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Abstract

The low interpretability of deep neural networks (DNNs) remains a key barrier to
their wide-spread adoption in the sciences. Attribution methods offer a promis-
ing solution, providing feature importance scores that serve as first-order model
explanations for a given input. In practice, gradient-based attribution methods,
such as saliency maps, can yield noisy importance scores depending on model
architecture and training procedure. Here we explore how various regularization
techniques affect model explanations with saliency maps using synthetic regulatory
genomic data, which allows us to quantitatively assess the efficacy of attribution
maps. Strikingly, we find that generalization performance does not imply better
saliency explanations; though unlike before, we do not observe a clear tradeoff.
Interestingly, we find that conventional regularization strategies, when tuned appro-
priately, can yield high generalization and interpretability performance, similar to
what can be achieved with more sophisticated techniques, such as manifold mixup.
Our work challenges the conventional knowledge that model selection should be
based on test performance; another criterion is needed to sub-select models ideally
suited for downstream post hoc interpretability for scientific discovery.

1 Introduction

Deep neural networks (DNNs) have demonstrated promising predictive performance across many
scientific domains, including regulatory genomics, and post hoc model interpretations often reveal that
they base their decisions on meaningful patterns, such as sequence motifs [1, 2, 3, 4]. However, it is
well known that model explanations with attribution methods – such as saliency maps [5], integrated
gradients [6], and DeepLIFT [7] – are fragile [8, 9], making it a challenge to know whether a feature
is truly important or just an artifact of the interpretability method. The question remains, how should
we choose which DNN to interpret for scientific discovery? The current model selection standard is
based on the model that yields the best generalization performance. Should test performance be the
basis for model selection when the downstream application is model interpretability?

To yield higher quality post hoc explanations, there have been several approaches that have focused
on improving the attribution method itself [10, 11] or imposing direct regularization on the attribution
maps during training [12, 13]. Other approaches – such as adversarial training [14], manifold mixup
[15], and randomized smoothing [16] – attempt to solve the crux of the issue by encouraging DNNs
to learn more robust and smoother functions, which as a consequence, leads to better explanations
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with gradient-based attribution methods [17]. However, in many fields like computer vision, it
remains a challenge to quantitatively compare the efficacy of local explanations, because there often
is no pixel-level ground truth and the relevant features are complex and hierarchical (eg. edges,
textures, and shapes). In genomics, it is possible to generate realistic data that are embedded with
biologically meaningful patterns, called motifs, while the other positions are completely randomized
– the complete ground truth can be established at a “pixel-level”. Thus, analysis using regulatory
genomic data is well-positioned to explore the aforementioned question in a quantitative manner.

Here, we perform a systematic comparison of different training hyperparameters – such as dropout
rate, batch size, learning rate, and early stopping – to explore the interplay between a DNN’s
prediction accuracy and the efficacy of explanations with attribution methods, specifically saliency
maps. Strikingly, we find that as training progresses, a DNN’s explanation with gradient-based
attribution methods can significantly be affected without noticeably influencing its generalization
performance. Although we found that advanced regularization techniques, like manifold mixup,
can significantly improve interpretability for DNNs that employ traditional hyperparameter choices
in genomics, we also found that conventional regularization techniques, when tuned appropriately,
can yield significantly higher quality model explanations while maintaining a high generalization
performance. Together, our work suggests that prediction performance alone is not a reliable
metric to choose which model should be used for downstream interpretability analysis, and standard
regularization techniques can be effective at training models that generalize well and are highly
interpretable with attribution methods.

2 Experiment overview

Dataset. To quantify the efficacy of local attribution maps, we analyzed synthetic data that re-
capitulates a billboard model of gene regulation from Ref. [18]. Briefly, positive sequences were
embedded with 3 to 5 “core motifs” randomly selected with replacement from a pool of 5 known
motifs. Negative sequences were generated in a similar way with the exception that the pool of motifs
also includes a large set of “background motifs.” Background sequences can thus contain core motifs;
however, it is statistically unlikely for these sequences to resemble a positive class. 20,000 sequences
were randomly split into train (0.7), valid (0.1), and test (0.2) sets. In this dataset, we have ground
truth of which motifs were embedded in each sequence along with their locations.

Baseline model. We employed a baseline convolutional neural network (CNN) from Ref. [18],
which consists of 5 convolutional layers, followed by a fully-connected hidden layer (see Appendix
A for additional details). By default, dropout [19] is incorporated after each convolution with a rate
of 0.1 and the dense layer with 0.5. We uniformly trained each model by minimizing the binary
cross-entropy loss with mini-batch stochastic gradient descent (128 sequences) for 40 epochs with
Adam updates using default parameters [20]. Each model was trained 5 times with different random
initializations. Variations of the baseline model and training hyperparameters are detailed when
outlining specific experiments.

Quantifying interpretability. After training, we computed a saliency map [5] for each positive-
label sequence and multiplied it by the inputs, i.e. grad-times-input. We generated the distribution
of saliency scores at positions where ground truth motifs were embedded and the distribution of
saliency scores at other positions, as described previously [18]. We quantified the separation of these
two distributions using the area under the receiver operating characteristic curve, which we call the
interpretability AUROC.

3 Manifold mixup improves saliency-based explanations

It is hypothesized that the (un)reliability of gradient-based attribution methods, like saliency maps
arises due to a DNN that learns a ‘noisy’ function, which can still yield good generalization per-
formance but renders their gradients less reliable for model interpretability. Manifold mixup is a
regularization strategy that has demonstrated an ability to converge to solutions that exhibit smoother
functions [15]; to our knowledge, manifold-mixup has not been previously applied to genomics. Here,
we ask the question - can manifold mixup improve local explanations from saliency maps?
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Table 1: Performance comparison of manifold mixup versus standard training.

40 Epochs Early Stopping
Classification Interpretability Classification Interpretability

Model AUROC AUROC AUROC AUROC

Standard-1 0.975±0.001 0.703±0.008 0.975±0.002 0.712±0.009
Standard-4 0.971±0.002 0.63±0.016 0.981±0.001 0.748±0.006
Standard-8 0.971±0.000 0.609±0.004 0.983±0.001 0.754±0.004
Manifold-1 0.942±0.007 0.656±0.010 0.953±0.007 0.702±0.008
Manifold-4 0.978±0.002 0.699±0.003 0.982±0.001 0.751±0.009
Manifold-8 0.978±0.004 0.711±0.005 0.984±0.000 0.747±0.021

We trained a baseline CNN model and different scaled versions – where parameters in each convolu-
tional and dense layers were multiplied by a factor of 1, 4 and 8 – with and without manifold mixup
(applied to random hidden layers throughout training) and assessed the efficacy of local explanations
given by saliency maps (Sec. 2). Interestingly, we found that manifold mixup improves the classifica-
tion and interpretability AUROCs compared to a baseline CNN for larger model sizes when evaluation
is performed at the end of training, i.e. 40 epochs (Table 1). For a smaller model size, the poorer
performance of manifold mixup may be due to a regularization that is too strong. However, if we
evaluate the model interpretability performance at the checkpoint specified by early stopping (based
on maximum classification AUROC on the validation set), which occurs around 5-15 epochs, the
CNNs with standard training now yield comparable performance relative to manifold mixup (Table 1).
Both training approaches improve their overall interpretability performance while their classification
performance is only improved marginally. This suggests that CNN models with standard training and
manifold mixup largely learn similar representations early in training. Stochastic gradient descent
learns functions of increased complexity [21], so it may be that earlier on, the function being learned
by both methods is equally smooth. As training progresses, the stronger regularization provided
by manifold mixup maintains a smoother function, while the weaker regularization of a relatively
low dropout rate of 0.1 is insufficient, leading to a noisier function that degrades interpretability but
largely maintains generalization performance. The slight decrease observed in manifold mixup’s
interpretability AUROC as training progresses suggests that, while it provides a stronger regularizer
than the standard training, it is still not enough to maintain optimal performance here.

4 Better classification performance does not imply better model
interpretability

To explore how imposing a stronger regularization penalty could improve both generalization and
interpretability performance, we performed a systematic exploration of the baseline CNN with 3
scale factors (i.e. 1, 4, and 8) and using different combinations of conventional regularization tech-

Figure 1: Performance evaluation. (a) Scatter plot of classification AUROC versus interpretability
AUROC for different for different models trained with standard training and manifold mixup evaluated
at 40 epochs (blue) and early stopping (orange). ((b)) classification AUROC and ((c)) interpretability
AUROC throughout training for different models; metrics were evaluated on the test set. ((d)) Change
in classification AUROC versus the change in interpretability AUROC evaluated at early stopping
and 40 epochs for standard training and manifold mixup.
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Table 2: Performance of high learning rate models evaluated at early stopping and at 40 Epochs while
varying batch size (bs), dropout rate (do), learning rate (lr), and batch normalization (bn).

Early Stopping 40 Epochs
Classification Interpretability Classification Interpretability

Model bs do lr bn AUROC AUROC AUROC AUROC

Standard-1 32 0.4 0.01 True 0.978±0.002 0.805±0.027 0.973±0.004 0.804±0.029
Manifold-1 32 0.4 0.01 True 0.981±0.002 0.833±0.027 0.979±0.002 0.831±0.028
Standard-1 64 0.4 0.01 True 0.978±0.003 0.821±0.024 0.968±0.015 0.823±0.024
Manifold-1 64 0.4 0.01 True 0.981±0.002 0.811±0.036 0.979±0.004 0.808±0.036
Standard-1 128 0.4 0.01 True 0.978±0.003 0.821±0.023 0.972±0.007 0.816±0.027
Manifold-1 128 0.4 0.01 True 0.981±0.001 0.799±0.029 0.979±0.003 0.806±0.023
Standard-1 32 0.1 0.01 True 0.981±0.001 0.718±0.007 0.980±0.001 0.709±0.015
Standard-1 32 0.4 0.01 False 0.907±0.018 0.686±0.024 0.568±0.151 0.526±0.058
Standard-4 32 0.4 0.01 True 0.983±0.002 0.719±0.017 0.977±0.005 0.703±0.020
Standard-8 32 0.4 0.01 True 0.982±0.001 0.731±0.017 0.972±0.007 0.711±0.008
Manifold-1 32 0.1 0.01 True 0.983±0.001 0.715±0.029 0.983±0.002 0.684±0.022
Manifold-1 32 0.4 0.01 False 0.902±0.019 0.684±0.016 0.630±0.185 0.547±0.067
Manifold-4 32 0.4 0.01 True 0.987±0.001 0.668±0.025 0.987±0.001 0.677±0.017
Manifold-8 32 0.4 0.01 True 0.986±0.001 0.709±0.018 0.985±0.001 0.670±0.034

niques, i.e. batch size and dropout rates after each convolutional layer, while keeping a dropout
rate of 0.5 for the final hidden dense layer (Appendix B). Strikingly, when we plot the classifica-
tion AUROC versus the interpretability AUROC at early stopping, we find that models with the
best classification performance do not necessarily yield the best interpretability performance. In
addition, the interpretability performance is more variable when evaluating the models at the end
of training (i.e. 40 epochs) without early stopping (Fig. 1a). This suggests that we should not base
model selection solely on generalization performance when the downstream application is model
interpretability. Importantly, while conventional wisdom suggests that there is a trade-off between
these two properties, we find that models that yield high generalization performance can also yield
the best interpretability performance. However, it remains unclear whether there exists a measurable
quantity that correlates with interpretability performance without requiring any a prior knowledge of
ground truth. Interestingly, we found that a combination of smaller batch sizes (≤ 64) and higher
dropout (0.4) consistently provide better results across the 3 baseline CNNs for standard training and
manifold mixup (Appendix B); typical batch sizes in genomics are relatively big (around 100) and
dropout rates after convolutional layers are relatively small (0-0.2). When regularization is stronger,
the generalization and interpretability performance plateaus without a significant decrease as training
progresses (Fig. 1b & c), an observation that was only observed before for generalization performance
[22]. Surprisingly, even a small decrease in classification AUROC as training progresses leads to a
large decrease in interpretability AUROC (Fig. 1d). Thus, one way to assess which model to use for
downstream model interpretability may be to assess the change in generalization performance beyond
early stopping; a plateau should be observed with no significant drop-off.

5 A new training regime for interpretable models for genomics

By sampling different learning rates, we found that training with a learning rate of 0.001 and no
dropout for 2 epochs followed by a higher learning rate of 0.01 and dropout of 0.4 for the remaining
epochs leads to a significant improvement in the interpretability performance (Table 2), beyond what
was achievable in our large scale hyperparameter search (Appendix B). We hypothesize that the
stochasticity from a high learning rate enables the navigation towards a region in parameter space that
was otherwise inaccessible with lower learning rates (given our limited initialization strategy), within
the flat basin [23]. While previous methods have claimed observing better generalization performance
within such regions [24], we only observe improved interpretability, and an ablation study shows that
each hyperparameter choice is indeed synergistic. However, the change in classification performance
is no longer indicative of better interpretability as was observed in Fig. 1d; nevertheless, this approach
can still be informative to filter models from contention for downstream interpretability.

6 Conclusions

We performed a systematic evaluation of the generalization and interpretability performance for
different model architectures and training procedures. We found models that yield the best generaliza-
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tion performance do not necessarily lead to the best interpretability performance – though we did not
observe a strict trade-off. We could not find a universal metric for model selection that consistently
leads to best model interpretability, Interestingly, we observed that standard regularization techniques
are often good enough. Even still, it would be interesting to explore other regularization strategies,
including adversarial training and Jacobian regularization [25], and to see how well all of these results
generalize to in vivo data, despite the fact that evaluation remains tricky due to a lack of ground truth.

7 Code

Code for this paper is open source and can be found here:
https://github.com/thelabelmaker/Regularization-Genomics-NeurIPS
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A Model architecture

Our CNN is based on Ref. [18]. Briefly, it is given according to:

1. input (200 nucleotide sequence)
2. convolution (24×f filters, size 19, ReLU)

dropout (rate = r)
3. convolution (32×f filters, size 7, ReLU)

dropout (rate = r)
max-pooling (size 4)

4. convolution (48×f filters, size 5, ReLU)
max-pooling (size 4)
dropout (rate = r)

5. convolution (64×f filters, size 5, ReLU)
max-pooling (size 4)
dropout (rate = r)

6. fully-connected layer (96×f units, ReLU)
dropout (rate = 0.5)

7. fully-connected output layer (1 units, sigmoid)

where f is a factor to change the width of the network, here f = 1, 4, and 8, and r is the dropout rate
that was set to 0.1 by default, unless specified otherwise.
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B Hyperparameter search

Figure 2: Hyperparameter search for the baseline CNN with (a) standard training, (b) manifold mixup,
and (c) standard training and (d) manifold mixup where the models include batch normalization prior
to activations in each hidden layer.
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