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ABSTRACT

Graph neural networks (GNNs) that aggregate and transform point masses as mes-
sages manifest a wide array of symptoms including limited expressiveness, over-
smoothing, and over-squashing. When stochasticity is injected into the structure
of the graph, these problems can be jointly remedied, as shown in the unify-
ing framework herein, which theoretically justifies the superior performance of
a number of GNN architectures that incorporate random regularization. For the
first time, we discover that simple GNNs can exceed the power of the Weisfeiler-
Lehman test when equipped with structural stochasticity. With insights drawn
from the theoretical arguments, we design a principled way to quantify the struc-
tural uncertainty in GNNs via variational inference, termed Bayesian Rewiring of
Node Networks (BRONX), and showcase its competitive performance with real-
world experiments.

1 INTRODUCTION: GRAPH NEURAL NETWORKS (GNNS) AND LIMITATIONS

Graph neural networks (GNNs)—neurally parametrized models aggregating and transforming node
embeddings based on topological neighborhoods—have shown promises in a wide range of do-
mains (Kipf & Welling, 2016; Xu et al., 2018; Gilmer et al., 2017; Hamilton et al., 2017; Battaglia
et al., 2018). The key inductive biases of spatial (Wu et al., 2019b) GNNs rely on the double rôle of
the graph they operate on—it is both an input feature as well as a compute graph. When this graph
is rigid, with static (and potentially arbitrarily defined) structure, GNNs display a plethora of prob-
lems, including over-fitting (poor generalizability to unseen data), over-smoothing (Oono & Suzuki,
2019; Cai & Wang, 2020; Rusch et al., 2023) (node similarity approaches infinity), over-squashing
(information for exponentially-growing receptive field gets over-compressed), under-reaching (Alon
& Yahav, 2020) (with finite rounds of message-passing, long-term interactions cannot be realized),
and limited expressiveness (Xu et al., 2018) (not able to distinguish between nodes with distinct
environments).

A line of fruitful research focuses on injecting stochasticity into the structure of the graph, as a
way of regularization aiming at alleviating over-smoothing and over-fitting: Zhang et al. (2018)
regards the input graph as a realization of a class of graphs generated by some random processes;
Chen et al. (2018) (FastGCN) randomly masks out input graphs under Bernoulli distribution; Rong
et al. (2019) (DropEdge) randomly removes edges of input graphs; Hasanzadeh et al. (2020) (Graph
DropConnect, GDC) similarly removes edge, although edges are removed independently for each
feature dimension; Feng et al. (2020) (GRAND) takes these structural modifications and performs
multiple steps of message-passing before aggregating the samples. In addition, the time-tested graph
attention networks (GAT) (Veličković et al., 2018), with DropOut (Gal & Ghahramani, 2016) on the
attention scores, de facto modifies the graph structure randomly. This class of models, referred
to as stochastic GNNs henceforth, empirically show decent performance with intriguing properties
partially remedying the aforementioned problems.

Main contributions. In this paper, we hope to further deepen the understanding of stochastic
GNNs by: (a) providing a theoretical framework justifying how structural uncertainty alleviates
over-smoothing, over-squashing, and limited expressiveness; most interestingly, we discover, for the
first time, that stochastic GNNs can exceed the discriminative power of the Weisfeiler-Lehman tests.
(b) incorporting these insights to design a model—termed Bayesian Rewiring of Node Networks
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(BRONX)—to quantify structural uncertainty using variational inference (VI), which, quantifies
edge uncertainty individually in an amortized manner. To the best of our knowledge, this is the first
model capable of quantifying edge uncertainty in transductively (across unseen environments and
graphs), since the edges weights are individually learned based on the graph environment.

2 PRELIMINARIES: (STOCHASTIC) GRAPH NEURAL NETWORKS

Graph. A graph is defined as a tuple of collections of nodes and edges G = {V, E}. The nodes can
be attributed with features x1,x2, ...,xN = X ∈ RN×C , where N = |V| is the cardinality of the
node set and C the feature dimension. An adjacency matrix A ∈ RN×N (usually sparse) associates
the edges with nodes:

Aij =

{
1, (vi, vj) ∈ E ;
0, (vi, vj) /∈ E . (1)

Graph neural networks. A graph neural network can be most generally defined as one adopting a
layer-wise updating scheme that aggregates representations from a node’s neighborhood and updates
its embedding:

X′
v = ϕ(Xv, ρ(Xu, Âuv, u ∈ N (v))), (2)

where ϕ, ρ are the update and aggregate function, repsectively. Omitting the nonlinear trans-
formation step ϕ ubiquitous in all neural models, and assuming a convolutional aggregate func-
tion, ρ = SUM or ρ = MEAN, a graph neural network layer is characterized by the aggrega-
tion/convolution operation that pools representations from neighboring nodes, forming an interme-
diary representation X′, which on a global level, with activation function σ and weights W , can be
written as:

X′ = σ(ÂXW ) (3)
A GNN model, which is a stack of GNN layers, can then be presented as

X(l) = σ(Âσ(Âσ(Â...σ(Â︸ ︷︷ ︸
l times

XW...W )W )W )︸ ︷︷ ︸
l times

(4)

The primary difference among architectures amounts to distinct effective adjacency matrix Â. Graph
convolutional networks (Kipf & Welling, 2016) (GCN) normalizes Â by the in-degree of nodes
Dii =

∑
j Aij ; graph attention networks (Veličković et al., 2018) (GAT) takes Â as the attention

score; simplifying graph convolution (SGC) (Wu et al., 2019a) taking the normalized adjacency
matrix and raise to K-th power; and graph neural diffusion (GRAND) takes the matrix exponential
of the attention score matrix in GAT (albeit possibly with a different attention form).

ÂGCN = D− 1
2AD− 1

2 ; ÂGAT,ij = Softmax(σ(NN(xi||xj))); ÂSGC = ÂK
GCN; ÂGRAND = exp ÂGAT (5)

Stochastic graph neural networks. Randomly perturbing the adjacency matrix A (or its normal-
ized / transformed version Â) has been shown to effectively regularize the underlying graph neural

network. With the stack of adjacency matrix for all latent features A =
C⊕

c=0
Ac ∈ RC,N,N ex-

plicitly written out, and q denoting a (hyper)parametrized Bernoulli distribution, FastGCN (Chen
et al., 2018), which masks out nodes (all entries in that column / row) in graph convolution, where
DropEdge (Rong et al., 2019) adopts a sparse mask on the last two dimensions:

AFastGCN[:,:,v][:,v,:] ∼ q(Z) ∈ RN ;ADropEdge[:,u,v] ∼ q(Z) ∈ R|E|. (6)

Note that GAT (Veličković et al., 2018), with Dropout (Gal & Ghahramani, 2016) modules operating
on the attention scores, have the same effect before the Softmax operator. Graph DropConnect
(GDC) (Hasanzadeh et al., 2020), on the other hand, samples edges of graphs independently for
each feature:

AGDC[c,u,v] ∼ q(Z) ∈ RC×|E| (7)
Hasanzadeh et al. (2020) also explores VI scheme for GNNs, though different from us, the edge
uncertainty is globally learned and is thus not suitable for transductive learning.
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Bayesian framework for graph structural uncertainty. Transitioning from the algebra of point
masses to random variables under certain distributions, we put the dynamics of GNNs into a proba-
bilistic framework. Assuming the (effective) adjacency matrix Â adopting a (tractable or intractable)
distribution Â ∼ q(Â), and the neural network parameter θ fixed, the probability distribution of the
output signal y can be written as

p(y, Â|X, θ) = q(Â)p(y|Â,X, θ). (8)

Marginalizing over the possible structures
∫
dÂ, the predictive distribution becomes

p(y) =

∫
q(Â)p(y|Â,X, θ)dÂ = EÂ∼q(Â)p(y|Â,X, θ). (9)

For previously surveyed architectures, with the exception of the non-transductive case in Hasanzadeh
et al. (2020), q is always chosen as a fixed prior. While training, similar to uncertain weights (Blun-
dell et al., 2015), one uses Markov Chain Monte Carlo (MCMC) to draw unbiased estimates to
estimate the parameter gradient −∂p(y)/∂θ. During inference, Equation 9 is used (explicitly or
implicitly) to compute the expectation of the posterior distribution. Note that, for the family of dis-
tributions discussed here, we only consider the multiplicative noise applied on the original sparse
adjacency matrix A; in other words, different from Zhang et al. (2018), we consider a simpler case
where edge strength are perturbed, but no edge is added into the original adjacency matrix.

Â = A⊙ Z,Z ∼ q(Z) (10)

3 THEORY: STRUCTURAL STOCHASTICITY JOINTLY ALLEVIATES UNIQUE
PROBLEMS IN GNNS—LIMITED EXPRESSIVENESS, OVER-SMOOTHING,
AND OVER-SQUASHING.

It has been extensively studied that GNNs, in addition to the common issues of (over-parametrized)
neural networks, display some symptoms unique to the convolutional scheme characterized by Equa-
tion 3. In this section, following a survey of these problems, we theoretically show that structural
stochasticity alleviates these problems simultaneously.

3.1 STRUCTURAL STOCHASTICITY INCREASES EXPRESSIVENESS—THE ABILITY TO
DISTINGUISH NON-ISOMORPHIC GRAPH ENVIRONMENTS.

First, we reëstablish the notion of expressiveness under the probabilistic framework as the ability to
render, from distinct inputs, signals that are not equal in distribution. This guarantees distinctiveness
in expectation after nonlinear transformation and can be reflected in the final output of the model:

Lemma 1. There exists some element-wise function σ such that

EX∼qX (σ(X)) ̸= EY∼qY (σ(Y )) (11)

if X ∼ qX and Y ∼ qY are not equal in distribution.

One example of such activation function σ is a switch function that is only positive in the region
where X > Y and zero everywhere else. With this tool handy, we show that many traditional
operations in the algebra of point masses would yield degenerate results actually result in signals
not equal in distribution. Intuitively, for node representations to achieve equality in distribution is
difficult as it requires exactly the same dependence structure within the neighborhood, as we show
in the following section.

Problem: GNNs are at most as expressive as Weisfeiler-Lehman tests. Xu et al. (2018) has
groundbreakingly illustrated that GNNs cannot distinguish graphs (or node neighborhoods) that
Weisfeiler-Lehman isomorphism tests (Weisfeiler & Leman) cannot:

Lemma 2 from Xu et al. (2018). Let G1 and G2 be any two non-isomorphic graphs. If a graph
neural network G → RC maps G1 and G2 to different embeddings, the Weisfeiler-Lehman graph
isomorphism test also decides G1 and G1 are not isomorphic.
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Remedy: With structural stochasticity, GNNs can be more expressive than Weisfeiler-Lehman
tests. The ring-size realization experiment (See Figure 1) is perhaps the poster child for the inabil-
ity of both classical rank-1 (Morris et al., 2018) GNNs and the Weisfeiler-Lehman test to distinguish
non-isomorphic graphs. For two differently-sized rings composed of identical nodes, no matter how
many steps of message-passing are conducted, each node is going to aggregate representations from
adjacent, identical nodes and cannot yield a different embedding. This is not the case if we, again,
switch to the algebra of random variables. Under the probabilistic framework, the graph on which
the GNN is operating on, apart from the dual rôle as the computation graph and input feature, is also
endowed with a third rôle as the belief network in a Bayesian graphical model. After l rounds of
message passing, if there exists a ring with a size smaller than l, the belief network would show a
closed loop, whereas if there are no rings or only rings larger than l, the belief network would receive
a tree of independent variables, resulting in two node representations not equal in distribution. We
formalize this thought experiment as:
Theorem 1 (GNNs with structural stochasticity are more expressive than WL test.). There exist
graphs G1 and G2 with adjacency matrix A1, A2, that are labeled as isomorphic by the Weisfeiler-
Lehman test, and some multiplicative distribution Z ∼ q(Z) ∈ RN×N , such that

EZ∼q GNN(A1 ⊙ Z) ̸= EZ∼q GNN(A2 ⊙ Z) (12)

where GNN is a graph neural network architecture with the form in Equation 2.

Proof. One such example is a GNN with MAX aggregate function and update function copying the
neighborhood:

X′
v = MAX(Âuv,Xu,Xv, u ∈ N (v)) (13)

with Z ∼ q some non-zero continuous distribution perturbing the structure with Â = a ⊙ Z and
initial X(l=0) = 0. If one has two cyclic graphs G1,G2 with ring size r1 < r2 − 1, which are not
distinguishable with the Weisfeiler-Lehman test. At l = r1 + 1 < r2, we have

EZ∼q1(Xv = Âuv, u ∈ N (v)) > 0 (14)

(where 1 is the indicator function) holds for G1 but not G2.

Figure 1: Proof of Theorem 1, illustrated.

We believe that this proof is concise and in-
teresting enough to be included in the main
text here—it exemplifies the difference in dis-
tribution resulting from a different dependence
graph. In particular, Equation 14 only holds
when the sample sample was passed around to
the source node. Crucially, this proof, and The-
orem 1 would not hold if the structure A were
resampled—the parent nodes of all node distri-
bution will be fresh and independent, and belief
network depth is reduced to a single layer. We
also remark that the argument in Barceló et al.
(2020) still holds that GNNs, with or without
stochasticity, can only distinguish graph envi-
ronments at most K edges away when operat-
ing K times, and that stochastic GNNs of K-
layers are at most as powerful as WL tests with K steps. This incentivizes us to design GNNs with
more steps, especially since we show that over-smoothing and over-squashing can also be remedied
in Section 3.2 and Section 3.3. These principles will the design of our VI-based infinitely-deep
framework in Section 4.

Problem: with one aggregator, GNNs are not as expressive as Weisfeiler-Lehman tests. Xu
et al. (2018) also argues that, the key to designing maximally powerful—that is, as powerful as
Weisfeiler-Lehman test—GNNs, lies in the choice of aggregation functions (ρ in Equation 2). If ρ
is injective, for instance, the SUM function, GNNs can achieve this discriminative power (Theorem
3 in Xu et al. (2018)). Corso et al. (2020), however, states that such a theorem only holds if the
underlying space for the neighborhood multiset (a set with possibly repeating elements) is countable.
For the more general continuous space scenario, one aggregator does not suffice:
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Theorem 1 from Corso et al. (2020). In order to discriminate between multisets of size N whose
underlying set is R, at least N aggregators are needed.

Remedy: With structural stochasticity, one aggregator suffices to distinguish among multisets
with continuous support. We show that Theorem 1 from Corso et al. (2020) will not hold if
each element in the neighborhood multiset {u ∈ N (v)} is multiplied with a stochastic edge weight
Z under some distribution (proof in Appendix Section B.1).

Theorem 2 (One aggregator is sufficient to distinguish multisets.). Given two arbitrary-sized mul-
tisets X and Y with support R \ 0, there exists some aggregator ρ : R|X| \ 0 → R and a scalar
distribution q(Z) ∈ R1 such that

ρ(zx, x ∈ X, z ∼ q(Z)) = ρ(zy, y ∈ Y, z ∼ q(Z)) (15)

are equal in distribution i.f.f. X = Y.

To compare this with Theorem 1 from Corso et al. (2020), one can regard the rôle of structural
stochasticity as packing the expressiveness of multiple aggregators into one.

3.2 STRUCTURAL STOCHASTICITY ALLEVIATES OVER-SMOOTHING.

Problem: Node becomes too similar after rounds of message-passing. Since message passing,
or graph convolutions (Equation 3), behaves like Laplacian smoothing (ignoring the linear and non-
linear transformations), after sufficient rounds, the similarities among nodes drastically increase,
until the node embedding is only dependent upon their degree. Cai & Wang (2020); Rusch et al.
(2023) quantitatively characterizes this scenario via Dirichlet energy among node embeddings X ∈
RN×C :

E(X) =
1

N

∑
(u,v)∈EG

||Xu −Xv||2, (16)

which decreases, sometimes exponentially to approach zero (Lemma 3.1, 3.2 in Cai & Wang
(2020)), with the node representation embedded on a thin subspace of RC , dependent only upon
the node degree not on the initial embedding, as the number of GNN layers increases.

Remedy: Structural stochasticity delays the decay in Dirichlet energy. That to introduce ran-
dom regularization in graph edges or nodes remedies over-smoothing has been empirically studied
in Rong et al. (2019); Hasanzadeh et al. (2020). We here argue that such a remedy is universal
across nearly all random perturbations on graph structure, regardless of the specific choices of noise
structure, and can delay the decay of Dirichlet energy in the convolutional step. Before we continue
onto the theoretical setup, we first restrict ourselves to a particular form of GNN as Equation 3,
which still entails all architectures surveyed in Section 2. With this thinly narrowed design space,
we formalize this argument:

Theorem 3 (Structural stochasticity delays the decay of Dirichlet energy.). For a graph G with
adjacency matrix A ∈ RN×N and node embedding X ∈ RN×C , any non-negative, per-element
independent noise distribution Z ∼ q ∈ RN×N applied on the non-zero entries in the sparse
adjacency matrix, Â = Z⊙A, the expectation of Dirichlet energy of the graph convolution operation
is greater than or equal to that resulting from the expectation of Â:

EZ∼qE(ÂX) ≥ E(EZ∼q(Â)X). (17)

Theorem 3 states that, within a single graph Laplacian transformation, the decay of Dirichlet energy
is slowed by having a stochastic graph structure, which also corresponds to the empirical findings of
the stochastic architectures surveyed in Section 2. By induction, this delay also applies to iterative
convolution (as shown in Figure 2).

Corollary 3.1 (Effects of activation function, weights, and multiple rounds.). The condition in Equa-
tion 17 still holds when one or more operations are applied: projection with weights W ∈ RC×C′

,
convex activation functions, or multiple (K) rounds of message-passing:

EZ∼qE(σ(ÂKXW)) ≥ Eσ((EZ∼qÂ)KXW). (18)
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In plainer words, the graph convolution with structure perturbed by such distribution q is expected
to be less smooth and converge to the subspace independent of the initial features of graphs slower.

Corollary 3.2 (Jensen’s gap for Equation 17). If Z, and thereby Â, is per-element independent,

EZ∼qE(ÂX)− E(EZ∼q(Â)X) =

1

N

∑
(u,v)∈EG

∑
0<c≤C

∑
uN∈N (u)

∑
vN∈N (v),vN ̸=uN

(VarÂvN vX
2
vN +VarÂuNuX

2
uN

) (19)

As such, we can relate the Jensen’s gap to the variance of elements of Â— the higher the variance of
Â is, the larger the Jensen’s gap, as shown in Figure 2 with LogitNormal distributions with different
parameters.

3.3 STRUCTURAL STOCHASTICITY ALLEVIATES OVER-SQUASHING.

Figure 2: Structural stochasticity delays the
decrease of Dirichlet energy on Cora citation
graph: Log Dirichlet energy plotted against con-
secutive graph convolution with adjacency matrix
with various edge distributions (without applying
weights).

Problem: Information loss when represent-
ing large neighborhood. GNNs have expo-
nentially growing receptive field as the convo-
lution operations increase, as opposed to the
linear case for the recurrent neural networks
(RNN) (Cho et al., 2014) or convolutional neu-
ral networks (CNN) (Krizhevsky et al., 2012),
thanks again to the duality of the input / com-
pute graph. Alon & Yahav (2020) observe that,
as one stacks multiple GNN layers, the size
of the neighborhood and the number of possi-
ble combinations of faraway neighbors would
soon outgrow the maximum enumerations in
a fixed-length floating-point vector. Topping
et al. (2022) quantifies such effect by the inter-
node Jacobian and relates it to the (l + 1 with l
being the number of layers) power of the effec-
tive adjacency matrix:

|∂X
(l+1)
v

∂Xu
| ≤ |∇ϕ|(l+1)(Âl+1)uv. (20)

Naturally, if the Jacobian is vanishing, the
change in the neighborhood is too small to be reflected in the fixed-lengthed vector and the node
is only capable of receiving signals or more immediate neighbors.

Remedy: Structural stochasticity amplifies squashed signals. We show that a random pertur-
bation alleviates over-squashing as well; with certain class of activation functions, it slows the decay
of inter-node Jacobian magnitude:
Theorem 4 (Structural uncertainty alleviates inter-node vanishing Jacobian). For a graph G with
adjacency matrix A ∈ RN×N and node embedding X ∈ RN×C , any noise distribution Z ∼ q ∈
RN×N applied on the non-zero entries in the sparse adjacency matrix Â = Z ⊙ A, the expectation
of Jacobian of multiple rounds of message passing is greater than or equal to that resulting from the
expectation of A:

Eq|
∂ÂKX

∂X
| ≥ |∂(EqÂ)KX

∂X
|. (21)

The proof (See Appendix Section B.3), again, relies on Jensen’s inequality. We can intuitively
explain this result as follows: with random perturbation, the representation capacity of a fixed-
length vector increases. During convolution, when two neighbor distributions are combined, the
resulting distribution has a higher information content, which, if measured by Shannon entropy,
does not dissolve:

H(Xv) =
∑

u∈N (v)

(H(Âuv) +H(Xu)) (22)
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if the neighboring edge representations are independent. This is in contrast with the fixed-length
vector, which has a fixed number of possible combinations, or fixed entropy.
Corollary 4.1. (Effects of activation function and weights) The condition in Equation 21 still hows
with weights W ∈ RC×C′

; additionally, this still holds after activation function σ with convex
first-order derivatives

Eq|
∂ÂKXW

∂X
| ≥ |∂(EqÂ)KXW

∂X
|;Eq|

∂σ(ÂKXW)

∂X
| ≥ |∂σ((EqÂ)KXW)

∂X
|. (23)

To sum up this section, through Theorems 1 ∼ 4, we have insofar characterized the promising
theoretical properties of structural stochasticity, which have sporadically appeared in previous lit-
erature (Hasanzadeh et al., 2020; Rong et al., 2019) used on various models but have never been
studied systematically to justify the efficacy of stochastic GNNs. The most useful mathematical
tools in this section are the stringent condition of equality in distribution and Jensen’s inequality.

Finally, it is worth noting that controlled stochasticity as a regularization also addresses overfitting.
However, one can verify that none of the herein studied theorems would hold if merely parameter
uncertainties, as in weight perturbation or activation dropout, were applied. We also experimentally
test this in Section 5. This suggests that structural uncertainty has a unique efficacy on the dynamics
of graph neural networks.

4 ARCHITECTURE: BAYESIAN REWIRING OF NODE NETWORKS (BRONX)

Design principles. From the theoretical analysis in Section 3, we extract several qualita-
tive insights for the design of maximally powerful stochastic graph neural networks: (a)
One aggregator, for example SUM, is sufficient for stochastic GNNs, as long as followed
by non-linear activation functions (Theorem 2); (b) More message-passing rounds corre-
sponds to higher expressive power over larger receptive fields (Theorem 1), without lead-
ing to dramatic over-squashing and over-smoothing, though the reuse of edge samples must
be guaranteed; (c) Edge diversity and anisotropy remedies over-smoothing (Theorem 3);
(d) Inter-layer activation functions should have convex first derivatives, (Theorem 4).

Figure 3: Illustration of stochasti-
cally rewired structure with Karate club
graph (Zachary, 2002).

With these principles, we design an infinitely-deep graph
neural networks with edge uncertainty and anisotropy
controlled through a variational inference framework.
Since the infinitely-deep GNN resembles the graph diffu-
sion or a graph rewiring process (Klicpera et al., 2019),
we term our model Bayesian Rewiring Of Node net-
worKS, or BRONX for short.

Infinitely-deep graph neural networks. From our the-
oretical analysis, we find that, with structural stochastic-
ity alleviating over-squashing and over-smoothing, depth
only correlates with larger reception field and higher ex-
pressiveness. We therefore apply Equation 3 infinitely
many times with residual connection and without channel mixing, arriving at a continuous variant
of a graph neural networks (Xhonneux et al., 2019; Chamberlain et al., 2021)

∂X(t)

∂t
= Â(t)− I. (24)

which simulates a diffusion process on the graph manifold. If Â remains constant during the course
of the diffusion, to reduce variance and increase expressiveness (Theorem 1), Equation 24 has an
analytical solution:

X(t) = exp(Â− I)X(t = 0). (25)

Since the matrix exponential can also be written as X(t) =
∑+∞

k=0
1
k!X

k(t = 0), as the sum of an
infinite series of k-round message passing, the conditions discussed in Section 3 still holds. This
process can also be seen as a way of rewiring to produce samples of rewired subgraphs, as illustrated
in Figure 3.

7



Under review as a conference paper at ICLR 2024

Edge distribution class. It has been studied that the sparsity of effective graph adjacent matrix
would further regulate message-passing. Bernoulli distribution, however, are difficult to parametrize
in a differentiable, amortized manner without introducing additional variances or biases (Hasan-
zadeh et al., 2020). We here propose an alternative class of edge distribution—Logit Normal dis-
tribution that are fully parametrizable and differentiable using the resampling trick (Kingma et al.,
2015):

Z ∼ N (µ,Σ);A = σ(q) =
1

1 + exp(−Z)
∼ LogitNormal(µ,Σ), (26)

which resembles a Bernoulli distribution when Σ >> 0, i.e. when the edge uncertainty is high.

Variational inference framework. Now it only remains to provide a variational parametrization
to the (time-independent) edge distribution and combine it with with the initinitely deep graph neu-
ral networks to complete the model (Equation 9). From the initial node distribution X(0), we
parametrize the logit-normal distribution (Equation 26) using dot-product attention with key weight
shared ϕ = {µ,Σ}:

µuv = (WkXu)
TWµXv; Σuv = (WkXu)

TWΣXv. (27)

We furthermore purpose a prior for the edge weights conditioned on the source nodes:

Auv|Xu ∼ q(Auv|Xu) = N (µu,Σu), (28)

with the parameters given by a linear transformation of the node embedding. As such, with training
data pair (X, y), we can maximize a data evidence through the evidence lower bound (ELBO) given
as (ignoring neural network parameters for now)

L(ϕ) = EZ∼q(A|X;ϕ)[log(y|A,X)− q(A|X;ϕ)], (29)

with the likelihood term corresponding to the final task, namely regression or classification. A
general recipe to contruct losses given this is to decent −L(ϕ).

Comparison with other stochastic GNNs. The BRONX architecture is distinct from
other stochastic GNNs in several ways: (a) To promote edge anisotropy, the edge
distribution is learned independently for each edge (Insight (b) from Design princi-
ples). (b) With the over-squashing and over-smoothing behaviors remedied, and ex-
pressiveness scale with the number of message-passing rounds, we employ a con-
tinuous, infinitely deep graph neural network (Insight (c) from Design principles).

Figure 4: An illustration of the shape of
LogitNormal distribution.

Complexity. The space and runtime complexity is con-
trolled by evaluating the graph diffusion step Equation 24,
O(|E|k), where |E| the number of edges and k the number
of samples.

5 EXPERIMENTS

We benchmark the performance of the BRONX model
designed in Section 4 to illustrate its competitive perfor-
mance, and more importantly, understand how various
design principles outlined in the theoretical framework
(Section 3) contribute to the performance.

Dataset. We benchmark our model on the popular Plan-
etoid citation datasets (Yang et al., 2016), as well as the coäuthor (Shchur et al., 2018) and co-
purchase (McAuley et al., 2015) datasets common in social modeling. While acknowledging its
limitations (lack of long-range interactions, small in size, some linear relationship) (Dwivedi et al.,
2020), we argue that this small dataset is the only common task every popular model has been tested
against. At the same time, the original train–validation–test split has also been adopted.
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Cora CiteCeer PubMed Coauthor CS Photo
GCN (Kipf & Welling, 2016) 81.5 70.3 79.0 91.1 ± 0.5 01.2 ± 1.2
GAT (Veličković et al., 2018) 83.0 ± 0.7 72.5 ± 0.7 79.0 ± 0.3 91.3 ± 0.1 90.9 ± 0.3

GRAND (Chamberlain et al., 2021) 84.7 ± 0.6 73.6 ± 0.3 81.0 ± 0.4 92.9 ± 0.4 92.4 ± 0.8
DropEdge (Rong et al., 2019) 82.8 72.3 79.6
GDC (Hasanzadeh et al., 2020) 82.20 71.72
GRAND (Feng et al., 2020) 85.4 ± 0.4 75.4 ± 0.4 82.7 ± 0.6

BRONX 85.5 ± 0.3 74.3 ± 0.6 83.0 ± 0.5 94.5 ± 1.0 92.8 ± 0.5

Table 1: Test accuracy (%) on Cora dataset.

Results In sum, BRONX achieves competitive performance when compared with the state-of-the-
art graph neural networks surveyed here. Among the baselines, the most performant GRAND (graph
random neural networks) (Feng et al., 2020) also celebrates stochasticity as the central innovation
in the architecture, though hand-crafted intricate sampling and regularization scheme is employed
with samples from the prior alone. We argue that the comparison between BRONX and GRAND
(graph neural diffusion) (Chamberlain et al., 2021) (which resembles the maximum-likelihood vari-
ant of BRONX) highlights the utility of edge uncertainty quantification. The comparison between
DropEdge (Rong et al., 2019; Hasanzadeh et al., 2020) and BRONX underscores the importance of
a principledly constructed amortized scheme for edge uncertainty.

Ablation study. To cleanly separate the contribution of each innovation proposed in Section 4, we
conduct an ablation study benchmark the test accuracy on the Cora dataset. Maximum likelihood es-
timate(83.5%) resembles the dynamics of Chamberlain et al. (2021), which is still a powerful model,
though without the benefits of stochasticity. Structural uncertainty from prior(80.1%) rewires the
graph adjacency matrix simply as its matrix exponential expA with no learned component, which
justifies its underwhelming performance. Without conditional prior(83.0%) switches the conditional
prior in Equation 28 with a plain LogitNormal(0,1); this would lead to over-regularized edges that
does not absorb information from the source. Weight uncertainty quantification(81.5%) highlights
the difference between weight uncertainty (Blundell et al., 2015) and structural uncertainty—the
theoretical benefits presented in Section 3 does not apply to weight uncertainty alone.

6 CONCLUSIONS

Random regularization is a ubiquitous trick applied in all schools of neural modeling. The pioneer
researchers in graph neural networks have been using random perturbations on various aspects of
GNNs with success, although its fundamental rôle might have never been put into a holistic, systemic
perspective. The first half of of paper aims to address precisely this and to deepen our understanding
of stochastic graph neural networks as a general instrument. Next, we extract insights from the
theoretical analysis to guide the practical design of stochastic GNNs and cleanly dissect the utility
of each modification.

Limitations. Theoretical. Relying heavily on the notion of equality in distribution and Jensen’s
inequality, we illustrate some advantages of stochastic GNNs in Section 3 in relation to the common
pathologies of GNNs. We nevertheless have not quantitatively characterize the magnitude of these
differences, namely the Jensen gap. The condition for Theorem 1, for example, might be difficult
to satisfy and such signal might loose during numerical integration and optimization. Architectural.
The focus of this paper is to elucidate the conceptual advantages of stochasticity in GNNs, not to
find the best architecture for stochasticity GNNs. As such, we have only benchmarked the simplest
model with infinitive depth where the diffusion. Again, the dataset used in this benchmark is, though
popular and common, minimalistic.

Future directions. We plan to address the remaining open questions in the theoretical framework,
to demonstrate a clearer translation between theoretical property and practical utility in a wider range
of benchmark tasks. In particular, this uncertainty-aware framework is suitable to regime where data
is scarce and model uncertainty can be used to guide the experimental design, for example in drug
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discovery. At the same time, we plan to study the rôle of stochasticity more closely under our
framework in an equivariant setting (Godwin et al., 2021).

Social impact. In this paper we demonstrate a powerful learning scheme over graphs incorpo-
rating stochasticity. We hope that this will further the endeavor of us, as a scientific community, to
better understand the nature and dynamics of relations, be it social or physical. On the other hand, as
is with all powerful graph neural networks or machine learning methodologies in general, harmful
impact might occur if it were used in illegal and immoral contexts, for instance the aggressive feed
catering in social network platforms, or the design of overly addictive narcotics.
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A EXPERIMENTAL DETAILS

The model, as well as all evaluation scripts, are distributed open-source in the anonymized
repo https://anonymous.4open.science/r/bronx-5F7F/README.md. It is imple-
mented in PyTorch (Paszke et al., 2019) (tensor-accelerating framework) and Pyro (Bingham et al.,
2018) (probabilistic inference). Dormand-Prince method with order 5 is employed to evaluate the
integral in Equation 24 since the analytical solution (Equation 25) is not tractable. Like in Chamber-
lain et al. (2021), the attention parameters determining the edge distributions are initialized as small
constants, to ensure diffusion stability. Hyperparmeters, including the network size, the optimization
schedule, the diffusion time, is tuned using Ray Tune (Liaw et al., 2018).

B PROOFS

B.1 PROOF OF THEOREM 2

We prove Theorem 2 for SUM aggregator on R \ {0}, although is easy to expand to MEAN and
MAX aggregators on RC \ {0}.

Proof. Suppose we have two multisets X = {xi, i = 1, 2, ..., NX} and Y = {yj , i = 1, 2, ..., NY }.
We choose the multiplicative noise Z ∼ q = Uniform(0, 1), with the moment generating function
MZ(t) = et−1

t , and SUM(ξq(X)) and SUM(ξq(Y )) are equal in distribution. Thus, the moment
generating function of SUM(ξq(X)) is

MSUM(ξq(X))(t) = M∑
xizi(t) =

∏
(exit − 1)∏

xit
(30)

Since SUM(ξq(X)) and SUM(ξq(Y )) are equal in distribution, MSUM(ξq(X))(t) =

MSUM(ξq(Y ))(t), and therefore
∏

(exit−1)∏
xit

=
∏

(eyjt−1)∏
yjt

. Considering the Taylor expansion of
exp(·), we have ∑

xn
i =

∑
ynj (31)

for any n ∈ N+. Since ∀xi ̸= 0 and ∀yi ̸= 0, we conclude that X and Y are equal.
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B.2 PROOF OF THEOREM 3

Proof.

EZ∼qE(ÂX)

= EZ∼q
1

N

∑
(u,v)∈EG

||ÂXu − ÂXv||2

= EZ∼q
1

N

∑
(u,v)∈EG

||
∑

uN∈N (u)

ÂuNu ⊙XuN −
∑

vN∈N (v)

ÂvN v ⊙XvN ||2

≥ 1

N

∑
(u,v)∈EG

||
∑

uN∈N (u)

EÂ∼q(Â)uNu ⊙XuN −
∑

vN∈N (v)

EÂ∼q(Â)vN v ⊙XvN ||2

(32)

B.3 PROOF OF THEOREM 4

|∂A
KX

∂X
|uv = (AK)uv =

∑
ωuv∈Ωuv

∏
i∈ω

Ai; (33)

where Ωuv denotes the collection of walks between u and v. If ω is a path,

E(
∏
i∈ω

Ai) =
∏
i∈ω

E(Â)i, (34)

otherwise
E(

∏
i∈ω

Ai) ≥
∏
i∈ω

E(Â)i. (35)
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