighbors from the same nodex*x*.

*x*Track remaining marks and moves continuously** to avoid resource exhaustion
and premature traversal termination.

call per node** and reuse

### 5. Strategic Insights

**Plan exploration paths that maximize new information per move and mark** by
prioritizing predicates and relevant nodes.

*xAddopt a progressive marking strategy** to ensure completeness and avoid
errors related to mark limits.

**Use predicates as a roadmap for n-hop traversal** to focus on meaningful
relationships rather than broad neighbor exploration.

**Continuously monitor resource usage and adapt exploration depth or breadth
accordingly** to balance thoroughness with efficiency.

**Avoid redundant queries by maintaining internal state or caches** to improve
resource efficiency and traversal speed.

By implementing these improvements, the agent can achieve more efficient,

accurate, and complete graph traversals within the given resource
constraints, leading to higher performance scores and more reliable answers.
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