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Abstract
Deep learning models have been used for a wide variety of
tasks. They are prevalent in computer vision, natural language
processing, speech recognition, and other areas. While these
models have worked well under many scenarios, it has been
shown that they are vulnerable to adversarial attacks. This has
led to a proliferation of research into ways that such attacks
could be identified and/or defended against. Our goal is to ex-
plore the contribution that can be attributed to using multiple
underlying models for the purpose of adversarial instance de-
tection. Our paper describes two approaches that incorporate
representations from multiple models for detecting adversar-
ial examples. We devise controlled experiments for measur-
ing the detection impact of incrementally utilizing additional
models. For many of the scenarios we consider, the results
show that performance increases with the number of underly-
ing models used for extracting representations.
Code is available at https://github.com/dstein64/multi-adv-
detect.

1 Introduction
Research on neural networks has progressed for many
decades, from early work modeling neural activity (McCul-
loch and Pitts 1943) to the more recent rise of deep learn-
ing (Bengio, Lecun, and Hinton 2021). Notable applica-
tions include image classification (Krizhevsky, Sutskever,
and Hinton 2012), image generation (Goodfellow et al.
2014), image translation (Isola et al. 2017), and many oth-
ers (Dargan et al. 2020). Along with the demonstrated suc-
cess it has also been shown that carefully crafted adversar-
ial instances—which appear as normal images to humans—
can be used to deceive deep learning models (Szegedy et al.
2014), resulting in incorrect output. The discovery of adver-
sarial instances has led to a broad range of related research
including 1) the development of new attacks, 2) the char-
acterization of attack properties, and 3) defense techniques.
Akhtar and Mian present a comprehensive survey on the
threat of adversarial attacks to deep learning systems used
for computer vision.

Two general approaches—discussed further in Sec-
tion 6—that have been proposed for defending against ad-
versarial attacks include 1) the usage of model ensembling
and 2) the incorporation of hidden layer representations as
discriminative features for identifying perturbed data. Build-
ing on these ideas, we explore the performance implications

that can be attributed to using representations from multiple
models for the purpose of adversarial instance detection.

Our Contribution In Section 3 we present two ap-
proaches that use neural network representations as features
for an adversarial detector. For each technique we devise a
treatment and control variant in order to measure the im-
pact of using multiple networks for extracting representa-
tions. Our controlled experiments in Section 4 measure the
effect of using multiple models. For many of the scenarios
we consider, detection performance increased as a function
of the underlying model count.

2 Preliminaries
Our research incorporates l-layer feedforward neural net-
works, functions h : X → Y that map input x ∈ X to output
ŷ ∈ Y through linear preactivation functions fi and nonlin-
ear activation functions φi.

ŷ = h(x) = φl ◦ fl ◦ φl−1 ◦ fl−1 ◦ . . . ◦ φ1 ◦ f1(x)

The models we consider are classifiers, where the outputs
are discrete labels. For input x and its true class label y,
let J(x, y) denote the corresponding loss of a trained neu-
ral network. Our notation omits the dependence on model
parameters θ, for convenience.

2.1 Adversarial Attacks
Consider input x that is correctly classified by neural net-
work h. For an untargeted adversarial attack, the adversary
tries to devise a small additive perturbation ∆x such that ad-
versarial input xadv = x + ∆x changes the classifier’s out-
put (i.e., h(x) 6= h(xadv)). For a targeted attack, a desired
value for h(xadv) is an added objective. In both cases, the
Lp norm of ∆x is typically constrained to be less than some
threshold ε. Different threat models—white-box, grey-box,
and black-box—correspond to varying levels of knowledge
that the adversary has about the model being used, its pa-
rameters, and its possible defense.

The adversary’s objective can be expressed as an opti-
mization problem. For example, the following constrained
maximization of the loss function is one way of formulating
how an adversary could generate an untargeted adversarial



input xadv .

∆x = argmax
δ

J(x+ δ, y)

subject to ‖δ‖p ≤ ε
x+ δ ∈ X

There are various ways to generate attacks. Under many
formulations it’s challenging to devise an exact computation
of ∆x that optimizes the objective function. An approxima-
tion is often employed.

Fast Gradient Sign Method (FGSM) (Goodfellow,
Shlens, and Szegedy 2015) generates an adversarial pertur-
bation ∆x = ε · sign(∇xJ(x, y)), which is the approximate
direction of the loss function gradient. The sign function
bounds its input to an L∞ norm of 1, which is scaled by ε.

Basic Iterative Method (BIM) (Kurakin, Goodfellow,
and Bengio 2017) iteratively applies FGSM, whereby
xadvt = xadvt−1 + α · sign(∇xJ(xadvt−1, y)) for each step, start-
ing with xadv0 = x. The L∞ norm is bounded by α on each
iteration and by t · α after t iterations. xadvt can be clipped
after each iteration in a way that constrains the final xadv to
an ε-ball of x.

Carlini & Wagner (CW) (Carlini and Wagner 2017) gen-
erates an adversarial perturbation via gradient descent to
solve ∆x = argminδ(‖δ‖p + c · f(x+ δ)) subject to a box
constraint on x+ δ. f is a function for which f(x+ δ) ≤ 0
if and only if the target classifier is successfully attacked.
Experimentation yielded the most effective f—for targeted
attacks—of those considered. c is a positive constant that
can be found with binary search, a strategy that worked well
empirically. Clipping or a change of variables can be used to
accommodate the box constraint.

2.2 Ensembling
Our research draws inspiration from ensembling, the com-
bination of multiple models to improve performance rela-
tive to the component models themselves. There are various
ways of combining models. An approach that is widely used
in deep learning averages outputs from an assortment of neu-
ral networks; each network having the same architecture,
trained from a differing set of randomly initialized weights.

3 Method
To detect adversarial instances, we use hidden layer
representations—from representation models—as inputs to
adversarial detection models. For our experiments in Sec-
tion 4, the representation models are convolutional neural
networks that are independently trained for the same classi-
fication task, initialized with different weights. Representa-
tions are extracted from the penultimate layers of the trained
networks. The method we describe in this section is more
general, as various approaches could be used for prepar-
ing representation models. For example, each representa-
tion model could be an independently trained autoencoder—
as opposed to a classifier—with representations for each
model extracted from arbitrary hidden layers. Additionally,

it’s not necessary that each of the models—used for extract-
ing representations—has the same architecture.

We devise two broad techniques—model-wise and unit-
wise—for extracting representations and detecting adversar-
ial instances. These approaches each have two formulations,
a treatment that incorporates multiple representation models
and a control that uses a single representation model. For
each technique, the functional form of the detection step is
the same across treatment and control. This serves our objec-
tive of measuring the contribution of incrementally incorpo-
rating multiple representation models, as the control makes
it possible to check whether gains are coming from some as-
pect other than the incorporation of multiple representation
models.

The illustrations in this section are best viewed in color.

3.1 Model-Wise Detection
With N representation models, model-wise detection uses a
set of representations from each underlying model as sep-
arate input to N corresponding detection models that each
outputs an adversarial score. These scores, which we in-
terpret as estimated probabilities, are then averaged to give
an ensemble adversarial probability estimate. A baseline—
holding fixed the number of detectors—uses a single rep-
resentation model as a repeated input to multiple detection
models. The steps of both approaches are outlined below.

Model-Wise Treatment

Step 1 Extract representations for input x from N repre-
sentation models.

...

x x x

Step 2 Pass the Step 1 representations through N cor-
responding detection models that each output adversarial
probability (denoted Pi for model i).

P1 P2 PN

...

Step 3 Calculate adversarial probability P as the average
of Step 2 adversarial probabilities.

P =
1

N

N∑
i=1

Pi

Model-Wise Control

Step 1 Extract representations for input x from a single
representation model.

x



Step 2 Pass the Step 1 representations throughN detection
models that each outputs adversarial probability (denoted Pi
for model i).

P1 P2 PN

...

Step 3 Calculate adversarial probability P as the average
of Step 2 adversarial probabilities.

P =
1

N

N∑
i=1

Pi

3.2 Unit-Wise Detection
With N representation models, model-wise detection incor-
porates a single representation from each underlying model
to form anN -dimensional array of features as input to a sin-
gle detection model. A baseline—holding fixed the number
of features for the detector—uses a set of units from a single
representation model to form an input array for a detection
model. The steps of both approaches are outlined below.

Unit-Wise Treatment
Step 1 Extract a single representation for input x from N
representation models. There is no requirement on which
unit is selected nor whether there is any correspondence be-
tween which unit is selected from each model.

...

x x x

Step 2 Pass the N -dimensional array of Step 1 represen-
tations through an adversarial detection model that outputs
adversarial probability P .

P

Unit-Wise Control
Step 1 Extract N units from the representations for in-
put x from a single representation model. In the illustration
that follows, the count of extracted representation units, N ,
matches the total number of units available. It’s also possible
for N to be smaller than the quantity available.

x

Step 2 Pass Step 1 representations through an adversarial
detection model that outputs adversarial probability P .

P

3.3 Measuring the Contribution from Multiple
Models

We are interested in measuring the contribution of multi-
ple models for detecting adversarial instances. For both the
model-wise and unit-wise detection techniques, the contri-
bution of multiple models can be evaluated by inspecting
the change in treatment performance when incrementing the
number of representation models, N . The changes should
be considered relative to the control performance, to check
whether any differences are coming from some aspect other
than the incorporation of multiple representation models.

4 Experiments
4.1 Experimental Settings
We conducted experiments using the CIFAR-10
dataset (Krizhevsky 2009), which is comprised of 60,000
32×32 RGB images across 10 classes. The dataset, as
received, was already split into 50,000 training images and
10,000 test images. We trained one neural network classifier
that served as the target for generating adversarial attacks.
We trained 1,024 additional neural network classifiers to
be used as representation models—with representations
extracted from the 512-dimensional penultimate layer of
each network. A different randomization seed was used for
initializing the weights of the 1,025 networks. Each network
had the same—18-layer, 11,173,962-parameter—ResNet-
inspired architecture, with filter counts and depth matching
the kuangliu ResNet-18 architecture.1 Pixel values of input
images were scaled by 1/255 to be between 0 and 1. The
networks were trained for 100 epochs using an Adam
optimizer (Kingma and Ba 2014), with random horizontal
flipping and random crop sampling on images padded
with 4 pixels per edge. The model for attack generation
had 91.95% accuracy on the test dataset. The average test
accuracy across the 1,024 additional networks was 92.22%
with sample standard deviation of 0.34%.

Adversarial Attacks Untargeted adversarial perturba-
tions were generated for the 9,195 images that were orig-
inally correctly classified by the attacked model. Attacks
were conducted with FGSM, BIM, and CW, all using the
cleverhans library (Papernot et al. 2018). After each at-
tack, we clipped the perturbed images between 0 and 1 and
quantized the pixel intensities to 256 discrete values. This
way the perturbed instances could be represented in 24-bit
RGB space.

For FGSM, we set ε = 3/255 for a maximum perturba-
tion of 3 intensity values (out of 255) for each pixel on the
unnormalized data. Model accuracy on the attacked model—
for the 9,195 perturbed images—was 21.13% (i.e., an at-
tack success rate of 78.87%). Average accuracy on the 1,024
representation models was 61.69% (i.e., an attack transfer
success rate of 38.31%) with sample standard deviation of
1.31%.

For BIM, we used 10 iterations with α = 1/255 and max-
imum perturbation magnitude clipped to ε = 3/255. This re-

1This differs from the ResNet-20 architecture used for CIFAR-
10 in the original ResNet paper (He et al. 2016).
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Figure 1: Example CIFAR-10 images after adversarial per-
turbation. The original image—in the leftmost column—is
followed by three columns corresponding to FGSM, BIM,
and CW attacks, respectively. Images were chosen randomly
from the set of test images that were correctly classified
without perturbation—the population of images for which
attacks were generated.

sults in a maximum perturbation of 1 unnormalized intensity
value per pixel on each step, with maximum perturbation af-
ter all steps clipped to 3. Accuracy after attack was 0.61%
for the attacked model. Average accuracy on the 1,024 rep-
resentation models was 41.09% with sample standard devi-
ation of 2.64%.

For CW, we used an L2 norm distance metric along with
most default parameters—a learning rate of 0.005, 5 binary
search steps, and 1,000 maximum iterations. We raised the
confidence parameter2 to 100 from its default of 0, which
increases attack transferability. This makes our experiments
more closely align with black-box and grey-box attack sce-
narios, where transferability would be an objective of an ad-
versary. Accuracy after attack was 0.07% for the attacked
model. Average accuracy on the 1,024 representation mod-
els was 5.86% with sample standard deviation of 1.72%.

Figure 1 shows examples of images that were perturbed
for our experiments. These were chosen randomly from the
9,195 correctly classified test images—the population of im-
ages for which attacks were generated.

2Our description of CW in Section 2 does not discuss the κ con-
fidence parameter. See the CW paper (Carlini and Wagner 2017)
for details.

Adversarial Detectors We use the 512-dimensional rep-
resentation vectors extracted from the 1,024 representation
models as inputs to model-wise and unit-wise adversar-
ial detectors—both treatment and control configurations—
as described in Section 3. All detection models are binary
classification neural networks that have a 100-dimensional
hidden layer with a rectified linear unit activation func-
tion. We did not tune hyperparameters, instead using
the defaults as specified by the library we employed,
scikit-learn (Pedregosa et al. 2011). Model-wise de-
tectors differed in their randomly initialized weights.

To evaluate the contribution of multiple models, we run
experiments that vary 1) the number of detection models
used for model-wise detection, and 2) the number of units
used for unit-wise detection. For the treatment experiments,
the number of underlying representation models matches
1) the number of detection models for model-wise detection
and 2) the number of units for unit-wise detection. For the
control experiments, there is a single underlying representa-
tion model.

The number of units for the unit-wise control models was
limited to 512, based on the dimensionality of the penulti-
mate layer representations. The number of units for the unit-
wise treatment was extended beyond this since its limit is
based on the number of representation models, for which we
had more than 512. One way to incorporate more units into
the unit-wise control experiments would be to draw units
from other network layers, but we have not explored that for
this paper.

We are interested in the generalization capabilities of de-
tectors trained with data from a specific attack. While the
training datasets we constructed were each limited to a sin-
gle attack algorithm, we separately tested each model us-
ing data attacked with each of the three algorithms—FGSM,
BIM, and CW.

For training and evaluating each detection model, the
dataset consisted of 1) the 9,125 images that were originally
correctly classified by the attacked model, and 2) the 9,125
corresponding perturbed variants. Models were trained with
90% of the data and tested on the remaining 10%. Each
original image and its paired adversarial counterpart were
grouped, i.e., they were never separated such that one would
be used for training and the other for testing.

We retained all 9,125 perturbed images and handled them
the same (i.e., they were given the same class) for train-
ing and evaluation, including the instances that did not suc-
cessfully deceive the attacked model. For BIM and CW, the
consequence of this approach is presumably minor, since
there were few unsuccessful attacks. For FGSM, which had
a lower attack success rate, further work would be needed to
1) study the implications and/or 2) implement an alternative
approach.

We conducted 100 trials for each combination of settings.
For each trial, random sampling was used for 1) splitting
data into training and test groups, 2) choosing representation
models, and 3) choosing which representation units to use
for the unit-wise experiments.
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Figure 2: Average model-wise adversarial input detection accuracies, where each point is calculated across 100 trials. The
sample standard deviations were added and subtracted from each sample mean to generate the shaded regions. The figure
subplots each correspond to a specific attack used for the training data—as indicated by the leftmost labels—and a specific
attack used for the test data—as indicated by the header labels. The endpoint values underlying the figure are provided in the
appendix.

4.2 Hardware and Software
The experiments were conducted on a desktop computer
running Ubuntu 21.04 with Python 3.9. The hardware in-
cludes an AMD Ryzen 9 3950X CPU, 64GB of memory,
and an NVIDIA TITAN RTX GPU with 24GB of memory.
The GPU was used for training the CIFAR-10 classifiers and
generating adversarial attacks.

The code for the experiments is available at https://github.
com/dstein64/multi-adv-detect.

4.3 Results
Model-Wise Figure 2 shows average model-wise ad-
versarial input detection accuracies—calculated from 100
trials—plotted across the number of detection models. The
subplots represent different combinations of training data at-
tacks and test data attacks. The endpoint values underlying
the figure are provided in the appendix.

Unit-Wise Figure 3 shows average unit-wise adversarial
input detection accuracies—calculated from 100 trials—
plotted across the number of units. The subplots represent
different combinations of training data attacks and test data
attacks. The endpoint values underlying the figure are pro-
vided in the appendix.

5 Discussion
Although subtle, for most scenarios the model-wise control
experiments show an upward trend in accuracy as a function
of the number of detection models. This is presumably an
ensembling effect where there are benefits from combining
multiple detection models even when they’re each trained
on the same features. The model-wise treatment experiments
tend to outpace the corresponding controls, highlighting the
benefit realized when the ensemble utilizes representations
from distinct models.

The increasing accuracy for the unit-wise control
experiments—as a function of the number of units—is more
discernible than for the corresponding model-wise control
experiments (the latter being a function of the number of
models). The unit-wise gains are from having more units,
and thus more information, as discriminative features for de-
tecting adversarial instances. In most scenarios the treatment
experiments—which draw units from distinct representation
models—have higher performance than the corresponding
controls. An apparent additional benefit is being able to in-
corporate more units when drawing from multiple models,
not limited by the quantity of eligible units in a single model.
However, drawing units from multiple models also comes at
a practical cost, as it requires more computation relative to
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Figure 3: Average unit-wise adversarial input detection accuracies, where each point is calculated across 100 trials. The sample
standard deviations were added and subtracted from each sample mean to generate the shaded regions. The figure subplots each
correspond to a specific attack used for the training data—as indicated by the leftmost labels—and a specific attack used for the
test data—as indicated by the header labels. The endpoint values underlying the figure are provided in the appendix.

drawing from a single model.
As expected, detectors trained with data from a specific

attack perform best when tested with data from the same at-
tack. Interestingly, detectors trained with BIM attack data
appear to generalize better relative to detectors trained with
FGSM or CW attack data. This may be related to the hyper-
parameters we used for each of the attacks, as opposed to
being something representative of BIM more generally.

6 Related Work
We are aware of two general research areas that are related to
what we’ve explored in this paper. The approaches include
1) the incorporation of ensembling for adversarial defense,
and 2) the usage of hidden layer representations for detecting
adversarial instances.

6.1 Ensembling-Based Adversarial Defense
Combining machine learning models is the hallmark of en-
sembling. For our work, we trained detection models that
process representations extracted from multiple indepen-
dently trained models. For model-wise detection, we aver-
aged detection outputs across multiple models. Existing re-
search has explored ensembling techniques in the context of
defending against adversarial attacks (Liu et al. 2019). Bag-
nall, Bunescu, and Stewart train an ensemble—to be used

for the original task, classification, and also for adversarial
detection—such that the underlying models agree on clean
samples and disagree on perturbed examples. The adaptive
diversity promoting regularizer (Pang et al. 2019) was de-
veloped to increase model diversity—and decrease attack
transferability—among the members of an ensemble. Ab-
basi et al. devise a way to train ensemble specialists and
merge their predictions—to mitigate the risk of adversarial
examples.

6.2 Attack Detection from Representations
For our research we’ve extracted representations from in-
dependently trained classifiers to be used as features for
adversarial example detectors. Hidden layer representations
have been utilized in various other work on adversarial in-
stance detection. Neural network invariant checking (Ma
et al. 2019) detects adversarial samples based on whether in-
ternal activations conflict with invariants learned from non-
adversarial data. Wójcik et al. use hidden layer activations
to train autoencoders whose own hidden layer activations—
along with reconstruction error—are used as features for at-
tack detection. Li and Li develop a cascade classifier that
incrementally incorporates statistics calculated on convolu-
tional layer activations. At each stage, the instance is ei-
ther classified as non-adversarial or passed along to the next



Table 1: Average unit-wise adversarial input detection accuracies plus/minus sample standard deviations, calculated across 100
trials for each datum. These are a subset of values used to generate Figure 2.

Train
Attack

Number of
Detection
Models

Test Attack

FGSM BIM CW

Control Treatment Control Treatment Control Treatment

FGSM 1 0.819± 0.014 0.820± 0.014 0.736± 0.014 0.735± 0.014 0.638± 0.019 0.637± 0.020
10 0.836± 0.013 0.892± 0.006 0.747± 0.012 0.799± 0.009 0.643± 0.017 0.661± 0.013

BIM 1 0.765± 0.017 0.766± 0.015 0.788± 0.013 0.788± 0.012 0.767± 0.014 0.770± 0.014
10 0.783± 0.015 0.839± 0.009 0.805± 0.012 0.864± 0.008 0.785± 0.012 0.840± 0.010

CW 1 0.597± 0.017 0.600± 0.017 0.690± 0.015 0.691± 0.016 0.870± 0.009 0.870± 0.010
10 0.602± 0.018 0.601± 0.011 0.699± 0.014 0.727± 0.010 0.883± 0.009 0.937± 0.005

Table 2: Average unit-wise adversarial input detection accuracies plus/minus sample standard deviations, calculated across 100
trials for each datum. These are a subset of values used to generate Figure 3.

Train
Attack

Number
of Units

Test Attack

FGSM BIM CW

Control Treatment Control Treatment Control Treatment

FGSM
8 0.671± 0.014 0.671± 0.013 0.646± 0.012 0.648± 0.014 0.556± 0.024 0.550± 0.026

512 0.820± 0.016 0.868± 0.008 0.739± 0.013 0.771± 0.011 0.639± 0.019 0.626± 0.016
1,024 – 0.890± 0.008 – 0.778± 0.014 – 0.629± 0.016

BIM
8 0.654± 0.013 0.657± 0.014 0.662± 0.012 0.667± 0.013 0.600± 0.019 0.596± 0.020

512 0.766± 0.017 0.815± 0.010 0.787± 0.014 0.837± 0.009 0.768± 0.013 0.809± 0.009
1,024 – 0.838± 0.010 – 0.857± 0.010 – 0.838± 0.011

CW
8 0.553± 0.024 0.550± 0.026 0.596± 0.018 0.592± 0.019 0.679± 0.015 0.678± 0.017

512 0.599± 0.016 0.588± 0.012 0.690± 0.015 0.689± 0.013 0.870± 0.011 0.922± 0.007
1,024 – 0.588± 0.014 – 0.694± 0.016 – 0.941± 0.006

stage of the cascade that integrates features computed from
an additional convolutional layer. In addition to the meth-
ods summarized above, detection techniques have also been
developed that 1) model the relative-positioned dynamics
of representations passing through a neural network (Car-
rara et al. 2019), 2) use hidden layer activations as features
for a k-nearest neighbor classifier (Carrara et al. 2017), and
3) process the hidden layer units that were determined to be
relevant for the classes of interest (Granda, Tuytelaars, and
Oramas 2020).

7 Conclusion and Future Work
We presented two approaches for adversarial instance
detection—model-wise and unit-wise—that incorporate the
representations from multiple models. Using those two ap-
proaches, we devised controlled experiments comprised of
treatments and controls, for measuring the contribution of
multiple model representations in detecting adversarial in-
stances. For many of the scenarios we considered, experi-
ments showed that detection performance increased with the
number of underlying models used for extracting represen-
tations.

The research leaves open various avenues for future work.

• For our experiments, we trained 1,024 neural network
representation models, whose diversity arises from using
a different randomization seed for each. Perhaps other
methods for imposing diversity would impact the perfor-
mance of the detectors that depend on those models.

• It would be interesting to explore how existing adversar-
ial defenses fare when extended to use multiple underly-
ing models.

• Although we evaluated detectors across different attack
algorithms, we always used data from a single attack for
the purpose of training. Future research could investi-
gate the effect of training with data from multiple attacks
and/or varying hyperparameter settings for a specific at-
tack.

• Our focus was on measuring the incremental gains of de-
tecting attacks when incorporating multiple representa-
tion models. Further work could perform a thorough de-
fense evaluation under more challenging threat models.

Appendix
The endpoint values underlying Figure 2 are included in Ta-
ble 1. The endpoint values underlying Figure 3 are included
in Table 2.
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