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Abstract

Auto-regressive generation models achieve com-
petitive performance across many different NLP
tasks such as summarization, question answer-
ing, and classifications. However, they are also
known for being slow in inference, which makes
them challenging to deploy in real-time applica-
tions. We propose a switchable decision to ac-
celerate inference by dynamically assigning com-
putation resources for each data instance. Au-
tomatically making decisions on where to skip
and how to balance quality and computation cost
with constrained optimization, our dynamic neu-
ral generation networks enforce the efficient infer-
ence path and determine the optimized trade-off.
Experiments across question answering, summa-
rization, and classification benchmarks show that
our method benefits from less computation cost
during inference while keeping the same accu-
racy. Extensive experiments and ablation studies
demonstrate that our method can be general, ef-
fective, and beneficial for many NLP tasks.

1. Introduction

Large-scale pre-trained language models such as BART
(Lewis et al., 2019)

(Lewis et al., 2019) have demonstrated a significant per-
formance gain to the natural language processing (NLP)
community but generally come with the cost of a heavy
computational burden. Besides pre-training and fine-tuning,
inference of such a large model also comes with a heavy
computational cost. On IoT (Internet of things) devices
and real-world applications, lower computation cost toler-
ance and restricted computation resource during inference
impede these models from deployment.

Recent efforts of efficient inference mainly focus on pruning
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or compressing the model parameters, e.g., pruning unim-
portant parts of the neural model weights (Han et al., 2015b;
Fan et al., 2019; Gordon et al., 2020), quantizing the number
of bits needed (Lin et al., 2016; Shen et al., 2020), distilling
from large teacher models to small student models (Hinton
et al., 2015; Jiao et al., 2019). These methods produce only
one small model with a predetermined target size. Another
direction is to switch the model parameters for different
data instances, e.g., the mixture of experts (Shazeer et al.,
2017), and switch transformer (Fedus et al., 2021). Early
exiting, which adaptively produces a series of small models
for different data instances, is one of the most common prac-
tices. Most previous work makes exit decisions based on
either the confidence of output probability distributions or a
trained agent. In this work, we propose a carefully designed
candidate space for encoder-decoder auto-regressive models
and enhance the optimization strategies when training the
agent.

In this spirit, we explore the problem of dynamically allo-
cating computation across a generation model. In partic-
ular, we consider a standard encoder-decoder transformer
auto-regressive generation model. It comprises a stacked
structure with multiple layers, each having a multi-head
attention layer followed by a feed-forward network (FFN)
layer (Zhang et al., 2021b;a; Dai et al., 2022; Tanwisuth
et al., 2023). To this end, we introduce a dynamic neural
network for the auto-regressive generation models, which
includes the attention, feed-forward, and input sequence as
the candidate space for switchable decisions. Our method
generates an input-dependent inference strategy for each
data. For each input sequence, the reinforcement learning
agent outputs all the decisions for skipping or keeping each
candidate. With the first-layer hidden representations as the
input, the policy network is trained to maximize a reward
that incentives the use of as few blocks or tokens as possible
while preserving the prediction accuracy.

We propose learning optimal switchable strategies that si-
multaneously preserve prediction accuracy and minimal
computation usage based on input-specific decisions. The
constrained optimization is utilized as a more principled
approach for trading off these two targets (quality v.s. ef-
ficiency). We target keeping the predicted quality while
achieving better efficiency as far as possible. A gradient-
based constrained optimization algorithm is implemented
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under our framework.

We run extensive experiments across summarization, e.g.,
XSum (Narayan et al., 2018) and CNN/DM (Hermann et al.,
2015), question answering, e.g., SQuUAD 1.1 (Rajpurkar
et al., 2016) and SQuAD 2.0 (Rajpurkar et al., 2018)), and
GLUE (Wang et al., 2018a) classification tasks. @ Our
method not only shows comparable performance across
different tasks and datasets but also accelerates model infer-
ence by up to 40% with negligible model quality degrada-
tion. @ Furthermore, we provide extensive ablation studies
on different design choices for the proposed method, includ-
ing the encoder-only or decoder-only switchable schemes.
® Our analysis shows the switchable decision contributes
the efficiency improvement and accuracy consistency, help-
ing the generation model to choose the inference path and
candidates dynamically. @ To the best of our knowledge,
we present the first switchable decision in the language
generation model setting by dynamically making the infer-
ence decisions in summarization, question answering, and
classification. Our contributions are summarized as follows:

* Present a dynamic network for switchable decisions
embracing attention, feed-forward, and input sequence
as skipping candidates.

* Propose an efficient and effective way to train the skip-
ping strategies, which can optimize the trade-off be-
tween computation and quality.

* Verify the effectiveness and general applicability of the
proposed method in various NLP tasks, e.g., summa-
rization, question answering, and classification bench-
marks, and provide a rich analysis of our method with
various design choices.

2. Related Work and Background

Compact Network Design and Model Compression For
model compression, pruning removes unimportant parts of
the neural network (Han et al., 2015a; Fan et al., 2019; Gor-
don et al., 2020), quantization targets the number of bits
needed to operate a neural network (Shen et al., 2020), and
distillation transfers knowledge from large teacher mod-
els to small student models (Chen et al., 2017; Jiao et al.,
2019). Efficient network architectures such as MobileBERT
(Sun et al., 2020) and ALBERT (Lan et al., 2020) have also
been explored for lightweight neural network architectures.
Compared to these previous approaches, we focus on dy-
namic networks with the switchable candidate design to
best reduce total computation without degrading prediction
accuracy.

Dynamic Networks Dynamic networks enable adaptive
computation for various input instances that have been con-
ducted for natural language tasks. Text skimming (Campos
et al., 2017; Hansen et al., 2019) learns to skip state up-

dates and shortens the effective size of the computational
graph. Dynamic jumping (Yu et al., 2018; Fu & Ma, 2018)
strategically skips some tokens without reading them, and
directly jumps to an arbitrary location. Early exiting for
pretrained models has been explored by previous literature.
RTJ (Schwartz et al., 2020), DeeBERT (Xin et al., 2020),
and FastBERT (Liu et al., 2020a) make early exiting deci-
sions based on confidence (or its variants) of the predicted
probability distribution and are therefore limited to classifi-
cation tasks. PABEE (Zhou et al., 2020) and BERxiT (Xin
et al., 2021) propose patience-based early exiting by exploit-
ing the layer information. Runtime Neural Pruning (Lin
et al., 2017), SkipNet (Wang et al., 2018b), and BlockDrop
(Wu et al., 2018) use reinforcement learning (RL) to decide
whether to execute a network module. Inspired by them,
we incorporate lightweight reinforcement learning to make
input-dependent decisions and build a diversified switch-
able candidate space. With the constrained optimization
approach, our method saves computational costs without
loss of accuracy.

3. Method

Our switchable decision (Figure 1) network focuses on
speeding up the inference time for an autoregressive lan-
guage generation model. Specifically, we suggest a general
recipe for the switchable decision: 1) construct the versatile
decision space, 2) utilize the input-dependent reinforcement
learning agent, and 3) propose the lexicographic (lexico)
optimization strategy.

Denote input 0 = (0g, - - - ,0,,). With a series of n tokens, a
transformer-based language generation model, M with L
layers, first embeds the tokens to form a matrix O, € R™*¢,
where e is the dimension of the embedding space. These
token representations then go through the encoders and
decoders of the language model. To speed up the infer-
ence time while maintaining similar high quality, we decide
whether each input data should skip one layer. This decision
problem grows exponentially as we increase the number
of layers. Moreover, because of the discrete nature of the
decision space, optimization becomes challenging. In this
section, we outline our unique design choices to accomplish
our goal and overcome optimization challenges.

3.1. Construct Discrete Decision Space

We propose learning the best configurations of (input, in-
ference paths) pair for each example using a switchable
decision network to speed up inference time. We consider
three search space candidates, namely, the attention layer,
the feed-forward layer, and query inputs after the first layer.
We now explain the details of each search space below.
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Figure 1. Overview of the dynamic network. Some notations are labeled along with corresponding components. ‘Layers’ refers to layers
within the auto-regressive generation model. ‘ATT” refers to the attention candidate, ‘FFN’ refers to the feed-forward candidate, ‘Text
Input’ refers to the token candidate, and ‘Decisions’ refers to the skipping decisions from the reinforcement learning agent. The green
color represents not skipping. The no-fill in the text input and the dashed line with the no-fill color box represents the skipping.

Attention Candidate. A key component of a transformer-
based language model is the attention layer. Zhang et al.
(2019) discover that some layers are redundant. To decide
whether to skip a certain layer, we model these decisions as a
sequence of i.i.d. Bernoulli random variables parameterized
by a policy network g. Let b; denote the switchable decision

of the I*" layer, defined as
with probability  g();

bl:{l 5
0 1—gO

where € R¢ denotes the input of the decision unit, and we
apply the first encoder layer output as . The policy network,
g, learns instance-specific probabilities of keeping the hid-
den representations of each layer. To perform skipping, we
sample from this distribution and broadcast the indicators,
b, to the input representations of attention layers.

. o ey
with probability

Feed-Forward Candidate. In the same spirit, the feed-
forward layers may contain redundant information. Thus,
we consider skipping these layers using the same approach
as that done in the attention. We decide whether to skip or
not based on the indicator bff“. The design of the policy
network is the same as that of the attention layer.

Token Candidate. In addition to skipping the layers, skip-
ping the tokens can also be an alternative way to save com-
putation costs. We create two token skipping strategies: @
skipping the last p% tokens and @ uniformly skipping p%
tokens. For the former, we set p to 10, 20, and 30. For
the latter, p is equal to 25, 33, and 50. To decide which
strategy to use, we optimize a categorical random variable
parameterized by a function h(-). The input of h(-) is the

same as ¢(+), and the output of A(-) is a distribution over all
six candidate decisions.

Encoder and Decoder Structure. Our interested architec-
ture contains encoders and decoders. For the encoders, we
apply attention skipping and feed-forward skipping together
with token skipping. For the decoders, since every token
is meaningful for the final outputs, we only apply attention
skipping and feed-forward skipping. When making deci-
sions, we sample from the outputs of our policy network,
and broadcast the decisions to the hidden representations of
each layer.

3.2. Reinforcement Learning Agent

Policy Network Architecture. Since we aim to speed
up the inference process, a simple design for the policy
network is adopted. We utilize a one-layer MLP with layer
normalization and ReLLU activation function. To output a
Binomial distribution over decisions, we apply the sigmoid
activation to the outputs of the network for attention and
feed-forward candidates. We use the softmax function to
output the distribution over the choices for token candidates.

Parameterization. During the training process, we sam-
ple from the decision distributions, which are parameterized
by the policy network. The distribution of the switchable de-
cisions for the layers can be represented as a 2 L-dimensional
Bernoulli distribution, which can be written as:

2L
() =90 —a0)'~, @)
=1
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where = {b2**}L | J{b™}L . Similarly, the distribution
of the token skipping decisions can be represented as a
categorical distribution, which can be formalized as:

J
n(a|) =[] 0"=7, 3)
j=1

where a denotes the choice of the skipping strategy, and
J indicates the total number of strategies. We apply seven
candidates in practice.

Reward. We define the reward function (Yang et al.,
2022bsa; Feng et al., 2023) as a trade-off between qual-
ity and computational cost. Given an inference path and a
data instance, the reward can be computed from the compu-
tation (estimated FLOPs). Intuitively skipping layers will
have high reward. We further refer quality as accuracy and
loss in the following way:

R(,a) = quality + Acomputation, 4

where quality is —loss, computation is the estimated
FLOPs (floating point operations), and A is a coefficient.
The overall loss function is defined as the expected value of
the reward:

J = Enr, R, a)], ®)

where 7 and 7 are defined in (2) and (3), respectively.

Optimization. To optimize our policy network, we apply
policy gradient to compute the gradient of .J, and update the
parameters of the policy network. We use a self-critical base-
line to reduce the variance of the gradients. The constraint-
optimization strategy is further applied on the quality and
computation. Details are in the next section.

During Inference. Unlike the training process, we do not
sample the skipping decisions during inference. Instead,
we choose the decisions which maximize the likelihood
function.

3.3. Constrained Optimization

Trade-off is a Problem. In the joint training of the main
network and the policy network, a trade-off between qual-
ity and computation is important. The linear combination
of multiple objectives is the most widely used approach.
However, the coefficient of the combination requires man-
ual tuning, and it is theoretically unsuitable for non-convex
functions. In this work, we consider constrained optimiza-
tion on trading off two objectives, with a special emphasis
on lexicographic (lexico) optimization.

Algorithm 1 Switchable Decision (SD)

1: Input: Text o. Auto-regressive generation model M
parameter w with learning rate oy, policy network pa-
rameter 6 with learning rate ;, number of iterations
T.
for t =0to7 do

w 4w — a;V(w),
0 is updated via Eqn (7),
end for

Our Equation. To optimize the trade-off between quality
and computation in Eqn (4), we propose to use lexicographic
optimization, in which the parameters are iteratively updated
as

Oi41 < 0p — e, (6)

where 7; > 0 is an adaptive step size and e; € R? is an
update direction to be chosen to balance the minimization
of f and constraint satisfaction on g. One of the objectives
(say f which is computation in our case) is of secondary
importance w.r.t. the other one (say g which is quality). The
design criterion for the constrained optimization is when
the constraint is not satisfied (i.e., q(6;) > c¢), the focus
becomes decreasing ¢ to satisfy the constraint as soon as
possible; in the meantime, f performs as a secondary ob-
jective indicating that f should be minimized to the degree
that it does not hurt the descent of q. Therefore, we apply
the following update rule to obtain such a goal:

0141 <+ 0;—y:(Vquality
+ AVcomputation (6;)), @)

where Vcomputation and Vquality are estimated
by score function, and the A\ can be computed as

A = $(0,)—Vquality(6;) " Vcomputation(6;) 0
- ||V computation(8;)]|? ’ ’

where ¢(6;) equals to g(6;) — ¢ and the c represents the
minimal loss.

max (

The Proposed Algorithm. Our switchable decision (SD)
with efficient candidate space and constrained optimization
is shown in Algorithm 1. We iteratively update the auto-
regressive model and the policy network in a single-loop
manner. The policy network parameter 6 is updated by
Eqn (6) in a direction to balance the optimization of quality
and constraint satisfaction on computation.

4. Experimental Settings

Table 1 shows the experimental data configuration.

4.1. Task and Evaluation Metrics

Summarization. We use CNN/DailyMail (Hermann et al.,
2015) and XSum (Narayan et al., 2018) to evaluate our
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method. CNN/DailyMail consists of 287,226 documents
for training, 13,368 documents for validation, and 11,490
documents for testing. XSum has 226,711 news articles
accompanied with a one-sentence summary, answering the
question “What is this article about?”. Following the splits
of Narayan et al. (2018), it contains 204,045 train, 11,332
dev, and 11,334 test. Following prior work (Lewis et al.,
2019), we use ROUGE (Lin & Hovy, 2003) as our primary
metric. We report the unigram ROUGEI (R-1) and bigram
ROUGE-2 (R-2) overlap to assess the informativeness, and
the longest common subsequence ROUGE-L (R-L) score to
assess the fluency.

Question Answering. The Stanford Question Answering
Datasets (SQuAD) v1.1 and v2.0 (Rajpurkar et al., 2016;
2018; Fan et al., 2020) are popular machine reading com-
prehension benchmarks. For the SQuAD v2.0 dataset, it
contains examples where the answer to the question cannot
be derived from the provided context. Similar to previous
settings (Devlin et al., 2018; Lewis et al., 2019), we use
concatenated question and context as input to the encoder of
BART, and additionally pass them to the decoder. We report
Exact Match (EM) and F1 score for evaluation (Lewis et al.,
2019).

Classification. The General Language Understanding
Evaluation (GLUE) benchmark is a collection of natural
language understanding (NLU) tasks. As shown in Table
1, we include Multi-Genre NLI (MNLI; (Williams et al.,
2017b; Zhang et al., 2021d)), Recognizing Textual Entail-
ment (RTE; (Dagan et al., 2005)), and Stanford Sentiment
Treebank (SST; (Socher et al., 2013)). The diversity of the
tasks makes GLUE very suitable for evaluating the general-
ization and robustness of our proposed method (Liu et al.,
2020b). Accuracy is adopted as our evaluation metric.

Task ‘ Dataset ‘ Train ‘ Val ‘ Test
Summarization CNN/DailyMail | 287.2K | 13.4K | 11.5k
XSum 204K | 11.3K | 11.3K

Question Answering SQuAD 1.1 87.6K | 10.5K | 9.5k
SQuAD 2.0 130.3K | 11.9K | 8.9K

RTE 2.5K 276 3k

Classification MNLI 393K 20K 20K
SST 67K 872 1.8K

Table 1. Dataset Configuration. The top block is for summariza-
tion, the middle block is for question answering, and the bottom
block is the classification tasks.

4.2. Implementation Details

Following Lewis et al. (2019), we take the pre-trained BART
model as the backbone and utilize the provided checkpoint
for finetuning on the downstream datasets. BART is a pre-
trained sequence-to-sequence model based on the masked

source input and auto-regressive target output, which con-
tains 12 layers of transformer encoder and 12 layers of
transformer decoder. Its embedding size is 1,024 and feed-
forward size is 4,096. We follow the hyper-parameters used
in Lewis et al. (2019). Specifically, in summarization, we
set the training steps as 50k and the number of warm-up
steps as 500. The max number of tokens and the update fre-
quency are set to be 2,048 and 4, respectively. The learning
rate is set to 3 x 10~°. For the question answering (SQuAD
1.1/2.0). We set the total number of updates and warm-up
updates as 5,430 and 326, respectively. The max number
of sentences is 3 per device with an update frequency of 2.
The learning rate is 1.5 x 1075, We refer the readers to Ap-
pendix A for classification hyper-parameter configurations,
and more details about the settings.

S. Experiments

We evaluate the performance of our switchable dynamic
network. In each table, we bold the best result within each
column block and the results of our method are obtained
with three trials to determine the variance. See Appendix A
for full results with error bars.

5.1. Summarization

Table 2 reports our results on two summarization datasets.
@ The top block displays the performance of baselines
on CNN/DailyMail and XSum datasets, and the bottom
block shows the results of incorporating the switchable dy-
namic networks. We report the results upon the BART
large setting in Lewis et al. (2019). @ Summaries in the
CNN/DailyMail tend to resemble source sentences and sum-
maries in XSUM are highly abstractive. Baseline mod-
els such as BART (Lewis et al., 2019), UniLM (Dong
et al., 2019), and BERTSUM (Liu & Lapata, 2019) do
well enough, and even the baseline of the first-three source
sentences is highly competitive for CNN/DailyMail. Our
method can reduce the computation cost while having little
or no drop on ROUGE. For example, we even have a 0.2
increase on R1 for CNN/DailyMail and a 0.1 increase on
R1 for XSum, while reducing 39% and 18% computation
costs, respectively. For the quality of the sentence gener-
ations, our method has almost outperformed all the base-
lines. Especially, for the CNN/DailyMail, we achieve better
ROUGE with less than two-thirds FLOPs cost, compared to
the original BART-large model (e.g., R1: 44.16 — 44.31,
RL: 40.90 — 41.01 on CNN/DailyMail). ® These results
further confirm that SD can work as an effective module
to be incorporated into the auto-regressive generation mod-
els. SD on improving the inference can also be seen as a
complementary module to works focusing on improving
pre-training components (Hou et al., 2022; Ge et al., 2022).
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Model CNN/DailyMail XSum

RIT R21 RLT FLOPs(%)} | RIT R2{ RL{T FLOPs (%)
Lead-3 4042 17.62 36.67 - 1630 1.60 11.95 -
UniLM 4333 2021 40.51 - - - -
BERTSUM | 42.13  19.60 39.18 - 38.81 16.50 31.27 -
BART 44.16  21.28 40.90 100 45.14 2227 3725 100
Ours large | 4431 21.18 41.01 61.1 4520 22.16 37.30 81.9

Table 2. Comparison to models on CNN/DailyMail and XSum.
ROUGE are reported for each model. ‘BART’ represents the
BART large model.

Comparison with inference reduction methods. We
adopt several methods from the conventional early-exiting
method (CALM; (Schuster et al., 2022)), Fast and Robust
EarlyExiting (FREE) (Bae et al., 2023), Pegasus (Shleifer
& Rush, 2020) (pruning and distillation) and DQ-Bart (Li
et al., 2022) (quantization and distillation) and compare
them with Ours (SD). @ In Shleifer & Rush (2020), it uti-
lizes the shrink and finetune methods: BART-student, Pega-
sus, and BART on CNN/DailyMail. @ In Li et al. (2022),
it uses quantization and distillation. It reports the BART
(8-8-8 6-1). The number at here represents the number of
bits for weights, word embedding, activations, the num-
ber of encoder layers, and the number of decoder layers.
The results shown in Table 3 demonstrate our switchable
decision achieves a good trade-off between quality and com-
putation. These results verify that our method contributes
to efficiency and accuracy, helping the generation model
to choose the inference path and candidates dynamically.
® Further, combining quantization or distillation method,
our effective method of improving the language generation
model can also be seen as a complementary and plug-in
module. We leave this as a future work.

Data ROUGE-L | FLOPs (%)
BART-student 41.01 93.1
Pegasus 40.34 93.1
DQ-Bart 40.05 18.2
CALM 40.54 80.5
FREE 40.69 76.8
Our Switchable Decision 41.01 61.1

Table 3. Comparison SD with different inference cost reduction
methods on CNN/DailyMail.

5.2. Classification

We further show the experimental results on the GLUE in
Table 4. The Multi-Genre NLI (MNLI; (Williams et al.,
2017b)), Recognizing Textual Entailment (RTE; (Dagan
et al., 2005)), and Stanford Sentiment Treebank (SST;
(Socher et al., 2013)) are included. We adopt several base-
lines from the existing literature. @ For BERT, following
Devlin et al. (2019), it introduces masked language model-
ing, which allows pre-training to learn interactions between
left and right context words. @ UniLM (Dong et al., 2019),

the baseline, fine-tunes BERT with an ensemble of masks,
some of which allow only leftward context. ® RoBERTa,
following Liu et al. (2019a), is pretrained with dynamically
changing the mask. @ For BART (Lewis et al., 2019), itis a
bi-directional encoder-decoder structure.

Table 4 first displays that SD yields a better trade-off be-
tween accuracy and computational efficiency. Ours shows
comparable performance over BART and a clear-margin
gain over other baselines, while sufficiently lower FLOPs.
For example, SD achieves 87.2% accuracy v.s. BART’s
87.0% accuracy with only 83.6% FLOPs. For the various
GLUE benchmarks, our dynamic network demonstrates the
strong capability of making skipping decisions for auto-
regressive generation models. It further verifies that our
method can work for different datasets and can generalize
to different input types and fields.

Model MNLI RTE SST
m/mm7T  FLOPs (%) ] | AccT FLOPs (%) ] | AccT FLOPs (%) |

BERT 86.6/- - 70.4 - 93.2 -

UniLM 87.0/85.9 - 70.9 - 94.5

RoBERTa | 90.2/90.2 - 86.6 - 96.4 -

BART 89.9/90.1 100 87.0 100 96.6 100

Ours 89.7/90.0 82.4 87.2 83.6 96.6 80.7

Table 4. Performance on GLUE. We report the accuracy. All lan-
guage models here are large size. ‘m/mm’ and ‘Acc’ denotes
accuracy on matched/mismatched version MNLI and accuracy,
respectively.

5.3. Question Answering

For both SQuAD vl1.1 and v2.0, following Lewis et al.
(2019), we feed the complete documents into the encoder
and decoder, and use the top hidden state of the decoder
as a representation for each word. This representation is
used to classify the token. Table 5 shows our experiment
results. The BART large is used as the primary baseline, and
the recent baselines (Devlin et al., 2019; Dong et al., 2019;
Liu et al., 2019b) are reported. We load the official check-
point from Fairseq with the official pre-processed SQuAD
data. On question answering, by dynamically skipping the
candidates from attention layers, feed-forward layers, and
input tokens, our model achieves a similar EM and F1 score
as BART. Different from the above tasks, here the input is
concatenated question and context and additionally passed
to the decoder. Although the input is organized in different
formats, it is interesting to see the consistent computation
cost improvement of our proposed switchable decision in
question answering. It further demonstrates that SD can be
utilized in general NLP tasks.

6. Analysis

Can we use the proposed dynamic network with the
different auto-regressive generation models? As dis-
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Model SQuAD 1.1 SQuAD 2.0
EM/F1T FLOPs (%) | EM/EIT FLOPs (%) 1
BERT 84.1/90.9 - 79.0/81.8 -
UniLM - - 80.5/83.4 -
RoBERT: | 88.9/94.6 - 86.5/89.4 -
BART 88.8/94.6 100 86.1/89.2 100
Ours 88.7/945 80.5 86.0/89.3 833

Table 5. Results across different strategies on SQuAD v1.1 and
v2.0. Answers are text spans extracted from a given document
context. >

cussed in Section 3, our proposed method targets the auto-
regressive generation model. Thus, can our method be
adapted to other auto-regressive generation models? We
select the GPT-2 (Radford et al., 2019) base and T5 (Raffel
et al., 2020) base to study the performance after adapting our
proposed switchable decisions. The results are presented in
Table 6. It indicates our method is insensitive to different
generation models. This confirms our discussion in Sec-
tion 3 that SD can serve as an efficient alternative dynamic
network for versatile generation models. We also analyze
the impact of making decisions based on different hidden
representations. More details about LLaMA (Touvron et al.,
2023) models are included in Appendix A.

Data ROUGE FLOPs (%)
BART | 44.16/21.28/40.90 100
+Ours | 44.31/21.18/41.01 61.1
GPT-2 | 37.55/15.53/25.81 100
+Ours | 37.76/15.68/25.93 74.5
T5 42.05/20.34/39.40 100
+Ours | 41.98/20.38/39.61 74.5

Table 6. The proposed method for different generation models on
CNN/DailyMail.

What are the differences between encoder-only, decoder-
only, and token-only architecture search space? We
test if our results are sensitive to the choice of architectures:
encoder-only, decoder-only, and encoder-decoder. We create
the following scenarios: @ For encoder-only, we incorporate
the attention and feed-forward as the skipping candidates. @
For decoder-only, similarly, the attention and feed-forward
are included. @ For token-only, the token candidate is uti-
lized. Then we compare these three designs with SD and
BART large to see the impact of incorporating our designed
decision space into these different model architectures. As
shown in Table 7, we observe distinct FLOPs (reducing
10%) saving by only adding our skipping attention and feed-
forward strategies for encoder-only and decoder-only. By
only including the token skipping for the encoder-decoder
structure, we observe the larger FLOPs (reducing 29%) sav-
ing while delivering the comparable ROUGE to BART. We
refer the readers to Appendix 6.1 for the detailed skipping

percentage of each candidate. These results confirm our
analysis and motivation for the switchable decision that us-
ing a combination of all these architectural search spaces
comes to the best efficiency and accuracy trade-off.

Architecture ‘ ATT ‘ FFN ‘ Token ‘ FLOPs (%) ‘ ROUGE

BART 100 44.16/21.28/40.90
Encoder-Only 4 v 91.9 44.21/21.32/40.95
Decoder-Only | v v 90.3 44.13/21.08/40.86
Token-Only v 71.5 44.09/21.26/40.92
Ours 4 v v 61.1 44.31/ 21.18/41.01

Table 7. Results of skipping strategies on different architecture
spaces for CNN/DailyMail. BART (Izacard & Grave, 2021) large
model is presented.

Ablation studies on the components in SD. We conduct
the ablation study to examine the role of constrained opti-
mization. For ablation, instead of automatically searching
the trade-off between the quality and computation, we manu-
ally set the \ in Eqn (7) as 0.2, 0.5, 0.8. We also include the
random selection strategy. The random selection strategy
is not learning switchable decisions and would not dynam-
ically assign computation for each data instance. @ Table
8 shows that the constrained optimization of our method
brings clear benefits. @ We find that without CO, * CO’ with
different manually tuned A value shows an unstable trade-
off between the ROUGE and FLOPs across all A values,
indicating that manually tuned A value can not bring both
optimized quality and computation together. @ Empirically,
we randomly select a policy from our decision space can-
didates and use the same other parameters. These result in
a degradation in performance and lower FLOPs reduction.
It demonstrates the necessity and effectiveness of the con-
strained optimization for the switchable candidate set in SD
structure.

Data | ROUGE | FLOPs (%)
BART 44.16/21.28/40.90 100
Random 41.77/19.02/38.72 753
Ours 44.31/21.18/41.01 61.1
-CO, A=0.2 | 44.12/21.30/40.88 77.8
-CO, A= 1.0 | 42.89/21.02/40.57 68.5
-CO, A= 15 | 41.35/19.87/38.39 494

Table 8. Comparison of different A values for the manually tuned
trade-off between computation and quality vs. Ours. ‘CO’ denotes
constrained optimization.

Efficiency and time. We provide the parameter sizes, av-
erage GPU memory per device, per step training time, and
inference time comparisons between the baseline and SD
during the finetuning. Experiments in this part are per-
formed on eight Tesla V100 GPUs. @ Table 9 shows that
SD keeps the parameter size at the same level as the BART
large during finetuning. The GPU memory per device and
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training time of SD are slightly higher (2.7% for memory
and 1.6% for running time) than BART. SD gives the best
inference FLOPs, outperforming BART while keeping the
comparable ROUGE score and running time. @ For the
inference time, we evaluate our method and BART large
on CNN/DailyMail following the same setting and device
with batch size 1. For each iteration, 5.1 seconds (Ours) vs.
10.3 seconds (BART). Our dynamic network demonstrates
the strong capability of making skipping decisions. & With
the constrained optimization and the reinforcement learn-
ing agent, our switchable decision is still computationally
productive as the design of our optimization and agent (e.g.,
applying one-layer MLP for policy network) has almost
negligible finetuning computational cost.

Model ROUGE 1 Params | | GPU memory | | s/step) | IT |
BART | 44.16/21.28/40.90 406M 16.8G 1.20 10.3
Ours 44.31/21.18/41.01 423M 17.6G 1.48 5.1

Table 9. Results of parameter size, GPU memory per device, and
step time for BART and ours finetuning on CNN/DailyMail.
‘s/step’ represents training step time (second/per step).‘IT’ rep-
resents inference time (second) for each iterations.

6.1. Contributions of Search Space Candidates.

To further identify the contributions of our search space
candidates for efficiency improvements and inference ac-
celeration, we present the details skipping percentage of
each candidate for CNN/DailyMail, SQuAD 1.1, and SST
in Table 10. For CNN/DailyMail, we observe around 8%
attention skipping of total attention, 11% feed-forward skip-
ping of total feed-forward, and 29% token skipping of total
tokens. The similar skipping percentage holds for question
answering. However, we have seen an obvious contrast in
the token skipping percentage in classification tasks. The
key observation is that the skipping percentages for tokens
are high for both CNN/DailyMail and SQuAD 1.1. In ad-
dition, our method generally takes around 5K iterations
for the reinforcement learning algorithm to converge on
CNN/DailyMail. This confirms our conjecture in Section
5.1. For summarization and question answering tasks, the
first few parts of inputs are more representative. Thus, it
perfectly serves as the candidate for our switchable network
to make the skipping decisions.

Dataset | ATT | FFN | Token
CNN/DailyMail | 8.50% | 11.13% | 28.75%
SST 13.30% | 13.54% | 7.18%
SQuAD 1.1 10.21% | 11.93% | 9.02%

Table 10. Skipping percentage of each candidate. For example,
8.50% indicates that there are 8.50% of total attention skipped.

The impact of making decisions based on different hid-
den representations. In Section 3.1, we consider three
skipping candidates’ hidden representations (attention, feed-
forward, and query) after the first layer as the input for our
reinforcement learning agent to make switchable decisions.
Here, we demonstrate that using hidden representations
from different layers comes to the same results, and there-
fore we pick the easiest one. We set up a baseline here, in
which whether to skip the following layer is dependent on
the nearby previous layer outputs. We experiment on Ours
(based on the output from the first layer) and Ours Layer
Wise (layer-wise decisions based on the output from the
nearby previous layers). The difference between these two
cases is small in Table 11. The layer-wise design requires
more computation as it needs to make decisions at each
layer. Therefore, it further demonstrates that the design of
ours is capable of making skipping decisions and imposing
less computational cost.

Data \ ROUGE | FLOPs (%)
Ours 44.31/21.18/41.01 61.1
Ours Layer Wise | 44.38/21.22/40.97 61.8

Table 11. Comparison of different layer-wise decision of SD on
CNN/DailyMail. ‘Ours’ represents the decision based on the hid-
den after the first layer. ‘Ours Layer Wise’ represents the decision
based on the hidden representation from the nearby previous layer.

7. Conclusion

Our work demonstrates the benefits of introducing a switch-
able decision of the dynamic network. The proposed method
can dramatically increase the inference efficiency and still
enable the model performance. Noticeable FLOPs saving
and consistent performance are observed across summariza-
tion, question answering, and classification benchmarks. We
further conduct a detailed study with the proposed switch-
able strategy in different settings, e.g., comparing with dif-
ferent architecture search spaces, providing more evidence
for making decisions based on hidden representations, and
verifying the impact of components. To summarize, the
proposed SD is effective and general, with the potential to
be incorporated into existing generation models for various
NLP tasks.
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Impact Statement

The gaps and biases between training and testing data can be
significant in real-world settings. Thus, the models may lead
to poor performance and unintended consequences on the
unseen data. To mitigate these potential issues and reduce
the impact of bias in the data, it is essential to utilize the
techniques such as data preprocessing, augmentation, and
regularization. In addition, the usage of environmental and
computational resources should also be considered. This
would further lead to the usability and accessibility of the
models for different user groups.
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A. Experimental details
A.1. Full Results With Error Bar

We report the full results of our method with the error bar for
summarization and question answering in Table 12 and 14,
respectively. The full result of classification is demonstrated
in Table 13.

XSum
RL T

CNN/DailyMail
R2T RLT
17.62
2021
19.60

Model

RTT
2042
4333
4213
44.16 21.2: 40.90
4431401 21.18+02  41.0140.2

RIT
1630

R2T

FLOPs (%) |
B 1.60

FLOPs (%) |

Lead-3
UniLM
BERTSUM
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Gurs large
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4051
39.18

11.95

- 38.81 16.50 31.27
100 45.14 2227 37.25

2. 100
61.1 4520:0.1  22.16+£0.2  37.30+0.2

81.9

Table 12. Full results on CNN/DailyMail and XSum. ROUGE
is reported for each model. ‘BART’ represents the BART large
model.

MNLI
m/mm T FLOPs (%) |
86.6/- -
87.0/85.9
90.2/90.2
89.9/90.1
89.7+0.2/90.0+0.3

RTE
FLOPs (%) |

SST
Model FLOPs (%) |
BERT -
UniLM
RoBERTa
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70.9
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87.0

87.2+0.1
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94.5
96.4
96.6

96.6+0.2
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100
83.6

100
82.4

Table 13. Full performance on GLUE. We report the accuracy of
each dataset. All language models here are large size. ‘m/mm’ and
‘Acc’ denotes accuracy on matched/mismatched version MNLI and
accuracy, respectively.

Model SQUAD 1.1 SQUAD 2.0

EM/F1 1 FLOPs (%) | EM/FL T FLOPs (%) |
BERT 84.1/90.9 - 79.0/31.8 B
UniLM /- 80.5/83.4
RoBERTa 88.9/94.6 - 86.5/89.4 -
BART 88.8/94.6 100 86.1/89.2 100
Ours 88.720.3/945204 305 86.020.3/389.310.3 833

Table 14. Full results across different strategies on SQuAD vl1.1
and v2.0. Answers are text spans extracted from a given document
context.

A.2. Experimental Datasets

Summarization. CNN/DailyMail contains news articles
and associated highlights as summaries. Following the
standard splits from Hermann et al. (2015) for training,
validation, and testing, we have 90,266/1,220/1,093 CNN
documents and 196,961/12,148/10,397 DailyMail docu-
ments, respectively. The sentence is split by using the Stan-
ford CoreNLP toolkit (Manning et al., 2014). For XSum
(Narayan et al., 2018), summaries are professionally writ-
ten by the authors of the documents. We also use the pre-
processing and data splits from (Narayan et al., 2018; Yang
etal., 2024).

Question Answering. Stanford Question Answering
Dataset (SQuAD) (Rajpurkar et al., 2016; 2018; Zhang
et al., 2021c; 2022a) is an extractive question answering
task, consisting of questions posed by crowdworkers on
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a set of Wikipedia articles. The answers, given the ques-
tions, are text span from the given reading passage. The
SQuAD 1.1 contains around 100,000 question-answer pairs
on about 500 articles. The SQuAD v2.0 dataset includes
unanswerable questions about the same paragraphs.

Classification. GLUE (Wang et al., 2018a; Zhang et al.,
2022b) comprises a collection of text classification tasks
meant to test general language understanding abilities. We
adopt the three datasets for our experiments: natural lan-
guage inference (MNLI (Williams et al., 2017a) and RTE
(Dagan et al., 2005)) and sentiment analysis (SST-2 (Socher
et al., 2013)).

A.3. Experimental Settings

For summarization, we follow the setting in (Lewis et al.,
2019) and initialize our models with the pretrained BART
large checkpoint. The checkpoint is from the Fairseq library
3. TS (Raffel et al., 2020) is also used in Section 6. We adopt
the T5 base from the HuggingFace Transformer library*.
Following Lewis et al. (2019) , the Adam optimizer (Kingma
& Ba, 2014; Liu et al., 2021; Zhang et al., 2024) is utilized
for optimizing the model parameter with the learning rate
3 x 10~°. The training step is 50k and the warmup step is
500. Both dropout and attention dropout are set as 0.1. For
classification, the detailed training settings are presented in

Table 15.

Model | MNLI RTE SST-2
NC 3 2 2
LR 5x107% | 1 x107% | 5x 10~
BSZ 128 32 128
TS 30,968 1,018 5,233
WS 1,858 61 314

Table 15. Experiment setting for MNLI, RTE, and SST-2 (LR:
learning rate, BSZ: batch size, NC: number of classes, TS: total
number of training steps, WS: warm-up steps).

Data ROUGE FLOPs (%)
BART 44.16/21.28/40.90 100
+Ours | 44.31/21.18/41.01 61.1
GPT-2 37.55/15.53/25.81 100
+Ours | 37.76/15.68/25.93 74.5
TS5 42.05/20.34/39.40 100
+Ours | 41.98/20.38/39.61 74.5
LLaMA -/-146.68 100
+ Ours -/-146.73 77.6

Table 16. The proposed method for different generation models on
CNN/DailyMail.

*https://github.com/facebookresearch/
fairseg/tree/main/examples/bart

*nttps://github.com/huggingface/
transformers
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https://github.com/huggingface/transformers

Switchable Decision: Dynamic Neural Generation Networks

A.4. More comparisons

As discussed in Section 6, We select the GPT-2 (Radford
et al., 2019) base and T5 (Raffel et al., 2020) to study the
performance after adapting our proposed switchable deci-
sions. We also included LLaMA (Touvron et al., 2023) as
an additional comparison in Table 16.
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