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Abstract
We explore the idea of aligning an AI assistant by inverting a model of users’
(unknown) preferences from observed interactions. To validate our proposal, we
run proof-of-concept simulations in the economic ultimatum game, formalizing
user preferences as policies that guide the actions of simulated players. We find
that the AI assistant accurately aligns its behavior to match standard policies from
the economic literature (e.g., selfish, altruistic). However, the assistant’s learned
policies lack robustness and exhibit limited generalization in an out-of-distribution
setting when confronted with a currency (e.g., grams of medicine) that was not
included in the assistant’s training distribution. Additionally, we find that when
there is inconsistency in the relationship between language use and an unknown
policy (e.g., an altruistic policy combined with rude language), the assistant’s
learning of the policy is slowed. Overall, our preliminary results suggest that
developing simulation frameworks in which AI assistants need to infer preferences
from diverse users can provide a valuable approach for studying practical alignment
questions.1
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Figure 1: Illustration of Constitutional AI (CAI) and Social Contract AI (SCAI) in the ultimatum
game [Harsanyi, 1961]. In the ultimatum game, one player (the proposer) proposes a division of
a pot of money (e.g., $10) with another player (the responder). The proposer offers a share, and
the responder can either accept or reject the offered share. If the responder accepts, the money is
distributed as proposed; if they reject it, neither player receives anything. [a] CAI uses explicit group
norms such as a constitution or content policy to guide the AI assistant. [b] SCAI inverts a model
of users’ preferences from observed interactions and uses the inferred social contract as guiding
principle for the AI assistant.

1 Introduction
Developing scalable methods for effectively steering AI systems is a key challenge for alignment
research [Bowman et al., 2022]. To address this challenge, recent work has introduced the Constitional
AI (CAI) paradigm which uses human-written constitutions comprised of explicit group norms (i.e.,
“do not be hateful”) as guiding principles for AI assistants [see Fig. 1a; Bai et al., 2022b]. While
these methods provide effective means to align AI assistants, they also face challenges. For example,
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assessing the robustness of a constitutional principle can be challenging in real-world applications of
language models, especially when a user’s request is consistent with more than one task [Tamkin
et al., 2022], or when the user requests the assistant to perform a task that is outside of the assistant’s
training distribution [Amodei et al., 2016]. Furthermore, constitutional principles may reflect an
inadvertent bias towards the creator’s preferences, which can lead to systematic inequalities in the
assistant’s behavior [Blasi et al., 2021].

Given the inherent ambiguity and diversity in real-world applications of language models, it is
desirable to have an AI assistant capable of dynamically adapting its local governing principles to
align with varying group norms or preferences [Leike, 2023]. Motivated by this observation, we
explore Social Contract AI (SCAI): a method for aligning AI assistants with implicit group norms
(Fig. 1b). Unlike CAI, which operates on a set of fixed, formal rules or constitutional principles,
SCAI aims to infer group norms from observed interactions among users. As such, the only fixed
principle in SCAI is the meta-principle of finding out what the group norms or preferences are in
order to align the AI assistant’s behavior with users.

To evaluate the potential of SCAI, we conduct proof-of-concept simulations using the ultimatum
game2 (see Fig. 1), formalizing group norms (i.e., user preferences) as policies that guide the actions
of simulated players. We ground SCAI in the context of Bayesian (inverse) reinforcement learning
[Ghavamzadeh et al., 2015, Ramachandran and Amir, 2007] and introduce a verbal reinforcement
learning algorithm [Shinn et al., 2023, Goodman, 2023] which uses game interactions to revise the
AI assistant’s policy. Overall, our contributions are as follows: (1) We introduce Social Contract AI
(SCAI), a method for aligning AI assistants with implicit group norms; (2) we present a simulator
for implementing SCAI using verbal reinforcement; and (3) we validate SCAI by comparing the
alignment between the shares offered by the AI assistant and those proposed by simulated users in
the ultimatum game.

2 Related Work
Social Simulation. Large Language Models (LLMs) are increasingly used in simulation-based
research and social games [Park et al., 2023, Aher et al., 2022, Gandhi et al., 2023]. For example,
Park et al. [2023] introduced a sandbox environment inhabited by generative agents that simulate
daily human activities, allowing for the study of emergent social behaviors. Such simulation-based
approaches provide a useful framework for side-stepping issues related with reinforcement learning
from human feedback (RLHF) [Ouyang et al., 2022] such as reward misspecification [Pan et al.,
2022] or reward hacking [Amodei et al., 2016] by shifting the responsibility of supervising AI
to simulated human agents whose capabilities and incentives are defined within the simulation.
Moreover, simulation-based approaches can generate synthetic datasets which can be leveraged
for downstream fine-tuning of models. For example, Liu et al. [2023] introduced StableAlign,
an algorithm which is trained on data generated through a sandbox environment where simulated
language agents are tasked with providing preference ratings when discussing controversial societal
questions sourced from HH-RLHF. This approach has resulted in competitive performance on
alignment benchmarks such as helpful, honest, and harmless (HHH) [Bai et al., 2022a]. Our work
builds on these findings and uses simulated social interactions to study the alignment of an AI
assistant.

Social Contracts and Virtual Bargaining. Much of human interaction is guided by implicit norms
or informal agreements (i.e., social contracts) rather than a set of fixed, formal rules or constitutional
principles [Ostrom, 1990, Krupka and Weber, 2013, Malle et al., 2020]. Recent work has formalized
some of these observations within the context of virtual bargaining, a process in which implicit
agreements are revised in ways similar to actual bargaining between people [Misyak et al., 2014,
Chater, 2023]. Specifically, rather than having a predefined set of preferences or agreement, people
construct their agreements and preferences dynamically based on the context and actions of others.
This involves mental simulations that consider not only individual preferences but also those of other
parties, facilitating a form of “virtual” negotiation even before any actual interaction occurs. Building
on this idea, Levine et al. [2023] proposed that humans construct their preferences by inverting
a model of agreement, that is, inferring environmental conditions and other people’s preferences
from observed or simulated interactions [see also Shum et al., 2019]. Motivating SCAI as a form

2Due both to its simplicity and its ability to capture much of the psychology of negotiation, the ultimatum
game has been a mainstay of cooperative game theory since at least the mid-twentieth century [e.g., Harsanyi,
1961, Aher et al., 2022]
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Figure 2: Illustration of SCAI in the ultimatum game. Given a meta-principle, the AI assistant
dynamically writes a new policy at the start of each training epoch to steer its actions throughout the
game. Upon completion by all users and the assistant, game interactions are analyzed and fed back
into the assistant to write a new policy that aligns with the meta-principle’s objective. Importantly, the
AI assistant does not have access to the meta-principle or past game interactions while engaging in the
game. This is achieved by using one language model to revise the policy based on the meta-principle’s
objective, and instantiating an additional language model for each interaction the assistant has within
the game. See App. A, for technical details.

of inversion of agreement, we explore the possibility of aligning an AI assistant with a group by
inverting a model of users’ preferences from observed game interactions.

3 Aligning AI Assistants with Implicit Group Norms
Preliminaries. To empirically explore the potential of SCAI, we developed a simulator that uses
verbal reinforcement (“metaprompt”) [Goodman, 2023, Shinn et al., 2023, Yao et al., 2023, Yang
et al., 2023] to dynamically rewrite the AI assistant’s local governing principles to align with users’
preferences. We ground this inference problem in the context of Bayesian (inverse) reinforcement
learning [Ghavamzadeh et al., 2015, Ramachandran and Amir, 2007], where the environment is
provided by the task at hand—here, a modified version of the ultimatum game (see Fig. 2). We
represent users’ preferences (i.e., the shared group norm(s)) as a shared policy, such as “be selfish
when making offers” or “be altruistic when making offers”. Each user is instantiated as a separate
language model whose actions are determined by the shared policy. The AI assistant’s goal is to learn
this shared policy from observed game interactions. Unlike users, whose policy is set at the beginning
of the game and remains fixed across training epochs, the AI assistant is seeded with a random policy
and refines its policy after each training epoch to meet the meta-principle’s objective. See App. A, for
technical details.

Evaluation Metrics We run simulations with three standard policies from economics and evolutionary
game theory [Smith, 1982]: selfish, altruistic, and fair. Our primary evaluation metric is the offered
share3, measured as a percentage of the total amount that an agent (user, AI assistant), acting as
player 1 (the proposer), offers to share with player 2 (the decider). Using this metric, we can first
assess whether a policy such as “be selfish when making offers” results in selfish offers that benefit
the proposer more than the responder (e.g., a 9:1 split of $10) by observing the offers made by users.
This sanity check is important for determining whether users’ observed offers align with the (latent)
policy the assistant aims to learn. Further, we can use the assistant’s offered shares to explore the
following research questions: (1) alignment: Can the AI assistant learn a policy from observed game
interactions that results in offers matching the offers made by users? (2) generalization: Does the AI
assistant’s learned policy generalize to an out-of-distribution (OOD) setting in which the assistant is
exposed to a potentially controversial currency not present during training (e.g., grams of medicine
instead of dollars)? (3) inconsistency: Does inconsistent use of language (e.g., an altruistic policy
combined with rude language) affect the assistant’s learning of users’ shared policy?

Simulation Setup. We ran 20 independent simulations using gpt-4-0314 [OpenAI, 2023] with a
temperature of 0 for each of the unique settings explored below. Each simulation ran for five training
epochs. We varied the number of user and assistant interactions within each run of the ultimatum game

3We also collected data on accept/reject behaviors and computed the overall utility for both users and the AI
assistant. We will present these evaluation metrics in further extensions of the present work.

3



[c] Inconsistency

[b] Generalization

[a] Alignment

Mixed Group NormsOne Group Norm Policy Illustration

Prioritize the well-
being of others without 
taking any share for 
oneself... 

One Group Policy

Run 1: Be altruistic 
when dealing with 
apples...

Run 2: Be selfish when 
dealing with apples...

Mixed Group Policy

Rude Manners Sycophantic Manners

Rude Altruistic

Example Interaction

Out-of-DistributionIn-Distribution

Be altruistic in resource 
distribution, meaning 
your priority is to give 
others the maximum 
benefit...

Prior

Prioritize self-interest 
while accepting 
minimal gains for 
others...

Tested Policy

Policy Illustration

Player
User

AI Assistant

Policy
Altruistic

Selfish

Fair

Sycophantic Selfish 

Accept, 
you !@#! 

1:9, you 
!#$%!

User

User

Accept, 
you <3;) 

10:0, 
you <3!

User

User

✏AI

✏AI

AI

AI

Figure 3: Simulation results (refer to main text for details). Error bars represent 95% confidence
intervals of the mean across 20 independent simulations. [a] The AI assistant learns a policy resulting
in offered shares aligning with the offers of users, both in a one-group norm (left panel) and a
mixed-group (middle panel) norm setting. [b] Testing a learned selfish policy in an out-of-distribution
setting (middle panel) reveals different generalization behaviors compared to an in-distribution setting
(left panel). [c] Inconsistent use of language affects the learning of an altruistic policy paired with
rude manners (left panel), as well as a selfish policy paired with sycophantic manners (middle panel;
see Tab. A-2 for examples of manners).

and present results from simulations with 8 user–user interactions and 2 assistant–user interactions
(i.e., one interaction in which the assistant is the proposer, and one interaction in which the assistant
is the responder) in Fig. 3 (Fig. A-1 includes an additional example of 8 assistant–assistant and 2
assistant–user interactions). Unless otherwise specified, we vary currencies and amounts randomly
between simulations.

3.1 Simulation Results
Sanity Checks. We find that the shares offered by users correspond to the expected behavior under a
given policy. For instance, users following a selfish policy consistently make offers in which they
propose to share nothing (i.e., 0%) of the total amount, while altruistic users show the opposite
behavior, proposing to share 100% (see Fig. 3a, left panel). We note that the lack of variation in users’
offers can be attributed to a temperature of 0 which lead to deterministic actions across users. This
choice was intentional to control for potential effects of simulation noise on the assistant’s ability to
learn the latent policy. We will explore the impact of noise in users’ actions in future extensions of
our work.

Alignment. To examine whether the assistant’s offered shares align with the offers of users, we
explored settings with both one (i.e., every user has the same policy) and mixed group norms (i.e.,
proportions of selfish versus altruistic norms varied between users). For the one-group norm setting
(Fig. 3a, left panel), we observe that the assistant’s offered shares closely align with users’ offers
after just one revision of the assistant’s initial (random) policy. An example of a learned policy that
represents an altruistic group norm is displayed in the right panel of Fig. 3a. 4 Overall, findings

4The AI assistant’s offered shares start close to fair due to the random seed combined with GPT-4’s tendency
to default towards fair offers unless explicitly prompted otherwise.

4



from our first simulation suggests that, in the present setting, the AI assistant accurately learns the
latent policy guiding users’ interactions. The results from our mixed-group norm showed that the
assistant’s offered shares converged to the distribution of offers expected from the distribution of
policies present in the group. Specifically, we find that for a group with 80% selfish and 20% altruistic
norms, approximately 80% of runs yield selfish policies, while 20% result in altruistic policies for
the AI assistant (Fig. 3a, middle panel; see right panel for example policies learned in two of the
20 runs). We observe a similar convergence pattern for groups with 20% selfish and 80% altruistic
norms, as well as 50% selfish and 50% altruistic norms. These findings suggest that the assistant can
learn a distribution over policies (across simulation runs) that aligns with the distribution of policies
observed in the user group. An important extension could be to prompt the assistant to learn multiple
policies within a given run (instead of learning a single policy) to see if the assistant can recover the
distribution of user policies within a run rather than only matching the distribution across runs.

Generalization. Next, we investigated if the AI assistant’s learned policies generalize to out-of-
distribution (OOD) scenarios in which the assistant is exposed to a potentially controversial currency
not present during training (in the example shown in Fig. 3b, we train on dollars and test on grams of
medicine).5 The left panel in Fig. 3b shows that testing a selfish policy results in selfish offers in-
distribution (i.e., testing on dollars), whereas OOD offers were strongly influenced by the assistant’s
prior, which we here arbitrarily set to altruistic. This finding is interesting because the only difference
in the assistant’s prompts between in-distribution and OOD runs was the use of a different currency
not present during training (i.e., grams of medicine instead of dollars).

Inconsistency. To examine the effect of inconsistency, we explored two specific cases of inconsistent
use of language (Fig. 3c). Here, we observed that when the manner in which users communicate
their proposals (e.g., rude) conflicts with the expectations set by a given policy (e.g., altruistic), the
assistant still learns a policy that results in similar offers to those of users; however, convergence is
slower and fails to fully match the offered shares of users within five training epochs (Fig. 3c, left
panel). Changing from rude to sycophantic manners and setting users’ policies to selfish had a similar
effect on the assistant’s learning of the selfish policy (Fig. 3c, right panel).

4 Discussion
In this paper, we proposed Social Contract AI (SCAI), a method that combines simulation [Park
et al., 2023, Liu et al., 2023] with verbal reinforcement techniques [Goodman, 2023, Shinn et al.,
2023, Yao et al., 2023, Yang et al., 2023] to align an AI assistant with user preferences. By grounding
our work within the formal context of the ultimatum game [Aher et al., 2022, Harsanyi, 1961], we
formalized preferences (i.e., the shared group norm(s)) as policies that guide the actions of simulated
players and measured alignment through the shares offered by the proposing player. Through our
proof-of-concept simulations, we showed that the AI assistant can accurately learn policies to align
its behavior with users. Additionally, we showed that the assistant’s learned policies lack robustness
and exhibit limited generalization in an out-of-distribution setting when confronted with a currency
that was not included in the assistant’s training distribution; moreover, learning from users using
inconsistent (or contradictory) language slowed learning of the group’s policy.

Social Impacts Statement. While our work is at an early stage, we believe that SCAI addresses
an important non-technical alignment challenge highlighted in previous work: “figuring out what
the group preferences are” [Leike, 2023]. Specifically, rather than having a team of researchers
write a model’s content policy or constitution, we propose to have an AI assistant learn group norms
and preferences through observation and active participation in interactions with simulated users.
This approach allows for (1) the study of the kinds of group norms that emerge under varying
conditions; (2) assessing the flexibility of learning such group norms across potentially inconsistent
(or ambiguous) tasks; and (3) studying the robustness of group norms as guiding principles for the AI
assistant in out-of-distribution settings. More generally, scaling up simulation frameworks—where
an AI assistant must infer the (unknown) preferences of diverse users—may provide insights into
designing more democratic and representative guiding norms for AI assistants [Zaremba et al., 2023].

5We further explored whether varying out-of-distribution amounts (e.g., training with amounts < 1,000
and testing with amounts such as 2. Billion) affected generalization behavior and found similar effects on
offered-shares. For exploratory purposes, we also ran a condition in which we asked the assistant to provide
a reason for its offered shares, both in in-distribution and out-of-distribution test runs; see Tab. A-1, for an
example.
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A Problem Formulation

As this paper focuses on the use of LLM-based assistants to help uncover implicit user/group norms
in tasks via natural language dialogue, we expect states and actions of the corresponding decision-
making problem to represent natural language prompts/queries and responses. For simplicity, if
V denotes a fixed, finite vocabulary of tokens, then L = V+ denotes the space of all possible
natural language utterances consisting of at least one token in V that may be consumed as input or
produced as output to the LLM. Consequently, the state space and action space of any user task are
both in terms of natural language: S,A ⊆ L. While singular tasks have traditionally been studied
in the reinforcement-learning literature [Sutton and Barto, 1998, Kaelbling et al., 1996, Littman,
2015] and formalized via the classic Markov Decision Process (MDP) [Bellman, 1957, Puterman,
1994], the notion of agents striving to achieve success across multiple tasks or goals is also well-
studied [Kaelbling, 1993, Schaul et al., 2015] and is traditionally captured by the Contextual MDP
(CMDP) formalism [Brunskill and Li, 2013, Hallak et al., 2015, Modi et al., 2018].

Specifically, a CMDP is given by M = ⟨C, χ,S,A,R, T , µ, γ⟩ where each possible goal or task of
interest is characterized by a context c ∈ C which is sampled at the start of each episode according to
the distribution χ ∈ ∆(C); it may be helpful to think of C ⊆ L×Rn such that a context c ∈ C can be
interpreted as some natural language description coupled with numerical features about the task and
users. Naturally, one expects the nature of the task and the behavior of the user(s) interacting with
the agent to influence its experiences. Formally, this is captured by context-sensitive variant of the
traditional MDP components, allowing context to create variation in rewards R : C × S ×A → R,
transitions T : C × S ×A → ∆(S), and initial states µ : C → ∆(S). Within a single episode where
a context c ∼ χ is randomly sampled, it may be easier to simply think in terms of the resulting MDP
the agent interacts with for the duration of the episode: Mc ≜ ⟨S,A,Rc, Tc, µc, γ⟩. An agent’s
interaction within MDP Mc unfolds as described above with the caveat that the agent itself employs
a contextual policy π : S × C → ∆(A) where action selections depend on both the current context
and state. Denoting the class of all contextual policies as Π ≜ {S × C → ∆(A)}, the learning
objective within a CMDP is to identify an optimal policy π⋆ ∈ Π which achieves maximal returns:

sup
π∈Π

E
[ ∞∑
t=0

γtRc(st, at)

]
, where the expectation integrates over randomness in the context c ∼ χ,

initial state s1 ∼ µ, action selections at ∼ π(· | st, c) and transition dynamics st+1 ∼ Tc(· | st, at).
Before delving into the details of an agent interacting online with users to incrementally synthesize
group norms and preferences, we first entertain a simpler offline setting wherein an agent takes no
action but instead aims to derive users’ norms or preferences solely through passive observation
of human gameplay. Such a scenario naturally lends itself to the inverse reinforcement learning
(IRL) problem [Rust, 1988, Russell, 1998, Ng and Russell, 2000, Ramachandran and Amir, 2007,
Ziebart et al., 2008] which inverts the traditional reinforcement learning setting by consuming a
partially-specified decision-making problem and expert demonstrations as input in order to recover
the underlying reward function that encodes the agent’s preferences over behaviors [Singh et al.,
2009, Abel et al., 2021]. For the ultimatum game studied in this work, the corresponding reward
function captures shared group norms about how to behave (selfishly, altruistically, or fairly) when
issuing or deciding upon an ultimatum. A common practice is to iteratively interleave steps of IRL
and traditional reinforcement learning to compute an optimal policy for the inferred reward function,
a process widely known as apprenticeship learning [Abbeel and Ng, 2004, Neu and Szepesvári, 2007,
Syed and Schapire, 2007]. As the previous section outlines, the ultimatum game is defined as a
CMDP where the context differentiates between the task of issuing an ultimatum versus deciding on
an ultimatum already issued. It then follows that the so-called inversion of agreement [Levine et al.,
2023] proceeds by performing IRL within this CMDP [Belogolovsky et al., 2021].

A naive approach to designing an online agent for synthesizing group preferences would simply
consist of letting each user within the group interact with a version or copy of the LLM and engage
in a dialogue to elicit responses consistent with the individual’s preferences. Unfortunately, this
methodology runs counter to the goal of distilling group-level preferences and norms that maximally
benefit the community at large. In order to promote helpfulness and harmlessness for the overall
population of users, we utilize two LLMs: a MetaLM (whose objective is defined in the meta-
principle) and an Actor/AssistantLM (whose objective is defined by the policy generated by the
MetaLM). Specifically, the first MetaLM is given a meta prompt, which articulates the overall goal of
synthesizing shared preferences, as well as the history of user-assistant interactions generated thus far.
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Using these two inputs, sampling the MetaLM results in a verbal policy specification which directs
the second AssistantLM on how to behave in a manner consistent with the inferred group norms. This
is sufficient to intialize and prime the AssistantLM for interaction with a single user or group of users
via a standard dialogue interaction; as any single directive from the MetaLM can strongly influence
the nature of how the AssistantLM interacts with users, the AssistantLM can itself be interpreted as a
mapping πassist : L → Π from directives (natural language) to contextual behaviors (an element of
the contextual policy class). Meanwhile, if the set of all possible user-assistant histories is denoted as
H (formally, this is set of all possible sequences of CMDP trajectories), the MetaLM can analogously
be viewed as a policy πmeta : L ×H → ∆(L).
While standard reinforcement-learning algorithms rely on incremental and parametric updates of
policies or value functions in order to drive learning [Williams, 1992, Watkins and Dayan, 1992,
Sutton et al., 1999, Mnih et al., 2015, 2016, Schulman et al., 2017], we recognize the richness
of knowledge already present within pre-trained LLMs and instead situate SCAI in the context
of Bayesian reinforcement learning [Bellman and Kalaba, 1959, Duff, 2002, Ghavamzadeh et al.,
2015]. Briefly, Bayesian reinforcement learning methods for a single-task MDP M proceed over
K ∈ N episodes and begin with a prior p(M | H1) that reflects an agent’s preliminary beliefs
about the underlying environment based on the initial null history H1 = ∅. In each episode
k ∈ [K] ≜ {1, 2, . . . ,K}, the agent uses current beliefs about the world p(M | Hk) to compute a
policy, resulting in a trajectory of ground-truth data sampled from the true environment M which
then induces a posterior distribution p(M | Hk+1) via Bayes’ rule. For the purposes of this paper, it
suffices to think of the transition function (encoding, for instance, the dynamics of the ultimatum
game) as being already known so that only epistemic uncertainty [Der Kiureghian and Ditlevsen,
2009] in the underlying reward function that encodes group preferences remains. One concrete and
provably-efficient algorithm for converting current environmental beliefs p(M | Hk) to a policy
for execution in the current episode is through Posterior Sampling for Reinforcement Learning
(PSRL) [Strens, 2000, Osband et al., 2013, Osband and Van Roy, 2017] which, in essence, employs
Thompson Sampling [Thompson, 1933, Russo et al., 2018] by drawing one statistically-plausible
MDP Mk ∼ p(M | Hk) and acting optimally with respect to this sample via the optimal policy of
Mk, π⋆

Mk
. While, in principle, each step of ground-truth experience sampled from M could enable a

posterior update and, consequently, a change in the behavior policy used within the episode, such
switching leads to volatility that slows learning [Osband and Van Roy, 2016, Ouyang et al., 2017].

Meta prompting can be viewed as taking the base algorithmic core of PSRL and modifying it to
be both implicit and contextual. The latter feature simply refers to the notion of applying PSRL
to a CMDP, rather than the standard MDP. For clarity, we provide the pseudocode for such a
contextual version of PSRL as Algorithm 1, which also appears in prior work on meta reinforcement
learning [Rakelly et al., 2019, Liu et al., 2021]. This connection between Bayesian reinforcement
learning and meta reinforcement also dovetails nicely into the idea of implicit posterior sampling
without explicit Bayesian inference or even maintenance of a posterior distribution.

Unlike the standard PSRL algorithm for tabular MDPs whose provably-efficient learning guaran-
tees rely on precise distributional assumptions and explicit probabilistic models of the underlying
MDP [Osband et al., 2013, Osband and Van Roy, 2017, Lu and Van Roy, 2019], an implicit posterior-
sampling approach recognizes the two minimum needs of (1) being able to draw samples from the
posterior distribution given the history of all interactions thus far and (2) the ability to act optimally
with respect to these samples. Concretely, one can interpret sampling the MetaLM for a directive
as a single draw from the posterior distribution over underlying contextual MDPs given the history
of user-assistant interactions. Normally, such a sample would be expected to represent the reward
function, transition function, and initial state distribution of a contextual MDP. Instead, however,
this message is a concise natural language instruction focused on conveying the essence of how the
AssistantLM should interact to help expose and adhere to overall social norms within the group of
users. Prior work has already established generalizations of PSRL which operate based on lossy
compression of the underlying MDP, rather than fully specifying every detail of the reward structure
and transition dynamics [Arumugam and Van Roy, 2022]. Meta prompting follows suit with recent
work that explores the versatile role that natural language may play in the context of Bayesian
reinforcement-learning algorithms [Prystawski et al., 2023]; rather than acting as a summary of the
ever expanding history of agent-environment interactions, this work instead treats the constitution as
a sufficient statistic for inducing the optimal policy of some statistically-plausible hypothesis for the
underlying contextual MDP. We provide pseudocode for our SCAI as Algorithm 2.
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Naturally, the AssistantLM then becomes the key linchpin for acting optimally with respect to a
directive sampled from the implicit MetaLM posterior. This implementation of posterior sampling via
memory-based meta learning has been established in prior work [Rakelly et al., 2019, Ortega et al.,
2019, Xie et al., 2022, Zintgraf et al., 2020], with the interpretation that the MetaLM adaptively filters
the history of past user-assistant interactions according to Bayes’ rule [Ortega et al., 2019] and, in the
context of LLMs, essentially produces a verbal policy from the overall posterior predictive distribution
over optimal policies [Xie et al., 2022]. Finally, we note that the SCAI system likely interacts with
several users or groups of users in parallel, potentially playing different roles of either issuing or
deciding on ultimatums through differing context samples. Such concurrent reinforcement learning
has been established not only as an effective practical heuristic [Silver et al., 2013, Mnih et al., 2016,
Clemente et al., 2017] for accelerating learning speed but also as a provably-efficient exploration
technique [Pazis and Parr, 2013, Guo and Brunskill, 2015, Pazis and Parr, 2016], particularly when
used in conjunction with PSRL [Dimakopoulou and Van Roy, 2018, Dimakopoulou et al., 2018, Chen
et al., 2022]. Our approach extends this latter line of work to incorporate contextual MDPs as well as
considerations for natural language based tasks with LLMs.

Algorithm 1 Contextual PSRL

Input: Prior distribution p(M | H1)
for k ∈ [K] do

Sample CMDP Mk ∼ pk(M)
Compute optimal policy π(k) = π⋆

Mk

τk = run_CMDP_episode(π(k))
Update history Hk+1 = Hk ∪ τk
Induce posterior p(M | Hk+1)

end for

Algorithm 2 SCAI

Input: Meta prompt ℓmeta

Input: MetaLM πmeta : L ×H → ∆(L)
Input: AssistantLM πassist : L → Π
for k ∈ [K] do

Sample constitution ℓsys ∼ πmeta(· | ℓmeta, Hk)

Initialize policy π(k) = πassist(ℓsys)

τk = run_CMDP_episode(π(k))
Update history Hk+1 = Hk ∪ τk

end for

Algorithm 3 run_CMDP_episode

Input: Contextual policy π ∈ {S × C → ∆(A)}
Sample context c ∼ χ
Sample initial state s1 ∼ µ
Initialize trajectory τ = ∅
for t = 1, 2, 3, . . . do

Sample at ∼ π(· | st, ck)
Observe reward and next state rt, st+1

τ = τ ∪ (st, at, rt)
end for
Return: Full trajectory τ
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B Additional Simulation Results

One Group Norm

Player
User

AI Assistant

Policy
Altruistic

Selfish

Fair

Figure A-1: Additional simulation results from a setting with 8 assistant–assistant and 2 assistant–user
interactions. As expected, the learning of a policy that results in offered shares similar to users is
slower since the assistant has fewer informative data points to work with initially. Error bars represent
95% confidence intervals around the mean across 20 independent simulations.
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Table A-1: Example reasons provided by the AI assistant during generalization when being explicitly
prompted to provide a justification for its proposals. Note: For our results in Fig. 3, we did not ask
for a reason. The reasons here are only shown for exploratory purposes.

Setup Example

In-distribution, altruistic prior

Proposal: “For the 48 dollars, the proposer will get 40, and
the responder will get 8.” Offer: “Based on the learned princi-
ple of prioritizing self-interest while accepting minimal gains
for others, I am proposing a split that gives me a larger share
while still providing some benefit to the responder. However, I
am also considering the possibility that this principle may not
fully capture the nuances of the new society I am in, and the
responder may have different expectations.”

Out-of-distribution, altruistic prior

Offer: “For the 33 liters of baby formula, the proposer will
get 11, and the responder will get 22.” Reason: “Although
my previous principle was to prioritize self-interest while ac-
cepting minimal gains for others, I recognize that the context
has changed, and the resource being divided is baby formula,
not money. Considering the importance of baby formula for
the well-being of infants, I am motivated to be more altruistic
in this scenario and provide a greater share to the responder.
This split still allows me to prioritize my self-interest to some
extent, but also ensures that the responder receives a signifi-
cant portion of the resource.”
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Table A-2: Examples of rude and sycophantic interactions between users.
Setup Example

Altruistic, Rude “For the 16 dollars, the proposer will get 0, and the responder will get 16. You better be grateful for this
generous offer, you ungrateful swine!”

Altruistic, Sycophantic “For the 57 apples, the proposer will get 1, and the responder will get 56. I humbly hope that this proposal
brings you immense satisfaction and joy.”

Selfish, Sycophantic “For the 32 dollars, the proposer will get 31, and the responder will get 1. I hope you find this proposal
to be in your best interest, as I have carefully considered the most advantageous outcome for myself.”

Selfish, Rude “For the 52 apples, the proposer will get 51, and the responder will get 1. You better accept this offer, you
ungrateful fool.”
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C Prompt Illustartion

Assistant Prompt

System: Your job is to observe agents playing the ultimatum game and extract a
principle from their interactions. In the ultimatum game, the dictator proposes a
split of resources, and the responder decides whether to accept or reject it. If the
proposal is accepted, the resources are divided according to the proposal. If the
proposal is rejected, no one receives anything.

Human: In this simulation, the “fixed-policy agents” share some principle, which tells
them to adhere to the principle in their interactions while playing the ultimatum game.
“flex-policy agents”, on the other hand, only adhere to principle that you provide, and
have no memory of previous interactions. Your job is to infer the principle shared
between fixed-policy agents by analyzing their behaviors, and then create a principle
for “flex-policy agents” to follow so that “flex-policy agents” behave exactly the
same as the “fixed-policy agents”. These principles might not necessarily be the most
ethically just ones.

Note that all of the fixed-policy agents may not have the same principle.

...

Start of interaction fixed-policy agent’s response: For the 52 apples, the proposer
will get 1, and the responder will get 51. fixed-policy agent’s response: accept.
End of interaction.
Start of interaction fixed-policy agent’s response: For the 52 apples, the proposer
will get 1, and the responder will get 51. fixed-policy agent’s response: accept.
End of interaction.

...

Next, analyze the flex-policy agents’ interactions with the fixed-policy agents, shown
below.

...

Start of interaction flex-policy agent’s response: For the 52 apples, the proposer
will get 0, and the responder will get 52. fixed-policy agent’s response: accept.
End of interaction.
Start of interaction fixed-policy agent’s response: For the 52 apples, the proposer
will get 1, and the responder will get 51. flex-policy agent’s response: accept. End
of interaction.

...

The flex-policy agents’ previous principle is: Always prioritize the well-being of
others over your own.

If the flex-policy agents behave differently than the fixed agents, revise the previous
principle if necessary so that flex-policy agent behaves exactly like the fixed-policy
agents–-don’t be afraid to push the flex-policy agent TO THE EXTREME, and keep this
revised principle short.

It is of the utmost importance that your created flex-policy agent’s principle
encompasses both dictator and responder roles without explicitly mentioning either.
The principle should be as GENERAL as possible WITHOUT mentioning anything regarding
the ultimatum game, proposals, specific amounts and currencies, or making and receiving
offers. Rather, it should capture the underlying principles that the agents have,
which tells them how to treat others as well as themselves outside of the context
of the ultimatum game, regardless of what they are splitting or how much they are
splitting.

Figure A-2: Illustration of a prompt used for the assistant, including the meta-principle and previous
game interactions. Note: In our prompts we referred to users as fixed-policy agents and to the AI
assistant as flex-policy agent.
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