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ABSTRACT

Dynamic visual ability (DVA), a fundamental function of the human visual system,
has been successfully modeled by many computer vision tasks in recent decades.
However, the prosperity developments mainly concentrate on using deep neural
networks (DNN) to simulate the human DVA system, but evaluation frameworks
still simply compare performance between machines, making it tough to determine
how far the gap is between humans and machines in dynamic vision tasks. In fact,
neglecting this issue not only makes it hard to determine the correctness of current
research routes, but also cannot truly measure the DVA intelligence of machines.
To answer the question, this work designs a comprehensive evaluation framework
based on the 3E paradigm – we carefully pick 87 videos from various dimensions
to construct the environment, confirming it can cover both perceptual and cognitive
components of DVA; select 20 representative machines and 15 human subjects
to form the task executors, ensuring that different model structures can help us
observe the effectiveness of research development; and propose multiple evaluation
indicators to quantify their DVA. Based on detailed experimental analyses, we first
determine that the current algorithm research route has effectively shortened the
gap. Besides, we further summarize the weaknesses of different executors, and
design a human-machine cooperation mechanism with superhuman performance.
In summary, the contributions include: (1) Quantifying the DVA of humans and
machines, (2) proposing a new view to evaluate DVA intelligence based on the
human-machine comparison, and (3) providing a possibility of human-machine
cooperation. The 87 sequences with frame-level human-machine comparison
and cooperation results, the toolbox for recording real-time human performance,
codes for sustaining various evaluation metrics, and evaluation reports for 20
representative models will be open-sourced to help researchers develop intelligent
research on dynamic vision tasks.

1 INTRODUCTION

Research on visual abilities can be dated back to the last century (Hubel & Wiesel (1959; 1962)).
Neuroscientists divide the human visual system into two categories, namely the static vision ability
(SVA) to perceive the details of static objects (Chan & Courtney (1996)), and the dynamic vision
ability (DVA) to track moving objects (JW et al. (1962)). These two visual abilities are essential in
our daily life (Land & McLeod (2000); Beals et al. (1971); Burg (1966); Kohl et al. (1991)), and have
been modeled by a series of computer vision tasks. Recently, with the growth of dataset scale and the
abundance of computing resources, most data-driven algorithms achieve higher and higher scores
in experimental environments, and are widely employed in various scenarios (Dankert et al. (2009);
Weissbrod et al. (2013); Wei & Kording (2018)).

However, some bad cases hidden under the prosperity development challenge the state-of-the-art
(SOTA) algorithms. For example, visual models usually decrease their perception when encountering
unknown-category targets under special illumination conditions (e.g., a vision-based autonomous
vehicle crashes into a large truck at night). This shortcoming is far from humans’ powerful visual
abilities and may cause safety hazards, causing us to rethink – with the support of massive datasets and
powerful computing resources, why can’t SOTA models achieve a similar visual ability to humans?
Do existing evaluation methods actually measure the visual intelligence of machines?
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Figure 1: Comparison of the evaluation frameworks in dynamic vision abilities. (a) Existing research
on DVA evaluation for human and machine is entirely separate. (b) We follow 3E paradigm (Hu et al.
(2022a)) to design an overall evaluation framework of human-machine DVA.

Compared to thriving algorithm research, evaluation methods have received far less attention. Tradi-
tional evaluations mainly focus on the performance comparison between machines (Deng et al. (2009);
Russakovsky et al. (2015)), causing the goal to become downward (i.e., a method that exceeds all
others is considered excellent). In fact, these evaluation mechanisms actually measure the machine’s
performance rather than intelligence. When we refer to machine intelligence, a natural association
is Turing test (Turing (2009)), which indicates that machine intelligence evaluation requires human
participation, and has gradually attracted scholars to propose a series of essential works in decision-
making problems (e.g., AlphaGo (Silver et al. (2017)) and DeepStack (Brown & Sandholm (2018))).
Using humans as a reference, the goal will become upward – exemplary machines must gradually
move closer to human capabilities. In other words, exploring the gap between humans and machines
is very crucial for machine intelligence evaluation.

Based on this idea, recent works have introduced humans to several vision tasks, using human baseline
to measure machine intelligence. Some researchers endeavor to analyze the gap between machines
and humans in image classification (Geirhos et al. (2018; 2020; 2021)), others investigate the attention
areas in static images to explore visual selectivity (Langlois et al. (2021)). Regrettably, their research
scope is mainly restricted to static vision tasks, while neuroscience and cognitive psychology studies
have shown that the correlation between SVA and DVA is naturally low (Long & Penn (1987)). On
the other hand, existing research on DVA evaluation for human and machine is entirely separate. As
shown in Figure 1 (a), neuroscientists use toy environments to measure human DVA (Pylyshyn &
Storm (1988)), while computer scientists evaluate machines through large-scale datasets (Fan et al.
(2020); Huang et al. (2021)) – neither the environment nor the evaluation mechanism are compatible,
causing the comparison of human-machine DVA to be impossible. Therefore, an intuitive question
is, how to compare humans and machines in dynamic vision ability? To answer this question, we
should first select a suitable computer vision task to represent human DVA, then design a evaluation
framework to accomplish human-machine DVA measurement and comparison.

Compared with other tasks like multi-object tracking (MOT) (Ciaparrone et al. (2019)) and video
object detection (VOD) (Wang et al. (2018)), single object tracking (SOT, i.e., locates a user-specified
moving target in a video) (Wu et al. (2015)) is a category-independent task with no constraint on
motion continuity, scene change, or object category, and can be regarded as the closest task to
represent human DVA (Appendix A.1). Due to the human-like task definition of SOT, excellent task
executors should not only keep tracking the moving target (perception) but also re-locate the target
when its position is mutated (cognition) (Appendix A.2). From above analyses, we select SOT as
the representative task, and follow 3E paradigm (Hu et al. (2022a)) to design an overall evaluation
framework (Figure 1). The technical difficulties and our contributions are as follows.

Experimental environment construction (Section 2.1). The first difficulty in environment con-
struction is compatibility. Choosing a high-contrast toy environment used in classical neuroscience
work is too simple to evaluate DVA accurately. On the other hand, human psychophysical experiments
are expensive and time-consuming, and cannot be assessed on large-scale datasets like machines.
Based on this, the second difficulty is representativity. With the limitation of dataset scale, the
environment should not only fully represent the characteristics and difficulties of DVA, but also
provide a graded experimental setup for subsequent analyses. As shown in Table 1, to entirely reflect
the task characteristics and thoroughly compare the human-machine DVA, we choose 87 videos
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with 244,455 frames to construct the environment. All videos are carefully picked from various
dimensions, ensuring the environment can cover the perceptual and cognitive components of DVA.

Experimental executor selection and record (Section 2.2). As an interdisciplinary experiment,
the task executors involve humans and machines. The difficulty for human subjects is accurately
recording their performance in dynamic vision tasks and ensuring that the recorded results can
be quantified to support subsequent evaluations. Through detailed comparison and analysis, we
select the mouse-based method and design a toolbox for human subjects to record their frame-level
performance in real-time. For machines, since we aim to study the DVA gap between humans and
machines, there are two concerns in model selection: trends (i.e., selecting various algorithms) and
gap (i.e., focusing on the upper bound of algorithms). Thus, both classic and SOTA methods with
different architectures are selected to explore whether the research route has effectively shortened the
gap. Consequently, task executors included 20 representative algorithms and 15 subjects (all subjects
are computer vision researchers aged 20-30). All experiments are managed in a strict process .

Evaluation metrics design (Section 2.3). Traditional indicators usually select the positional rela-
tionship (e.g., intersection over union (IoU) and center distance) between predicted result pt and
ground-truth gt to accomplish calculation. However, the tracking result of humans is a point, which
cannot be calculated by IoU (Zheng et al. (2020); Rezatofighi et al. (2019)). Thus, we use two center
points (i.e., the target center cp predicted by executors, and the center point cg of ground-truth) to
design three granularities (frame-level, sequence-level, and group-level) for evaluation. Especially,
we consider the influence of sequence length and revise the group-level indicators to generate a more
appropriate evaluation. Experimental analyses have verified the validity of proposed metrics.

Based on above steps, we quantify the DVA of executors and conduct detailed comparisons (Section 3).
By analyzing and summarizing the results, we find that: (1) Synthetically, humans have stronger
dynamic vision ability than machines. Experimental results demonstrate that humans outperform
machines when both perceptual and cognitive abilities are required. Particularly, when we mainly
examine the perceptual ability in dynamic vision tasks, we also notice that the gap of human-
machine perceptual ability is closing. (2) Human-machine cooperation is possible and effective
in dynamic vision tasks. Based on human-machine differences in perception and cognition, we
design a set of cooperative experiments. Results indicate that the SOTA machines with human-
machine cooperation can achieve even better performance than humans in some cases.

In summary, this work starts with designing a more intelligent evaluation framework, measures the
DVA gap between humans and machines, determines the effectiveness of current algorithm research
routes, finds the weaknesses of different executors, and notes the possibility of human-machine
cooperation. We will open-source the toolbox, code, and metrics used in the experiments to help
researchers further develop intelligent research on dynamic vision tasks.

2 METHODS

2.1 ENVIRONMENT: DATASETS

For DVA evaluation, researchers initially require subjects to observe moving objects on a high-contrast
background. For example, an early work displays some moving plus (+) signs on the screen(Pylyshyn
& Storm (1988)). Recently, researchers evaluate the DVA of athletes based on a software named
DynVA (Quevedo et al. (2012)), which includes various stimuli with different color and motion
trajectories. Although above works have developed from simple designs to computer programs, they
all have limited target categories (e.g., specific symbols), simple backgrounds (e.g., colors or some
static photographs), and limited motion patterns (e.g., lateral, vertical, and oblique).

Unlike above toy environments that track simple symbols in a high-contrast background, our environ-
ment fully models the application scenes and designs various data combinations for ability analyses
(e.g., perception, cognition, and robustness). Concretely, the environment should consider the diver-
sity of video contents and includes the variation of video length (especially long sequences). Thus,
we refer SOTVerse (Hu et al. (2022a)) and select sequences from representative benchmarks (OTB
(Wu et al. (2013; 2015)), VOT series (Kristan et al. (2013; 2014; 2015; 2016; 2017; 2018; 2019)),
GOT-10k (Huang et al. (2021)), LaSOT (Fan et al. (2020)), and VideoCube (Hu et al. (2022b))) to
form the experimental environment (Table 1 and Appendix C.1).
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Table 1: Information on environment settings.

Task Settings Characteristics Ability Group FramesTarget
Absent

Shot-
cut

Short-term tracking
(Target presents from beginning to end) N N Perception A 500-1,000

B 1,000-2,000
Long-term tracking

(Target may disappear and reappear in a single shot) Y N Perception
and

cognition

C 1,000-2,000
D 5,000-10,000

Global instance tracking
(Target may disappear and reappear in multiple shots) Y Y

E 1,000-2,000
F 5,000-10,000
G 15,000-30,000

Short-term
tracking with

challenging factors
(Target presents
from beginning

to end)

Challenging
factors in

single frame

Abnormal ratio

N N
Perception

and
robustness

H

500-1,000

Abnormal scale I
Abnormal illumination J

Blur bounding-box K

Challenging
factors

between
consecutive

frames

Drastic ratio variation L
Drastic scale variation M

Drastic illumination variation N
Drastic clarity variation O

Fast motion P
Low correlation cofficient Q

2.2 EXECUTOR: MODELS, HUMAN SUBJECTS

As shown in Table 2, 20 represent machines covering both classic and SOTA methods are selected:
2 CF-based trackers (Henriques et al. (2015); Danelljan et al. (2017)), 10 SNN-based methods
(Bertinetto et al. (2016); Li et al. (2018b); Zhu et al. (2018); Li et al. (2018a); Yan et al. (2019); Zhang
& Peng (2019); Guo et al. (2020); Xu et al. (2020); Zhang & Peng (2020); Voigtlaender et al. (2020)),
5 algorithms that combine CF and SNN (Danelljan et al. (2018); Bhat et al. (2019); Danelljan et al.
(2020); Mayer et al. (2021)), and 3 custom networks (Huang et al. (2019); Bhat et al. (2020); Cui
et al. (2022)). Please refer to Appendix B for technical details.

For humans, we start the measurement of human DVA based on the following concerns:

Organization. 87 videos with different durations, object classes, and scene categories are played
at 25FPS to 15 subjects (aged between 20-30, all computer vision researchers) under a high-quality
experimental organization – this organization is known as small-N design (Smith & Little (2018)),
and has been widely used in SVA experiments (Geirhos et al. (2018; 2020; 2021)).

Approval. We have obtained the approvals of all subjects. They all have signed an experimental
statement (the template is provided by our IRB, which includes experiment purpose, procedure, risks
and discomforts, costs, and confidentiality (Appendix C.2)) before the experiment.

Process. Previous works mainly use eye-tracker Hu et al. (2022b); Xia et al. (2021) or mouse Geirhos
et al. (2018; 2020; 2021) to record human visual ability. To select a better measurement method, all
subjects tried both mouse and eye-tracker, and they express that the mouse is better. Besides, we
have compared these two devices from practical and theoretical views in Appendix C.3, and finally
select the mouse-based method. Experiment includes four steps (Appendix C.4): (1) Subjects check
instruments; then adjust the seat height, sitting posture, and the distance to the screen. (2) 2 TEST
videos occur sequentially in the screen center. Subjects observe and remember the target features
in the first frame, then move the mouse to track the target in subsequent frames. (3) 17 FORMAL
videos belonging to different groups are played sequentially (a rest time occurs between two videos
to relieve visual fatigue); subjects should concentrate on the target and maintain the mouse’s position.
(4) Subjects fill in a questionnaire to self-evaluate their performance (Appendix C.5).

2.3 EVALUATION: METRICS

This work evaluates executors under the one-pass evaluation (OPE) mechanism, which initializes an
executor in the first frame and continuously records the tracking results. For the t-th frame Ft in a
sequence si = {F1, F2, . . . , Ft, . . .}, we support the predicted result is pt, the ground-truth is gt, and
their center points cp and cg are used to design indicators. Note that target absent is regarded as an
empty set (i.e., gt = φ) and excluded by the evaluation process. To accurately evaluate executors’
performance, we divide the evaluation dimensions into three granularities, as shown in Figure 2.
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Table 2: The performance (based on NPw
L3) about human subjects and 20 representative models

(SNN-Siamese Neural Network. CF-Correlation Filter. CNN-Convolutional Neural Network. Red,
magenta and cyan represent the top-3 machines).

Executor Aritciture Characteristic Score
Subject_Top - The best performance of subjects 0.891
Subject_Mean - The mean performance of subjects 0.853
Subject_Bottom - The worst performance of subjects 0.801
MixFormer (Cui et al. (2022)) Custom networks Transformer-based framework 0.766
KYS (Bhat et al. (2020)) Custom networks Scene information 0.528
GlobalTrack (Huang et al. (2019)) Custom networks Zero cumulative error 0.645
KeepTrack (Mayer et al. (2021)) SNN+CF Target candidate association 0.718
SuperDiMP (Danelljan et al. (2020)) SNN+CF Probabilistic regression 0.701
PrDiMP (Danelljan et al. (2020)) SNN+CF Probabilistic regression 0.683
DiMP (Bhat et al. (2019)) SNN+CF Better discriminative ability 0.597
ATOM (Danelljan et al. (2018)) SNN+CF Combine SNN with CF 0.506
SiamRCNN (Voigtlaender et al. (2020)) SNN Re-detection mechanism 0.748
Ocean (Zhang & Peng (2020)) SNN Anchor-free 0.635
SiamFC++ (Xu et al. (2020)) SNN Anchor-free 0.512
SiamCAR (Guo et al. (2020)) SNN Anchor-free 0.480
SiamDW (Zhang & Peng (2019)) SNN Deeper and wider backbone 0.558
SPLT (Yan et al. (2019)) SNN Local search and global search 0.610
SiamRPN++ (Li et al. (2018a)) SNN Deeper backbone 0.662
DaSiamRPN (Zhu et al. (2018)) SNN Data augmentation 0.528
SiamRPN (Li et al. (2018b)) SNN Region proposal network 0.495
SiamFC (Bertinetto et al. (2016)) SNN Originator of SNN-based trackers 0.285
ECO (Danelljan et al. (2017)) CNN+CF Combine CNN with CF 0.377
KCF (Henriques et al. (2015)) CF Representative CF-based method 0.270

L1: Frame-level. Precision score (PRE) (Wu et al. (2015)) in frame-level PL1 equals the center
distance dc. Recently, normalized precision score (N-PRE) (Hu et al. (2022b)) is proposed to
exclude the influence of target size and frame resolution. Trackers with a predicted center outside the
ground-truth will add a penalty item dc

p (i.e., the shortest distance between center point cp and the
ground-truth edge). For trackers whose center point falls into the ground-truth, the center distance
dc

′
equals the original precision dc (i.e., dcp = 0). Besides, the maximum value in frame Ft is used

to normalize the result and generates the final N-PRE score NPL1, as shown in Equation 1.

PL1 = dc = ‖cp − cg‖2

NPL1 = N (dc
′
) =

dc
′
−min({di

′
|i ∈ Ft})

max({di
′ |i ∈ Ft})−min({di

′ |i ∈ Ft})
, dc

′
= dc + dc

p
(1)

L2: Sequence-level. Precision score in sequence-level PL2(θd) is defined as the proportion of frames
whose center distance dc ≤ θd. To illustrate the performance under different thresholds, previous
works (Wu et al. (2015); Fan et al. (2020)) usually draw the statistical results based on different
θd into a curve named precision plot. Since θd = 20 is wildly used to rank trackers, we define
PL2 = PL2(20) in following experiments. Similarly, draw statistical results based on different θd

′

into a curve generates the normalized precision plot. However, we note that directly select a θd
′

to
rank executors may introduce human factors, thus we use the proportion of frames whose predicted
center cp successfully fall in the ground-truth rectangle gt (Flag=Y in Figure 2 (L2)) as NPL2. The
calculation is listed in Equation 2, where |·| is the cardinality.

PL2(θd) =
1

|si|
|{Ft : dc ≤ θd}| ,PL2 =

1

|si|
|{Ft : dc ≤ 20}|

NPL2(θd
′
) =

1

|si|

∣∣∣{Ft : N (dc
′
) ≤ θd

′
∈ [0, 1]

}∣∣∣ ,NPL2 =
1

|si|
|{Ft : cp ∈ gt}|

(2)

L3: Group-level. For a group of sequences G = {s1, s2, . . . , st, . . .}, existing works usually use the
mean value of all sequence-level results as the group-level evaluation, as illustrated in Equation 3.
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Figure 2: Illustration of three granularities in evaluiation process.

PL3(θd) =
1

|G|
∑
si∈G

1

|si|
|{Ft : dc ≤ θd}| ,PL3 =

1

|G|
∑
si∈G

1

|si|
|{Ft : dc ≤ 20}|

NPL3(θd) =
1

|G|
∑
si∈G

1

|si|

∣∣∣{Ft : N (dc
′
) ≤ θd

′
∈ [0, 1]

}∣∣∣ ,NPL3 =
1

|G|
∑
si∈G

1

|si|
|{Ft : cp ∈ gt}|

(3)

It is worth noting that longer sequences challenge all executors in dynamic vision tasks – humans
demand a higher concentration of attention, and algorithms should overcome the cumulative errors.
However, existing metrics all ignore the influence of the sequence length, causing us to propose new
metrics for group-level evaluation, as illustrated in Equation 4.

Pw
L3(θd) =

∑
si∈G |{Ft : dc ≤ θd}|∑

si∈G |si|
,Pw

L3 =

∑
si∈G |{Ft : dc ≤ 20}|∑

si∈G |si|

NPw
L3(θd

′
) =

∑
si∈G

∣∣∣{Ft : N (dc
′
) ≤ θd

′}∣∣∣∑
si∈G |si|

,NPw
L3 =

∑
si∈G |{Ft : cp ∈ gt}|∑

si∈G |si|

(4)

3 EXPERIMENTS

3.1 A COMPREHENSIVE COMPARISON OF HUMAN-MACHINE DYNAMIC VISION ABILITY

We first interest in the comprehensive performance of human-machine DVA. Subject_Top and
Subject_Bottom represent the best and worst subjects, and Subject_Mean denotes the average.
Figure 3 (I) shows the distribution of NPL2 in all sequences. As a sequence-level evaluation, box
width represents stability, box position represents performance. Figure 3 (II) illustrates the normalized
precision plot weighted by sequence length and the NPw

L3 (group-level evaluation) of all executors.
Clearly, humans score higher than most machines, indicating that the DVA of machines is still far
from humans. Besides, the boxplot distribution shows that machines’ performance is more unstable.
It is worth noting that the SOTA methods have been comparable to Subject_Bottom in most cases,
indicating that the research routes do significantly close the gap with humans.

As tasks become more complicated (from short-term tracking to global instance tracking), executors
not only need to perceive moving targets, but also should have a good cognitive ability to quickly
re-locate the target when its position suddenly changes. Figure 8 illustrates the performance of
human-machine DVA under various task constraints. Based on experimental results, we find that:
(1) A typical short-term tracking task only needs perceptron ability. Thus, both humans and most
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Figure 3: A comprehensive comparison of human-machine dynamic vision ability in all sequences.
(I) Boxplots enumerate the distribution of NPL2 scores. The blue area represents the maximum, mean,
and minimum scores of human subjects, the yellow area represents machines. (II) The normalized
precision plot weighted by sequence length and the NPw

L3 scores.

Easy
(Only Perception, Toy Example)

Hard
(Perception and Cognition, Human DVA)

Easy
(Only Perception, Toy Example)

Hard
(Perception and Cognition, Human DVA)

I II III

Figure 4: A comprehensive comparison of human-machine dynamic vision ability in short-term
tracking (I), long-term tracking (II), and global instance tracking (III) (based on NPL2 scores).

machines perform well in tracking the moving target; some SOTA machines even outperform humans
in accuracy and stability. (2) For the long-term tracking task, since the sequence length increases and
the target disappearance is allowed during the tracking process, executors should locate the target
when it reappears in the frame. Results demonstrate that humans can maintain high tracking precision,
but the performance of most algorithms drops significantly. (3) Global instance tracking, the most
difficult task that sequence length increases with shot-cuts and scene transitions, challenges almost
all algorithms. However, humans can still sustain efficient and stable tracking, indicating that the
cognitive ability of humans is much better than machines.

Specifically, the top-3 machines with various model structurescan help us to understand the perfor-
mance of different modeling processes (Table 2). MixFormer (Cui et al. (2022)), a simple end-to-end
model based on transformer structure, performs well in both short-term and long-time tracking tasks,
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Figure 5: Performance of human and machine (MixFormer) on challenging factors. Each cell
represents a mixture of challenging factors, and the blank cells represent no such combination. Cell
color represents the executor’s mean NPL2 score across all videos that satisfy the combination. The
purple rectangle represents short-term tracking with challenging factors (i.e., target presents from
beginning to end, related to perception, mainly composed in groups H to Q), of which the red and
blue rectangles represent static and dynamic challenging factors separately. The green rectangle
represents task constraints (i.e., allowing target absence or shot switching, related to both perception
and cognition, mainly composed in groups C to G). For detailed results, please refer to Appendix D.5.

indicating that the Mixed Attention Module (MAM) and a straightforward detection head can provide
powerful tracking ability. The SiamRCNN (Voigtlaender et al. (2020)) model combines a two-stage
scheme with a new trajectory-based dynamic planning algorithm, and uses re-detection to accomplish
stable tracking. KeepTrack (Mayer et al. (2021)) model improved by SuperDiMP (Danelljan et al.
(2020)) has an enhanced ability to discriminate interferers and perform well in short-time tracking,
but lacking a mechanism for processing target mutation decreases its execution in longer sequences.
However, all these three machines have a performance gap with humans in the global tracking task.
Since MixFormer performs best in most cases, we select it as a representation to accomplish more
detailed analyses in the following sections.

Cognition. We further explore the effect of sequence length and shot-cuts, which requires the
executor to have better cognition ability to re-locate the target in complex situations. Figure 13
in Appendix shows the performance variation of human-machine under different videos. Clearly,
the SOTA machine’s performance fluctuates wildly when the shot-cut occurs, while the subject can
still maintain a stable tracking ability. In addition, machines may ultimately lose the target after
frequent shot-cuts, but humans can quickly relocate the target in a new shot. When the sequence
length increases, the performance fluctuation of machines will continue to increase, but humans are
better than machines in terms of fluctuation amplitude and tracking effect. It reveals that when the
target motion or apparent information is mutated, the performance of machines fluctuates sharply,
while humans can keep robust and precise target tracking based on their high cognition ability.

Perceptron. Given that multiple challenging factors may coexist in a video, we show the performance
of human and SOTA machine under different factor combinations in Figure 5. Obviously, the purple
rectangle is primarily related to the perceptive ability, and blue rectangle reflects the dynamic changes
between consecutive frames. We can find that most cells in the blue rectangle are challenging for
both algorithms and humans, but algorithms are slightly better than humans in some factors like fast
motion and small targets. Conversely, task constraints represented by the green rectangle have less
impact on humans, but it powerfully influences machines. This phenomenon is consistent with the
above analysis of human-machine cognitive abilities.

Further analyses about humans. Former analyses indicate that to err is human. Thus, we provide
detailed human performance analysis in Appendix D.6, which indicates that fast-moving targets and
small targets are challenging to track, but tracking in a long sequence is not difficult for humans.

The above results show that current research, which mainly focuses on improving tracking robustness
under short-term tracking tasks, has progressed. However, machines still have a gap with humans
when task constraints are widened to a more general situation. Some bad cases are illustrated in
Figure 14; more results based on different indicators are listed in Appendix D.3 to D.4.
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Figure 6: The comparison and cooperation of humans and machines, based on NPL2 score. (I-II)
Performance of humans (blue bar) and machines (MixFormer, yellow bar) on different sequences.
(III-IV) Performance of humans (blue bar) and human-machine cooperations (MixFormer_Human,
yellow bar) on different sequences. The green bar represents the overlapping part.

3.2 MACHINE PERFORMANCE IMPROVEMENTS WHEN COOPERATING WITH HUMANS

The analysis of Section 3.1 shows that humans and machines can adapt to different challenging
factors, so an intuitive idea is what if we allow human-machine cooperation?

The cooperation mechanism is designed as follows: when machines fail to track, subjects can provide
the current target position and restart machines from the failure frame. In this cooperation pattern,
machines are responsible for performing relatively simple but repetitive tasks, while humans are
responsible for supplementing information at critical moments. Specifical examples and detailed
information are listed in Appendix C.7.

Figure 6 illustrates the performance of humans, machines, and human-machine collaborators. Com-
pared with machine itself, human-machine collaborator is greatly improved and even outperforms
humans in most cases. Subfigures of Figure 3 and Figure 24 indicate that human-machine collabora-
tors have significantly improved their performance based on the assistance of humans. Therefore,
humans and machines have superb possibilities for cooperation in dynamic vision tasks, which not
only combines strengths and decreases weaknesses, but also saves human resources and improves
efficiency. For detailed results based on different indicators, please refer to Appendix E.1 to E.3.

4 CONCLUSIONS AND FUTURE WORK

In this paper, we aim to answer how far the gap is between humans and machines in dynamic vision
tasks, and design an overall evaluation framework from three aspects – we choose 87 videos to
construct the experimental environment, select 20 representative algorithms and 15 human subjects
to form the executors, and quantify their DVA with a strict evaluation process. Results indicate
that SOTA machines are close to the lower limit of human subjects, meaning the DVA gap between
humans and machines has significantly closed. Besides, humans and machines excel at different
dynamic vision tasks, as humans can continuously track in general environments and longer sequences
based on better cognitive ability, while SOTA machines can maintain efficient and stable tracking
ability in short-term tracking with excellent perceptual ability. Finally, we also find that the human-
machine cooperative executor can perform even better than humans, which provides a possibility of
human-machine cooperation for application scenarios like self-driving systems.

As a preliminary research of the human-machine DVA, we have obtained interesting conclusions
above, but some aspects still deserve further exploration. For example, human DVA is usually
decoupled into different tasks – SOT concentrates on locating an arbitrarily moving object, MOT aims
to track multiple known objects simultaneously, and VOD focuses on detecting all known objects.
Obviously, SOT is the basis of other dynamic vision tasks, thus we use it as a representative task for
research. In the future, researchers can apply the proposed evaluation framework to multiple dynamic
vision tasks and further explore the DVA of humans and machines. Besides, future work can select
various subjects (e.g., different age, gender, and occupation (Burg & Hulbert (1961); Melcher & Lund
(1992))) to compose a more comprehensive human baseline.
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A TASK DESCRIPTION

A.1 VISION TASK
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(a) The execution flow of classical computer vision tasks (Image Classification (I), Video Object Detection (II),
Multi-object Tracking (III), and Single Object Tracking (IV)).
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(b) The comparison of task characteristics.

Figure 7: The execution flow of classical computer vision tasks (a) and comparison of task character-
istics (b). Obviously, SOT is closer to human dynamic vision ability.

Image Classification. As a static vision task, image classification (Nath et al. (2014)) allows
for classifying a given image as belonging to one of the labeled and pre-defined categories. An
excellent model should understand the target features and have a robust classification ability in facing
challenging factors like target deformation or image blur.

Video Object Detection (VOD). VOD (Esteva et al. (2021)), an essential task for multiple computer
vision applications, desires to accurately determine the category and location of each target in videos.
However, the target category is typically limited to pre-defined categories in the training dataset.

Multi-object Tracking (MOT). MOT (Geuther et al. (2019)) in research usually combines with
detection. MOT algorithms detect the object’s position in the first frame, then calculate the similarity
to determine instances belonging to the same target in consecutive frames. Thus, MOT is a model-
specific task and mainly focuses on tracking specific categories (e.g., pedestrians or vehicles).

Single Object Tracking (SOT). Unlike the above vision tasks, SOT (Wu et al. (2015)) is category-
independent, which means it intends to track a moving target without any assumption about the target
category. This characteristic allows SOT to be suitable for open-set testing with broad prospects.
Besides, some recent research proposes a new task named Global Instance Tracking (GIT) (Hu
et al. (2022b)) to cancel the continuous motion assumption. Thus, the SOT definition is additionally
extended, making it a further step toward human dynamic vision tasks.
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A.2 SINGLE OBJECT TRACKING TASK
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Figure 8: Representative sequence of single object tracking tasks. (a) For the short-term tracking task,
the target appearance does not change significantly, but obstacles may partially obscure the target. (b)
For the long-term tracking task, the target constantly moves in the same shot but may include the
disappearance-reappearance process. (c) For the global instance tracking task, the target may appear
in different shots and scenes, but note that its apparent information does not vary significantly.

Due to the human-like task definition of SOT, excellent task executors should not only keep tracking
the moving target (perception in short-term tracking, long-term tracking, and global instance tracking)
but also re-locate the target when its position is mutated (cognition in long-term tracking, and global
instance tracking).
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B DATASETS AND MACHINES

B.1 DATASETS

Table 3: The URL of open-sourced benchmarks used in this work.

Benchmarks URL
OTB (Wu et al. (2013; 2015)) http://cvlab.hanyang.ac.kr/tracker_benchmark/index.html
VOT (Kristan et al. (2013; 2014; 2015; 2016; 2017; 2018; 2019)) https://votchallenge.net/
GOT-10k (Huang et al. (2021)) http://got-10k.aitestunion.com
LaSOT (Fan et al. (2020)) https://cis.temple.edu/lasot/
VideoCube (Hu et al. (2022b)) http://videocube.aitestunion.com

We have correctly cited all benchmarks involved in the experiments and carefully checked the
licenses involved in each benchmark (CC BY-NC-SA 4.0.). All datasets used in the experiments are
open-sourced, and our usage is under the license scope.

B.2 MACHINES

Our algorithm evaluation experiments are performed on a server with 4 NVIDIA TITAN RTX GPUs
and a 64 Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz. We use the parameters provided by the
original authors.

B.2.1 CORRELATION FILTER BASED TRACKERS

KCF. The CF-based trackers represented by KCF (Henriques et al. (2015)) incorporate high speed
and tracking accuracy, thus becoming a representative tracking framework in the early stage. We use
the Python 2.7 version based on link 1.

ECO. ECO (Danelljan et al. (2017)) combines CNN with CF, aiming to use deep networks to improve
feature representation. The official version is released in PyTracking 2, which is a general python
framework for SOT based on PyTorch. The feature representation of ECO is a combination of the
first and last convolutional layer in the VGG-m network (Chatfield et al. (2014)), along with HOG
(Dalal & Triggs (2005)) and Color Names (CN) (Van De Weijer et al. (2009)).

B.2.2 SIAMESE NEURAL NETWORK BASED TRACKERS

SiamFC. As the originator of SNN-based trackers, SiamFC (Bertinetto et al. (2016)) 3 achieves
satisfactory tracking performance by matching features between the template region and the search
region through a simple network structure. The backbone of SiamFC is AlexNet (Krizhevsky et al.
(2017)), which is trained on the ILSVRC15 4 dataset for object detection in video with 50 epochs.

SiamRPN. SiamRPN (Li et al. (2018b)) 5 introduces the region proposal network (Girshick (2015))
to achieve accurate target regression. This model is trained based on image pairs from ImageNet-VID
(Russakovsky et al. (2015)) and Youtube-BB (Real et al. (2017)) with 50 epochs.

DaSiamRPN. DaSiamRPN (Zhu et al. (2018)) 6 uses data augmentation to enhance the discriminative
ability, which is trained based on ImageNet-VID (Russakovsky et al. (2015)), Youtube-BB (Real et al.
(2017)), ImageNet (Deng et al. (2009)) and COCO (Lin et al. (2014)) with 50 epochs.

SPLT. SPLT (Yan et al. (2019)) 7 designs a verifier to switch global search and local search. SPLT uses
MobileNet (Howard et al. (2017)) for feature extractor and downsamples the spatial resolution of the

1http://cvlab.hanyang.ac.kr/tracker_benchmark/index.html
2https://github.com/visionml/pytracking
3https://github.com/huanglianghua/siamfc-pytorch
4https://image-net.org/challenges/LSVRC/2015/
5https://github.com/huanglianghua/siamrpn-pytorch
6https://github.com/foolwood/DaSiamRPN
7https://github.com/iiau-tracker/SPLT
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template feature to 1X1 by average pooling. For the verification model, SPLT adopts ResNet50 as the
backbone of verifier. The parameters of aforementioned networks are initialized with the ImageNet
(Deng et al. (2009)) pre-trained models and then fine-tuned on the ImageNet-VID (Russakovsky et al.
(2015)) dataset.

SiamRPN++. SiamRPN++ (Li et al. (2018a)) 8 introduces deeper backbone and selects ResNet (He
et al. (2016)) for feature extraction. The backbone network is pre-trained on ImageNet (Deng et al.
(2009)) for image labeling. Authors train the SiamRPN++ on the training sets of Youtube-BB (Real
et al. (2017)), ImageNet-VID (Russakovsky et al. (2015)), and COCO (Lin et al. (2014)) and to learn
a generic notion of how to measure the similarities between general objects for visual tracking.

SiamDW. SiamDW (Zhang & Peng (2019)) 9 selects deeper and wider backbones for feature
extraction. The backbone network is pre-trained on ImageNet (Deng et al. (2009)) for image labeling.
Authors train the proposed cropping inside residual (CIR) units with SiamRPN on Youtube-BB (Real
et al. (2017)) and ImageNet-VID (Russakovsky et al. (2015)).

Except for backbone improvements, some SNN-based algorithms refer to detection methods to
improve the network architecture.

SiamFC++. SiamFC++ (Xu et al. (2020)) 10 employs an anchor-free structure (Tian et al. (2019)) to
eliminate the dependence on anchors. It adopts ImageNet-VID (Russakovsky et al. (2015)), COCO
(Lin et al. (2014)) , Youtube-BB (Real et al. (2017)), LaSOT (Fan et al. (2020)) and GOT-10k (Huang
et al. (2021)) as basic training set.

Ocean. Ocean (Zhang & Peng (2020)) 11 also employs the anchor-free structure. The backbone
network is initialized with the parameters pretrained on ImageNet (Deng et al. (2009)). The Ocean
tracker is trained on the datasets of Youtube-BB (Real et al. (2017)), ImageNet-VID (Russakovsky
et al. (2015)), GOT-10k (Huang et al. (2021)) and COCO (Lin et al. (2014)).

SiamCAR. As another anchor-free tracker, SiamCAR (Guo et al. (2020)) 12 is trained on COCO
(Lin et al. (2014)), ImageNet (Deng et al. (2009)), ImageNet-VID (Russakovsky et al. (2015)) and
Youtube-BB (Real et al. (2017)).

SiamRCNN. SiamRCNN (Voigtlaender et al. (2020)) 13 utilizes re-detection mechanism and tracklet
dynamic programming algorithm to process object disappearance. SiamRCNN is built upon the
FasterRCNN (Ren et al. (2015)) implementation with a ResNet-101-FPN backbone. The backbone
has been pre-trained on COCO (Lin et al. (2014)), and the overall model is trained on ImageNet-VID
(Russakovsky et al. (2015)), YouTube-VOS (Xu et al. (2018)), GOT-10k (Huang et al. (2021)) and
LaSOT (Fan et al. (2020)).

B.2.3 COMBINE CORRELATION FILTER AND SIAMESE NEURAL NETWORK

ATOM. ATOM (Danelljan et al. (2018)) 14 tries to combine CF and SNN, and proposes a new
framework to use the advantages of offline training and online updating. The authors use the training
splits of LaSOT (Fan et al. (2020)) and TrackingNet (Müller et al. (2018)), and augment the training
data with synthetic image pairs from COCO (Lin et al. (2014)).

DiMP. Based on framework proposed by ATOM, DiMP (Bhat et al. (2019)) 15 optimizes the loss
function for stronger discriminative ability. The backbone network is initialized with the ImageNet
(Deng et al. (2009)) weights. DIMP is trained on TrackingNet (Müller et al. (2018)), LaSOT (Fan
et al. (2020)), GOT-10k (Huang et al. (2021)) and COCO (Lin et al. (2014)) datasets with 50 epochs
by sampling 20,000 videos per epoch.

8https://github.com/PengBoXiangShang/SiamRPN_plus_plus_PyTorch
9https://github.com/researchmm/TracKit

10https://github.com/MegviiDetection/video_analyst
11https://github.com/researchmm/TracKit
12https://github.com/ohhhyeahhh/SiamCAR
13https://github.com/VisualComputingInstitute/SiamR-CNN
14https://github.com/visionml/pytracking
15https://github.com/visionml/pytracking
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PrDiMP and SuperDiMP. PrDiMP and SuperDiMP (Danelljan et al. (2020)) 16 use probabilistic
regression to improve the accuracy. The training splits of the LaSOT (Fan et al. (2020)), GOT-10k
(Huang et al. (2021)), TrackingNet (Müller et al. (2018)) and COCO (Lin et al. (2014)) are used,
running 50 epochs with 1000 iterations each.

KeepTrack. KeepTrack (Mayer et al. (2021)) 17 combines the SuperDiMP with a target candidate
association network to accomplish robust tracking. The authors retrain the target candidate association
network on hard sequences mined from LaSOT (Fan et al. (2020)).

B.2.4 CUSTOM NETWORKS

Some other works design custom networks to solve specific problems like target absence or similar in-
stance interference, naturally demonstrating a development from perceptual to cognitive intelligence.

GlobalTrack. GlobalTrack (Huang et al. (2019)) 18 does not assume motion consistency and performs
a full-image search to eliminate cumulative error. The authors use COCO (Lin et al. (2014)), GOT-10k
(Huang et al. (2021)) and LaSOT (Fan et al. (2020)) for model training.

KYS. KYS (Bhat et al. (2020)) 19 represents scene information as state vectors and combines them
with the appearance model to locate the object. The authors use the training splits of TrackingNet
(Müller et al. (2018)), GOT-10k (Huang et al. (2021)) and LaSOT (Fan et al. (2020)) for model
training.

MixFormer. MixFormer (Cui et al. (2022)) 20 designs an end-to-end transformer-based framework
to simultaneously accomplish feature extraction and target information integration. The authors use
COCO (Lin et al. (2014)), TrackingNet (Müller et al. (2018)), GOT-10k (Huang et al. (2021)) and
LaSOT (Fan et al. (2020)) for model training.

16https://github.com/visionml/pytracking
17https://github.com/visionml/pytracking
18https://github.com/huanglianghua/GlobalTrack
19https://github.com/visionml/pytracking
20https://github.com/MCG-NJU/MixFormer
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C EXPERIMENT ORGANIZATION

C.1 EXPERIMENTAL ENVIRONMENT
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Figure 9: Representative sequences used in experiments. (T) Example of TEST videos, which help
the experimenter familiar with the operation. (A) Example of short-term tracking videos, the sequence
length of this group is concentrated in 500-1000 frames. (B) Example of short-term tracking videos,
the sequence length of this group is concentrated in 1000-2000 frames. (C) Example of long-term
tracking videos, the sequence length of this group is concentrated in 1000-2000 frames. (D) Example
of long-term tracking videos, the sequence length of this group is concentrated in 5000-10000 frames.
(E) Example of global instance tracking videos, the sequence length of this group is concentrated in
1000-2000 frames. (F) Example of global instance tracking videos, the sequence length of this group
is concentrated in 5000-10000 frames. (G) Example of global instance tracking videos, the sequence
length of this group is concentrated in 15000-30000 frames.

20



Under review as a conference paper at ICLR 2023

H

#1#1 #70#70 #140#140 #210#210 #280#280 #350#350 #420#420 #530#530#1 #70 #140 #210 #280 #350 #420 #530

H

#1 #70 #140 #210 #280 #350 #420 #530

I

#1#1 #90#90 #180#180 #270#270 #360#360 #450#450 #550#550 #650#650#1 #90 #180 #270 #360 #450 #550 #650

I

#1 #90 #180 #270 #360 #450 #550 #650

J

#1#1 #100#100 #200#200 #300#300 #400#400 #500#500 #600#600 #700#700#1 #100 #200 #300 #400 #500 #600 #700

J

#1 #100 #200 #300 #400 #500 #600 #700

K

#1#1

#100#100 #200#200 #300#300 #400#400 #500#500 #600#600 #631#631

#1

#100 #200 #300 #400 #500 #600 #631

K

#1

#100 #200 #300 #400 #500 #600 #631

L

#1#1 #80#80 #160#160 #240#240 #320#320 #400#400 #480#480 #520#520#1 #80 #160 #240 #320 #400 #480 #520

L

#1 #80 #160 #240 #320 #400 #480 #520

M

#1#1 #80#80 #160#160 #240#240 #320#320 #400#400 #480#480 #600#600#1 #80 #160 #240 #320 #400 #480 #600

M

#1 #80 #160 #240 #320 #400 #480 #600

N

#1 #80 #160#160 #240#240 #320#320 #400#400 #480#480 #600#600

O

#1#1 #80#80 #160#160 #240#240 #320#320 #400#400 #480#480 #531#531#1 #80 #160 #240 #320 #400 #480 #531

O

#1 #80 #160 #240 #320 #400 #480 #531

P

#1#1 #100#100 #200#200 #300#300 #400#400 #500#500 #600#600 #650#650#1 #100 #200 #300 #400 #500 #600 #650

P

#1 #100 #200 #300 #400 #500 #600 #650

Q

#1#1 #80#80 #160#160 #240#240 #320#320 #400#400 #480#480 #531#531#1 #80 #160 #240 #320 #400 #480 #531

Q

#1 #80 #160 #240 #320 #400 #480 #531

H

#1 #70 #140 #210 #280 #350 #420 #530

I

#1 #90 #180 #270 #360 #450 #550 #650

J

#1 #100 #200 #300 #400 #500 #600 #700

K

#1

#100 #200 #300 #400 #500 #600 #631

L

#1 #80 #160 #240 #320 #400 #480 #520

M

#1 #80 #160 #240 #320 #400 #480 #600

N

#1 #80 #160 #240 #320 #400 #480 #600

O

#1 #80 #160 #240 #320 #400 #480 #531

P

#1 #100 #200 #300 #400 #500 #600 #650

Q

#1 #80 #160 #240 #320 #400 #480 #531

Figure 10: Representative sequences used in experiments, the sequence length in this part is
concentrated in 500-1000 frames. (H) Example of tracking the target with abnormal ratio. (I)
Example of tracking the target with abnormal scale. (J) Example of tracking the target with abnormal
illumination. (K) Example of tracking the target with blur bounding-box. (L) Example of tracking
the target with drastic ratio variation. (M) Example of tracking the target with drastic scale variation.
(N) Example of tracking the target with drastic illumination variation. (O) Example of tracking the
target with drastic clarity variation. (P) Example of tracking the target with fast motion. (Q) Example
of tracking the target with low correlation coefficient.
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C.2 EXPERIMENTAL STATEMENT

We have obtained the approvals of all experiments, the template is provided by our IRB. Every
experiment has signed an experimental statement before the experiment. Here we list the contents:

Purpose You have been asked to participate in a research study that studies the dynamic visual
abilities of humans. We would like your permission to enroll you as a participant in this research study.
The instruments involved in the experiment are a computer screen and a mouse. The experimental
task consisted of gazing at the presented image sequence and manipulating the mouse to point as
consistently as possible at the center of the moving target. You will be given specific instructions for
the task before it begins.

Procedure In this study, you should read the experimental instructions and ensure that you understand
the experimental content. The whole experiment process lasts about one hour, and the experiment is
divided into the following steps:

• Read and sign the experimental statement;

• Test the experimental instrument, and adjust the seat height, sitting posture, and the distance
between your eyes and the screen. Please ensure that you are in a comfortable sitting
position during the experiment;

• Two TEST videos will be played. You should comprehend the specific instrument operation
rules and be familiar with the experimental process through the test videos;

• Start the FORMAL experiment. Please follow the operation to watch the test sequence and
complete the relevant operations. Note that after watching each video sequence, you should
have a rest;

• After the experiment, you need to fill in a questionnaire.

Risks and Discomforts The only potential risk factor for this experiment is trace electron radiation
from the computer. Relevant studies have shown that radiation from computers and related peripherals
will not cause harm to the human body. To rule out the impact of COVID-19 on the experiment, all
participants completed nucleic acid tests before the experiment to ensure their health. Everyone
needs to wear a mask throughout the experiment. In addition, the relevant devices are cleaned and
disinfected during the experiment.

Costs Each participant who completes the experiment will be paid 200 RMB.

Confidentiality The results of this study may be published in an academic journal/book or used for
teaching purposes. However, your name or other identifiers will not be used in any publication or
teaching materials without your specific permission. In addition, if photographs, audio tapes or
videotapes were taken during the study that would identify you, then you must give special permission
for their use.

I confirm that the purpose of the research, the study procedures and the possible risks and discomforts
as well as potential benefits that I may experience have been explained to me. All my questions
have been satisfactorily answered. I have read this consent form. My signature below indicates my
willingness to participate in this study.
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C.3 DEVICE SELECTION

How to measure the DVA of humans is an important section of our work. Previous works mainly
use eye-tracker (Hu et al. (2022b); Xia et al. (2021)) or mouse (Geirhos et al. (2018; 2020; 2021))
to record human visual ability. To select a better measurement method, we divide them into active
(mouse) and passive (eye-tracker) methods, then compare them from practical and theoretical views:

• From a practical view, we have organized all subjects to experience both mouse and eye-
tracker, and they all express that the user experience of the mouse is better. A possible
reason is that the eye-tracker passively records eye movements, causing the effect to be
limited by many factors (e.g., the device accuracy, the user’s posture, the relative distance
between eyes and the eye-tracker, and the user’s glasses). Besides, many subjects mention
that the eye-tracker can only effectively track eye movements for a short period. When
the experimental time is prolonged, the recording result easily shifts, while subjects can
only adjust their posture rather than actively correct the capture result. Conversely, using a
mouse can minimize the above problems. Although mouse may also have some limitations,
its accuracy is greater than eye-tracker in our experiments. For example, when subjects
notice that the mouse position is far from the target, they can actively move the mouse and
immediately correct the record result.

• From a theoretical view, some researchers (Holmqvist et al. (2022)) also indicate that the
eye-tracker is affected by the tracking ratio (i.e., the amount of eye-tracking data lost).
Blinks or brief vision drifts can cause a lower tracking ratio, which requires the subject to
keep a high degree of concentration when using eye-trackers. To prove this view, we check
recent articles and find that experiments based on eye-trackers are either for observing the
images (subjects have sufficient time to adjust the position per image) (Xia et al. (2020))
or watching a small amount of video (e.g., 6 videos) (Hu et al. (2022b)). Nevertheless, our
experiment requests each participant to watch 17 videos (including long videos). Thus,
while maintaining a high concentration of attention, subjects frequently change their sitting
position unconsciously, causing the eye-tracker performs poorly in our experiment. What’s
more, we find that previous works (Geirhos et al. (2018; 2020; 2021)) have allowed subjects
to perform image classification tasks with a mouse-based method, and a neuro training
company named Reflexion also uses touch screens to provide DVA training for athletes,
which means recording the observation position based on hand operation has been applied
in academia and industry. Thus, we finally select the mouse-based experimental method.
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C.4 EXPERIMENT PROCESS
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Figure 11: Process of DVA experiment. (I) 15 subjects participated in the DVA experiment. For
each video number, the first letter represents the video group, and the second letter represents the
index. Each group contains 5 videos (e.g., A1-A5), and each video is observed by 3 subjects (e.g., A1
is observed by subjects 05, 10, 15, respectively). Subjects whose serial numbers differ by 5 should
watch the same content but in a different order. (II) The experiment includes two steps: observing
and remembering the target features in the first frame, then moving the mouse to track the target in
subsequent frames. Note that subject has a rest time to relieve visual fatigue between two videos.
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C.5 QUESTIONNAIRE

Subjects should fill in a questionnaire to evaluate their performance and make recommendations.
Here we list the contents:

This questionnaire aims to investigate subjects’ opinions and self-evaluation.

Q1. Your name:

Q2. Your ID (e.g., subject 1):

Q3. Your age:

Q4. Your vision condition (fill in the left and right eyes separately):

Q5. Please rank the following factors in order of perceived difficulty during your experiment
(order from difficult to easy):

• Video sequence is too long;

• Frequent shot changes;

• Screen shaking;

• Target scale is too small;

• Similar objects interference;

• Target moves fast;

• Target is occluded.

Q6. In addition to the challenging factors in the previous question, what other factors may
influence your observation?

Q7. Please provide your self-evaluation score (0 to 100) in short sequences (1-3 minutes):

Q8. Please provide your self-evaluation score (0 to 100) in medium sequences (3-10 minutes):

Q9. Please provide your self-evaluation score (0 to 100) in long sequences (more than 10 min-
utes):

Q10. What was the most impressive sequence in the experiment? Why are you impressed by it?
(e.g., the video is too long, the content of the video is exceptional, the video has some challenging
factors that lead to poor performance, etc.)

Q11. Do you have any suggestions or comments for this experiment?
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C.6 GROUP INFORMATION

Table 4: Groups of subjects and corresponding videos. Subjects indicated by the same color watch
the same content but in a different order.
(a) Each human subject will watch 19 videos, including 2 TEST videos and 17 FORMAL experiment videos.
For each video number, the first letter represents the video group, and the second letter represents the number of
videos in that group. Except for the TEST videos, each group contains five videos (e.g., A1-A5), and each video
is observed by three subjects (e.g., A1 is observed by subjects 05, 10, and 15, respectively).

Group I II III
Exp 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1 T1
T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2 T2
A5 A2 A3 A4 A1 H4 H5 H3 H2 H1 G1 G2 G3 G4 G5
B5 B4 B3 B2 B1 I5 I1 I2 I3 I4 F4 F5 F3 F2 F1
C5 C3 C2 C4 C1 J5 J4 J3 J2 J1 D5 D4 D3 D2 D1
D5 D4 D3 D2 D1 K5 K4 K3 K2 K1 E5 E4 E3 E2 E1
E5 E4 E3 E2 E1 L5 L4 L1 L2 L3 C5 C3 C2 C4 C1
F4 F5 F3 F2 F1 M5 M4 M1 M2 M3 B5 B4 B3 B2 B1
G1 G2 G3 G4 G5 N4 N3 N5 N1 N2 A5 A2 A3 A4 A1
H4 H5 H3 H2 H1 O4 O5 O1 O2 O3 H4 H5 H3 H2 H1
I5 I1 I2 I3 I4 P4 P5 P1 P2 P3 I5 I1 I2 I3 I4
J5 J4 J3 J2 J1 Q1 Q2 Q3 Q4 Q5 J5 J4 J3 J2 J1
K5 K4 K3 K2 K1 A5 A2 A3 A4 A1 K5 K4 K3 K2 K1
L5 L4 L1 L2 L3 B5 B4 B3 B2 B1 L5 L4 L1 L2 L3
M5 M4 M1 M2 M3 C5 C3 C2 C4 C1 M5 M4 M1 M2 M3
N4 N3 N5 N1 N2 D5 D4 D3 D2 D1 N4 N3 N5 N1 N2
O4 O5 O1 O2 O3 E5 E4 E3 E2 E1 O4 O5 O1 O2 O3
P4 P5 P1 P2 P3 F4 F5 F3 F2 F1 P4 P5 P1 P2 P3

Video

Q1 Q2 Q3 Q4 Q5 G1 G2 G3 G4 G5 Q1 Q2 Q3 Q4 Q5

(b) Subjects in group I watch the video length from short to long, then become short again. Subjects in group II
watch videos of increasing length. Subjects in group III watch videos of decreasing length.

Group I II III
Exp 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

120 120 120 120 120 120 120 120 120 120 120 120 120 120 120
2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000
844 700 708 725 610 631 650 630 581 528 17592 18166 22872 25379 28828

1981 1741 1500 1377 1000 651 570 571 621 645 8750 10000 7500 6250 5000
1961 1735 1568 1865 1266 701 691 681 600 531 8242 7628 7509 5933 5307
8242 7628 7509 5933 5307 806 671 631 631 551 2000 1750 1500 1250 1000
2000 1750 1500 1250 1000 741 688 520 598 671 1961 1735 1568 1865 1266
8750 10000 7500 6250 5000 659 601 510 531 550 1981 1741 1500 1377 1000
17592 18166 22872 25379 28828 601 601 585 556 571 844 700 708 725 610

631 650 630 581 528 601 671 501 531 581 631 650 630 581 528
651 570 571 621 645 670 681 601 620 650 651 570 571 621 645
701 691 681 600 531 501 501 531 542 561 701 691 681 600 531
806 671 631 631 551 844 700 708 725 610 806 671 631 631 551
741 688 520 598 671 1981 1741 1500 1377 1000 741 688 520 598 671
659 601 510 531 550 1961 1735 1568 1865 1266 659 601 510 531 550
601 601 585 556 571 8242 7628 7509 5933 5307 601 601 585 556 571
601 671 501 531 581 2000 1750 1500 1250 1000 601 671 501 531 581
670 681 601 620 650 8750 10000 7500 6250 5000 670 681 601 620 650

Frame

501 501 531 542 561 17592 18166 22872 25379 28828 501 501 531 542 561
Total 50052 50165 51038 50710 50970 50052 50165 51038 50710 50970 50052 50165 51038 50710 50970
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C.7 COOPERATION MECHANISM

C.7.1 DETAILED INFORMATION ABOUT COOPERATION MECHANISM

Algorithm 1 Framework of cooperation mechanism
Input: T: tracker, which has two functions (INITIALIZATION and TRACK);
S = {F1, F2, . . . , Ft, . . .}: original sequence;
G = {g1, g2, . . . , gt, . . .}: the set of ground-truth, gt = (xgt, ygt, wgt, hgt) represents the ground-
truth bounding box in Ft;
B = {b1, b2, . . . , bt, . . .}: the set of blur degree, bt represents the blur degree value of Ft, higher
value means more clarity;
R = {r1, r2, . . . , rt, . . .}: the set of object relative scale, rt represents the object relative scale value
of Ft, small value means tiny object
Output: P = {p1, p2, . . . , pt, . . .}: the set of tracking results, pt = (xpt, ypt, wpt, hpt) represents

the predicted bounding box in Ft;
I: the set of cooperation frames, |I| can be regarded as number of cooperations
/* Step 1: find suitable cooperation frames */

1 set candidate cooperation frames C = φ
for i← 0 to |S| − 1 do

2 while (bi > MEDIAN(B)) ∧ (ri > MEDIAN(R)) do
3 C ← C ∪ i

/* Step 2: human-machine cooperation */
4 set tracking results P = φ

set initialization locations I = φ
set failure counter α = 0
for i← 1 to |S| do

5 if i == 1 then
6 p1 = T.INITIALIZATION(F1, g1)

P ← P ∪ p1
continue

7 if (α ≥ 10) ∧ (i ∈ C) then
8 pi = T.INITIALIZATION(Fi, g

c
i )

P ← P ∪ pi
I ← I ∪ i
α← 0
continue

9 else
10 pi = T.TRACK(Fi)

P ← P ∪ pi
si = Ω(pi, gi) = pi

⋂
gi

pi
⋃
gi

if si < 0.5 then
11 α← α+ 1

12 else
13 α← 0

14 return P , I

As we have metioned in Section 3.2, the cooperation mechanism is designed as follows: when
machines fail to track, subjects can provide the current target position and restart machines from
the failure frame. It is worth noting that human-computer cooperation is very complex, and our
experiments only explore the possibility of cooperation through a simple and intuitive mechanism.
There is still much space for further optimization.

Based on Algorithm 1, the human-machine cooperation is divided into the following steps. (1) Find
suitable cooperation frames. The quality of the cooperation frame is important for tracking in the
following frames. Frames with tiny objects or motion blur may decrease appearance and motion
information. Thus, we first calculate the blur degree and relative target scale of all frames in S,
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and select frames that include the target with relatively clear and appropriate scale as candidate
cooperation frames (please refer to Hu et al. (2022a) for more information), and generate the set
of candidate cooperation position C. (2) Human-machine cooperation. We use the IoU value si
(Line 10 in Algorithm 1) to determine tracking failure and consider that after ten consecutive frames
of tracking failure (failure counter α ≥ 10), the algorithm will cooperate with the human at the
nearest candidate cooperation frame and reinitialize (Line 8 in Algorithm 1, gci represents the object
information provided by human). Besides, considering that many SOTA machines may re-locate the
target in several following frames, we assume that si ≥ 0.5 means successfully re-locate the target,
and zeroing the failure counter α if the re-location occurs in 10 frames (Line 13 in Algorithm 1).

It is worth noting that our human-machine cooperation experiments are a preliminary exploration,
and we hope to find that cooperation is possible for all algorithms. However, for a combination of 20
algorithms and 87 videos (1740 sets), it is time-consuming to arrange human subjects to participate in
1740 cooperation experiments. Therefore, we used the following strategy to organize the experiments.
(1) We first use the ground-truth as target information provided to the algorithm at cooperation frames
(Line 8 in Algorithm 1, here we use gi to re-initialize the algorithm). Since the ground-truth of
sequences are provided by professional human annotators, which can be regarded as a representative
of the highest level of human in static frames. Then we record all the cooperation frames as Ig (g
means this set is generated by ground-truth information). (2) We show the frames in Ig to human
subjects, asking them to find the target in the current frame and annotate it with a bounding box,
then we generate the human annotations Ih (the length of Ih is equal to Ig). (3) We evaluate Ih
and Ig based on NPL2 score. Situation 1: If the score is higher than 0.95, we consider the human
subject to have the same performance as the original data annotator. Thus, we no longer organize the
cooperation experiment for this algorithm-sequence combination. Situation 2: On the contrary, if
the score is below 0.95, we consider that the human subject has a gap with the ground-truth. We will
arrange for the human subject and the algorithm to track the sequence together from the beginning,
ask the human subject to annotate the target position by bounding-box in cooperation frames, and
then record the collaborator’s performance (Line 8 in Algorithm 1, here we use gci to re-initialize the
algorithm).

We find that most sequences satisfied Situation 1. As the example in Figure 12, the human subject
watches the first frame and clearly understands that he should locate the blue-clothed player. Then he
can identify the target at frames #1125 and #6353, even if he does not watch the middle frames. This
phenomenon also demonstrates the solid cognitive and memory abilities of humans.
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C.7.2 AN EXAMPLE
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Figure 12: Example of the cooperation mechanism. The top area illustrates machine tracking results
on sequence G4, and the bottom is the cooperation results. When machines fail to track (e.g., #1125
and #6353, always due to target absent or shot-cut), subjects can provide the current target position
and re-initialize machines to keep tracking from the failure frame.

To better illustrate the cooperation process, we use video G4 (a long video with 25,397 frames and 450
shot-cuts, describing a table tennis match with two players) as an example. The best human subject
scores 0.964 (NPL2 score) since it is easy to locate a player consistently. However, when the shot is
switched, the position variation of the target player (blue-clothed player) will challenge the SOTA
algorithm. Thus, it quickly drifts to the interferer (black-clothed player) and keeps wrong tracking,
causing the score to decrease to 0.558. But if we allow algorithms to cooperate with humans, when
the human subject finds that the algorithm fails (such as drifting to the distractor), the subject will
provide correct target position to the algorithm to avoid persistent mistracking. For our experiment in
G4, the human subject provides target location information 23 times while the algorithm tracks the
remaining 25,374 frames. Although humans only need to participate 0.1% (23/25,397) in cooperation,
the human-machine collaborator MixFormer_Human can score 0.977, indicating that cooperation
can significantly improve the algorithm’s tracking performance. This result is also in line with the
original intention: algorithms accomplish many simple tasks, while humans focus on the key points.
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D PERFORMANCE OF HUMANS AND MACHINES

D.1 RESULTS ON DIFFERENT SEQUENCE LENGTHS

II IIII

IVIVIIIIII

Figure 13: Performance of human-machine on different sequence lengths (the vertical coordinate
indicates NPL1 score per frame). The yellow curve represents the SOTA machine (MixFormer (Cui
et al. (2022))), the blue curve represents the subject, and the red triangle represents the shot-cut.
Subfigures (I-IV) represent four videos with different combinations of lengths and shots. Compared
with the SOTA machine, humans can still maintain adequate DVA in the face of lengthy sequences
and frequent shot switching.
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D.2 EXAMPLES ON DIFFERENT SEQUENCES
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P4 \textbf{
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Figure 14: Schematic diagram of human-machine tracking results on partial sequences. Condition I
(B2, D2, G4) represents that humans are better than machines, condition II (O2, P4, P5) indicates
that machines are better than humans, and condition III (E5, G1, M4) indicates that both perform
poorly. For each frame, the green rectangle and green point represent the ground-truth, the blue point
represents the localization result of humans, and the yellow point represents the tracking result of
machines.

Obviously, humans outperform machines in longer sequences with shot-cuts and can better distinguish
the target from interfering objects (condition I). However, when facing challenges such as tracking
small targets with fast movements (condition II), limited by hand-brain coordination and mouse
movement speed, humans cannot precisely locate such targets at 25FPS. Note that both humans and
machines may fail when multiple challenges are superimposed in one sequence (condition III).
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D.3 BOXPLOTS
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Figure 15: Boxplots enumerate the distribution of NPL2 scores for TEST videos and Group A to
Q. The blue area represents the maximum, mean, and minimum scores of human subjects, and the
yellow area represents machines.
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D.4 PRECISION PLOTS

Figure 16: Results for all tasks, short-term tracking task, long-term tracking task, and global instance
tracking task based on various indicators (from left to right: weighted-N-PRE plots NPw

L3(θd
′
), ranked

by NPw
L3; N-PRE plots NPL3(θd

′
), ranked by NPL3; weighted-PRE plots Pw

L3(θd), ranked by Pw
L3;

and PRE plots PL3(θd), ranked by PL3) .
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Figure 17: Results for Group A to F based on various indicators (from left to right: weighted-N-PRE
plots NPw

L3(θd
′
), ranked by NPw

L3; N-PRE plots NPL3(θd
′
), ranked by NPL3; weighted-PRE plots

Pw
L3(θd), ranked by Pw

L3; and PRE plots PL3(θd), ranked by PL3) .
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Figure 18: Results for Group G to L based on various indicators (from left to right: weighted-N-PRE
plots NPw

L3(θd
′
), ranked by NPw

L3; N-PRE plots NPL3(θd
′
), ranked by NPL3; weighted-PRE plots

Pw
L3(θd), ranked by Pw

L3; and PRE plots PL3(θd), ranked by PL3) .
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Figure 19: Results for Group M to Q and TEST videos based on various indicators (from left to
right: weighted-N-PRE plots NPw

L3(θd
′
), ranked by NPw

L3; N-PRE plots NPL3(θd
′
), ranked by NPL3;

weighted-PRE plots Pw
L3(θd), ranked by Pw

L3; and PRE plots PL3(θd), ranked by PL3) .
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D.5 HEATMAPS

Figure 20: Performance of subjects (the maximum, mean, and minimum scores of human subjects)
on multiple challenging factors based on NPL2 .
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Figure 21: Performance of machines (MixFormer (Cui et al. (2022)), SiamRCNN (Voigtlaender et al.
(2020)),KeepTrack (Mayer et al. (2021)), SuperDiMP (Danelljan et al. (2020)), PrDiMP (Danelljan
et al. (2020)),SiamRPN++ (Li et al. (2018a)),GlobalTrack (Huang et al. (2019)), Ocean (Zhang &
Peng (2020)),SPLT (Yan et al. (2019))) on multiple challenging factors based on NPL2 .
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Figure 22: Performance of machines (DiMP (Bhat et al. (2019)), SiamDW (Zhang & Peng (2019)),
KYS (Bhat et al. (2020)),DaSiamRPN (Zhu et al. (2018)),SiamFC++ (Xu et al. (2020)),ATOM
(Danelljan et al. (2018)),SiamRPN (Li et al. (2018b)),SiamCAR (Guo et al. (2020)), ECO (Danelljan
et al. (2017)),SiamFC (Bertinetto et al. (2016)),KCF (Henriques et al. (2015))) on multiple challenging
factors based on NPL2 .
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D.6 ANALYSES OF HUMAN DYNAMIC VISUAL ABILITY
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Figure 23: Scores of subject groups and self-perceptions. Subjects with a serial number interval of
5 watches the same videos in different orders. (I-V) demonstrate the performance of subjects (the
vertical coordinate indicates NPL2 score per sequence). Gray area 1 represents two TEST videos, and
colorful areas 2 to 4 represent FORMAL videos. The viewing order of the subjects with blue serial
number is 2-3-4, orange is 4-2-3, and green is 3-2-4. (VI) shows their self-perceptions of challenging
factors in the questionnaire (a higher score means greater challenge).

We request three subjects to track the same videos in different viewing orders. Figure 23 (I-V)
demonstrates that subjects’ performance is independent of viewing order – watching long sequences
first or last has no significant difference. However, we notice that subjects may also make mistakes,
like the performance of Exp09 on A4 is significantly lower than others. A4 is a short video about a
basketball game, while Exp09 misadmits the target player and keeps tracking a distractor. It indicates
that humans are not absolutely infallible – they may make low-level mistakes due to carelessness.

Figure 23 (VI) shows the self-perceptions of challenging factors in the questionnaire. Most subjects
consider that fast-moving targets and small targets are challenging to track, but tracking in a long
sequence is not difficult – this is consistent with previous experimental conclusions in this paper.
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E PERFORMANCE OF HUMAN-MACHINE COOPERATIONS

E.1 BOXPLOTS
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Figure 24: A comprehensive comparison of human-machine collaborators. Boxplots enumerate the
distribution of NPL2 scores for all tasks (I), short-term tracking task (II), long-term tracking task (III),
and global instance tracking task (IV). The blue area represents the maximum, mean, and minimum
scores of human subjects, and the yellow area represents human-machine collaborators.
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Figure 25: Boxplots enumerate the distribution of NPL2 scores for TEST videos and Group A to
Q. The blue area represents the maximum, mean, and minimum scores of human subjects, and the
yellow area represents human-machine cooperation.
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E.2 PRECISION PLOTS

Figure 26: Results for all tasks, short-term tracking task, long-term tracking task, and global instance
tracking task based on various indicators (from left to right: weighted-N-PRE plots NPw

L3(θd
′
), ranked

by NPw
L3; N-PRE plots NPL3(θd

′
), ranked by NPL3; weighted-PRE plots Pw

L3(θd), ranked by Pw
L3;

and PRE plots PL3(θd), ranked by PL3) .
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Figure 27: Results for Group A to F based on various indicators (from left to right: weighted-N-PRE
plots NPw

L3(θd
′
), ranked by NPw

L3; N-PRE plots NPL3(θd
′
), ranked by NPL3; weighted-PRE plots

Pw
L3(θd), ranked by Pw

L3; and PRE plots PL3(θd), ranked by PL3) .
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Figure 28: Results for Group G to L based on various indicators (from left to right: weighted-N-PRE
plots NPw

L3(θd
′
), ranked by NPw

L3; N-PRE plots NPL3(θd
′
), ranked by NPL3; weighted-PRE plots

Pw
L3(θd), ranked by Pw

L3; and PRE plots PL3(θd), ranked by PL3) .
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Figure 29: Results for Group M to Q and TEST videos based on various indicators (from left to
right: weighted-N-PRE plots NPw

L3(θd
′
), ranked by NPw

L3; N-PRE plots NPL3(θd
′
), ranked by NPL3;

weighted-PRE plots Pw
L3(θd), ranked by Pw

L3; and PRE plots PL3(θd), ranked by PL3) .
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E.3 HEATMAPS

Figure 30: Performance of human-machine cooperations (MixFormer (Cui et al. (2022)), SiamRCNN
(Voigtlaender et al. (2020)),KeepTrack (Mayer et al. (2021)), SuperDiMP (Danelljan et al. (2020)),
PrDiMP (Danelljan et al. (2020)),SiamRPN++ (Li et al. (2018a)),GlobalTrack (Huang et al. (2019)),
Ocean (Zhang & Peng (2020)),SPLT (Yan et al. (2019)), DiMP (Bhat et al. (2019)), SiamDW (Zhang
& Peng (2019)), KYS (Bhat et al. (2020))) on multiple challenging factors based on NPL2 .
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Figure 31: Performance of human-machine cooperations (DaSiamRPN (Zhu et al. (2018)),SiamFC++
(Xu et al. (2020)),ATOM (Danelljan et al. (2018)),SiamRPN (Li et al. (2018b)),SiamCAR (Guo et al.
(2020)), , ECO (Danelljan et al. (2017)), SiamFC (Bertinetto et al. (2016)),KCF (Henriques et al.
(2015))) on multiple challenging factors based on NPL2 .

48


	Introduction
	Methods
	Environment: Datasets
	Executor: Models, Human Subjects
	Evaluation: Metrics

	Experiments
	A Comprehensive Comparison of Human-machine Dynamic Vision Ability
	Machine Performance Improvements When Cooperating with Humans

	Conclusions and Future Work
	Task Description
	Vision Task
	Single Object Tracking Task

	Datasets and Machines
	Datasets
	Machines
	Correlation Filter Based Trackers
	Siamese Neural Network Based Trackers
	Combine Correlation Filter and Siamese Neural Network
	Custom Networks


	Experiment Organization
	Experimental Environment
	Experimental Statement
	Device Selection
	Experiment Process
	Questionnaire
	Group Information
	Cooperation Mechanism
	Detailed Information about Cooperation Mechanism
	An Example


	Performance of Humans and Machines
	Results on Different Sequence Lengths
	Examples on Different Sequences
	Boxplots
	Precision Plots
	Heatmaps
	Analyses of Human Dynamic Visual Ability

	Performance of Human-Machine Cooperations
	Boxplots
	Precision Plots
	Heatmaps


